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Abstract

Social systems are investigated using a wide range of computational and statistical physics tools and
methods. We present studies of evolutionary game theory, human mobility, and citation networks to
examine dynamics in complex social systems.

After a general introduction in Chapter 1, we study strategy distributions in case of multiagent spatial
evolutionary games, during which the players are located on different types of networks and change their
strategies using imitation or logit strategy update rules. Players can interact with a certain number of
neighbors, which leads to cooperation, defection, or invasion within the investigated system.

In Chapter 2, we analyze the universal laws of commuting and humanmobilities. We examine various
road, air and commuting networks across Hungary, Italy, Europe, USA and worldwide. We investigate
the averaged apparent speed as a function of travel distance by processing the data over these transporta-
tion networks. We also study the distribution of commuter fluxes depending on population density by
using census datasets, and job opening information. In addition, we use different radiation type models
to evaluate and explain the obtained results.

Finally, in Chapter 3 we argue on the necessity of field-based normalization for comparing scientific
production in different research areas. Individual indicators of various scientific articles can be different
within a wide range of disciplines, such as physics andmathematics, where the number of citations is very
diverse. Studying benchmarks and publication networks, we present some clustering methods that help
in separating scientific fields. We also report the presence of universal scaling rules in scientific publica-
tions and Facebook posts.
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Introduction

The social system– according to Parsons, who has given the concept of “system” inmodern sociology – is
an orderly arrangement with an interrelationship of parts, where every part has a fixed place and definite
role to cooperation [1]. Examples of everyday social systems are families, communities, nations, industries,
which depend on diverse shared characteristics such as location, cultural norms, religion, socioeconomic
status, etc.

Social systems are known examples of complex systems with a lot of exciting research areas. Several
electronically available datasets help researchers reveal universalities and test their models [2]. In the light
of that, we process available datasets, simulate experimental data and develop models for identifying and
studying the dynamical behavior in systems. The main domains of physics used in such studies are com-
putational physics together with evolutionary game theory, statistical physics, and complex network the-
ory analysis. We study phenomena such as cooperation, competition, commuting, traveling, clustering,
normalizing, and fitting. Besides these, we also focus on solving problems of strategy invasion, human
mobility, transportation, citation, and visualization.

In the present thesis, we offer newmodels, approaches, and data analysis methods in the field of social
system dynamics. We discuss and present our scientific results in the three research areas listed above.

First area is the evolutionary game theory, which is an application of the mathematical theory of
games by placing population in a biological context [3]. The players are imitating some evolutionary
rules considering the Darwinian selection or varying their strategies following individual rationality of
social systems. Players of games are placed typically on a lattice or network, and they interact with a
certain number of neighbors.

The methods of statistical physics are directly applied to evolutionary games, e.g., two-dimensional
Ising model in a magnetic field with up and down spins [4]. The spin states represent the players’ strate-
gies, and Glauber dynamics allows one-site spin (strategy) flips with a calculated probability [5]. Proba-
bilities are calculated for the imitation or logit strategy update rules, and during the games, players try to
maximize their income.

Another important ingredient of statistical physics in the evolutionary games is the Monte Carlo sim-
ulations [6]. Using this type of simulations, we can quickly reproduce on computer the played games.

In the present thesis, the social systems provided by evolutionary game theory are examined by mea-
suring the distributions of different strategies. During our examinations, we can observe the shapes of
the domains of cooperation or competition for players, who follow the same strategic goal, for example.

Second area is the humanmobility, which is important inmany social systems. If we think about the
daily traffic or even economic and urban development, it is important to understand first the operation of
the mobility world around us [7]. The everyday journeys of individuals are also significant, as presented
in the study of González et al. [8]. Individuals often return to a few highly frequented locations, and
their trajectories indicate good traceability.
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Introduction

Some popular starting points in the study of human mobility are census datasets with commuting
routes, population density, road and air networks, or travel times and delays in nodes. These data can
be analyzed with the methods of statistical physics and understood in the framework of various models:
such as the gravity model [9], the radiation model and the radiation model with selection [10, 11].

In the present study, two further generalizations of the original radiation model are given: one is the
travel cost optimized radiation model where one takes into account for the selection of commuting jobs
also the involved travel costs [12]. The other one is the flow and jump model which is based on a simple
master equation [13].

In the present society, in order to get a better traffic optimization, for choosing the suitable transporta-
tion mode, or for the selection of the appropriate job, it is important to understand mobility and com-
muting patterns. In our investigation, we use models from statistical physics to understand the human
mobility in social systems.

Third area is the network representations of complex systems in particular social systems, which are
widespread in social science, information theory, neuroscience, biology, etc. [14, 15]. Connections be-
tween elements by the nodes of networks and the edges between them is a helpful visualization for the
core of any complex systems.

For understanding the complex world of scientific networks, one can use both citation of collabora-
tion and social networks. Computational physics approaches together with classical network processing
methods, such as visualization, clusterization or statistical distributions, help in the analysis of structural
features of networks [15]. Identifying communities is relevant for an easier processing and for under-
standing better the topology of complex networks.

Computer programming combinedwith statistical physicsmethods offer a variety of frameworks, soft-
ware tools, and algorithms for network analysis. By using these tools, we can identify communities, sub-
networks, and structures for benchmarking and comparing real-world networks.

There aremanyways to compare the communities created by the clustering of networks. A great exam-
ple for comparison is the cross-field normalization of scientometric indicators [16–18]. The distribution
of studied indicators from each scientific areas can be normalized using a power-law-like function [19].
After normalization, a comparison can bemade on the same scale between calculated indicators from two
or more different fields, such as physics and mathematics, where the given indicators can be offset by a
proportionality constant. Similarly, the distribution of various examined areas, such as citation and Face-
book data, or publications of a selected journal or author can be described by Tsallis-Pareto distribution,
which is a proper probability density function with a power-law-like tail [20].

The thesis is organized in three extended chapters, according to the studied problematics: in Chapter 1
theMonte Carlo simulations, the theoretical calculations, and the obtained results of evolutionary games
are discussed. In Chapter 2 we present the data analysis of human mobility and commuter fluxes. Here
we discuss the power of some simplemodels in fitting the experimental data. InChapter 3 the community
detection, thenormalizationof individual scientific indicators, and the similarity of scientific publications
with Facebook posts are discussed. Finally, at the end of the thesis, we give a summary of the obtained
results.
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“Evolutionary game theory ॾ a way of thinking about evo-
lution at the phenotypic level when the fitnessॽ of particu-
lar phenotypॽ depend on their frequenciॽ in the popula-
tion.”

John Maynard Smith 1
Evolutionary games

In general, we study multiagent spatial evolutionary games. On these systems, the players are placed on a
lattice or network, and they interact with a certain number of neighbors, as shown in Figure 1.1. During
such a game at each time-step individuals participate in all potential games choosing one possible strategy.
Their pair interaction with the selected neighbors is represented by the payoff matrix:

A =

(
+1 −1

−1 +1

)
(1.1)

In the above example (1.1), theAmatrix shows what is the players’ gain if they select one of the possi-
ble strategies. The evolutionary games can be deterministic or stochastic with synchronized or random
sequential dynamical update rule, depending on imitation or myopic strategy selection to achieve the
higher individual gain.

The imitation updatemethod is used in analogywith biological processes, when the players can imitate
theirmore successful neighbors. Themyopic selectionupdate rule is the so-called logit rule fromeconomy
and physics models [21, 22]. In this situation, each player can calculate their payoff, and they prefer to
choose a higher income strategy depending on the expected payoff values.

To analyze the evolutionary games, researchers consider very oftenMonteCarlo (MC) type simulations
on networks of site N . In most of the cases, the simulation starts from a random initial condition, but
it may also happening, that the initial condition is a predefined pattern. During the simulations, after
a suitable thermalization time tth we start measuring the statistical data over a sampling time ts. These
values are adjusted to the system’s parameters, and we usually use periodic boundary conditions.

During the MC simulations, we have used the dynamical cluster methods or generalized mean-field
approximations [5]. For these methods, we calculate all the configuration probabilities in a way that we
numerically solve a set of equation of motions, and as a result, we can give analytical predictions for the
studied quantities.

Using the above methods, in the thesis, we study a few questions from evolutionary game theory and
discuss theobtained results. First, wepresent thematching-pennies gameon two types ofnetworks. Then
we consider an evolutionary rock-paper-scissors gamewith synchronized strategy updating. The relation-
ship between the strategies of an extended spatial evolutionary prisoner’s dilemma game is also discussed.

3



1. Evolutionary games

Figure 1.1: Evoluধonary game theory players with interacধng neighbors on a two-dimensional square laষce
(leđ), and on a loop-free Bethe laষce (right).

Here the introducedwin-stay-lose-shift strategy evaluates the outcome of the last round, and by changing
their strategies players can improve the gain. Lastly, we have studied invasion processes on a square lattice
in case of two-strategy evolutionary games.

And now a little bit in more details: First, we analyze an evolutionary game, known as the matching-
pennies game, where two types of players, X and Y , are located on bipartite networks [23]. We study
these evolutionary games on a square lattice, and on a bipartite loop-free Bethe lattice as seen on Figure 1.1.
In both cases, each player of typeX interacts with her four connected neighbors of type Y like the white
and black squares on a chessboard. On left subfigure of Figure 1.1 is visible a random player distribution
regarding the type of players, but on right subfigure of Figure 1.1 each player of theX type is connected
to her four neighbors of Y type (the white player from the center is connected her four neighbors black
players).

Using these networks and the two types of players, we examine the effects of matching-pennies in-
teractions, and then we study the spatial distribution of the two choices called heads (H) and tails (T).
However, how does this game work? In the traditional matching-pennies game, the two players first
agree who will be the winner if the sides of the coins are the same or different. Then they conceal a coin
in their palms with the side heads or tails upward and reveal their choices simultaneously. The winner
receives the opponent’s penny. Player of theX type wins with (H,H) or (T,T) strategy choices and player
of the Y type wins with (H,T) or (T,H) strategy combinations.

Therefore, we study the strategy distribution by the effect of thematching-pennies game for two types
of networks when varying the noise level in the Glauber type dynamical rule [24]. As you can see an
example snapshot on Figure 1.2, we measure the presence of the strategies like the white (H) and black
(T) boxes on the figure.

The studied systems are analyzed by performing MC simulations on square lattices of N = L ×
L sites with periodic boundary conditions and bipartite random regular graphs of site N . During the
simulations,N is varied fromN = 2.5×105 up to 4×106. The simulation started from a random initial
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1. Evolutionary games

Figure 1.2: Strategy distribuধon in case of the
matching-pennies game. The 50 × 50 snapshot
presents a white (H) and black (T) boxes distribuধon.

Figure 1.3: A typical snapshot about the spaধal distri-
buধon of strategies in a block of 90 × 90 sites of a
square laষce at noise K = 0.4. Black color stands
for the R strategy, red for P, while green indicates the
S strategy.

state, and after a thermalization time tth, the statistical data are obtainedby averaging over a sampling time
ts. This tth value is changed typically between 2 000 and 106 Monte Carlo steps (MCSs) and the ts value
is modified from 50 000 to 3 × 106 MCSs where within the time unit (MCS), each site has in average a
chance to modify its state.

The MC simulations have confirmed quantitatively the absence of correlations between the nearest
neighbor sites. Nevertheless, we found weak negative correlations between the second and third order
neighbors.

After the simulation results, we review the theoretical predictions. From these computed results, we
determined the values of the correlation function again. Then we made the comparison to the results of
the MC simulations.

The studies are repeated on a bipartite random regular graph for the same number of neighbors k = 4.
This was necessary for the analysis of the topological features of the connectivity network. The most
striking differences are the smaller magnitudes of the correlations on the bipartite random regular graphs
and their absence between the third neighbor sites.

Second, we studied a spatial evolutionary rock-paper-scissors game on a square lattice where the
player obtains their payoff from the games played with their four neighbors [25]. They use synchro-
nized strategy updating according to the logit rule. For the traditional RPS game, players simultaneously
choose one of three strategies named as rock (R), paper (P) and scissors (S). According to the rules of the
game, a strategy is superior to another and inferior to the third one: rock beats scissors, scissors beat paper,
and paper beats rock, i.e., the game represents the cyclic dominance of strategies.

Systems with RPS interaction show a global oscillation in the strategies frequencies. Generally, in a
structured population when the players are placed on a network, the oscillation evolves towards a limit

5



1. Evolutionary games

RR

SS

PP

PS

PR

SR

SP

RP

RS

Figure 1.4: Flow diagram for the cyclic behavior
of domains. Solid (black) lines show how the do-
main composiধon changes in every generaধon due
to the logit strategy adopধon rule. Color code is
the same as in Figure 1.3. Domain types are de-
noted using the appropriate strategy names. Note
the different names for the chessboard and anধ-
chessboard structures. Pure domains return to the
same state in three generaধons, chessboard-like
associaধons accomplish this in six generaধons. In-
teresধngly, the nine available strategy associaধons
form two disjoint cycles instead of a full cycle.

Figure 1.5: Flow diagram for the invasion and spe-
ciaধon processes between the different strategy
associaধons (domains). Arrows on the solid (black)
lines show the winning associaধon when the two
associaধons connected by the black linemeet each
other. Dashed (blue) lines display the cases when
the encounter of two associaধons results in the ap-
pearance of a third species. The arrow points to-
ward the newly established associaধon. Themean-
ing of the strategy colors is the same as in Figure
1.3.

cycle or its size increase until only one strategy remains alive. In the two-dimensional case, numerical
simulations show the survival of all three strategies by self-organizing patterns.

Using this system’s oscillations within these strategies domains, we studied a nine-species competitive
relationship, where there are three pure R, P, S strategies and six other mixed strategy species with a
chessboard-like structure, where the black and white squares of the chessboard are occupied by two dif-
ferent strategies, as can be seen on Figure 1.4. The players are located on a square lattice with periodic
boundary conditions, and they collect their income from the played RPS games with nearest neighbors.

We studied the model by performingMC simulations on a square lattice withN = 4× 104 up to 106

sizes. Usually, the simulation started from a random strategy state, but in case of invasions, we applied
predefined initial conditions too. We also used a transient or thermalization time tth = 1 000 − 5 000

MCSs for the initial stabilization of the system. Over the ts = 104 − 106 sampling time we measured
the simulation data.

Starting from a random initial state, we observed a cluster-formation process that indicates a synch-
ronous oscillation at low noise levels. During the domain-growing process, a self-organized pattern is
created in the system. An example snapshot is shown in Figure 1.3, where all nine types of strategy can be
distinguished.

6



1. Evolutionary games

Following theupdate rules, players choose the strategyproviding thehighest income. First, we consider
the homogeneous domains, which are denoted by the same strategy pairs RR, PP and SS positioned on
the two sublattices. Here we can observe a cyclic behavior, for instance, in t = 0 time all players use
strategy R, then in the next t = 1 everyone will choose P and afterward in t = 2 all strategy is S. These
cyclic changes are illustrated in the inner ring in Figure 1.4.

In the second case, these pairs can be different. For example of mixed strategies, the RP denotes a
uniform dispersion of R and P strategies on the two sublattices. Within this domain, the P players do
not wish to change their strategies, but the disaffected R players are enforced tomodify their strategies to
S. Consequently, the system evolves into the SP state. In any case, this mixed cyclic behavior is likewise
shown in the outer ring in Figure 1.4.

Depending on the noise K value, we separate two cases. At low noise levels, the simulation results
show that the point defects stay inside the defined homogeneous and mixed cyclic patterns. As the value
K increases, at high noise levels, we can observe small islands of other states inside the outlined domains.
This reasonably complex structure of strategy pairs and invasions is visible in Figure 1.5.

In the following let’s look at themeaning of the intertwined invasion and speciation relations between
the different domain types denoted by the black and blue dashed lines with arrows. The black lines with
the arrowon them indicate the direction of these invasions. As an example, we can see that theRS strategy
pair invades theRPpair. Thebluedashed lineswith arrowson themrepresent the collisionof two strategy
domains, which gives birth to a third one and invades the initial strategy pairs.

Summing up the above two cases, we can mention a third case, when the third emerged strategy pair
does not invade any of the initial strategies. In this situation, the new strategy pair plays as a catalyst and
goes through the system in an invader-defender role, but finally, the superior domain consumes him as
well.

Third, we tried to map the evolution of cooperation with the assistance of a three strategy evolu-
tionary prisoner’s dilemma game [26]. Traditionally, during the prisoner’s dilemma (PD) game, two
participating players choose between cooperation (C) and defection (D) strategies. Similarly with this,
in our model, players can adopt three strategies: always-cooperating (AllC), always-defecting (AllD) and
the newly introduced win-stay-lose-shift (WSLS) strategy. WSLS cooperates in the first round and in
the subsequent game she evaluates the last rounds outcome. Then he/she changes his/her strategy if the
given payoff is smaller than a defined threshold.

In a one-shot game, the players select between cooperation (C) and defection (D) and earn different
payoffs depending on their simultaneous decisions. Themutual cooperation’s result is the rewardR, and
the defection’s income is the punishment P . A defector exploiting a cooperator earns the temptation T

while the victim of the exploitation receives the sucker’s payoff S. The PD satisfy the T > R > P > S

ranking. According to the generality, we can fix the reward (R = 1) and the punishment (P = 0) values
remaining with two payoff parameters.

We studyour spatial evolutionarymodel on a square latticewith fournearest neighbors. Players play an
iteratedPD (IPD) game. In addition to the evolutionary games discussed above, we study both (imitation
and logit) update mechanisms in this case.

On an N = L × L sized square lattice, players can use AllD, AllC, and WSLS strategies. However,

7



1. Evolutionary games

at the WSLS strategy we established a friendliness parameter w in between R = 1 and P = 0, which
defines the probability of cooperation in the first round; accordingly, high w can be associated with a
friendly behavior. In most cases, this parameter is set tow = 0.5, but we analyze differentw = 0.1 and
0.9 values as well.

In ourMC simulations, we examine themodel on a square lattice characterized by a periodic boundary
condition. The used system size is N = 200 × 200 = 40 000 limited by our calculation capacity. In
one MCS, each player has the option to change her strategy once on average. For the phase diagrams,
stationary strategy concentrations were obtained by averaging the strategy distribution. The simulation
runs over a transient timeof ttr = 50000MCSs and averaging happens over ts = 10000MCSs sampling
time.

Using the T > R > P > S, R = 1 and P = 0 relations, we studied analytically the potential
game character of the game in case of w = 0.5 by the logit rule update. We studied the interaction and
equivalence between three AllD, AllC and WSLS strategies.

We simulated the theoretical results, and we observe the competition between the AllD and WSLS
strategies. It is visible that the dominated AllC strategy is present in an extremely low frequency and
practically does not disturb the competition of AllD and WSLS.

We studied also the w ̸= 0.5 friendliness parameters for w = 0.1 and 0.9. In case of w = 0.1, the
area of the unfriendly WSLS strategy has widened, moreover, in the case ofw = 0.9, the territory of the
friendlyWSLS strategy has narrowed. This parameter selection is what we expect if one wants to survive
better in addition to the AllD strategy.

Next, we discuss simulation results using the imitation update rule. The obtained results are different
from the results of the logit rule. Oneof the important factors thatwe shouldmention in case of imitation
is that the parameterw no longer pays a role. A significant difference is that theWSLS strategy iswidening.
These simulations prove the positive impact of the imitation update of cooperative WSLS attitude.

Last, we investigate the invasion processes by changing the strengths of the self-dependent and cross-
dependent components [27]. Referring to the whole T − S parameter space, here we restrict our inves-
tigation to the region of T < 1 and S < 0.

We study a two-strategy evolutionary game with imitation update rule. Players are located on a square
lattice, and they interact with their nearest neighbors. We examine here the interfacemotion and invasion
velocities for the different homogeneous phases.

During our simulations, we used a square lattice with N = L × L sites, where equivalent players
choose one of the two (1 or 2) strategies. The system has periodic boundary conditions. Players play
matrix games with their four nearest neighbors.

We applied imitation strategy update with a small change. Here we choose two neighboring players,
and the selected player follow, i.e., adopt her neighbor’s strategy with the a calculated probability.

All of our simulations are started from an artificial initial state in which one of the strategies forms a
circular island in the sea of the other strategy. In the case when the strategy 1 (black) is the sea and the
strategy 2 (white) is the circle island, we can see a domain shrink and its disappearance at the horizontal
and vertical interfaces. In the opposite situation if the two strategies shifts the sea and island roles, there

8



1. Evolutionary games

is also a domain that reduces and shrinks, but now it is surprisingly along the ±1 tilted interfaces with
different and faster contraction.

We also studied the invasion behavior when the square lattice was replaced by other two-dimensional
lattices. Practically, we observed the same attitude of players and strategies. Differences in the orientation
of invasions were observed only when the players collected payoffs from a game with their nearest or
next-nearest neighbors.
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“We live in a world where great incompatiblॽ co-exist: the
human scale and the superhuman scale, stability and mo-
bility, permanence and change, identity and anonymity,
comprehensibility and universality.”

Kenzo Tange 2
Human mobility

Similarly with other human mobility studies, here we are also dealing with understanding and revealing
universal laws that govern humanmobilities. More specifically, we propose to analyze different modes of
transportation and the distribution of the mobility fluxes between the settlements.

In the first part of our study, we analyze several human transportation networks such as the road-
network of Hungary and the interstate road-network of continental USA, the direct flights between the
major airports of Europe and the air travel network of USA.

Examining the traveling time as a function of the travel distance, we study how the traveling speed
increases with the travel distance due to the travel time lost in the main hubs, the structure of the travel
networks and the speed limit of the roads and vehicles. We investigate this speed as a function of the travel
distance, i.e., geodesic distance and the driving distance, observing a significant difference.

Another important problem in the field of humanmobility is the daily commuting. Inmost cases, the
raw data originate from census data, which contain a lot of useful informations, like the home place and
workplace fields of the commuters.

Using these data and the spatial distribution data for population density, we investigate commuter
fluxes at different distances. We are processing commuting andpopulationdatabases fromHungary, Italy,
and theUSAtomeasure thedistributionofmobility fluxes. Then,we compare existing, andnovelmodels
for fitting the averaged commuter flux data. Such existingmodels are the original RadiationModel (RM)
[10], the Gravity Model (GM) [9] and the generalized Radiation Model with Selection (RMwS) [11],
which have been successfully used for understanding the job selection for the individuals. Moreover, we
offer two new generalizations of the radiation model, one with the travel cost optimization method and
the other with application of a master equation allowing both jump and local flow processes.

First, we revealed auniversal relationbetween the average speedof themobility and the travel distance
[28]. The travel is an integral part of our lives, and everybody learned that the traveling time does not
scale linearly with the travel distance [7]. It is well known for example that sometimes it takes several
hours to travel at distances of a few hundreds of kilometers, but not significantly more to travel at the
opposite side of the Earth.

To illustrate this idea, Figure 2.1 shows the roughly estimated distance and velocity scales for different
human traveling modes from walking up to cosmic journeys. The overall trend is a power-law with an
average 0.5 exponent on the distance and velocity scales.
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2. Human mobility

Figure 2.1: Velocity and distance scales of human travel. The apparent travel speed (esধmated as the traveled
distance on the geodesic line divided by the travel ধme) as a funcধon of the travel distance. Boxes indicate
intervals for different traveling modes. The two inset figures present some averaged results on the two most
popular traveling modes: car and air travel. The dashed lines in these insets indicate power-law trends with the
specified exponent. Dashed lines with different slopes are not fiষng results; they indicate power-law trends
with the specified exponents only for guiding the eyes. Please note the logarithmic axes.

Additionally, a similar power-law-like is founded inside the small boxes of Figure 2.1, which represent
the various transportation modes separately. In our investigation, we focus on the two most popular
traveling modes, the car, and the air travel. In both cases, we obtained the same sublinear travel time
increase as a function of the travel distance like in the overall big picture. For example, if we travel from
one city to another one that is far away for a large part of the travel we use highways where the average
speed is high. However, when we drive out from a city, there are many stops, traffic jams reducing the
average traveling speed drastically for short travels. For air travel, the smaller distances are served with
smaller planes with lower traveling altitude and smaller cruising speed, and the average traveling speed is
greatly reduced for short travels, because of the takeoff, landing and parking maneuvers.

As shown in the two inset frames of Figure 2.1, we collected and analyzed traveling data of country and
highway roads, and direct flights between airports. Results for car travel were calculated on the country,
highway and interstate road-networks of Hungary and the continental USA. The spatial distribution of
the locations and the structure of the road-network is shown in Figure 2.2. In the case of Hungary, we
measured travel between cities of 174 statistical subregions on the territory of the country [29]. Here we
are distinguished results with and without allowed highway travel (maps HU1 and HU2, respectively).
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2. Human mobility

Figure 2.2: The topology of travel networks. Scaling between the driving distance (z) and geodesic distance (w)
on different travel networks. The curves suggest the validity of equaধon (2.1) relaধon. The figure also illustrates
the topological structure of some human transportaধon networks used in the present study. Please note the
logarithmic axes.

For theUSAwe studied 241 locations in the neighbors of themajor interstate roads junction points (map
USA1), and 48 state capitals (map USA2).

For air travel, we considered only direct flights from airports of Europe, USA and worldwide. The
spatial location of these airports is illustrated on maps of Figure 2.2. For Europe, we used timetable data
and GPS coordinates of 203major airports [30], as seen on the EU air map. In case of USA, we worked
with 282 airports on the territory of USA (USA air map) but only with the topology data of the air
travel network, since we did not have access to timetable data. Therefore, we were looking for other GPS
tracking data with the useful flight time data recorded over 500 flights from all over the world [31]. This
data is not shown on the spatial map, and we have to note that USA air data andmap is used for distance
calculation, but the GPS air data was used for the traveling speed calculation.

Consequently, the two inset panels in Figure 2.1 display the car and air travel data for the apparent
traveling speed as a function of the travel distance. We obtained a power-law-like trend with the 0.07
scaling exponent for the roads and 0.25 for the flights, shown by dashed lines. However, there is the
noticeable difference for the case of different road infrastructures, more precisely in case of HU1 data fit
is a much stepper increasing trend due to use of both roads and highways (for the roadmap see Figure
2.2).
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2. Human mobility

Due to the specific topology of the road-networks, there is usually no straight-line between cities, so
we must distinguish two kinds of distance. The travel distance (w) means the distance on geodesic lines
between the source and target points, and the driving distance, denoted as z refers for theminimal length
of the path in the network. In view of the different distances, we can define different velocities. The
apparent speed, denoted by v is calculated as the (travel distance)/(travel time), while the cruising or
driving speed (u) is computed as the (driving distance)/(travel time).

Let us first consider the relationship between these two distances. During the topology analysis of
transportation networks sketched in Figure 2.2, we find that the travel distance and the driving distance
are on average related to each other in the form of a scaling relation as

z

w
− 1 = C · w−β (2.1)

where the β exponent of the power-law-like trend is expressing the relation of the driving distance to the
geodesic line.

As visually illustrated in Figure 2.2, the obtained β ≈ 1.4− 1.6 (air travel) and β ≈ 0.2− 0.5 (road
travel) exponents are suggesting that for air travel the value of z converges more quickly tow than in the
case of the road travel, i.e., the flight paths are rather along geodesic lines than the roads.

The increasing trend for the driving speed as a function of driving distance is resulting from the com-
bined effect of the two types of delay. First, both ends of a trajectory the source and target nodes generate
delays. In our case, the nodes are cities, in which the complexity of the traffic causes smaller and larger
delays depending on the size of the cities. Second, the delays are also on the trajectories as well.

These obtained results suggest that the driving or cruising speed is increasing as a function of the length
of the link in case of the direct links in a network. Our results support the hypothesis according to which
further we travel the faster we go. All the above data proves the increase of the averaged apparent speed
as a function of distance both for different modes of traveling and also taken them together.

Second , we offer a new generalization of the radiation model considering also the effect of the travel
costs [12], and we examine the applicability of this model on a complete commuter database inHungary.

The original Radiation Model (RM) [10] is based on the simple assumption that jobseekers are opti-
mizing their income by accepting the closest job offer that has a better salary than the one that is currently
available in their current location. Assuming a p≤(z) cumulative distribution function for the incomes
in the studied society the probability P>(z|n) that an individual with income z refuses the closest n job
offers is

P>(z|n) = [p≤(z)]
n (2.2)

By using the probability density function for incomes, p(z) = ∂p≤(z)

∂z
, we can now calculate the proba-

bility of not accepting the closestn jobs. Then, accepting the hypothesis that the number of job openings
in a territory is proportional with theW population (n = µW ), the radiation model probability is

P>(W )RM =
1

µW + 1
(one parameter fit) (2.3)
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2. Human mobility

Figure 2.3: Seħlements and data processing method in the commuধng network of Hungary (leđ) and USA (right).
Disks of different radius d(i, j), starধng from a given seħlement and reaching the other j seħlements, are
constructed. The populaধonwi[j] inside these disks and the commuter number, starধng from seħlement i and
traveling to seħlement j , fi(j), is recorded.

that an individual commutes to a location that is outside of a disk centered on its current location and
containing a total populationW .

Assuming that the jobseekers are selective in their choices and they are willing to accept better job
offers only with a probability q, we get the RadiationModel with Selection (RMwS) [11]. Following the
original radiationmodel calculations with the newly introduced selection criteria we get (for more details
please consult the thesis):

P>(W )RMwS =
1− (1− q)µW+1

(µW + 1) q
(a two-parameter fit) (2.4)

For q = 1, we get back the original radiation model. The RMwS model describes better the distribu-
tion of the commuting fluxes in theUSAwith its twoparameters [11]. This is however not a surprise since
one would naturally expect that a two parameter model offers a better fit than a one-parameter model.
Starting again from the original radiationmodel, we introduced another variation of it, which we named
the Travel Cost Optimized Radiation Model (TCORM). In contrast with the original radiation model,
where the job acceptance is independent of the distance between the residence and workplace, here we
introduce a stronger condition for commuting: the individuals will choose the commute if there is a bet-
ter income after subtracting the travel costs. In this manner, the travel costs depend also as a function of
the traveled distance, and not only the transited job offers n. Using this assumption and following the
reasoning of the radiation models hypothesis we get (for more details please consult the thesis):

P>(W )TCORM =
1 + λ

√
W

µW + 1
(a two-parameter fit) (2.5)

For testing the above presented models, we process a complete commuter and population database
from Hungary. We analyzed the 2011 population census data [32], and we also used data with 1 km2

resolution for population distribution in the census year 2011 [33].

During data processing, we select one by one the settlements i as source for commuting and construct
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the disks with radius d(i, j), reaching to the target settlement j. This is sketched in Figure 2.3. We count
the total population wi[j] inside this disk and record the number of commuters fi(j) starting from set-
tlement i and traveling to settlement j.

With the data d(i, j), fi(j), and wi[j] for all the settlement pairs (i, j) we calculate the experimental
P>(W ) probabilities.

Using the data analyses algorithms based on the above calculations, we process to construct theP>(W )

curve experimentally from the 2011 census data. The computed values are compared with the best fits
acquired from the original RMmodel (2.3), the RMwSmodel (2.4) and our TCORMmodel (2.5). The
boundary effects become important for large W values (the disks centered on the settlements become
largely incomplete since they extend over the borders of Hungary). As a consequence, we considered the
data only up toW = 1 000 000.

The obtained results indicates that the TCORM model performs better than the simple RM and
RMwS models. The RM and RMwS models are only capable of describing a portion of the W pop-
ulation interval, in contrast, the TCORM model is offering a visually good fit for the whole interval.

Last, we introduce yet another model for commuting fluxes and extend our investigation using large-
scale population densities and commuter fluxes from other geographical regions as well [13]. Based on
the above presented analyses, we process complete commuter databases from USA, Italy, and Hungary.

Beside theRMmodel (2.3), theRMwSmodel (2.4) and theTCORMmodel (2.5), we study the behav-
ior of the very popular gravitymodel (GM) [9], as well. We introduce and test also themodel introduced
here, the Flow and Jump Model (FJM).

The GM model assumes that the number of commuters fi(j) between cities i and j is written as:

fi(j) = F (Wi)
(Wj)

α

(ri,j)β
(2.6)

whereWi is the population of the settlement i and ri,j is the distance between settlements i and j. F (x)
is a monotonically increasing kernel function, and α and β are fitting exponents.

Using the fi(j) data we can also compute the P i
>(W )GM probability, that an individual living in lo-

cation i commutes to a location that is outside of a disk centered at its current location and containing a
populationW :

P i
>(W )GM = 1−

∑(wi[j]<W )
j ̸=i fi(j)∑

j fi(j)
= 1−

∑(wi[j]<W )
j ̸=i

(Wj)
α

(ri,j)β∑
j
(Wj)α

(ri,j)β

(2.7)

This probability is independent of theF (x)kernel function. Wedenotedbywi[j] the total population
inside the disk. Now, the averaged probability that commuters travel outside the diskwithW population
is

P>(W )GM = ⟨P i
>(W )GM⟩i (2.8)

We introduce now a novel one-parameter model as an alternative for the simple RMmodel. We name
this model the Flow and Jump model (FJM). It is based on simple master equation for the ρ(n, t) =

−dP>(n, t)/dn probability density. We use here the same notations as the one used previously for the
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RM model. Based on the assumptions of the “growth and reset type models”, which are introduced in
review [34], we assume an inverse process: a backward probability flow supplemented by a jump process
from the origin to any state with a given n value. The continuous master equation is the following (for
more details please consult [34]):

dρ(n, t)

dt
=

∂(η(n)ρ(n, t))

∂n
+ [γ(n)ρ(n, t)]ρ(0, t) (2.9)

This master equation (2.9) specifies a process where there is a local net probability density flow from
each state towards the n = 0 state and a jump probability from the origin (n = 0) to an n state. For
the state dependent η(n) (flow rate) and γ(n) (jump rate) rates we consider simple kernels that are re-
alistic for the commuting process. The transitions 0 → n governed by the γ(n)ρ(n, t) rates describes
the probability that workers choose a commuting job. γ(n) should decrease with distance, and the pro-
portionality with ρ(n, t) suggests that the popular commuting places have many good jobs. We therefor
choose the following forms for η(n) and γ(n):

ρs(n) =
η(0)ρs(0)

η(n)
e−

∫ n
0

γ(x)ρs(0)
η(x)

dx (2.10)

After performing the calculations, based on the assumptionn(r) = µW (r)we get a slightly modified
expectation for probability (for more details please consult the thesis)

P>(W )FJM =
1

(µW + 1)(a−1)
(2.11)

In the following we consider the FJM model with the universal parameter a = 7/4 which offers a
much-improved fit for the real commuting data. In the case of the a = 2, we get back the original
radiation model. The model is a two-parameter one, however, if we set the universality of a it becomes
similarly with RM a one-parameter model.

For verifying the assumptions of the model apart of the smaller-size data available for Hungary, we are
using a larger-scale dataset for the USA and one smaller-size dataset for Italy.

For USA we analyzed the estimated population census data between 2006 and 2010 [35] using Q =

73 803 settlements (nodes) (white circles in Figure 2.3) and 4 156 426 commuter routes (edges) (blue
lines between white circles in Figure 2.3). For studying the spatial distribution of population, we used
a database from years between 2006 and 2010. This database provided an estimated population of con-
tinental USA divided in 11 078 286 cells of 1 km2 area [36]. In order to speed up our calculations, we
have spatially renormalized this data and obtained a less accurate resolution with 4 km2 size cells. This
is done by collapsing the data of four neighboring cells and averaging their latitudinal and longitudinal
coordinates. As result we ended upwith 1 230 920 cells containing a total populationW = 308 745 231.

Italy data containsQ = 8 093 settlements, 556 120 commuter routes and it is from the Italian popu-
lation census realized in 2011 [37]. The total population W = 55 605 065 is mapped in cells of 1 km2

area [38].
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Figure 2.4: Visual comparison between the FJM model predicধon and experimental data for all three countries
(USA, Italy, Hungary). The faint lines composed of circles show the P>(W ) experimental data and the simple
dark colored lines are the best fits with the FJM model predicধon (2.11). We fixed a = 7/4 and the best fit µ
values are given in Table 2.1.

USA Italy Hungary
µ 0.000062 0.000013 0.000011
R2 0.993 0.997 0.998

Table 2.1: Fiষng parameters and goodness of the fits shown in Figure 2.4, considering the funcধonal form given
by equaধon (2.11) and fixing a = 7/4.

The experimental data processing is based on the steps sketched in the above calculations forHungary.
With the data d(i, j), fi(j), and wi[j] for all the settlement pairs (i, j) (see details on Figure 2.3) we
compute the P>(W ) probabilities.

First, theP>(W )probabilities computed forUSAare comparedwith the best fit results obtained from
the original RMmodel (2.3), theRMwSmodel (2.4), theTCORMmodel (2.5), theGMmodel (2.8) and
the novel FJM model (2.11). In the FJM model the a = 7/4 parameter is fixed for all studied datasets,
so the only free parameter of this model is µ. For the GM model fitting was realized by considering a
progressive mesh method for various α ∈ [−1.0, 2.5] and β ∈ [−1.0, 2.5] values.

In order to minimalize the boundary effect, we examine the data only up toWmax = 1 000 000, and
for the short commuting routes we set a lower threshold ofWmin = 1 000. Fitting is performed in the
[Wmin,Wmax] interval.

The obtained statistics are in favor of the FJM and GM models. The FJM model offers a good de-
scription of our studied experimental data. The fact that FJM model over performs the approximation
given by the RM model is originating from the fixed parameter a = 7/4. Nevertheless, the FJM model
overperforms also the RMwS and TCORM two-parameter models as well. The studied GM model also
offers a good fit, but during the fitting for different countries we cannot fix α and β parameters.
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The FJM model for a = 7/4 also works better for the commuting data processed for Hungary and
Italy. The goodness of the fits and fit parameters are shown in Table 2.1. Additionally, Figure 2.4 shows
the FJM fit for the experimentally determined P>(W ) curves for all three investigated databases.

The best description from the GM and FJM models shows that if one uses the framework of the RM
model it is important to take into account the fact that the selection of jobs is distance, cost and size
dependent.

The fit results of the FJM model for USA, Italy, and Hungary are summarized in Table 2.1, where the
best fit parameter µ characterizes both the availability of jobs per population and the attractiveness of
these jobs to jobseekers.
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“The more complex the network ॾ, the more complex its
pattern of interconnections, the more resilient it will be.”

Fritjof Capra

3
Citation dynamics and networks

This chapter is devoted to the investigation of publication and social networks. First, in this chapter,
we present our community detection methods based on graph Voronoi diagrams and stochastic graph
Voronoi tessellations [39].

Based on themethodology, if a community detection algorithm is ready for the tests first we consider it
on different benchmarks and real-world networks. We generate benchmark networks by the benchmark
software framework provided by Lancichinetti et al. [40, 41]. This a first simple application since here we
know exactly which of the nodes belongs to each cluster. In contrast, in the case of real-world networks
we do not usually know the nodes affiliation to clusters, but it is also important that our algorithms work
well on real-world networks.

As a specific problem where clustering is important, we studied the normalization of scientometric
indicators in case of individual publications. We proposed here a local cluster detection algorithm to
identify the scientometric community of an article. After we detected the local cluster, we calculate many
article indicators on it. Then a normalization method was applied for these values.

We studied link evolution dynamics on the scientific publications and the Facebook friendship net-
work, by suggesting the existence of two simple laws: preferential linking and exponential growth of the
number of nodes. We find that the distribution of shares for the Facebook posts and the distribution of
scientific citations both fit well with the Tsallis-Pareto probability distribution function with the expo-
nent g = 1.4 [20].

First, we present a geometric solution to graph community detection based on graph Voronoi dia-
grams [39, 42]. Thismethod usually is used to partitionmetric spaces into regions (Voronoi cells) around
given seed points, as illustrated in Figure 3.1A. Each point of the space pertains to her closest seed. We
apply this solution to graphs, where all edges have a positive length and the distance between two nodes
is equal to the shortest path between them, see Figure 3.1B.

In order to introduce the clustering method, first, we present the Voronoi partition method in 2D
Euclidean space. We consider a set of points in a 2D plane, distributed to form local groups. We calculate
the local density of points inside plaquettes, and we select the Voronoi cell seeds (generator points) inside
their neighborhood with radius r, as seen on Figure 3.1A. Then, we assign each non-seed point of the
plane to the Voronoi cell belonging to the seed closest to the point. As a result, the points are partitioned
into groups by the Voronoi cells.
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Figure 3.1: Voronoi diagrams. (A) Illustraধon of Voronoi parধধoning in 2D Euclidean space. (B) Graph Voronoi
diagram as represented by the graph drawing applicaধon Gephi using the ForceAtlas2 layout algorithm [43].
Generator nodes are shown in black.

To apply the previous theory, for networks, we need to transform this graph into metric space. First,
we count a distance value between any two nodes, which is the length of the shortest path between them.
The length of any path is equal to the sum of the length of edges along the path, where we defined edge
length as the inverse of edge clustering coefficient (ECC) presented in [44]. The ECC of an edge between
node i and node j is computed as

Ci,j =
zi,j + 1

min[(ki − 1), (kj − 1)]
(3.1)

where ki, kj are the degrees of the nodes, zi,j is the number of triangles the edge belongs to andmin[...]

is the number of potential triangles it could belong to, as it is the smaller value of the degrees of the two
adjacent nodes, minus one (the examined edge). If the 1/Ci,j value is large, then it likely means that the
edge connects nodes in different clusters.

After we have defined the distance, the next step is to determine generator points. During our calcu-
lations, we used a Voronoi seed selection method based on the relative local density of nodes [45]. It
operates on a subgraph consisting of the first neighbors of node i. For this subgraph we determine

ρi =
m

m+ k
(3.2)

wherem is the number of edges inside the neighborhood, and k is the number of edges going out of the
subgraph.

If we determined the generator points as a function of distance 1/Ci,j and a radius r, then we have a
clustered graph. It is apparent, that varying the r parameter will influence the number of communities
within the graph. We studied the influence of the value of r and obtained that relatively small r pro-
vides a good partitioning in both benchmarks and real-world networks. The best strategy however for
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the Voronoi partitioning is by increasing the value of r and observing the quality function of the given
clustering, for example with a cluster modularity [46].

We tested our methods on benchmark and real-world networks. We used the benchmark networks
generator algorithms with a large variety of different parameter settings [40, 41]. We have generated 100
graphs with different parameters. These graphs were partitioned with increasing r values andmonitored
the quality functions between our partitioning and the predefined communities on the graph. For com-
parison, we used the modularity function [46] and the mutual information between our clustering.

When our method reached the maximum value of modularity, the mutual information was close to 1
at the optimal value of r, indicating that our method identified the original communities successfully on
benchmarks. However, it is noticeable that in some cases the community structure is not very clear, due
to the fact that there are a lot of small clusters.

Contrary to the benchmarks in the case of real-world networks clustering ismore complicated. In such
cases, we do not know the optimal community structures, and the goodness of ourmethod can be judged
only by comparing with other already accepted methods. We tested our algorithm on several real-world
networks with different structure and origin, and we compared it to five other widely used algorithms.
As a result, we obtained that our method works well for relatively small r values, and only, when we have
large mixing, does not find the right clusters.

Second, we consider a stochastic version of the above presented community detection method [47].
The essence of the newmethod is the random selection of the generator points and the Voronoi cohesion
matrix. Each node has the possibility to be a generator point. Then for a certain selection of the generator
nodes, we calculate theVoronoi cohesionmatrix, which is the probability of co-location of a pair of nodes,
i.e., it tells the probability of intra-community and inter-community pairs. In this form, the values are
larger for intra-community pairs than inter-community pairs. Following these calculations, we repeat it
and modify the network topology until we get a clusterization through some stochastic steps.

Knowing that each node can be randomly selected as a generator point, we detail know the steps of the
algorithm:

• we randomly choose g generator nodes, and we perform a graph-Voronoi tessellation by the dis-
tance along the shortest path. Then, for each pair of nodes, we determine their co-location.

• we repeat this tessellationRe times and calculate the Voronoi cohesion matrix, which is defined
as the average of the co-location matrices. These cohesion matrices are plotted so that nodes are
ordered by the ground truth information.

• we identified that the intra-module and inter-module nodes are somewhat separated. Starting
from that, we apply an iterativemodification to the network’s topology. A small percentage of the
edges with low cohesion is moved in between unconnected nodes with high association cohesion.
As a result of themodification, the community structure is preserved, but the separation between
them are even clearly defined.

We tested our algorithmon benchmark networks. We generated amultilevel benchmark networkwith
28 and 10 communities on the first and second levels. We evaluated the cohesionmatrix and the topologi-
cal relocation at every cycle. As a result, we got 9 communities in both cases (with andwithout topological
relocation), but the cohesion matrix indicates better clustering by the topological ordering.
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Before we test real-world networks, let’s see how the Voronoi cohesion matrix is assembled. One ele-
ment of the matrix is a probability for co-location of a pair of nodes, i.e., probability for sharing the same
Voronoi cell. The matrix contains diagonal and off-diagonal probabilities. After the ground truth infor-
mation ordering method, the nodes, belonging to same cluster, are located on the matrix diagonal with
higher probabilities.

If it is necessary when the given cohesion matrix does not show clearly the communities, we are using
a contrast boosting method during which we topological relocate the weak edges, and after that, we sepa-
rate the communities with a threshold value. During the contrast boosting method communities can be
determined as follows: all nodes get a separate community label, and in a loop, over all nodes, the com-
munity label of the current node is assigned to the nodes that have not changed their label yet and whose
cohesion with the current node exceeds a threshold.

Clustering of real-world networks remains still difficult. During our community detection, the plain
stochastic graph-Voronoi method generates the cohesionmap, where the gap between the inter and intra
pairs is not significant.

In the light of these, the plain stochastic graph-Voronoi method works well on benchmarks. In the
case of real-world networks, the contrast boosting technique is also needed. In some extreme cases, the
combined method is also required.

Third, we study the normalization of scientometric indicators of individual publications [19]. In-
creasingly used bibliometric indicators, such as the impact factor [48], eigenfactor [49] or h-index [50]
cannot assure a direct comparison of different disciplines with each other. Also, within the same journal,
the published articles have widely different citation numbers.

The representation of the publications and citations through the publication network is widely used.
Every publication and citation in this network is indicated by nodes and edges between them, respectively.
Using this identification, the individual scientometric indicators become calculable possible on such net-
works. More precisely, the article evaluation is realized with the citation number, i.e., the input degree of
the node or the local PageRank [51] measures closely related to the detected scientific domains.

Based on the idea of the parallelized local community detection method [52], we introduce a specific
local cluster detection (LCD) algorithm. This is a shell spreading method outward from a starting publi-
cation, and using this, the algorithmdetects communitieswithout partitioning the entire network. Then,
we tested the LCD algorithm on both benchmark and real-world networks too.

After community detection is done, we calculate the relevant scientometric indicators on the detected
local community. The first indicator is the citation of one article which reflects its impact on the scientific
community. This indicator is equal with the input degree of nodes, i.e., the number of references on the
whole network. The second is the simplified (local) version of the PageRank [51].

The first important statistical quantity to normalize is the citation statistics of the studied articles. In
our case, the probability distribution of an article indicator represents the occurrence probability of ar-
ticles by the article indicator values. Therefore, these probability distributions will describe the citation
behavior in different scientific domains.

Wemention that the input degreeni distribution function of clusters on the same benchmark network
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is a straight line on the log-log plot. Starting from the power-law distribution of the networks, the tail of
this distribution function is described with the

p(ni) = Anα
i (3.3)

power-law, where A is a proportionality constant. For simplicity, we rescale the ni values, so that each
distribution is fitted with the A = 1 normalization constant. Accordingly, each input degree has to be
multiplied with a scaling factor ξ = A1/α, as follows:

p(ni) = Anα
i = (A1/αni)

α = (ξni)
α (3.4)

This rescaling method is tested on different real-world citation networks, for example on the Web of
Science citation network with 771 914 articles and 7 779 703 citations. We started the LCD algorithm,
thenwemeasured the input degree and the local PageRank distributions. The input degree distributions
shows that in case of WoS network it is necessary to scale the citation numbers to achieve a normalized
distribution with theA = 1 proportionality constant.

The similarly studied local PageRank distribution function is also fitted with power-law. The data is
fitted with the p(ni) = 10−7n−1.4

i function. The scaling and the obtained scaling factors differ signifi-
cantly due to the different nature of the local PageRank article indicator.

Last, we briefly present our results concerning the statistics of citations and Facebook shares [53]. It is
well known that citations evaluate the articles, authors or institutions. Following the pattern of scientific
citations, the Facebook shares also rate the posts or users. Citations or shares of the publications or posts
quantify and characterize the quality of them. In our work, we focus on these distributions and look for
universalities among them.

Starting from earlier studies revealing some universalities in the citation distributions [54], we also
examined the distribution of citations and shares. Previous studies have shown that citations received
by several academic institutions and journals fall on a common curve if they are renormalized relative to
the mean. In other words, they calculated the probability density f(x) for one paper with x citations
and plotted the ⟨x⟩f(x) value as a function of x/⟨x⟩. ⟨x⟩ is the mean value of x. The results plotted in
Figure 3.2 shows that the different sets rescale into the same curve.

Weobserve also that the plotted distributions exhibit a clear power-law trend for high citationnumbers
in the x/⟨x⟩ > 10 domain. We have shown that the entire distribution can be successfully fitted with
the Tsallis-Pareto (TP) type distribution [20]

f(x) =
g

(g − 1)⟨x⟩

(
1 +

x

(g − 1)⟨x⟩

)−1−g

(3.5)

which is a probability density function (PDF) with a power-law-like tail. This is not completely a scale-
free distribution, the scale-free properties fulfill only for g > 1 and large enough x/⟨x⟩ values. It is
therefore more appropriate to call these heavy-tail distributions [55].

Assuming the above distribution function, we processed many datasets as shown in Figure 3.2. First,
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Figure 3.2: Rescaled distribuধon of the citaধon (share) numbers. f(x) is the probability density (PDF) for one
paper (post) to have x citaধons/shares. We present the ⟨x⟩f(x) value as a funcধon of x/⟨x⟩ (⟨x⟩ the mean
value, or first moment of the PDF). For high citaধon number a clear power-law trend is visible. Different symbols
are for different datasets as illustrated in the legend. For highx/⟨x⟩ a clear power-law trend is visible. The enধre
curve can be well-fiħed with a TP distribuধon (3.5) with g ≈ 1.4 and ⟨x⟩ = 1.

we processed more than 600 000 ISI Web of Science (WoS) publications [56], ten years long citations
statistics for all ISI indexed (approx. 12 000) journals from the Journal Citation Report (JCR) [57] and
more than 150 000 posts from 16 different Facebook users (pages) [58]. All three sets of data suggests
that the one-parameter TP type PDF is appropriate for data fitting with g ≈ 1.4 parameter, as shown by
the continuous line and data points in Figure 3.2.

Besides the large datasets, we collected data from 16 Facebook pages. Here we show three different
types, one from news the New York Times (NYTimes FB) page, one from sports celebrity the Cristiano
Ronaldo (Ronaldo FB) page and one from science the NASA (NASA FB) page. In the case of each small
network, it is visible that our selectedTP type probability density function fits verywell also these smaller
datasets.

In addition to these, we studied the citations for articles published in 1990 with authors fromHarvard
University (Harvard SC), for papers published in The Lancet Elsevier journal in 1990 (Lancet SC) and
for a single author from physics, Prof. H. E. Stanley from the Boston University, USA, who has 965 ISI
publications and 62 996 ISI citations (Stanley SC). These data also fits well with the TP type PDF.

For all datasets, we constructed the experimental probability distribution function by a logarithmic
binning method with 2n size bins. Aside from small fluctuations in the examined data in case of small
datasets, all collected data followed the same trend with g ≈ 1.4.
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3. Citation dynamics and networks

To model the obtained results, we assume that the illustrated growth process results from the expo-
nential growth of publications (posts) number as a function of time and citations following a rich gets
richer multiplicative growth. For the case of Facebook, the exponential growth is highlighted by the pre-
sentation of Mark Zuckerberg according to which the information sharing activity on Facebook is also
growing exponentially [59]. TheMatthew effect: “For to all thosewho have, morewill be given” inmany
social systems including citation in science has also been discussed in many previous works [60, 61].
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4
Conclusion

In the present thesis, we studied dynamics in social systems using computational physics approaches. The
hard task we had to face was to logically synthesize and present in a pedagogical manner the studies we
have performed in the related fields: multiagent evolutionary games, human mobilities, social networks,
and scientometrics. Besides modeling, a challenge that we faced was data mining, data processing and
developing numerical and analytical tools for comparing model and real-world data.

We have studied several types of evolutionary games using both imitation and logit strategy update
rules on different type of networks. We investigated the strategy distributions of different type of players
through Monte Carlo simulations and analytical calculations.

We discussed correlations in the distribution of strategies, we applied synchronized strategy update
rules, and we demonstrated the invasion and speciation processes. We illustrated the positive impact of
the imitation and logit update rules for the maintenance of cooperation. Then, we examined the inva-
sions in horizontal, vertical and tilted directions.

As a second topic, we have analyzed the universal laws that govern human mobilities, and we have
computed the probability of commuting through a certain number of population. We studied different
human mobilities on road-networks, and air travel networks. We investigated commuting patterns be-
tween the settlements of three geographical regions, and elaborated two original model. To compare in
a critical manner our theoretical models with reality, we used human transportation networks, census
datasets, jobs and distance information.

As a first result, we confirmed our hypothesis according to which there is a universal rule: “further we
travel the faster we go”. Based on the travel distance and traveling time dependence, we proved that the
averaged apparent speed is increasing as a function of the distance, following a power-law-like trend.

We than studied the distribution of commuter fluxes. We used radiation type models, the gravity
model, and the flow and jump model for fitting the experimentally observed data. The Flow and Jump
model proposed by us offered the best fits for all three experimental data we have used.

Finally, we have investigated community appearance and clusterization effects on networks. We pro-
posed a field-based normalization of scientific articles, and we presented similar scaling rules for scientific
publications and Facebook posts. The research was performed on publication and social networks, and
we tested our algorithms on benchmarks and real-world networks too.
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4. Conclusion

For publication networks we proposed two communities detection methods. These methods can be
used to efficiently group nodes in different clusters. We also developed a local cluster detection method,
which is workingwithout processing the entire large network. This proved to be important for determin-
ing and normalizing the individual indicators. In order to achieve that, we normalized the probability
distributions of scientific indicators according to the power-law type distributions attributes of data to
eliminate the differences between scientific areas.

Besides that, we studied citation/share behavior in the publication and social networks, and we ob-
served that they show the same popularity pattern. Following a master equation approach, we were able
tomodel the characteristic statistics in both systems, andwe found that theTsallis-Pareto type probability
distribution function describes well their normalized distribution.

In conclusion, we introduced several novel approaches to characterize the dynamics in social systems,
revealing novel and interesting aspects of these systems of very different natures.
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