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Introduction

1. About Korovkin-type Approximation Theory
We present the notion of approximation scheme. Let (X, d) be a metric space.

An approximation method requires a set of approximating functions, F say, which
is a subset of X. Given any f ∈ X, the method picks the element ef , say, from F ,
which is regarded as an approximation to f . To find how good is the chosen method,
ef should be compared with the best approximation to f ∈ X from F ; this is an
element e∗ ∈ F such that

d(f, e∗) = inf{d(f, e) : e ∈ F} := dist(f,F).

Conditions for the existence, uniqueness and for the characterization of the best
approximation in the case when F is a Hilbert space can be found, e.g., in [27,
Section 1.4].

So, an important issue is to determine what type of approximating functions
we use. One of the directions of Approximation Theory is given by positive linear
approximation processes. It is relatively new trend that came to light in the fifties
due to the research of T. Popoviciu, H. Bohman and P.P. Korovkin. Their famous
theorem characterizing sequences of positive linear operators that approximate the
identity operator, based on easily checked, simple criteria.

The following three aspects are most vital in this direction: the construction of
these processes, the study of the degree of approximation, their ability to mimic
qualitative properties of the approximated function such as monotonicity, convexity,
shape preservation. After the pioneer work carried out by the mentioned mathe-
maticians, a new theory was born on which we may now call Korovkin-type ap-
proximation theory, in short KAT. The development of KAT in C(X)-spaces was
pursued and enriched by Wulbert [103], Berens and Lorentz [19], [20], Bauer and
Donner [17]. KAT has been developed also in the framework of Banach lattices. For
documentation in this area, we used, as primary source, the monograph of Altomare
and Campiti [11]. All basic information are concentrated in Chapter 1 of this thesis.

Among the many approaches to the field called KAT, recently studied topic
is the analysis of linear processes by using statistical convergence and the matrix
summability method. The first steps were made in 2002 by Gadjiev and Orhan
[45]. This vein of research was proved to be extremely fertile, consequently many
mathematicians have developed this subject.

This thesis aims at this direction of investigation. Our goal is to construct dif-
ferent classes of linear positive operators of discrete or integral type and to study
their statistical approximation properties. In terms of statistical convergence and
A-statistical convergence we study both classical operators and new introduced op-
erators which may depend on parameters.

The work combined classical results, new results appeared in the last decade and
personal research aspects. We tried to make everything as simple as possible, but
not simpler.



2. The architecture of the thesis
The thesis is structured in three chapters.
Chapter 1 gives a collection of some significant developments in the area of KAT.

Here we meet definitions, examples, the classical Korovkin theorems, results on the
rate of convergence of a sequence of positive linear operators. All the involved math-
ematical entities are fully described and specific. In a distinct section we detailed the
concept of statistical convergence and its use in KAT. Also, elements of q-Calculus
are delivered. Having established some formulas in q-Calculus, we go on to harvest
the array of applications in the construction and in the study of q-approximation
linear processes.

Chapter 2 treats classes of modified operators. We refer to operators which fix
the monomial of the second degree. After a stopover on genuine King operators
introduced in 2003, we deal with a family of discrete operators which preserves
certain polynomials. The last section is devoted to approximation properties of a
new class of q-Szász-Mirakjan operators. The exposed results usually involve various
moduli of smoothness.

Chapter 3 begins by presenting some recent Korovkin-type theorems created to
study the A-statistical convergence of sequences of positive linear operators. Au-
thor’s original results are presented in three different sections and they address the
following: a bivariate extension in q-Calculus of Stancu operators, new results on
statistical approximation of Lupaş operators and of a class of Kantorovich-type op-
erators, an investigation of mixed summation-integral operators based on discrete
Jain operators. We mention that values of the errors for the appearing convergences
(uniform, in Lp-norm, A-statistical) are found in explicit form.

In the construction of this work we tried first to include our personal results.
Although the temptation was great, we did not want to present numerous existing
results in this field. It would be transformed into a broad synthesis, which is not the
primary purpose of a PhD thesis. Following this line, we inserted only the results
we actually used in the papers published.

The exposed results come from single or joint papers of the author and the
following: Octavian Agratini, Tudor Andrica, Cristina Radu, Andreea Veţeleanu. So
far we have published 6 articles.

3. Original results
Our results are disseminated in Chapter 2 and Chapter 3 as follows.

Section 2.2: Theorem 2.2.1, Lemma 2.2.2, Theorem 2.2.6, Lemma 2.2.7, Theorem
2.2.8, Lemma 2.2.10, Theorem 2.2.11 published in [9].
Section 2.3: Lemma 2.3.2, Theorem 2.3.3, Theorem 2.3.4, Theorem 2.3.5, Corollary
2.3.6 published in [86].
Section 2.4.: Theorem 2.4.7, Corollary 2.4.8 published in [10].
Section 3.2: Theorem 3.2.1, Theorem 3.2.3, Theorem 3.2.5, Theorem 3.2.7 published
in [10].
Section 3.3: Theorem 3.3.1, Theorem 3.3.2 published in [96].
Section 3.4: Lemma 3.4.1, Lemma 3.4.2, Theorem 3.4.3, Theorem 3.4.4, Theorem

2



3.4.5, Theorem 3.4.6 published in [95].
Also, the results presented in Lemma 2.4.10, Theorem 2.4.11, Theorem 3.1.9,

Lemma 3.2.8 and Theorem 3.4.8 are so far unpublished.
We emphasize that in the above list was not included any personal remark or

didactic example which were presented in this thesis.
Remark. We mention that in this abstract the numbering of theorems, lemmas

and of all relationships was preserved as in the original thesis.

Chapter 1. Preliminaries

In three sections we collect notations, formulas and outstanding results which
will be used in the presentation of our achievements.

1.1. Positive approximation processes.

Classical approach

In the present section we shall deal with a basic topic of Korovkin-type approx-
imation theory.

Since our goal is to study approximation properties of positive linear operators,
a question arises. If (Ln)n≥1 is such a sequence, what are the sufficient conditions to
guarantee that (Lnf)n≥1 converges uniformly to f for each continuous function f? H.
Bohman [23] and P.P. Korovkin [65] have found the answer by giving a very simple
criterion in order to decide the convergence of a given sequence of positive linear
operators to the identity operator. Also, we point that the result was independently
earlier established by Tiberiu Popoviciu [82] whose contribution remained unknown
for a long time.

Set ej, j ∈ N0, the monomial of degree j, where N0 := {0} ∪ N.
Theorem 1.1.6 (Popoviciu-Bohman-Korovkin). Let (Ln)n≥1 be a sequence of pos-
itive linear operators of C([a, b]) into itself. Suppose that (Lnej)n≥1 converges uni-
formly to ej for j ∈ {0, 1, 2}.

Then (Lnf)n≥1 converges uniformly to f on [a, b] for all functions f ∈ C([a, b]).
Usually, e0, e1, e2 are called test-functions of the space C([a, b]) with respect to

Popoviciu-Bohman-Korovkin theorem.

1.2. The concept of statistical convergence

Sixty years ago, the notion of statistical convergence was introduced by H. Fast
[40]. In this paper the author recognizes the merits of H. Steinhaus who, at February
18th 1949 in the frame of Polish Mathematics Society (Wroclaw), presented the
first proof of the statement: for measurable sequences of functions, the statistical
convergence and the asymptotic-statistical convergence are equivalent. The concept
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of statistical convergence is based on the notion of the asymptotic density of subsets
of N.

Even though the notion of statistical convergence was introduced long time ago,
its application to the study of positive linear operators was attempted only in 2002.
A.D. Gadjiev and C. Orhan [45] obtained Korovkin-type theorems via statistical
convergence. The main result will be read as follows.
Theorem 1.2.14 [45, Theorem 1] If the sequence of positive linear operators Ln :
C([a, b]) → B([a, b]) satisfies the conditions

st− lim
n
‖Lnej − ej‖ = 0, j = 0, 1, 2, (1.2.7)

then, for any function f ∈ C([a, b]), one has

st− lim
n
‖Lnf − f‖ = 0. (1.2.8)

1.3. Elements of q-Calculus and related formulas

Quantum Calculus is equivalent to traditional infinitesimal calculus without the
notion of limits. It defined q-Calculus and h-Calculus.

The h-Calculus is just the calculus of finite differences which had been firstly
studied by George Boole (1815-1864).

The q-Calculus, while dating in a sense back to Leonhard Euler (1707-1783) and
Carl Gustav Jacobi (1804-1851), is only recently beginning to see more usefulness in
quantum mechanics. Besides this implication, it has a lot of applications in different
mathematical areas, such as number theory, combinatorics, orthogonal polynomials,
basic hyper-geometric functions.

The aim of this Section is to present definitions, notations and basic results
regarding q-Calculus. For this brief introduction we documented in the book of Kac
and Cheung [59, pp. 7-13].

Chapter 2. Classes of modified operators

This chapter is focused on linear positive operators having the degree of exactness
null and fixing the monomial of the second degree. The starting point is presented
by J.P. King’s paper [61] appeared in 2003. In the first paragraph we sum up results
obtained in the past five years on these operators. Further on, in other paragraphs
we introduce and study various new classes of operators following the construction
created by King.

2.1. On genuine King operators

It is well known, if a linear positive operator reproduces all three test functions of
Popoviciu-Bohman-Korovkin criterion, then it is the identity operator of the space.
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A question arises: What is known about operators which fix the monomials e0

and e2?
J.P. King [61] was the first to present an example of operators enjoying this

property.

2.2. On a King-type family of operators preserving

certain polynomials

This section contains results published by Saddika Tarabie as co-author in [9].
Our aim is to introduce a general class of discrete type operators, to reproduce

e0 and e2 +αe1. This family is defined on certain subspaces of C(J), J ⊂ R. We take
into account two types of intervals: J = [0, 1] and J = R+ := [0,∞), respectively.
For the first case, the local and global rate of convergence is established by using the
classical modulus ωf associated to any function f ∈ C([0, 1]). As usual, this space is
endowed with the sup-norm ‖ · ‖. For the second case, the approximation property
of our class is given in the frame of spaces of functions with polynomial growth. The
involved spaces are defined via certain weights. More precisely, for a given p ≥ 2, we
consider the weight wp, wp(x) = (1 + xp)−1, x ≥ 0, and the corresponding space

Cp(R+) = {f ∈ C(R+) : wp(x)f(x) is convergent as x tends to infinity} (2.2.1)

endowed with the norm ‖ · ‖Cp , ‖f‖Cp = sup
x≥0

wp(x)|f(x)|.

We notice, since p ≥ 2, the test functions ej, j ∈ {0, 1, 2}, belong to Cp(R+).
Further on, we detail the construction of the announced family of operators as it
was indicated in [9].

For each n ≥ 2, let ∆n = (xn,k)k∈In be a net on the interval J , where In ⊂ N is
a set of indices consistent with J , this meaning {xn,k : k ∈ In} ⊂ J . We consider
the operators Ln having the form

(Lnf)(x) =
∑
k∈In

un,k(x)f(xn,k), x ∈ J, (2.2.2)

where un,k ∈ C(J), un,k ≥ 0, for every (n, k) ∈ {2, 3, . . .} × In and

f ∈ F(J) = {g ∈ C(J) : the series in (2.2.2) is convergent}.

Further on, we assume that the following identities

(Lne0)(x) = 1, (Lne1)(x) = x, (Lne2)(x) = anx
2 + bnx, x ∈ J, (2.2.3)

are fulfilled for each n ≥ 2. Moreover, we assume

an > 0, bn > 0, lim
n

an = 1, lim
n

bn = 0. (2.2.4)
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Let α ≥ 0 be fixed. For each n = 2, 3, . . . setting

cn,α =
bn + α

2an

,

we define the functions vn,α : J → R+,

vn,α(x) = −cn,α +

√
c2
n,α +

x2 + αx

an

, x ∈ J. (2.2.5)

Clearly, vn,α ∈ C(J). Taking into account (2.2.2), we consider the linear and
positive operators

(L∗n,αf)(x) =
∑
k∈In

un,k(vn,α(x))f(xn,k), x ∈ J, (2.2.6)

where f ∈ F(J).
Theorem 2.2.1 Let L∗n,α, n = 2, 3, . . ., be defined by (2.2.6). The following relations
hold.

(i) L∗n,αe0 = e0, L∗n,αe1 = vn,α, L∗n,α(e2 + αe1) = e2 + αe1.
(ii) (L∗n,αϕ2

x)(x) = (2x + α)(x − vn,α(x)), x ∈ J , where ϕx : J → R+ is defined
by ϕx(t) = |t− x|.
Lemma 2.2.2 Let vn,α, n = 2, 3, . . . be defined by (2.2.5). For each x ∈ J one has

(i) 0 ≤ vn,α(x) ≤ x,
(ii) lim

n
vn,α(x) = x.

Theorem 2.2.6 Let L∗n,α, n = 2, 3, . . ., be defined by (2.2.6), where J = [0, 1]. For
any f ∈ C([0, 1]) one has

lim
n
‖L∗n,αf − f‖ = 0.

For exploring the rate of convergence of L∗n,α (n ≥ 2, α ∈ R+) operators, we need
the following technical result.
Lemma 2.2.7 Let vn,α, n = 2, 3, . . ., be given by (2.2.5).

(i) For α > 0, one has x− vn,α(x) ≤ (an − 1)x2 + bnx

bn + α
.

(ii) For α = 0, one has x− vn,α(x) ≤ |an − 1|
√

an

x +
bn

2an

.

Theorem 2.2.8 Let L∗n,α, n = 2, 3, . . ., be defined by (2.2.6), where J = [0, 1]. We
assume that the sequence ((an − 1)/bn)n≥2 is bounded. Let f belong to C([0, 1]).

(i) For α > 0, one has

|(L∗n,αf)(x)− f(x)| ≤
(

1 + (2x + α)x
(an − 1)x + bn

bn(bn + α)

)
ω1(f ;

√
bn). (2.2.10)

(ii) For α = 0, one has

|(L∗n,0f)(x)− f(x)| ≤
(

1 +
x

an

(
1 + 2

√
an
|an − 1|

bn

x

))
ω1(f ;

√
bn). (2.2.11)
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Lemma 2.2.10 Let L∗n,α, n = 2, 3, . . ., be defined by (2.2.6), where J = R+.
(i) For any p ≥ 2 one has

|(L∗n,αe1)(x)− x|
1 + xp

≤
∣∣∣∣1− 1

√
an

∣∣∣∣ +
|bn(

√
an + 1)− α(

√
an − 1)|

√
an(bn + α)

, x ≥ 0; (2.2.12)

(ii) lim
n
‖L∗n,αe1 − e1‖Cp = 0.

At this moment we show that the sequence (L∗n,α)n≥2 furnishes a new strong
approximation process on the weighted space Cp(R+), p ≥ 2.
Theorem 2.2.11 Let L∗n,α, n = 2, 3, . . ., be defined by (2.2.6), where J = R+. For
every f ∈ F(R+) ∩ Cp(R+), p ≥ 2, the following identity

lim
n→∞

‖L∗n,αf − f‖Cp = 0 (2.2.13)

holds.

2.3. Approximation properties of a new class

of q-Szász-Mirakjan operators

Our aim is to present a q-generalization of Szász-Mirakjan operators and to
investigate their rate of convergence. The main tool is a certain weighted modulus
of smoothness.

The established results relating to this sequence of operators represent the fruit
of joint activities carried out during the common doctoral program in 2008-2009
between the PhD students Cristina Radu, Saddika Tarabie and Andreea Veţeleanu.
Later, these results were structured and, in spring 2011, were published in Studia
Universitatis Babeş-Bolyai journal, see [86].

Throughout this paragraph we consider q ∈ (0, 1).
In [15] A. Aral introduced the first q-analogue of the classical Szász-Mirakjan

operators.
Motivated by this work, for q ∈ (0, 1) we give another q-analogue of the same

class of operators as follows

Sn,q(f ; x) =
∞∑

k=0

([n]qx)k

[k]q!
qk(k−1)Eq(−[n]qq

kx)f

(
[k]q

[n]qqk−1

)
, (2.3.1)

x ≥ 0 and f ∈ F(R+) = {f : R+ → R, the series in (2.3.1) is convergent}.
For q → 1− the above operators reduce to the classical Szász-Mirakjan operators.

In this case the approximation function Sn,qf is defined on R+ for each n ∈ N.
Easier to handle this construction, we will use the following q-difference operator

∆0
qfk,s = fk,s, (2.3.2)

∆r+1
q fk,s = qr∆r

qfk+1,s −∆r
qfk,s−1, r ∈ N0, (2.3.3)
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where fk,s = f(xk,s) and xk,s =
[k]q

qs[n]q
, k ∈ N0, s ∈ Z.

As usual, [t0, t1, . . . , tn; f ] denotes the divided difference of the function f with
respect to the distinct points t0, t1, . . . , tn. We recall, it is defined recursively

[t0; f ] = f(t0) and [t0, t1, . . . , tn; f ] =
[t1, . . . , tn; f ]− [t0, . . . , tn−1; f ]

tn − t0
.

Following Ivan [56, p. 20], the term divided difference was introduced in mathe-
matics by Augustus de Morgan (1842).
Lemma 2.3.2 For all k, r ∈ N0, s ∈ Z, one has

[xk,s−1, . . . , xk+r,s+r−1; f ] =
qr(r+2s−1)/2[n]rq

[r]q!
∆r

qfk,r+s−1, (2.3.5)

where the nodes were indicated in (2.3.3).
Theorem 2.3.3 Let q ∈ (0, 1) and Sn,q, n ∈ N, be defined by (2.3.1). For any
f ∈ F(R+) we have

Sn,q(f ; x) =
∞∑

r=0

([n]qx)r

[r]q!
qr(r−1)/2∆r

qf0,r−1, x ≥ 0. (2.3.6)

In what follows we consider a sequence (qn)n, 0 < qn < 1, such that

lim
n

[n]qn = ∞. (2.3.13)

Theorem 2.3.4 Let (qn)n be a sequence satisfying (2.3.13) and let the operators
Sn,qn, n ∈ N, be defined by (2.3.1). For any compact J ⊂ R+ and for each f ∈ C(R+)
we have

lim
n→∞

Sn,qn(f ; x) = f(x), uniformly in x ∈ J.

Theorem 2.3.5 Let (qn)n be a sequence satisfying (2.3.13) and let the operators
Sn,qn, n ∈ N, be defined by (2.3.1). Let q0 = inf

n∈N
qn and α ≥ 2. For each n ∈ N and

every f ∈ Bα(R+) one has

|Sn,qn(f ; x)− f(x)| ≤ Cα,q0(1 + xα+1)Ωα(f ;
√

1/[n]qn), x ≥ 0, (2.3.16)

where Cα,q0 is a positive constant independent of f and n.
On the basis of this theorem we are able to give the following global estimate.

Corollary 2.3.6 Under the hypothesis of Theorem 2.3.5 one has

‖Sn,qnf − f‖Bα+1 ≤ Cα,q0Ωα(f ;
√

1/[n]qn),

where Cα,q0 is a positive constant independent of f and n.
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2.4. A sequence of summation integral type

operators

This section is devoted to study a mixed summation-integral type of linear pos-
itive operators that approximate certain functions defined on R+. We obtain the
pointwise rate of convergence. Within this general class of operators we highlight
specific cases already studied in the literature. The material presented is based on
[13], an article written jointly by Andrica Tudor and Tarabie Saddika.

Here are some examples of mixed operators which use different basis functions.
Setting

sn,k(x) = e−nx (nx)k

k!
, vn,k(x) =

1

(1 + x)n

(
n + k − 1

k

) (
x

1 + x

)k

, (2.4.3)

k ∈ N0, x ∈ R+, and Cγ(R+) = {g ∈ C(R+) : |g(t)| ≤ Meγt for some M > 0},
γ > 0 fixed, some examples are outlined.
Example 2.4.1 Szász-Durrmeyer type operators with Baskakov basis

(Lnf)(x) = n
∞∑

ν=0

vn,ν(x)

∫ ∞

0

sn,ν(t)f(t)dt,

n ∈ N, x ≥ 0, for f ∈ Lp(R+), p ≥ 1, see Gupta and Srivastava [51].
Example 2.4.2 Baskakov-Durrmeyer type operators with Szász basis

(Lnf)(x) = (n− 1)
∞∑

ν=1

sn,ν(x)

∫ ∞

0

vn,ν−1f(t)dt + e−nxf(0), (2.4.4)

n ≥ 2, x ∈ R+, where f ∈ Cγ(R+), see [52, Eq. (1.1)].
Example 2.4.3 Szász-Durrmeyer type operators with Beta basis

(Lnf)(x) =
∞∑

ν=1

βn,ν(x)

∫ ∞

0

sn,ν−1(t)f(t)dt + (1 + x)−n−1f(0), (2.4.5)

n ∈ N, x ∈ R+, where f ∈ Cγ(R+), see [53, Section 4] and [54]. Here the weights
βn,ν are given by Beta function as follows

βn,ν(x) =
1

B(n, ν + 1)

xν

(1 + x)n+ν+1
, ν ≥ 1. (2.4.6)

Inspired by the above constructions, in what follows we introduce a general class
of hybrid integral type operators.

Let (an,k)k≥0, (bn,k)k≥0 be two sequences of continuous and positive functions
defined on R+ such that the following relations hold

∞∑
k=0

an,k = 1,

∞∑
k=0

bn,k = 1,

∫ ∞

0

bn,k(t)dt := cn,k < ∞, (2.4.7)
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where 1 denotes the constant function on R+ of constant value 1. For each n ∈ N
we define the operator

(Vnf)(x) = f(0)an,0(x) +
∞∑

k=1

an,k(x)

cn,k

∫ ∞

0

bn,k(t)f(t)dt, x ∈ R+, (2.4.8)

where f ∈ F(R+), this space consisting of all real valued functions f defined on R+

with the following two properties: bn,kf belongs to the Lebesgue space L1(R+) for
each k ∈ N and the series from the right hand side of relation (2.4.8) is convergent.

As regards our operators Vn, n ∈ N, we impose that the polynomials of first and
respectively second degree to be transformed into polynomials of first respectively
second degree which vanish at the origin. This means

(Vne1)(x) = (1 + αn)x and (Vne2)(x) = (1 + βn)x2 + γnx, x ∈ R+. (2.4.10)

Theorem 2.4.7 Let τ > 0 be fixed. Let Vn, n ∈ N, be the operators defined by
(2.4.8) such that (2.4.10) takes place. For each f ∈ C2(R+) the following relation

|(Vnf)(x)− f(x)| ≤ Mf,τδ
2
n(x) + 2ω(f ; δn(x))[0,τ+1] (2.4.17)

holds, where
δn(x) =

√
(βn − 2αn)x2 + γnx, x ∈ [0, τ ], (2.4.18)

and Mf,τ is a constant depending only on f and τ .
Corollary 2.4.8 Under the assumptions of Theorem 2.4.7 one has

‖Vnf − f‖[0,τ ] ≤ Mf,τ‖δ2
n‖[0,τ ] + 2ω(f ; ‖δn‖[0,τ ])[0,τ+1], n ∈ N, (2.4.19)

where δn is defined at (2.4.18).
In the final part we will study the statistical convergence of (Vn)n≥1.

Lemma 2.4.10 Let (αn)n≥1, (βn)n≥1, (γn)n≥1 be real sequences. If

st− lim
n

(αn − 2βn) = 0, st− lim
n

γn = 0, (2.4.20)

then
st− lim

n
‖δ2

n‖[0,τ ] = 0 and st− lim
n

ω(f ; ‖δn‖[0,τ ]) = 0, (2.4.21)

where δn, n ∈ N, are given by (2.4.18).
Theorem 2.4.11 Let τ > 0 be fixed. Let Vn, n ∈ N, be the operators defined by
(2.4.8) such that (2.4.10) takes place.

If (2.4.20) holds, then one has

st− lim
n
‖Vnf − f‖[0,τ ] = 0, f ∈ C2(R+).
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Chapter 3. Statistical convergence of some
classes of linear operators

First we present results subsequent to Theorem 1.2.14, revealing what has been
achieved notably in Approximation Theory by using statistical convergence. Next
we continue to investigate other classes of positive linear approximation operators.
The original results obtained are included in separate sections of this chapter and
they refer to the statistical convergence of Stancu, Lupaş and Jain type operators.
These results have been published in papers [10], [96], [95], respectively.

3.1. Korovkin-type theorems via statistical

convergence

We give another application that aims Lupaş operators introduced by using
elements of q-Calculus [69]. For q ∈ (0, 1], these operators are defined as follows.

Bq
n : C([0, 1]) → C([0, 1]),

(Bq
nf)(x) =

1

vn(x; q)

n∑
k=0

[n

k

]
q
qk(k−1)/2xk(1− x)n−kf

(
[k]q
[n]q

)
, (3.1.14)

where vn(x; q) =
n∏

k=1

(1− x + xqk−1), x ∈ [0, 1].

Theorem 3.1.9 Let 0 < qn < 1, n ∈ N, and let A be a non-negative regular
summability matrix. Let (Bqn

n )n≥1 be defined as in (3.1.14).
If stA − lim

n
[n]qn = ∞, then, for all functions f ∈ C([0, 1]), we have

stA − lim
n
‖Bqn

n f − f‖ = 0. (3.1.17)

3.2. A bivariate extension of Stancu operators

Starting from Markov-Pólya urn scheme, D.D. Stancu [92] has introduced and

investigated a linear operator P
〈α〉
n which maps the space C([0, 1]) into itself and is

defined by

(P 〈α〉
n f)(x) =

n∑
k=0

wn,k(x; α)f

(
k

n

)
, (3.2.1)

where

wn,k(x; α) =

(
n

k

) k−1∏
ν=0

(x + να)
n−k−1∏

µ=0

(1− x + µα)

(1 + α)(1 + 2α) . . . (1 + n− 1α)
, (3.2.2)

11



α being a parameter which may depend only on the natural number n. Note, an
empty product is taken to be equal to 1. If α is non-negative, then these operators
preserve the positivity of the function f .

Recently, G. Nowak [77] introduced a q-analogue of Stancu operators. We also
introduced [10] an extension of this class acting on the space of real valued functions
defined on a rectangular domain. For f ∈ C([0, 1]), α ≥ 0 and each n ∈ N, in [77]
have been defined the operators

(Bq,α
n f)(x) =

n∑
k=0

pq,α
n,k(x)f

(
[k]q
[n]q

)
, x ∈ [0, 1], (3.2.3)

where

pq,α
n,k(x) =

[n

k

]
q

k−1∏
i=0

(x + α[i]q)
n−1−k∏

s=0

(1− qsx + α[s]q)

n−1∏
i=0

(1 + α[i]q)

, 0 ≤ k ≤ n. (3.2.4)

This class contains as special cases the following three well-known sequences.
i) For α = 0, Bq,0

n ≡ Bq
n represents q-Bernstein operator introduced by Phillips

[80].
ii) For α = 0 and q = 1, B1,0

n ≡ Bn is the classical Bernstein operator.
iii) For q = 1, p1,α

n,k become fundamental Stancu polynomials wn,k(·; α), k = 0, n,

see (3.2.2), and B1,α
n ≡ P

〈α〉
n turns into Stancu operator defined by (3.2.1).

Theorem 3.2.1 Let the sequences (qn)n, (αn)n be given such that 0 < qn < 1 and
αn ≥ 0, n ∈ N. Let the operators Bqn,αn

n , n ∈ N, be defined as in (3.2.3). If

st− lim
n

[n]qn = ∞ and st− lim
n

αn = 0, (3.2.7)

then, for each f ∈ C([0, 1]), one has

st− lim
n
‖Bqn,αn

n f − f‖ = 0. (3.2.8)

Theorem 3.2.3 Let the sequences (qn)n, (αn)n (0 < qn < 1, αn > 0, n ∈ N) be given
such that the relation (3.2.7) takes place and they satisfy the following conditions

k∆qk+1 ≥ −c1, k∆αk+1 ≥ −c2, (3.2.9)

for some c1 > 0, c2 > 0 and for any k ∈ N.
If the operators Bqn,αn

n , n ∈ N, are defined as in (3.2.3), then the sequence
(Bqn,αn

n )n converges uniformly on C([0, 1]) to the identity operator.
Following [10], set K = [0, 1]× [0, 1] the unit square and let the vector q(q1, q2)

belong to the interior of K. We consider the parameter α(α1, α2) ∈ R+ × R+. For

12



each (n1, n2) ∈ N×N we define the operator involving a cartesian product grid and
acting on C(K) as follows

(B(q,α)
n1,n2

f)(x1, x2) =

n1∑
k1=0

n2∑
k2=0

f(λn1,k1,q1 , λn2,k2,q2)p
q1,α1

n1,k1
(x1)p

q2,α2

n2,k2
(x2), (3.2.10)

(x1, x2) ∈ K, where λnj ,kj ,qj
= [kj]qj

/[nj]qj
and p

qj ,αj

nj ,kj
, 0 ≤ kj ≤ nj, are defined by

(3.2.4), j = 0, 1.
Theorem 3.2.5 Let q(q1, q2) ∈ (0, 1)×(0, 1) and α(α1, α2) ∈ R+×R+. The operators

B
(q,α)
n1,n2, (n1, n2) ∈ N× N, defined by (3.2.10) verify the following identities

B(q,α)
n1,n2

ei,j = ei,j, (i, j) ∈ {(0, 0), (0, 1), (1, 0)},
(B(q,α)

n1,n2
e2,0)(x1, x2) = (Bq1,α1

n1
e2)(x1),

(B(q,α)
n1,n2

e0,2)(x1, x2) = (Bq2,α2
n2

e2)(x2),

for each (x1, x2) ∈ K.
Theorem 3.2.7 For each n(n1, n2) ∈ N × N, in (3.2.10) we substitute α by
αn(α1,n1 , α2,n2), αj,nj

≥ 0, and q by qn(q1,n1 , q2,n2), 0 < qj,nj
< 1, where j = 0, 1. If

st− lim
nj

(1/[nj]qj ,nj
) = st− lim

nj

αj,nj
= 0, j = 0, 1, (3.2.11)

then, for each f ∈ C(K), one has

st− lim
n1,n2

‖B(qn,αn)
n1,n2

f − f‖ = 0.

If in (3.2.11) we replace the statistical limit by ordinary limit, then we obtain

the uniform convergence of the sequence (B
(qn,αn)
n1,n2 )n to the identity operator.

Returning to the one-dimensional case and examining the relation (3.2.7) a ques-
tion can raise: what sufficient conditions can be imposed to the sequence (qn)n≥1 such
that st− lim

n
[n]qn = ∞ to take place? A variant of answer is given in the following.

Lemma 3.2.8 Let (qn)n≥1 be a real sequence such that 0 < qn < 1, n ∈ N. If

st− lim
n

qn = 1 and st− lim
n

[n]qn exists,

then st− lim
n

[n]qn = ∞.

3.3. On A-statistical approximation of Lupaş and

Kantorovich type operators

In this section we are concerned with A-statistical convergence of two sequences
of linear positive operators. The first is of discrete type and the second is of integral
type. The results were published in [96].
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In [70] Lupaş proposed studying the following sequence of linear and positive
operators

(Λnf)(x) = 2−nx

∞∑
k=0

(nx)k

2kk!
f

(
k

n

)
, x ≥ 0, f : R+ → R, (3.3.1)

where (nx)0 = 1 and (nx)k = nx(nx + 1) . . . (nx + k − 1), k ≥ 1, indicate the rising
factorial or upper factorial. In [3] was presented an integral extension in Kantorovich
sense of these operators defined as follows

(Knf)(x) = n2−nx

∞∑
k=0

(nx)k

qkk!

∫ (k+1)/n

k/n

f(t)dt, x ≥ 0, (3.3.2)

and f belongs to the class of local integrable functions defined on R+.
Our aim is to study the A-statistical convergence of the above two sequences,

(Λn)n≥1 and (Kn)n≥1, respectively. We work in the weighed spaces Bρ(I) and Cρ(I).
To establish our results we use the following weight functions

ρ1(x) = 1 + x2, ρ2(x) = 1 + x2λ, λ > 1, x ∈ R+. (3.3.5)

Theorem 3.3.1 Let A = (aj,n) be a non-negative regular summability matrix and
let ρ1, ρ2 be weight functions introduced by (3.3.5). The operators Λn, n ∈ N, defined
by (3.3.1) satisfy the following identity

stA − lim
n
‖Λnf − f‖ρ2 = 0 for any f ∈ Cρ1(R+). (3.3.6)

Theorem 3.3.2 Let A = (aj,n) be a non-negative regular summability matrix and
let ρ1, ρ2 be weight functions introduced by (3.3.5). The operators Kn, n ∈ N, defined
by (3.3.2) satisfy the following identity

stA − lim
n
‖Knf − f‖ρ2 = 0 for any f ∈ Cρ1(R+). (3.3.8)

3.4. On Jain-Beta linear operators

Starting from a sequence of linear positive operators introduced by G.C. Jain
[58], we present an integral version of it. Approximation properties and the rate
of convergence are investigated in our paper [95]. Also, an extension for smooth
functions is given.

We present the construction of our mixed summation-integral type operators
and their approximation properties. We are working in the space Cρλ

(R+), where
the weight ρλ : R+ → R is given by ρλ(x) = 1 + x2+λ, λ ≥ 0. We introduce a
sequence of operators calling it Jain-Beta, as follows

(J [β]
n f)(x) =

∞∑
k=1

wβ(k; nx)

B(n + 1, k)

∫ ∞

0

f(t)
tk−1

(1 + t)n+k+1
dt + e−nxf(0), x ≥ 0, (3.4.4)
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where n ≥ 2, f ∈ Cρ0(R+) and wβ(k; nx) is the Poisson-type distribution given by

wβ(k; α) =
α

k!
(α + kβ)k−1e−(α+kβ), k ∈ N0.

Lemma 3.4.1 The operators J
[β]
n , n ≥ 2, defined by (3.4.4) satisfy the following

relations 
J

[β]
n e0 = e0, J

[β]
n e1 =

e1

1− β
,

J
[β]
n e2 =

n

(n− 1)(1− β)2

(
e2 +

1 + (1− β)2

n(1− β)
e1

)
.

(3.4.6)

Lemma 3.4.2 The first and the second central moment of J
[β]
n , n ≥ 2, operators,

are given by

(J
[β]
n ϕx)(x) =

β

1− β
x,

(J
[β]
n ϕ2

x)(x) =

(
n

(n− 1)(1− β)2
− 1 + β

1− β

)
x2 +

1 + (1− β)2

(n− 1)(1− β)3
x,

(3.4.7)

respectively.
Theorem 3.4.3 Let J

[β]
n , n ≥ 2, be defined by (3.4.4). For any function f belonging

to Cρ0(R+) one has

|(J [β]
n f)(x)− f(x)| ≤ (1 +

√
x(x + 1))ω(f ;

√
δn,β)[0,a], x ∈ [0, a],

where δn,β =
n + 2

(n− 1)(1− β)3
− 1

1− β
.

Examining the relation (3.4.6) and based on famous Popoviciu-Bohman-

Korovkin criterion, it is clear that (J
[β]
n )n≥2 does not form an approximation process.

The next step is to transform it for enjoying of this property. For each n ≥ 2, the
constant β will be replaced by a number βn ∈ [0, 1). If

lim
n

βn = 0, (3.4.10)

then Lemma 3.4.1 ensures lim
n

(J
[βn]
n ej)(x) = xj, j = 0, 1, 2, uniformly on any interval

compact K ⊂ R+. Consequently, based on the mentioned criterion, we can state

Theorem 3.4.4 Let J
[βn]
n , n ≥ 2, be defined as in (3.4.4), where (βn)n≥2 satisfies

(3.4.10). For any compact K ⊂ R+ and for each f ∈ Cρ0(R+) one has

lim
n

(J [βn]
n f)(x) = f(x), uniformly in x ∈ K.

Our next concern is the study of statistical convergence of Jain-Beta sequence
of operators.
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Theorem 3.4.5 Let A = (an,k) be a non-negative regular summability matrix and let

λ > 0 be fixed. Let J
[βn]
n , n ≥ 2, be defined as in (3.4.4), where (βn)n≥2, 0 ≤ βn < 1,

satisfies
stA − lim

n
βn = 0. (3.4.11)

One has
stA − lim

n
‖J [βn]

n f − f‖ρλ
= 0, f ∈ Cρ0(R+). (3.4.12)

To increase the rate of convergence we can replace J
[β]
n by its generalization of

the r-th order, see [6]. We point out some details of the idea used. The disadvantage
of the positive linear approximating sequences is definitely determined by the fact
that they don’t react to the improvement of the smoothness of functions they are
generated from. To overcome this fact, G. Kirov and L. Popova [63] proposed a
generalization of the r-th order, r ∈ N. For a given positive linear operator, this
generalization is obtained by the action of the operator not directly on the signal f ,
but on its Taylor polynomial of r-th degree. The new operator keeps the linearity
property but loose the positivity.

In what follows, we apply the technique of Kirov and Popova to Jain-Beta op-
erators. Let f ∈ Cr(R+) such that esf

(s) ∈ Cρ0(R+) for s = 0, 1, . . . , r, and let
Trf(x; ·) be the r-th degree Taylor polynomial associated to the function f at the
point x ∈ R+. For n ≥ 2 and any x ≥ 0 we define the linear operators

(J
[βn]
n,r f)(x) = J

[βn]
n (Trf ; x)

=
∞∑

k=1

wβn(k; nx)

B(n + 1, k)

r∑
s=0

1

s!

∫ ∞

0

f (s)(t)
(x− t)stk−1

(1 + t)n+k+1
dt

+e−nxf(0).

(3.4.13)

Theorem 3.4.6 Let A be a non-negative regular summability matrix. Let r ∈ N be
fixed, α ∈ (0, 1] and M > 0. Let the operators J

[βn]
n and J

[βn]
n,r , n ≥ 2, be defined by

(3.4.4) and (3.4.13), respectively. Suppose stA − lim
n

βn = 0.

If x ≥ 0 and ϕr+α
x ∈ Cρ0(R+) such that

stA − lim
n

(J [βn]
n ϕr+α

x )(x) = 0, (3.4.14)

then
stA − lim

n
|(J [βn]

n,r f)(x)− f(x)| = 0 (3.4.15)

holds for any function f ∈ Cr(R+) ∩ Cρ0(R+) with the properties esf
(s) ∈ Cρ0(R+),

s = 0, 1, . . . , r and f (r) ∈ LipMα.
Here ϕx is given by ϕx(t) = t− x, (t, x) ∈ R+ × R+.
We mention that a generalization of Kantorovich type for Jain operators was

obtained in [99]. These integral operators have the following construction

(K [β]
n f)(x) = n

∞∑
k=0

wβ(k; nx)

∫ (k+1)/n

k/n

f(t)dt, (3.4.16)
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where f belongs to the Lebesgue space L1(R+).
Theorem 3.4.8 Let A be a non-negative regular summability matrix and let λ > 0
be fixed. Let K

[βn]
n , n ≥ 1, be defined as in (3.4.16), where (βn)n≥1, 0 ≤ βn < 1,

satisfies relation (3.4.11). One has

stA − lim
n
‖K [βn]

n f − f‖ρλ
= 0, f ∈ Cρ0(R+).

Comparing this result with Theorem 3.4.5 we see that both integral generaliza-
tions of Jain operators enjoy the same A-statistical approximation property.

As has been seen in this chapter, Jain operators are introduced by using the
Poisson-type distribution.

Approximation linear positive operators can be obtained starting from other
types of distributions. We refer here to compound distributions, see, e.g., V. Preda
[83] or using the density of a linear combination of some given random variables, as
was established in [84].
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