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Introduction

Keywords: elastic constitutive law, quasistatic processes, viscoelastic constitutive law, nu-
merical method, Cauchy problem, normal compliance, Runge-Kutta method, memory term,
Steffensen method, unilateral constraint, convergence order, local truncation error, variational
inequality, zero-stability

The purpose of this thesis is twofold. The first one is to introduce the reader to some rep-
resentative notions of numerical methods for Cauchy problems like consistency, zero-stability,
convergence, order of convergence, local truncation error, etc. The second one is to introduce
the reader a mathematical theory of contact problems involving deformable bodies. This
concern the mathematical modelling and the variational analysis of the models, including ex-
istence, uniqueness and convergence results. More precisely, quasistatic contact processes are
treated in the infinitesimal strain theory and the material behavior is modeled with elastic and
viscoelastic constitutive laws. The contact is frictionless and modeled with various conditions,
including normal compliance and memory term.

The thesis is divided into two parts and eight chapters. Part I, containing Chapters 1–3 is
devoted to the numerical methods for initial value problems for ordinary differential equations.
In writing this part of the thesis the books [17], [23], [54], [36] were followed especially. Part
II refers to the modelling and analysis of some frictionless contact problems for nonlinear
elastic or viscoelastic materials. It contains Chapters 4–8. In writing this part the books [39],
[89], [95] were followed especially.

The original contributions in the first part of the thesis consist in the analysis of some
numerical methods for Cauchy problems for first order ordinary differential equations. Thus,

in Chapter 2 the combination of a Steffensen type method with the trapezoidal rule
for approximating solutions of scalar initial value problems for first order differential
equations is studied (Section 2.4). Conditions under which this method provides bilateral
approximations are provided (Theorem I.2.22– I.2.25). These results were published in
[70].

in Chapter 3 an interpolation formula is used to introduce a class of numerical methods
for approximating the solutions of scalar initial value problems for first order differential
equations. These methods can be identified as explicit Runge-Kutta methods. Bounds
for the local truncation error are determined and the convergence order and the absolute
stability region are compared with those for explicit Runge-Kutta methods, which have
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iv INTRODUCTION

convergence order equal with number of stages (Sections 3.2 and 3.3). The contents of
this chapter represent the object of the papers [71] and [72].

The original contributions in the second part of the thesis consist in modeling and ana-
lyzing some new contact problems. Thus,

in Chapter 6 some ideas in [95] are used. There, the Signorini contact problem for
nonlinear elastic materials and static process was considered. The originality of the
results in this chapter arises in the fact that the Signorini condition is replaced with
the normal compliance condition with unilateral constraint. It is shown that this new
problem leads to an elliptic variational inequality for the displacement field (Section 6.1).
An existence and uniqueness result for the weak solution of the model is proved (Theorem
II.6.1) and this result is recovered by using a penalization method (Theorem II.6.2).
To this end, a penalized problem with normal compliance and infinite penetration is
considered (Section 6.3). The contents of this chapter will make the object of the
forthcoming paper [8].

in Chapter 7 a new quasistatic contact problem for nonlinear elastic materials is studied.
The novelty consists in the fact that the contact is moeled with normal compliance
and memory term. A variational formulation of the problem in the form of a history-
dependent variational equation for displacement field is derived (Section 7.1). Also, the
unique weak solvability of the model is proved (Theorem II.7.1) and the continuous
dependence of the solution with respect to the data is provided (Theorem II.7.2). The
results of this chapter will be included in [74] and the numerical results were published
in [11].

in Chapter 8 a new contact problem is considered. Here the novelty consists in the
fact that the material ’s behavior is described with a viscoelastic constitutive law with
long memory and the contact is modeled with normal compliance, memory term and
unilateral constraint. A variational formulation of the problem in the form of a history-
dependent variational inequality for displacement field, which involves two Volterra in-
tegral terms is provided (Section 8.1). The unique weak solvability of the problem
(Theorem II.8.1) and two convergent results are proved. The first one shows the contin-
uous dependence of the solution with respect to the data (Theorem II.8.2), The second
one proves that the weak solution of the problem represents the limit of the weak so-
lution of a contact problem with normal compliance and memory term, as the stiffness
coefficient of the foundation convergences to infinity (Theorem II.8.3). The material
presented in this chapter has made the object of the paper [97].



Part I

Numerical Methods for Ordinary
Differential Equations
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Chapter 1

Preliminaries

1.1 Ordinary Differential Equations

In the first chapter of the thesis basic notions concerning first order differential equations
(ODE) are introduced and related to them notions concerning autonomous ODE, high order
ODE and initial value problems are presented.

Definition 1.1. An ordinary differential equation of first order is an equation of the form

y′ = f(x, y) x ∈ I, (1.1)

where I ⊆ R is a bounded or unbounded interval and f : I × Rn → Rn is a given function.
A function y : Rn → Rn is called solution of this equation if it verifies (1.1) for all x ∈ I.

Definition 1.2. For x0 ∈ I and y0 ∈ Rn an additional condition of the form

y(x0) = y0 (1.2)

is called initial condition and the obtained problem is called initial value problem or Cauchy
problem.

Thus, an initial value problem has the form




y′ = f(x, y) x ∈ I,

y(x0) = y0.
(1.3)

A briefly description of linear differential equations is also provided.

1.2 Existence and Uniqueness of Solutions

In the second part of the chapter the following existence and uniqueness theorems and the
following results concerning the dependence of solution on the data are mentioned.

2



1.2. Existence and Uniqueness of Solutions 3

Definition 1.3. The function f : I × Rn → Rn is said to satisfy a Lipschitz condition in its
second variable if there exists a constant L, named the Lipschitz constant, such that

‖f(x, y)− f(x, z)‖ ≤ L‖y − z‖ (1.4)

for any x ∈ I, y, z ∈ Rn.

Theorem 1.4. If f satisfies a Lipschitz condition with constant L and w and z are each
solutions of the equation

y′ = f(x, y),

then
‖w(x)− z(x)‖ ≤ ‖w(x0)− z(x0)‖ exp(L(x− x0)) ∀x ≥ x0. (1.5)

Definition 1.5. The function f : I × Rn → Rn satisfies a one-sided Lipschitz condition if
there exists a constant l, named the one-sided Lipschitz constant, such that

〈f(x, y)− f(x, z), y − z〉 ≤ l‖y − z‖2 (1.6)

for any x ∈ I, y, z ∈ Rn.

Theorem 1.6. If f satisfies a one-sided Lipschitz condition with constant l and w and z are
solutions of the equation

y′ = f(x, y),

then
‖w(x)− z(x)‖ ≤ ‖w(x0)− z(x0)‖ exp(l(x− x0)) ∀x ≥ x0. (1.7)

Definition 1.7. The function y : I0 → Rn is called local solution of initial value problem
(1.3) if I0 ⊂ I is a neighborhood of x0 and y verifies (1.3). If I = I0 then y is called global
solution.

Theorem 1.8. (The Cauchy-Peano Theorem) If f is continuous on I × Rn then for all
y0 ∈ Rn there exists a unique local solution of the initial value problem (1.3).

Theorem 1.9. (The Cauchy-Lipschitz Theorem) If f is continuous and satisfies a Lipschitz
condition in its second variable then for all y0 ∈ Rn there exists a unique global solution of
the initial value problem (1.3).

The material mentioned in this chapter is standard and can be found in many books and
surveys, e.g. [3], [13], [38], [40], [62], [81], [101]. For a comprehensive treatment of basic
aspects concerning the existence and uniqueness of solution, the dependence of solution on
the data or the regularity of solution the reader is referred to [12], [23], [38], [62], [81], [101].



Chapter 2

Numerical Methods for Cauchy
Problems

2.1 Background

In this section the general form of a numerical method for Cauchy problems, classifications
concerning the number of steps or implicitness and properties like convergence, consistency,
zero-stability are introduced. Thus, the following results are provided.

A solution of Cauchy problem (1.3) is sought on the interval I = [x0, x0 +T ], where T > 0
is finite. This continuous interval is replaced by the discrete point set

{xi|xi = xi−1 + hi, i = 1, N},

where N ∈ N∗ is the number of points and hi represents the distance between xi−1 and xi. The
length of the steps hi can be constant hi = h, i = 1, N or can be changed after a prescribed
rule with the requirement max

i=1, N
hi ≤ h.

The numerical methods of the form

k∑

j=0

αjyi+j = hφf (yi+k, yi+k−1, . . . , yi, xi; h), (2.1)

is considered. Here αj ∈ R, j = 0, . . . , k, are constants and the subscript f on the right-hand
side indicates that the dependence of φ on yi+k, yi+k−1, . . . yi, xi is through the function
f(x, y).

The following classifications of (2.1) concerning number of steps and concerning implicit-
ness are mentioned.

Definition 2.1. The numerical method (2.1) for the approximation of the solution of the
initial value problem (1.3) is called one-step method if for all i > 0 the value yi+1 depends
only on yi. Otherwise the method is called multistep method.

4



2.1. Background 5

Definition 2.2. A numerical method is called explicit if yi+1 can be computed directly in
terms of the previous values yk, k ≤ i. A method is said to be implicit if yi+1 depends
implicitly on itself through f .

The concept of convergent scheme is presented.

Definition 2.3. The method defined by (2.1) is said to be convergent if for all initial values
problems satisfying the hypotheses of Theorem 1.9 we have that

max
0≤i≤N

‖y(xi)− yi‖ → 0 as h → 0 . (2.2)

To give necessary and sufficient conditions for convergence of the numerical method (2.1)
notions like: local truncation error, consistency, zero-stability, root-condition and their prop-
erties are provided.

Definition 2.4. The local truncation error of (2.1) at xi+k is given by

Ti+k =
k∑

j=0

αjy(xi+j)− hφf (y(xi+k), y(xi+k−1), . . . , y(xi), xi; h). (2.3)

Definition 2.5. The method defined by (2.1) is said to be consistent if for all initial value
problems satisfying the hypotheses of Theorem 1.9 the quantity Ti+k defined by (2.3) satisfies

lim
h→0

1
h

Ti+k = 0. (2.4)

Theorem 2.6. The method (2.1) is consistent if it satisfies the conditions




k∑

j=0

αj = 0,

φf (y(xi), y(xi), . . . , y(xi), xi; 0) = f(xi, y(xi)) ·
( k∑

j=0

jαj

)
.

(2.5)

Definition 2.7. The method (2.1) is said to satisfy root-condition if all the roots of the
polynomial

ρ(ξ) =
k∑

j=0

αjξ
j , ξ ∈ C.

have modulus less than or equal to unity, and those with modulus equal to unity are simple.

Definition 2.8. The method defined by (2.1) is said to be zero-stable if it verifies root-
condition.

Theorem 2.9. The method (2.1) is convergent if and only if it is consistent and zero-stable.
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Also, some notions and properties of iterative methods for nonlinear algebraic equations
of the form

y = φ(y) φ : Rn → Rn. (2.6)

are mentioned.
The first method is the fixed point iteration method, which consists of generating a sequence
of approximations {y(ν)} given by

y(ν+1) = φ(y(ν)) ν = 0, 1, . . . , (2.7)

where initial guess y(0) is arbitrary.
The following theorem states conditions under which (2.6) has a unique solution such that

the iteration generated by (2.7) converges.

Theorem 2.10. Let φ satisfy the Lipschitz condition

‖φ(y)− φ(z)‖ ≤ L‖y − z‖ (2.8)

for all y, z ∈ Rn, where 0 ≤ L < 1. Then there exists a unique solution y∗ of (2.6) and the
sequence generated by (2.7) converges to y∗ as ν →∞.

The second iterative method is the Newton iteration method and, in general, it is applied
when the hypotheses of Theorem 2.10 are not satisfied and the sequence {y(ν)} given by (2.7)
diverges. The Newton iteration applied to the system

F (y) = 0, (2.9)

with F ∈ C1(Rn;Rn) is given by

y(ν+1) = y(ν) − J−1(y(ν))F (y(ν)) ν = 0, 1, . . . , (2.10)

where J = ∂F
∂y is the Jacobian matrix of F with respect to y.

When
F (y) = 0, F : R→ R (2.11)

the Newton iteration is given by

y(ν+1) = y(ν) − F (y(ν))
F ′(y(ν))

ν = 0, 1, . . . , (2.12)

and, substituting F (y) = y − φ(y) in (2.11) the following formula

y(ν+1) = y(ν) − [
1− φ′(y(ν))

]−1[y(ν) − φ(yν)] ν = 0, 1, . . . (2.13)

is obtained.

A method that does not require the calculation of the derivative of F is the Steffensen
method given by

y(ν+1) = y(ν) − F 2(y(ν))
F (y(ν) + F (y(ν)))− F (y(ν))

ν = 0, 1, . . . , (2.14)
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or, in equivalent form,

y(ν+1) = y(ν) − F (y(ν))
[y(ν), y(ν) + F (y(ν));F ]

ν = 0, 1, . . . , (2.15)

where [u, v;F ] represents the first order divided difference of F at the points u, v defined by

[u, v; F ] =
F (u)− F (v)

u− v
. (2.16)

A generalized method for (2.14) and (2.15) is defined by

y(ν+1) = y(ν) − F (y(ν))
[y(ν), g(y(ν));F ]

ν = 0, 1, . . . , (2.17)

where g is a decreasing function such that it has y∗ as a fixed point, i.e. y∗ verifies the equation

g(y) = y. (2.18)

The following hypothesis for the functions F and g are considered.

(α) F is a continuous function given in such a way that equation (2.11) has a unique solution
y∗ in the bounded interval (c, d);

(β) the equations (2.11) and (2.18) are equivalent;

(γ) g is a continuous and decreasing function on [c, d].

Results in the study of these kind of methods are provided in many papers, e.g., [19], [20],
[25], [26], [76], [77] and [79].

The next theorem is proved in [75].

Theorem 2.11. Assume that the functions F and g satisfy the conditions (α) − (γ) and
moreover, the following conditions hold:

(i) F is increasing and convex on [c, d];

(ii) F (y(0)) < 0;

(iii) g(y(0)) ≤ d.

Then the elements of the sequences {y(ν)} and {g(y(ν))} belong to the interval [c, d] and,
moreover, the following properties hold:

(j) the sequence {y(ν)} defined by (2.17) is increasing and convergent;

(jj) the sequence {g(y(ν))} is decreasing and convergent;

(jjj) y(ν) ≤ y∗ ≤ g(y(ν)) ν = 0, 1, . . . ;

(jv) lim
ν→∞ y(ν) = lim

ν→∞ g(y(ν)) = y∗;

(v) |y∗ − y(ν)| ≤ |g(y(ν))− y(ν)|, ν = 0, 1, . . . .
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2.2 Linear Multistep Methods

In this section a special sub-class of (2.1) is presented. This class is represented by linear
multistep methods or a linear k-steps methods. The general form of these methods is given by

k∑

j=0

αjyi+j = h
k∑

j=0

βjfi+j (2.19)

where fi+j = f(xi+j , yi+j), j = 0, k, and αj , βj are constants which verify the conditions

αk = 1, |α0|+ |β0| 6= 0. (2.20)

The notions of convergence order, local truncation error, polynomial of stability, absolute
stability and region of absolute stability are introduced.

Definition 2.12. The linear difference operator L associated with the linear multistep method
(2.19) is defined by

L[z(x);h] =
k∑

j=0

[αjz(x + jh)− hβjz
′(x + jh)], (2.21)

where z ∈ C1(I) is an arbitrary function.

Expanding z(x + jh) and z′(x + jh) in Taylor series with respect to x is obtained

L[z(x);h] = C0z(x) + C1hz′(x) + . . . + Cqh
qz(q)(x) + . . . (2.22)

where Cq are constants.

Definition 2.13. The linear multistep method (2.19) and the associated linear difference
operator L defined by (2.21) are said to be of order p if in (2.22) we have C0 = C1 = . . . =
Cp = 0, Cp+1 6= 0.
In this case Cp+1 is called error constant.

Definition 2.14. The local truncation error (LTE) of the method (2.19) at xi+k denoted by
Ti+k is defined by

Ti+k = L[y(xi);h], (2.23)

where L is the associated difference operator given by (2.21) and y is the exact solution of
initial value problem (1.3).

Definition 2.15. The polynomial of stability associated to the method (2.19) is defined by

π(r, z) = ρ(r)− zσ(r), (2.24)

where z = hλ and ρ, σ are given by

ρ(ξ) =
k∑

j=0

αjξ
j , σ(ξ) =

k∑

j=0

βjξ
j , ξ ∈ C (2.25)
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Definition 2.16. The method (2.19) is said to be absolutely stable for a given z if all the
roots rj of the stability polynomial (2.24) satisfy

|rj | < 1, j = 1, . . . , k. (2.26)

The set of all these points z is called region of absolute stability for the method (2.19) and is
denoted in general by RA.

2.3 Runge-Kutta Methods

The second special sub-class of (2.1) analyzed in this chapter is represented by Runge-Kutta
methods. The general form of these methods is given by





yi+1 = yi + h
s∑

t=1

btkt,

kt = f(xi + cth, yi + h

s∑

j=1

atjkj), t = 1, 2, . . . , s

(2.27)

where bt, ct, atj , t, j = 1, s are constants.
Using

kt = f(xi + cth, Yt), t = 1, s (2.28)

the alternative form of (2.27) given by




yi+1 = yi + h
s∑

t=1

btf(xi + cth, Yt)

Yt = yi + h
s∑

j=1

atjf(xi + cth, Yj), t = 1, 2, . . . , s

(2.29)

is provided.
The notions of stability function, absolute stability and region of absolute stability are

introduced.

Definition 2.17. The stability function of the method (2.27) is defined by

R(z) = 1 + zbT (I − zA)−1e (2.30)

or, in alternative form,

R(z) =
det[I − z(A− ebT )]

det(I − zA)
, (2.31)

where e = [1, 1, . . . , 1]T ∈ Rs.
The method (2.27) is said to be absolutely stable for a given z if

|R(z)| < 1. (2.32)

The region of absolute stability for (2.27) is defined by

RA = {z ∈ C : |R(z)| < 1}. (2.33)
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For Runge-Kutta methods a practicable way to determine the absolute stability region is
scanning technique presented in [54]. Additional information concerning Runge-Kutta meth-
ods can be found in [17] or [36].
For various results, details and comments on the material in previous sections the following
references [4], [22], [25], [44], [82], [99], [100] are provided. These papers abound in information
concerning the topic of numerical analysis, including notions about numerical methods for
initial value problems of ordinary differential equations and numerical methods for nonlinear
algebraic equations, as well.

2.4 Application of Steffensen Method to the Trapezoidal Rule

In this section a combination of a Steffensen type method with the trapezoidal rule for ap-
proximating solutions of scalar initial value problems is studied. Thus, an implicit equation
of the form

y = hAφ(x, y) + ψ (2.34)

is obtained after the application of the trapezoidal rule with constant step-size h. Here A is
a constant determined by the numerical method and ψ is a known value.

Thus, the approximations yi for the exact solution at the points xi, i = 1, N are the
solutions of the equation

y = hAφ(xi, y) + ψi, (2.35)

where ψi = ψi(x0, h, yi−1, yi−2, . . . , y0) are known values.
For each i = 1, N Fi : [c, d] → R is defined by

Fi(y) = y − hAφ(xi, y)− ψi. (2.36)

and equation (2.35) is rewritten in the form

Fi(y) = 0.

To approximate bilaterally the solution y∗i , i = 1, N , of (2.35) the sequence {y(ν)
i }ν≥0 is

generated by

y
(ν+1)
i = y

(ν)
i − Fi(y

(ν)
i )

[y(ν)
i , g(y(ν)

i );Fi]
, ν = 0, 1, . . . (2.37)

or, using (2.36),

y
(ν+1)
i =

hA(φ(xi, y
(ν)
i )− y

(ν)
i [y(ν)

i , g(y(ν)
i );φ(xi, ·)]) + ψi

1− hA[y(ν)
i , g(y(ν)

i );φ(xi, ·)]
. (2.38)

The trapezoidal rule to integrate the initial value problem (1.3), for n = 1, and the
Steffensen method (2.17) to solve the equation (2.35) are considered.

For any point xi, i = 1, N , the bellow equation

yi − h

2
f(xi, yi)− h

2
f(xi−1, yi−1)− yi−1 = 0 (2.39)
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is obtained and, in this case,

Fi(y) = y − h

2
f(xi, y)− h

2
f(xi−1, yi−1)− yi−1.

Thus, in (2.35) the values are given by A = 1
2 , φ(xi, y) = f(xi, y) and ψi = h

2f(xi−1, yi−1)+
yi−1, i = 1, N .

For simplicity only the autonomous case, i.e. f = f(y), is considered and in this case
equation (2.39) becomes

yi − h

2
f(yi)− h

2
f(yi−1)− yi−1 = 0 (2.40)

with
Fi(y) = y − h

2
f(y)− ψi,

where ψi = h
2f(yi−1) + yi−1, i = 1, N .

Using the fact that

[u, v; Fi] = 1− h

2
[u, v; f ] ∀u, v ∈ [c, d], (2.41)

and
[u, v, w;Fi] = −h

2
[u, v, w; f ] ∀u, v, w ∈ [c, d], (2.42)

for all i = 1, N , the auxiliary function g is given by

g(y) =
h
2 (f(y)− y[d− ε, d; f ]) + ψi

1− h
2 [d− ε, d; f ]

or

g(y) =
h
2 (f(y)− y[c, c + ε; f ]) + ψi

1− h
2 [c, c + ε; f ]

,

where ε is sufficiently small such that the exact solution y∗i of the equation Fi(yi) = 0,
i = 1, . . . , N , belongs to the interval [c + ε, d− ε].

For each i = 1, N the followings quantities

ψi
max = max{yk + h

2f(yk)|k = 0, . . . , i− 1},

ψi
min = min{yk + h

2f(yk)|k = 0, . . . , i− 1}
are introduced.

The following original results are proved.

Theorem 2.18. Assume that the function f , the step-size h and the initial guesses y
(0)
i ,

i = 1, . . . , N , satisfy the following conditions

(i) [u, v, w; f ] ≤ 0 for all u, v, w ∈ [c, d];
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(ii) (m ≤ [u, v; f ] ≤ M ≤ 0 for all u, v ∈ [c, d]) or (0 ≤ m ≤ [u, v; f ] ≤ M for all u, v ∈ [c, d]
and h ≤ 2

M );

(iii) y
(0)
i − h

2f(y(0)
i ) < ψi

min;

(iv) y
(0)
i M − f(y(0)

i ) ≥ 2
h [d(M h

2 − 1) + ψi
max].

Then the elements of the sequences {y(ν)
i }ν≥0, {g(y(ν)

i )}ν≥0, i = 1, . . . , N , belong to the interval
[c, d] and, moreover, the following properties hold:

(j) {y(ν)
i }ν≥0 defined by (2.17) is increasing and convergent;

(jj) {g(y(ν)
i )}ν≥0 is decreasing and convergent;

(jjj) y
(ν)
i ≤ y∗i ≤ g(y(ν)

i ), ν = 0, 1, . . .;

(jv) lim
ν→∞ y

(ν)
i = lim

ν→∞ g(y(ν)
i ) = y∗i ;

(v) |y∗i − y
(ν)
i | ≤ |g(y(ν)

i )− y
(ν)
i |, ν = 0, 1, . . . .

Theorem 2.19. Assume that the function f , the step-size h and the initial guesses y
(0)
i ,

i = 1, . . . , N , satisfy the following conditions

(i) [u, v, w; f ] ≤ 0 for all u, v, w ∈ [c, d];

(ii) 0 ≤ m ≤ [u, v; f ] ≤ M , for all u, v ∈ [c, d];

(iii) y
(0)
i − h

2f(y(0)
i ) < ψi

min;

(iv) y
(0)
i m− f(y(0)

i ) ≥ 2
h [c(mh

2 − 1) + ψi
max];

(v) 2
m ≤ h.

Then the elements of the sequences {y(ν)
i }ν≥0, {g(y(ν)

i )}ν≥0, i = 1, . . . , N , belong to the interval
[c, d] and, moreover, the following properties hold

(j) {y(ν)
i }ν≥0 defined by (2.17) is decreasing and convergent;

(jj) {g(y(ν)
i )}ν≥0 is increasing and convergent;

(jjj) g(y(ν)
i ) ≤ y∗i ≤ y

(ν)
i ν = 0, 1, . . . ;

(jv) lim
ν→∞ y

(ν)
i = lim

ν→∞ g(y(ν)
i ) = y∗i ;

(v) |y∗i − y
(ν)
i | ≤ |g(y(ν)

i )− y
(ν)
i |, ν = 0, 1, . . . .

Theorem 2.20. Assume that the function f , the step-size h and the initial guesses y
(0)
i ,

i = 1, . . . , N , satisfy the following conditions
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(i) [u, v, w; f ] ≥ 0 for all u, v, w ∈ [c, d];

(ii) (m ≤ [u, v; f ] ≤ M ≤ 0 for all u, v ∈ [c, d]) or (0 ≤ m ≤ [u, v; f ] ≤ M for all
u, v ∈ [c, d], and h ≤ 2

M );

(iii) y
(0)
i − h

2f(y(0)
i ) > ψi

max;

(iv) y
(0)
i M − f(y(0)

i ) ≤ 2
h [c(M h

2 − 1) + ψi
min].

Then the elements of the sequences {y(ν)
i }ν≥0, {g(y(ν)

i )}ν≥0, i = 1, . . . , N , belong to the interval
[c, d] and, moreover, the following properties hold

(j) {y(ν)
i }ν≥0 defined by (2.17) is decreasing and convergent;

(jj) {g(y(ν)
i )}ν≥0 is increasing and convergent;

(jjj) g(y(ν)
i ) ≤ y∗i ≤ y

(ν)
i , ν = 0, 1, . . . ;

(jv) lim
ν→∞ y

(ν)
i = lim

ν→∞ g(y(ν)
i ) = y∗i ;

(v) |y∗i − y
(ν)
i | ≤ |g(y(ν)

i )− y
(ν)
i |, ν = 0, 1, . . . .

Theorem 2.21. Assume that the function f , the step-size h and the initial guesses y
(0)
i ,

i = 1, . . . , N , satisfy the following conditions:

(i) [u, v, w; f ] ≥ 0 for all u, v, w ∈ [c, d];

(ii) 0 ≤ m ≤ [u, v; f ] ≤ M for all u, v ∈ [c, d];

(iii) y
(0)
i − h

2f(y(0)
i ) > ψi

max;

(iv) y
(0)
i m− f(y(0)

i ) ≤ 2
h [d(mh

2 − 1) + ψi
min];

(v) 2
m ≤ h.

Then the elements of the sequences {y(ν)
i }ν≥0, {g(y(ν)

i )}ν≥0, i = 1, . . . , N , belong to the interval
[c, d] and, moreover, the following properties hold

(j) {y(ν)
i }ν≥0 defined by (2.17) is increasing and convergent;

(jj) {g(y(ν)
i )}ν≥0 is decreasing and convergent;

(jjj) y
(ν)
i ≤ y∗i ≤ g(y(ν)

i ) ν = 0, 1, . . . ;

(jv) lim
ν→∞ y

(ν)
i = lim

ν→∞ g(y(ν)
i ) = y∗i ;

(v) |y∗i − y
(ν)
i | ≤ |g(y(ν)

i )− y
(ν)
i |, ν = 0, 1, . . . .

The results presented in this section are original and were published in [70].
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2.5 Numerical example

The chapter ends with a numerical example to exemplify the results presented in the previous
section.



Chapter 3

A Special Class of Runge-Kutta
Methods

3.1 An Approximation Formula for Functions

In this section some remarks concerning an approximation formula for functions given in [78]
are provided. This represents a generalization of some interpolation formulae defined in [103].

First of all, a (2q + 1)-times derivable function h : I → R, q ∈ N is considered, where the
interval I is finite and has the form I = [x0, x0 + T ], T > 0. Also, the class G of functions

G = {g : g(x) = h(x0) + (x− x0)
q∑

i=1

αih
′(x0 + βi(x− x0)),

αi, βi ∈ R, i = 1, q, x ∈ I} (3.1)

is given, and the following problem is considered.
Find a function g ∈ G such that

h(i)(x0) = g(i)(x0), i = 1, m, (3.2)

where m ∈ N∗.
The coefficients βi are taken as the roots of the Legendre polynomial wq of degree q, i.e.

the roots of the equation

wq(x) :=
q!

(2q)!
dq

dxq
[xq(x− 1)q] = 0, (3.3)

and the coefficients αi are given by the following formula

αi =
(q!)4

[(2q)!]2βi(1− βi)[w′q(βi)]2
, i = 1, q. (3.4)

Next, is presented a theorem, given in [78], which shows that the above problem has a
unique solution for m = 2q and establishes the forms of the coefficients αi, βi.

15
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Theorem 3.1. Assume that h : I → R is a (2q + 1)-times derivable function on I. Then
there exists a unique function g ∈ G which verifies conditions (3.2) for m = 2q. Moreover, the
coefficients {αi}q

i=1 are given by the formula (3.4) and {βi}q
i=1 are the roots of the equation

(3.3).

This section ends with the estimation

|r[h]| ≤ M2q+1

(2q + 1)!
2[(2q)!]2 − [q!]4

[(2q)!]2
|x− x0|2q+1 (3.5)

for the remainder given by
h(x) = g(x) + r[h], (3.6)

where
M2q+1 = sup

x∈I
|h(2q+1)(x)|. (3.7)

The interpolation formula is used in the rest of the chapter to introduce a class of numer-
ical methods for approximating the solutions of scalar initial value problems for first order
differential equations.

3.2 The Particular Case q = 1

In this section the approximation formula for the particular case q = 1 is used. Thus, α1, β1

have the values β1 = 1
2 , α1 = 1, the function g ∈ G in Theorem 3.1 has the form

g(x) = h(x0) + (x− x0)h′(x0 + 1
2(x− x0)) (3.8)

and satisfies
h(i)(x0) = g(i)(x0), i = 0, 2 (3.9)

and
|h(x)− g(x)| ≤ 7

24M3|x− x0|3, (3.10)

where M3 = sup
x∈I

|h′′′(x)|.
Using (3.8) a class of numerical methods for approximating the solutions of an autonomous

scalar initial value problem (1.3), i.e. when f = f(y) and n = 1, is introduced. The following
numerical method is obtained

yi+1 = yi + hif(yi + 1
2hif(yi + 1

22 hif(yi + . . . + 1
2p0−1 hif(yi)) . . .), (3.11)

where hi = xi+1 − xi, i = 0, . . . , N − 1 represents the length of the step.
For this method the following equivalence result is proved.
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Theorem 3.2. The method (3.11) is equivalent with a p0-stages explicit Runge-Kutta method
with the Butcher array given by

0
1

2p0−1
1

2p0−1 0
1

2p0−2 0 1
2p0−2 0

... . . .
1
22 0 0 0 . . . 1

22 0
1
2 0 0 0 . . . 0 1

2 0
0 0 0 . . . 0 0 1

For the method (3.11) and for particular cases the local truncation error, absolute–stability
region, consistency, convergence order are studied. First of all, as in [83], it is supposed that

‖f‖ < M and ‖f (j)‖ <
Lj

M j−1
on I, (3.12)

where ‖f‖ = sup{|f(t)| : t ∈ I} and M , L are positive real numbers.

The convergence order of the method (3.11) is provided in the following result.

Theorem 3.3. The method (3.11) has convergence order 2 and the coefficient of principal
local truncation error C3 has the following bound

‖C3‖ ≤ 1
12ML2. (3.13)

The method (3.11) is a zero-stable method because it verifies root-condition. Also, since
the convergence order is 2 we conclude that it satisfies the consistency condition. It follows
that the method (3.11) represents a convergent method.

Also, the stability function and the absolute–stability region for the method (3.11) are
defined.

Theorem 3.4. The method (3.11) has the stability function given by

R(z) = 1 +
p0∑

k=1

1

2
k(k−1)

2

zk, z ∈ C. (3.14)

The absolute-stability region is given by

R = {z ∈ C : |1 +
p0∑

k=1

1

2
k(k−1)

2

zk| < 1}. (3.15)

In the rest of the section two particular cases are analyzed and are compared with explicit
Runge-Kutta methods, which have convergence order equal with number of stages. This part
was written following original paper [71].
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3.3 The Particular Case q = 2

In this section the approximation formula for the particular case q = 2 is used. Thus, the
coefficients αi, βi have the values

β1 = 3−√3
6 , β2 = 3+

√
3

6 , α1 = α2 = 1
2 , (3.16)

the function g ∈ G in Theorem 3.1 has the form

g(x) = h(x0) + 1
2

[
h′(x0 + 3−√3

6 (x− x0)) + h′(x0 + 3+
√

3
6 (x− x0))

]
(3.17)

and satisfies
h(i)(x0) = g(i)(x0), i = 0, 4 (3.18)

and
|h(x)− g(x)| ≤ 71

4320M5|x− x0|5, (3.19)

where M5 = sup
x∈I

|h(5)(x)|.
Using for each xi, i = 1, N the notation

ui
qr = yi + 1

2βq
1β

r
2hi[f(ui

q+1r) + f(ui
qr+1)],

the following numerical method is obtained

yi+1 = yi + 1
2hi[f(ui

10) + f(ui
01)], (3.20)

ui
k−jj = yi + 1

2βk−j
1 βj

2hi[f(ui
k−j+1j) + f(ui

k−jj+1)],

j = 0, k, k = 1, p0 − 1,

ui
p0−jj = yi, j = 0, p0,

where hi = xi+1 − xi, i = 0, N − 1 represents the length of the step.
In the rest of the section the particular cases of this method for p0 = 2, 3, 4 are analyzed.
For p0 = 2 the method

yi+1 = yi + 1
2hi[f(yi + β1hif(yi))

+f(yi + β2hif(yi))], i = 1, N − 1 (3.21)

is obtained.
The convergence order of the method (3.21) is provided in the following result.

Theorem 3.5. The method (3.21) has convergence order 2 and the coefficient of principal
local truncation error C3 has the following bound

‖C3‖ ≤ 1
6ML2. (3.22)

The stability function and absolute stability region of the method (3.21) are provided in
the following result.
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Theorem 3.6. The method (3.21) has the stability function given by

R(z) = 1 + z +
z2

2
, z ∈ C. (3.23)

For p0 = 3 the method

yi+1 = yi + 1
2hi[f(ui

10) + f(ui
01)], (3.24)

ui
10 = yi + 1

2β1hi[f(ui
20) + f(ui

11)],
ui

01 = yi + 1
2β2hi[f(ui

11) + f(ui
02)],

ui
2−jj = yi + β2−j

1 βj
2hif(yi), j = 0, 2,

is obtained.
The convergence order of the method (3.24) is provided in the following result.

Theorem 3.7. The method (3.24) has the convergence order 3 and the coefficient of the
principal local truncation error C4 has the bound

‖C4‖ ≤ 1
24ML3.

The stability function and absolute stability region of the method (3.24) are provided in
the following result.

Theorem 3.8. The method (3.24) has the stability function given by

R(z) = 1 + z +
z2

2
+

z3

6
, z ∈ C. (3.25)

For p0 = 4 the method

yi+1 = yi + 1
2hi[f(ui

10) + f(ui
01)], (3.26)

ui
k−jj = yi + 1

2βk−j
1 βj

2hi[f(ui
k−j+1j) + f(ui

k−jj+1)],

j = 0, k, k = 1, 2,

ui
3−jj = yi + β3−j

1 βj
2hif(yi), j = 0, 3,

is obtained. This method has convergence order 4 and the stability function is given by

R(z) = 1 + z +
z2

2
+

z3

6
+

z4

24
. (3.27)

This part was written following original paper [72].

3.4 Numerical Examples

The chapter ends with a numerical examples to exemplify the results presented in the previous
sections.
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Chapter 4

Preliminaries of Functional Analysis

This chapter contains some preliminaries and basic results on functional analysis which will
be used in the next chapters.

4.1 Banach Spaces and Hilbert Spaces

In this section are presented some basic definitions and properties of the normed spaces,
including results on Banach and Hilbert spaces. It is started with the Banach fixed point
theorem for Banach spaces.

Theorem 4.1. (The Banach Fixed Point Theorem) Let K be a nonempty closed subset of
a Banach space (X, ‖ · ‖X). Assume that Λ : K → K is a contraction, i.e. there exists a
constant α ∈ [0, 1) such that

‖Λu− Λv‖X ≤ α ‖u− v‖X ∀u, v ∈ K. (4.1)

Then there exists a unique u ∈ K such that Λu = u.

To introduce projection operators the following existence and uniqueness result, named
The Projection Lemma is provided.

Theorem 4.2. (The Projection Lemma) Let K be a nonempty, closed, convex subset of a
Hilbert space X. Then, for each f ∈ X there exists a unique element u ∈ K such that

‖u− f‖X = min
v∈K

‖v − f‖X . (4.2)

Using this theorem the following definition is presented.

Definition 4.3. Let K be a nonempty, closed, convex subset of a Hilbert space X. Then,
for each f ∈ X the element u which satisfies (4.2) is called the projection of f on K and is
usually denoted PKf . Moreover, the operator PK : X → K is called the projection operator
onto K.

2



Also, the following characterizations of the projection and Riesz Representation Theorem
are provided.

Proposition 4.4. Let K be a nonempty, closed, convex subset of a Hilbert space X and let
f ∈ X. Then u = PKf if and only if

u ∈ K, (u, v − u)X ≥ (f, v − u)X ∀ v ∈ K. (4.3)

Proposition 4.5. Let K be a nonempty, closed, convex subset of a Hilbert space X. Then
the projection operator PK satisfies the following inequalities:

(PKu− PKv, u− v)X ≥ 0 ∀u, v ∈ X, (4.4)
‖PKu− PKv‖X ≤ ‖u− v‖X ∀u, v ∈ X. (4.5)

Theorem 4.6. (The Riesz Representation Theorem) Let (X, (·, ·)X) be a Hilbert space and
let ` ∈ X ′. Then there exists a unique u ∈ X such that

`(v) = (u, v)X ∀ v ∈ X. (4.6)

Moreover,
‖`‖X′ = ‖u‖X . (4.7)

This introductory section ends with a particular case of the well-known Eberlein-Smulyan
Theorem.

Theorem 4.7. If X is a Hilbert space then any bounded sequence in X has a weakly convergent
subsequence.

Theorem 4.8. Let X be a Hilbert space and let {un} be a bounded sequence of elements in
X such that each weakly convergent subsequence of {un} converges weakly to the same limit
u ∈ X. Then un ⇀ u in X.

4.2 Monotone Operators

In this section are presented several results on monotone operators which will be useful in the
study of variational inequalities.

Definition 4.9. Let X be a space with inner product (·, ·)X and norm ‖·‖X and let A : X → X
be an operator. The operator A is said to be monotone if

(Au−Av, u− v)X ≥ 0 ∀u, v ∈ X.

The operator A is strictly monotone if

(Au−Av, u− v)X > 0 ∀u, v ∈ X, u 6= v,

and strongly monotone if there exists a constant m > 0 such that

(Au−Av, u− v)X ≥ m ‖u− v‖2
X ∀u, v ∈ X. (4.8)



The operator A is nonexpansive if

‖Au−Av‖X ≤ ‖u− v‖X ∀u, v ∈ X

and Lipschitz continuous if there exists M > 0 such that

‖Au−Av‖X ≤ M‖u− v‖X ∀u, v ∈ X. (4.9)

Finally, the operator A is hemicontinuous if the real valued mapping

θ 7→ (A(u + θv), w)X is continuous on R, ∀u, v, w ∈ X,

and continuous if
un → u in X =⇒ Aun → Au in X.

Proposition 4.10. Let (X, (·, ·)X) be an inner product space and let A : X → X be a
monotone hemicontinuous operator. Assume that {un} is a sequence of elements in X which
converges weakly to the element u ∈ X, i.e.

un ⇀ u in X as n →∞. (4.10)

Moreover, assume that
lim sup

n→∞
(Aun, un − u)X ≤ 0. (4.11)

Then, for all v ∈ X, the following inequality holds

lim inf
n→∞ (Aun, un − v)X ≥ (Au, u− v)X . (4.12)

Theorem 4.11. Let X be a Hilbert space and let A : X → X be a strongly monotone Lipschitz
continuous operator. Then, for each f ∈ X there exists a unique element u ∈ X such that
Au = f .

4.3 Elliptic Variational Inequalities

In this section is provided an extension of the existence and uniqueness result in Theorem
4.11. First of all, it is considered the problem of finding an element u such that

u ∈ K, (Au, v − u)X ≥ (f, v − u)X ∀ v ∈ K, (4.13)

where X is a given Hilbert space, A : X → X is an operator, K ⊂ X and f ∈ X.
Next is presented the following theorem which guarantees the existence and uniqueness of

solution of elliptic variational inequality of the first kind (4.13).

Theorem 4.12. Let X be a Hilbert space and let K ⊂ X be a nonempty, closed, convex
subset. Assume that A : K → X is a strongly monotone Lipschitz continuous operator, i.e.
it satisfies conditions (4.8) and (4.9). Then, for each f ∈ X the variational inequality (4.13)
has a unique solution.



4.4 History-dependent Variational Inequalities

In the last section of this chapter is extended the existence and uniqueness result in Theorem
4.12 to a special class of time-dependent variational inequalities. To this end it is introduced
some background of spaces of functions defined on a time interval with values in an abstract
Hilbert space. Also, it is provided a fixed point result which is useful to prove the solvability
of nonlinear equations and variational inequalities with history-dependent operators and the
Gronwall inequality.

Proposition 4.13. Let Λ : C([0, T ]; X) → C([0, T ]; X) be an operator which satisfies the
following property: there exist k ∈ [0, 1) and c ≥ 0 such that

‖Λη1(t)− Λη2(t)‖X ≤ k ‖η1(t)− η2(t)‖X + c

∫ t

0
‖η1(s)− η2(s)‖X ds

∀ η1, η2 ∈ C([0, T ]; X), t ∈ [0, T ]. (4.14)

Then, there exists a unique element η∗ ∈ C([0, T ]; X) such that Λη∗ = η∗.

Lemma 4.14. (The Gronwall Inequality) Let f, g ∈ C([0, T ]) and assume that there exists
c > 0 such that

f(t) ≤ g(t) + c

∫ t

0
f(s) ds ∀ t ∈ [0, T ]. (4.15)

Then

f(t) ≤ g(t) + c

∫ t

0
g(s) ec (t−s) ds ∀ t ∈ [0, T ]. (4.16)

Moreover, if g is nondecreasing, then

f(t) ≤ g(t) ec t ∀ t ∈ [0, T ].

In the rest of this section it is introduced the concept of history-dependent quasivariational
inequalities for which it is provided an existence and uniqueness result. As in the previous
section it is considered the problem of finding a function u ∈ C([0, T ]; X) such that, for all
t ∈ [0, T ], the inequality below holds

u(t) ∈ K, (Au(t), v − u(t))X + (Su(t), v − u(t))X

≥ (f(t), v − u(t))X ∀ v ∈ K, (4.17)

where
K is a nonempty closed convex subset of X (4.18)

A : X → X is a strongly monotone Lipschitz continuous operator, i.e.




(a) There exists m > 0 such that
(Au1 −Au2, u1 − u2)X ≥ m ‖u1 − u2‖2

X

∀u1, u2 ∈ X.

(b) There exists M > 0 such that
‖Au1 −Au2‖X ≤ M ‖u1 − u2‖X ∀u1, u2 ∈ X.

(4.19)



S : C([0, T ]; X) → C([0, T ]; X) satisfies




There exists LS > 0 such that

‖Su1(t)− Su2(t)‖X ≤ LS

∫ t

0
‖u1(s)− u2(s)‖X ds

∀u1, u2 ∈ C([0, T ];X), ∀ t ∈ [0, T ]

(4.20)

and
f ∈ C([0, T ]; X). (4.21)

Finally, it is provided the following results which guarantees the existence and uniqueness
of solution of history-dependent quasivariational inequalities (4.17).

Theorem 4.15. Let X be an Hilbert space and assume that (4.18)–(4.21) hold. Then, the
variational inequality (4.17) has a unique solution u ∈ C([0, T ]; K).

Corollary 4.16. Let X be a Hilbert space and assume that (4.19)-(4.21) hold. Then there
exists a unique function u ∈ C([0, T ];X) such that

(Au(t), v)X + (Su(t), v)X = (f(t), v)X ∀ v ∈ X, ∀ t ∈ [0, T ]. (4.22)

The material presented in this chapter is standard and can be found in many books of
functional analysis. For more information in the field we refer the reader to the books [5],
[16]. Existence, uniqueness and regularity results for nonlinear equations with monotone
operators in Hilbert spaces can be found in [14], [15]. The literature in the study of elliptic
variational inequalities is extensive see for instance the surveys [58], [64], [95] and the references
therein. Interest in variational inequalities originates in mechanical problems, as shown in [29],
where many problems in mechanics and physics are formulated in framework of variational
inequalities. More recent references in the mathematical analysis of variational inequalities
include [6], [48], [50], [68], [95].



Chapter 5

Modelling of Contact Problems

This chapter contains the preliminary material which is needed to introduce the mathematical
models analyzed in Chapters 6-8 of the manuscript.

5.1 Function Spaces in Contact Mechanics

The aim of the first section is to provide the functional spaces with their basic properties in
which the data and the unknowns belong. Thus, it is denoted by Rd the d-dimensional real
linear space, and the symbol Sd is used for the space of second order symmetric tensors on
Rd or, equivalently, the space of symmetric matrices of order d. The canonical inner products
and the corresponding norms on Rd and Sd are given by

u · v = uivi, ‖v‖ = (v · v)1/2 ∀u = (ui), v = (vi) ∈ Rd,

σ · τ = σijτij , ‖τ‖ = (τ · τ )1/2 ∀σ = (σij), τ = (τij) ∈ Sd,

respectively. Notation Id will represent the identity operator on Rd or, equivalently, the unit
matrix of order d. And, as usual, the zero elements of Rd and Sd will be denoted by 0Rd and
0Sd , respectively.

The following spaces used in the rest of this manuscript are provided.

Cm(Ω) – the space of functions whose derivatives up to and including order m are continuous
up to the boundary Γ;

C∞(Ω) – the space of infinitely differentiable functions up to the boundary Γ;

C∞
0 (Ω) – the space of infinitely differentiable functions with compact support in Ω;

Lp(Ω) – the Lebesgue space of p-integrable functions on Ω, with the usual modification if
p = ∞;

Lp(Γ) – the Lebesgue space of p-integrable functions on Γ, with the usual modification if
p = ∞;

Lp(Γ2) – the Lebesgue space of p-integrable functions on Γ2, with the usual modification if
p = ∞;
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Lp(Γ3) – the Lebesgue space of p-integrable functions on Γ3, with the usual modification if
p = ∞;

L1
loc(Ω) – the space of locally integrable functions on Ω;

Wm,p(Ω) – the Sobolev space of functions whose weak derivatives of orders m or less are
p-integrable on Ω;

Hm(Ω) ≡ Wm,2(Ω), for positive integer m.

Also, if X represents one of the above spaces the notations Xd and Xd×d
s are used for the

spaces

Xd =
{

x = (xi) : xi ∈ X, 1 ≤ i ≤ d
}
,

Xd×d
s =

{
x = (xij) : xij = xji ∈ X, 1 ≤ i, j ≤ d

}

and, in particular, are used the spaces

L2(Ω)d =
{

v = (vi) : vi ∈ L2(Ω), 1 ≤ i ≤ d
}
, (5.1)

Q = L2(Ω)d×d
s =

{
τ = (τij) : τij = τji ∈ L2(Ω), 1 ≤ i, j ≤ d

}
. (5.2)

These are Hilbert spaces with the canonical inner products

(u, v)L2(Ω)d =
∫

Ω
ui vi dx =

∫

Ω
u · v dx,

(σ, τ )Q =
∫

Ω
σij τij dx =

∫

Ω
σ · τ dx,

and the associated norms denoted by ‖ · ‖L2(Ω)d and ‖ · ‖Q, respectively.
The deformation operator ε : H1(Ω)d → Q is defined by

ε(u) = (εij(u)), εij(u) = 1
2 (ui,j + uj,i).

The quantity ε(u) is the linearized (or small) strain tensor associated with the displacement
u.

Besides the function spaces introduced above specific function spaces for the displacement
and the stress field are provided. Displacements are sought in the space

H1(Ω)d =
{

v = (vi) : vi ∈ H1(Ω), 1 ≤ i ≤ d
}

or its subspaces or subsets, depending on prescribed boundary conditions. The space H1(Ω)d

is a Hilbert space with the canonical inner product

(u, v)H1(Ω)d =
∫

Ω
(uivi + ui,jvi,j) dx,

and the corresponding norm

‖v‖H1(Ω)d =
(∫

Ω
(vi vi + vi,j vi,j) dx

)1/2
. (5.3)



For an element v ∈ H1(Ω)d its trace γ : H1(Ω)d → L2(Γ)d and its normal component and
tangential part on the boundary are defined. Thus,

vν = v · ν, vτ = v − vνν. (5.4)

In the study of contact problems, the subspace V of H1(Ω)d given by

V = {v ∈ H1(Ω)d : v = 0 a.e. on Γ1 } (5.5)

is frequently used. Here, the condition “ v = 0 a.e. on Γ1” is understood in the sense of trace,
i.e. γv = 0 a.e. on Γ1. On the space V the inner product (· , ·)V

(u, v)V = (ε(u), ε(v))Q, (5.6)

and its induced norm
‖v‖V = ‖ε(v)‖Q (5.7)

are defined. It is showed that there exists a positive constant c0, depending on Ω, Γ1, and Γ3,
such that

‖v‖L2(Γ3)d ≤ c0 ‖v‖V ∀v ∈ V. (5.8)

To define a function space for stress fields which is useful in the study of contact problems
the definition of the divergence of a regular tensor field is extended. Thus, the concept of the
weak divergence is introduced directly.

Definition 5.1. Let σ = (σij) and w = (wi) be such that σij = σji ∈ L1
loc(Ω), wi ∈ L1

loc(Ω),
for all 1 ≤ i, j ≤ d. Then w is called a weak divergence of σ if

∫

Ω
σijϕi,j dx = −

∫

Ω
wi ϕi dx ∀ϕ = (ϕi) ∈ C∞

0 (Ω)d.

Using the above definition is defined the space

Q1 = { τ ∈ Q : Div τ ∈ L2(Ω)d }, (5.9)

which is a Hilbert space endowed with the inner product

(σ, τ )Q1 = (σ, τ )Q + (Div σ,Div τ )L2(Ω)d

and the associated norm ‖ · ‖Q1 .
This section ends with the definitions of normal component and the tangential part of the

stress field σ on the boundary

σν = (σν) · ν, στ = σν − σνν (5.10)

and Green’s formula
∫

Ω
σ · ε(v) dx +

∫

Ω
Div σ · v dx =

∫

Γ
σν · v da ∀v ∈ H1(Ω)d. (5.11)



5.2 Physical Setting and Constitutive Laws

In this section the physical setting of contact process is provided. Also, some constitutive
laws are presented.

First of all, it is assumed that a deformable body occupies, in the reference configuration,
an open bounded connected set Ω ⊂ Rd with boundary Γ, composed of three sets Γ1, Γ2 and
Γ3, with the mutually disjoint relatively open sets Γ1, Γ2 and Γ3. The body is clamped on
Γ1. Surface tractions of density f2 act on Γ2 and volume forces of density f0 act in Ω. In the
reference configuration the body is in contact on Γ3 with an obstacle, the so-called foundation.

The general elastic constitutive law

σ = Fε(u) (5.12)

is considered, where F is the elasticity operator, assumed to be nonlinear. Also, F depends
on the location of the point and the short-hand notation Fε(u) for F(x, ε(u)) is used.

It is assumed that the operator F satisfies the following conditions




(a) F : Ω× Sd → Sd.
(b) There exists LF > 0 such that

‖F(x, ε1)−F(x, ε2)‖ ≤ LF‖ε1 − ε2‖
∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) There exists mF > 0 such that
(F(x, ε1)−F(x, ε2)) · (ε1 − ε2) ≥ mF ‖ε1 − ε2‖2

∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(d) The mapping x 7→ F(x, ε) is measurable on Ω,

for any ε ∈ Sd.
(e) The mapping x 7→ F(x,0Sd) belongs to Q.

(5.13)

Some particular cases for (5.12), when d = 3, are provided, e.g.,

F(ε) = 2 µ ε + λ tr(ε) I3,

where λ > 0, µ > 0 are the Lamé coefficients and tr(ε(u)) denotes the trace of the tensor
ε(u),

tr(ε(u)) = εii(u).

Also, the general viscoelastic constitutive law with long memory

σ(t) = Fε(u(t)) +
∫ t

0
R(t− s, ε(u(s))) ds, (5.14)

is considered, where the elasticity operator F and the relaxation operator R depend on the
location of the point. Also, the operator F satisfies condition (5.13) and the relaxation
operator R is such that





(a) R : Ω× [0, T ]× Sd → Sd.
(b) R(x, t, ε) = (rijkl(x, t)εkl) for all ε = (εij) ∈ Sd,

t ∈ [0, T ], a.e. x ∈ Ω.
(c) rijkl = rjikl = rklij ∈ C([0, T ]; L∞(Ω)),

1 ≤ i, j, k, l ≤ d.

(5.15)



Using (5.15) the constitutive law (5.14) can be written in the form

σ(t) = Fε(u(t)) +
∫ t

0
R(t− s)ε(u(s)) ds. (5.16)

At the end of the section the space of fourth order tensor fields Q∞ is defined by

Q∞ = { E = (eijkl) : eijkl = ejikl = eklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d }.

More information concerning the elastic and viscoelastic constitutive laws can be found
in [21, 27, 28, 34, 39, 59, 80, 89, 93, 102]. Experimental background and elements of surface
physics which justify some of the contact and frictional boundary conditions can be found in
[49, 67].

5.3 Contact Conditions

In the last section of this chapter the balance equation and the boundary conditions are
presented. It is assumed that the volume forces and surface tractions do not depend on time
and the inertia of the mechanical system is negligible. In other words, the acceleration term
is negligible in the equation of motion and, therefore, the balance equation for the stress field
is

Div σ + f0 = 0. (5.17)

Equation (5.17) is called the equation of equilibrium. It is satisfied in Ω× (0, T ) if the process
is time dependent and in Ω if it is time independent. Here Div is the divergence operator,
that is Div σ = (σij,j), σij,j = ∂σij

∂xj
. Equation (5.17) shows that the applied external force f0

is fully balanced by the internal forces that are represented by −Div σ and is derived from
the principle of momentum conservation.

It is assumed that the body is held fixed on Γ1 and, therefore,

u = 0, (5.18)

which represents the displacement boundary condition. It is satisfied in Γ1 × (0, T ) if the
process is time dependent and in Γ1 if it is time independent. Also, it is supposed that known
tractions of density f2 act on the portion Γ2 thus,

σν = f2. (5.19)

This condition is called the traction boundary condition. It is satisfied in Γ2 × (0, T ) if the
process is time dependent and in Γ2 if it is time independent.

Finally, the various boundary conditions on the contact surface Γ3 are described. These
are divided naturally into the conditions in the normal direction, called contact conditions or
contact laws, and those in the tangential direction, called also frictional conditions or friction
laws. First of all, the normal compliance contact condition is mentioned. This condition
describes a deformable foundation. It assigns a reactive normal pressure that depends on the



interpenetration of the asperities on the body’s surface and those of the foundation. A general
expression for the normal reactive pressure is

−σν = p(uν), (5.20)

where p is a nonnegative prescribed function which vanishes for negative argument. Con-
dition (5.20) shows that the pressure exerts by the foundation on the body depends on the
penetration.

The following examples of the normal compliance function p are provided:

p(r) = cνr
+, (5.21)

where cν > 0 is the surface stiffness coefficient, and r+ = max {r, 0} denotes the positive part
of r;

p(r) =
{

cνr
+ if r ≤ α,

cνα if r > α,
(5.22)

where α is a positive coefficient related to the wear and hardness of the surface. In this case
the contact condition (5.20) means that when the penetration is too large, i.e., when it exceeds
α, the obstacle offers no additional resistance to penetration.

The Signorini contact condition is mentioned. This condition represents an idealization
of the normal compliance in which the foundation is assumed to be perfectly rigid. Thus, the
complementarity form of Signorini contact condition

uν ≤ 0, σν ≤ 0, σνuν = 0 (5.23)

is mentioned.
Also, the normal compliance condition with unilateral constraint is given by

{
uν ≤ g, σν + p(uν) ≤ 0,

(uν − g)(σν + p(uν)) = 0,
(5.24)

where g > 0. This condition is satisfied in Γ3×(0, T ) if the process is time dependent and in Γ3

if it is time independent. It can be interpreted physically in the following way: the foundation
is assumed to be made of a hard material covered by a thin layer of a soft material with
thickness g; the soft material is deformable and allows penetration, which is modeled with
normal compliance; the hard material is rigid and, therefore, it does not allow penetration.
It follows from above that the foundation has an elastic-rigid behavior; the elastic behavior is
given by the layer of the soft material, and the rigid behavior is given by the hard material.

Taking into account that in various situations the reaction of the foundation at the moment
t depends on the history of the penetration and, therefore, it cannot be determinate as a
function of the current value uν(t), it is assumed that the normal stress satisfies a condition
of the form

−σν(t) =
∫ t

0
b(t− s) u+

ν (s) ds, (5.25)

in which b represents a given function, the so-called surface memory function.



In the tangential direction only frictionless condition is considered, i.e.,

στ = 0. (5.26)

The normal compliance contact condition was first introduced in [67] and since then used
in many publications, see, e.g., [49, 51, 52, 60] and references therein. The term normal
compliance was first introduced in [51, 52]. The Signorini condition was first introduced
in [90] and then used in many papers, e.g., [89] and references. Condition (5.24) was first
introduced in [45] and conditions of the form (5.25) were considered in [63] in the study of a
lumped model with contact and friction. More details and information on the friction laws
can be found in the books [39], [89], [93], [95].



Chapter 6

Analysis of a Static Contact
Problem

In this chapter is studied a frictionless contact problem for nonlinear elastic materials. The
process is static and the contact is described with normal compliance and unilateral constraint.

6.1 Problem Statement

In this section is presented the classical formulation of the problem and it is listed the as-
sumptions on the data. Thus, it is considered the following problem.
Problem P. Find a displacement field u : Ω → Rd and a stress field σ : Ω → Sd such that

σ = Fε(u) in Ω, (6.1)

Div σ + f0 = 0 in Ω, (6.2)

u = 0 on Γ1, (6.3)

σν = f2 on Γ2, (6.4)

uν ≤ g, σν + p(uν) ≤ 0

(σν + p(uν))(uν − g) = 0

}
on Γ3, (6.5)

στ = 0 on Γ3, (6.6)

where the elasticity operator F satisfies condition (5.13), the body forces and surface tractions
have the regularity

f0 ∈ L2(Ω)d, f2 ∈ L2(Γ2)d (6.7)
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and the normal compliance function p is such that




(a) p : Γ3 × R→ R+.
(b) There existsLp > 0 such that

|p(x, r1)− p(x, r2)| ≤ Lp |r1 − r2|
∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(c) (p(x, r1)− p(x, r2))(r1 − r2) ≥ 0
∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(d) The mapping x 7→ p(x, r) is measurable on Γ3,
for any r ∈ R.

(e) p(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.

(6.8)

To derive the variational formulation of this problem it is introduced the set of admissible
displacements U by

U = {v ∈ V : vν ≤ g a.e. on Γ3 } (6.9)

and using the Riesz representation Theorem (4.6) it is defined the element f ∈ V by equality

(f , v)V =
∫

Ω
f0 · v dx +

∫

Γ2

f2 · v da ∀v ∈ V (6.10)

and the operator P : V → V by equality

(Pu, v)V =
∫

Γ3

p(uν)vνda ∀v ∈ V. (6.11)

Using the material presented above it is provided the variational formulation of the problem
P,
Problem PV . Find a displacement field u ∈ U such that

(Fε(u), ε(v)− ε(u))Q + (Pu,v − u)V ≥ (f ,v − u)V ∀v ∈ U (6.12)

which represents an elliptic variational inequality of the first kind for the displacement field.

6.2 Existence and Uniqueness

In this section it is proved an existence and uniqueness result for the weak solution, using
arguments of elliptic variational inequalities.

Theorem 6.1. Assume (5.13), (6.7) and (6.8) hold. Then there exists a unique solution
u ∈ U to Problem PV .

6.3 Penalization

In this section the result (6.1) is recovered by using a penalization method. For simplicity, it is
assumed that the function p does not depend on x ∈ Γ3, i.e. it is considered the homogeneous



case. In this case assumption (6.8) is written as follows:




(a) p : R→ R+,
(b) There exists Lp > 0 such that

|p(r1)− p(r2)| ≤ Lp|r1 − r2|, ∀ r1, r2 ∈ R,
(c) (p(r1)− p(r2))(r1 − r2) ≥ 0, ∀ r1, r2 ∈ R,
(d) p(r) = 0 for all r < 0.

(6.13)

It is introduced the function q which satisfies




(a) q : [g,+∞] → R+,
(b) There exists Lq > 0 such that

|q(r1)− q(r2)| ≤ Lq|r1 − r2|, ∀ r1, r2 ≥ g,
(c) (q(r1)− q(r2))(r1 − r2) > 0, ∀ r1, r2 ≥ g, r1 6= r2,
(d) q(g) = 0

(6.14)

and for µ > 0 is defined the function pµ : R→ R by

pµ(r) =





p(r) if r ≤ g,

1
µ q(r) + p(g) if r > g.

(6.15)

The function pµ satisfies condition (6.13), i.e.




(a) pµ : R→ R+,
(b) There exists Lµ > 0 such that

|pµ(r1)− pµ(r2)| ≤ Lµ|r1 − r2| ∀ r1, r2 ∈ R,
(c) (pµ(r1)− pµ(r2))(r1 − r2) ≥ 0 ∀ r1, r2 ∈ R,
(d) pµ(r) = 0 for all r < 0.

(6.16)

With these notation, it is considered the following contact problem.

Problem Pµ. Find a displacement field uµ : Ω → Rd and a stress field σµ : Ω → Sd such that

σµ = Fε(uµ) in Ω, (6.17)

Div σµ + f0 = 0 in Ω, (6.18)

uµ = 0 on Γ1, (6.19)

σµν = f2 on Γ2, (6.20)

−σµν = pµ(uµν) on Γ3, (6.21)

σµτ = 0 on Γ3. (6.22)

The difference between problems P and Pµ arises in the fact that here the contact condition
with normal compliance and unilateral constraint (6.5) is replaced with the contact condition
with normal compliance (6.21). In this condition µ represents a penalization parameter which



may be interpreted as a deformability of the foundation, and then 1
µ is the surface stiffness

coefficient. Indeed, when µ is smaller the reaction force of the foundation to penetration
is larger and so the same force will result in a smaller penetration, which means that the
foundation is less deformable. When µ is larger the reaction force of the foundation to
penetration is smaller, and so the foundation is less stiff and more deformable.

Using arguments similar to those used in the study of Problem P the following variational
formulation of Problem Pµ is obtained.

Problem PV
µ . Find a displacement field uµ ∈ V such that

(Fε(uµ), ε(v))Q + (Pµuµ,v)V = (f , v)V ∀v ∈ V. (6.23)

Here the operator Pµ : V → V is defined by

(Pµu,v)V =
∫

Γ3

pµ(uν)vν da ∀u, v ∈ V. (6.24)

In the rest of the section the following existence, uniqueness and convergence result is
proved.

Theorem 6.2. Assume (5.13), (6.7) and (6.16). Then:
1) For each µ > 0 there exists a unique solution uµ ∈ V to Problem PV

µ .
2) There exists a unique solution u ∈ U to Problem PV .
3) The solution uµ of Problem PV

µ converges strongly to the solution u of Problem PV ,
i.e.

uµ → u in V as µ → 0. (6.25)

The proof of Theorem 6.2 is carried out in several steps and it is based on arguments similar
to those used in [95] in the study of the Signorini contact problem. Original contributions in
this proof consist to handle the nonlinear term involving the operator P . This leads to some
new mathematical difficulties.

The convergence result in Theorem 6.2 is extended to the weak solution of the correspond-
ing contact problems P and Pµ. Thus, it is showed that

‖σµ − σ‖Q1 → 0 as µ → 0. (6.26)

In addition to the mathematical interest in the convergence result (6.25), (6.26), it is
important from the mechanical point of view, since it shows that the weak solution of the
elastic contact problem with normal compliance and unilateral constraint may be approached
as closely as one wishes by the solution of the elastic contact problem with normal compliance
with a sufficiently small deformability coefficient.

6.4 Numerical Solution

In this section the numerical solution of the contact problem P is provided.



6.5 Numerical Example

The chapter ends with numerical simulations which validate the convergence result described
in the penalization method.

In writing this chapter some ideas in [95] were used. There, the Signorini contact problem
for nonlinear elastic materials was considered and its unique solvability was proved by using a
penalization method. The originality in this chapter arises in the fact that the results in [95]
are extended to the case when the Signorini condition is replaced with the normal compliance
condition with unilateral constraint. The contents of this chapter will make the object of the
forthcoming paper [8].



Chapter 7

Analysis of a Quasistatic Contact
Problem

In this chapter is studied a frictionless contact problem for nonlinear elastic materials. In
contrast with the problem in Chapter 6, the process is quasistatic and the contact is modeled
with normal compliance and memory term.

7.1 Problem Statement

In this section is presented the classical formulation of the problem and the assumptions on
the data are listed . Thus, the following problem is considered.

ProblemQ. Find a displacement field u : Ω×[0, T ] → Rd and a stress field σ : Ω×[0, T ] → Sd

such that, for each t ∈ [0, T ],

σ(t) = Fε(u(t)) in Ω, (7.1)

Div σ(t) + f0(t) = 0 in Ω, (7.2)

u(t) = 0 on Γ1, (7.3)

σ(t)ν = f2(t) on Γ2, (7.4)

σν(t) + p(uν(t)) +
∫ t

0
b(t− s)u+

ν (s)ds = 0 on Γ3, (7.5)

στ (t) = 0 on Γ3, (7.6)

where the elasticity operator F satisfies condition (5.13), the body forces and surface tractions
have the regularity

f0 ∈ C([0, T ]; L2(Ω)d), f2 ∈ C([0, T ]; L2(Γ2)d), (7.7)

the normal compliance function p verifies (6.8) and the surface memory function satisfies

b ∈ C([0, T ]; L∞(Γ3)). (7.8)
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The novelty consists in condition (7.5) which shows that the contact follows a normal
compliance condition with memory term. At the moment t, the reaction of the foundation
depends both on the current value of the penetration (represented by the term p(uν(t))) as
well as on the history of the penetration (represented by the integral term).

As in Chapter 6 it is provided the variational formulation of the problem Q,

Problem QV . Find a displacement field u : [0, T ] → V such that, for all t ∈ [0, T ], the
equality below holds

u(t) ∈ V, (Fε(u(t)), ε(v))Q + (p(uν(t)), vν)L2(Γ3)

+
(∫ t

0
b(t− s)u+

ν (s) ds, vν

)
L2(Γ3)

= (f0(t), v)L2(Ω)d + (f2(t),v)L2(Γ2)d ∀v ∈ V (7.9)

which represents a nonlinear variational equation for the displacement field involving a Volterra
type integral term.

7.2 Existence and Uniqueness

In this section the following existence and uniqueness result is presented.

Theorem 7.1. Assume that (5.13), (6.8), (7.7) and (7.8) hold. Then, Problem QV has a
unique solution which satisfies u ∈ C([0, T ];V ).

Theorem 7.1 provides the unique weak solvability of Problem Q. Moreover, the regularity
of the weak solution is u ∈ C([0, T ];V ), σ ∈ C([0, T ]; Q1).

7.3 A Continuous Dependence Result

In this section the dependence of the solution with respect to the data is studied and a
convergence result is proved. To this end, for each ρ > 0, pρ, bρ, f0ρ and f2ρ are considered
perturbations of p, b, f0 and f2 which satisfy conditions (6.8), (7.8), (7.7), and the following
variational problem is considered.

Problem QV
ρ . Find a displacement field uρ : [0, T ] → V such that, for all t ∈ [0, T ], the

equality below holds:

uρ(t) ∈ V, (Fε(uρ(t)), ε(v))Q + (pρ(uρν(t)), vν)L2(Γ3)

+
(∫ t

0
bρ(t− s)u+

ρν(s) ds, vν

)
L2(Γ3)

= (f0ρ(t), v)L2(Ω)d + (f2ρ(t), v)L2(Γ2)d ∀v ∈ V, (7.10)

where uρν represents the normal component of the function uρ.



Using the following assumptions on the data

bρ → b in C([0, T ]; L∞(Γ3)) as ρ → 0, (7.11)
f0ρ → f0 in C([0, T ]; L2(Ω)d) as ρ → 0, (7.12)

f2ρ → f2 in C([0, T ]; L2(Γ2)d) as ρ → 0. (7.13)




There exists G : R+ → R+ and β ∈ R+ such that

(a) |pρ(x, r)− p(x, r)| ≤ G(ρ)(|r|+ β)
∀ r ∈ R, a.e. x ∈ Γ3, for each ρ > 0,

(b) lim
ρ→0

G(ρ) = 0.

(7.14)

the following convergence result is proved.

Theorem 7.2. Under assumptions (7.11)–(7.14) the solution uρ of Problem QV
ρ converges to

the solution u of Problem QV , i.e.

uρ → u in C([0, T ]; V ) as ρ → 0. (7.15)

The convergence result in Theorem 7.2 is extended to the corresponding stress function, i.e.

σρ → σ in C([0, T ];Q1) as ρ → 0. (7.16)

In addition to the mathematical interest in the convergence result (7.15), (7.16), it is of
importance from mechanical point of view, since it states that the weak solution of problem
(7.1)–(7.6) depends continuously on the normal compliance function, the surface memory
function and the densities of body forces and surface tractions.

7.4 Numerical Examples

The chapter ends with numerical simulations, for one-dimensional and bi-dimensional exam-
ples, which validate the convergence result. The results of this chapter are original and will
be included in [74]. The numerical results were published in [11].



Chapter 8

Analysis of a Viscoelastic Contact
Problem

In this chapter a frictionless contact problem for nonlinear viscoelastic materials is studied.
In contrast with the problems in Chapter 6 and Chapter 7, the process is quasistatic, the
material behavior is described with a viscoelastic constitutive law with long memory and the
contact is modeled with normal compliance, memory term and unilateral constraint.

8.1 Problem Statement

The chapter begins with the classical formulation of the problem and the assumptions on the
data. Thus, the following problem is considered.
Problem M. Find a displacement field u : Ω× [0, T ] → Rd and a stress field σ : Ω× [0, T ] →
Sd such that, for each t ∈ [0, T ],

σ(t) = Fε(u(t)) +
∫ t

0
R(t− s)ε(u(s)) ds in Ω, (8.1)

Div σ(t) + f0(t) = 0 in Ω, (8.2)

u(t) = 0 on Γ1, (8.3)

σ(t)ν = f2(t) on Γ2, (8.4)

uν(t) ≤ g,

σν(t) + p(uν(t)) +
∫ t

0
b(t− s)u+

ν (s)ds ≤ 0,

(uν(t)− g)
(
σν(t) + p(uν(t))

+
∫ t

0
b(t− s)u+

ν (s)ds
)

= 0





on Γ3, (8.5)

στ (t) = 0 on Γ3, (8.6)

where the elasticity operator F verifies (5.13), the relaxation operator R satisfies (5.15), g > 0
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is a given bound for the normal displacement, the surface memory function b has the regularity
(7.8), the normal compliance function p verifies





(a) p : R→ R+,
(b) There exists Lp > 0 such that

|p(r1)− p(r2)| ≤ Lp|r1 − r2| ∀ r1, r2 ∈ R,
(c) (p(r1)− p(r2))(r1 − r2) ≥ 0 ∀ r1, r2 ∈ R,
(d) p(r) = 0 for all r < 0.

(8.7)

and the body forces and the traction forces have the regularity (7.7).
Using similar arguments as in Chapter 6 and Chapter 7 the following variational formu-

lation of Problem M is derived.

Problem MV . Find a displacement field u : [0, T ] → V such that the inequality below holds,
for all t ∈ [0, T ]:

u(t) ∈ U, (Fε(u(t)), ε(v)− ε(u(t)))Q

+
(∫ t

0
R(t− s)ε(u(s)) ds, ε(v)− ε(u(t))

)
Q

+(p(uν(t)), vν − uν(t))L2(Γ3)

+
(∫ t

0
b(t− s)u+

ν (s) ds, vν − uν(t)
)

L2(Γ3)

≥ (f0(t),v − u(t))L2(Ω)d

+(f2(t), v − u(t))L2(Γ2)d ∀v ∈ U, (8.8)

which represents an evolutionary variational inequality for the displacement field which in-
volves two Volterra integral terms.

8.2 Existence and Uniqueness

In the study of the problem MV the following existence and uniqueness result is presented.

Theorem 8.1. Assume that (5.13), (5.15), (7.7), (7.8) and (8.7) hold. Then, Problem MV

has a unique solution which satisfies u ∈ C([0, T ]; V ).

Theorem 8.1 provides the unique weak solvability of ProblemM. Moreover, the regularity
of the weak solution is u ∈ C([0, T ];V ), σ ∈ C([0, T ]; Q1).

8.3 A First Convergence Result

In this section the dependence of the solution of Problem MV with respect to perturbations
of the data is studied. To this end, the following variational problem is considered.



Problem MV
ρ . Find a displacement field uρ : [0, T ] → V such that, for all t ∈ [0, T ], the

inequality below holds :

uρ(t) ∈ U, (Fε(uρ(t)), ε(v)− ε(uρ(t)))Q

+
( ∫ t

0
Rρ(t− s)ε(uρ(s)) ds, ε(v)− ε(uρ(t))

)
Q

+(pρ(uρν(t)), vν − uρν(t))L2(Γ3)

+
(∫ t

0
bρ(t− s)u+

ρν(s) ds, vν − uρν(t)
)

L2(Γ3)

≥ (f0ρ(t), v − uρ(t))L2(Ω)d

+(f2ρ(t),v − uρ(t))L2(Γ2)d ∀v ∈ U, (8.9)

where, for each ρ > 0, Rρ, pρ, bρ, f0ρ and f2ρ are perturbations of R, p, b, f0 and f2 which
satisfy conditions (5.15), (8.7), (7.8) and (7.7), respectively.

Using the following assumptions:

Rρ →R in C([0, T ];Q∞) as ρ → 0, (8.10)
bρ → b in C([0, T ]; L∞(Γ3)) as ρ → 0, (8.11)
f0ρ → f0 in C([0, T ]; L2(Ω)d) as ρ → 0, (8.12)

f2ρ → f2 in C([0, T ]; L2(Γ2)d) as ρ → 0, (8.13)

and the functions pρ and p verify (7.14), the following convergence result is provided.

Theorem 8.2. Under assumptions (7.14), (8.10)–(8.13), the solution uρ of Problem MV
ρ

converges to the solution u of Problem MV , i.e.

uρ → u in C([0, T ]; V ) as ρ → 0. (8.14)

The convergence result in Theorem 8.2 is extended to the corresponding stress functions,
i.e.

σρ → σ in C([0, T ]; Q1) as ρ → 0. (8.15)

In addition to the mathematical interest in the convergence result (8.14), (8.15), it is of
importance from mechanical point of view, since it states that the weak solution of problem
(8.1)–(8.6) depends continuously on the relaxation operator, the normal compliance function,
the surface memory function and the densities of body forces and surface tractions.

8.4 A Second Convergence Result

A convergence result in the study of Problem M, based on the penalization of the unilateral
constraint is provided in this section. To this end, the following contact problem is considered.



Problem Mµ. Find a displacement field uµ : Ω × [0, T ] → Rd and a stress field σµ :
Ω× [0, T ] → Sd such that, for all t ∈ [0, T ],

σµ(t) = Fε(uµ(t)) +
∫ t

0
R(t− s)ε(uµ(s)) ds in Ω, (8.16)

Divσµ(t) + f0(t) = 0 in Ω, (8.17)

uµ(t) = 0 on Γ1, (8.18)

σµ(t)ν = f2(t) on Γ2, (8.19)

−σµν(t) = pµ(uµν(t)) +
∫ t

0
b(t− s) u+

µν(s) ds on Γ3, (8.20)

σµτ (t) = 0 on Γ3, (8.21)

where pµ : R→ R defined by (6.15) satisfies condition (6.16).
The difference between problems M and Mµ arises in the fact that here the contact

condition with normal compliance, memory term and unilateral constraint (8.5) is replaced
with the contact condition with normal compliance and memory term (8.20). In this condition
µ represents a penalization parameter, as discussed in Chapter 6.

Using similar arguments to those used in the study of ProblemM the following variational
formulation of Problem Mµ is obtained.

Problem MV
µ . Find a displacement field uµ : [0, T ] → V such that the equality below holds,

for all t ∈ [0, T ]:

(Fε(uµ(t)), ε(v))Q +
(∫ t

0
R(t− s)ε(uµ(s)) ds, ε(v)

)
Q

+(pµ(uµν(t)), vν)L2(Γ3) +
(∫ t

0
b(t− s)u+

µν(s) ds, vν

)
L2(Γ3)

= (f0(t), v)L2(Ω)d + (f2(t),v)L2(Γ2)d ∀v ∈ V. (8.22)

In the rest of the section the following existence, uniqueness and convergence result is
proved.

Theorem 8.3. Assume that (5.13), (5.15), (7.8), (7.7), (8.7) and (6.14) hold. Then:
1) For each µ > 0 Problem MV

µ has a unique solution which satisfies uµ ∈ C([0, T ];V ).
2) The solution uµ of the Problem MV

µ converges to the solution u of the Problem MV ,
that is

‖uµ(t)− u(t)‖V → 0 (8.23)

as µ → 0, for all t ∈ [0, T ].

The convergence result in Theorem 8.3 is extended to the weak solution of the correspond-
ing contact problems M and Mµ. Thus, it is showed that



‖σµ(t)− σ(t)‖Q1 → 0 as µ → 0. (8.24)

In addition to the mathematical interest in the convergence result (8.23), (8.24), it is
important from the mechanical point of view, since it shows that the weak solution of the
viscoelastic contact problem with normal compliance memory term and unilateral constraint
may be approached as closely as one wishes by the solution of the viscoelastic contact problem
with normal compliance and memory term, with a sufficiently small deformability coefficient.

8.5 Numerical Example

The chapter ends with numerical simulations which validate the convergence results obtained
in Theorem 8.2 and Theorem 8.3.

The material presented in the sections of this chapter is original and has made the object
of our paper [97]. Other references on quasistatic contact problems involving viscoelastic
materials with long memory include [85, 86, 87].
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with normal compliance and memory term, Machine Dynamics Research (accepted for
publication).

[12] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura
Academiei, Bucuresti, 1976.

27



[13] F. Brauer, H. Nohel, The Qualitative Theory of Ordinary Differential Equations, Dover
Publications, New York, 1989.
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[23] M. Crouzeix, A. L. Mignot, Analyse numérique des equations différentielles, Masson,
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