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Introduction and a description

of the contents

In linear optimization, the important steps were made by the simplex method, published

by Dantzig in 1947, and the duality theorem, given by Gale, Kuhn and Tucker in 1951

(see [50]). Then, Fenchel [49], Brøndsted [29], Moreau [66, 67] and Rockafellar [72, 73]

investigated in their works the theory of convex functions, conjugate functions and duality

in convex optimization. The convex analysis in �nite-dimensional spaces was studied by

Borwein and Lewis [9], Hiriart-Urruty and Lemaréchal [53, 54, 55] and Rockafellar [71],

while, the in�nite-dimensional case was studied by Ekeland and Temam [46], Rockafellar

[70] and Z¼alinescu [80].

To solve an optimization problem one can attach to it a dual problem. The most used

approaches in the literature are Fenchel and Lagrange duality. For the primal and dual

problems weak duality holds, which means that the optimal objective value of the dual is

less than or equal to the optimal objective value of the primal problem. In duality theory,

�nding regularity conditions to assure strong duality represents an important problem.

The strong duality is the case when the optimal objective values of the two problems are

equal and the dual has an optimal solution.

In this work one tried to extend and generalize the existing results from the literature

giving new regularity conditions by using epigraphs and "-subdi¤erentials.

In the �rst chapter one presented some preliminary notions and results which are

well-known from the many books and monographies.

In the second chapter one presented di¤erent regularity conditions that equivalently

characterize various "-duality gap statements (with " � 0) for constrained optimization
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problems and their Lagrange, Fenchel and Fenchel-Lagrange duals in separated locally

convex spaces, respectively. Between a primal problem (P ) and its dual problem (D) one

always has weak duality, i.e. v(P ) � v(D). When v(P ) = v(D) one says that there is

zero duality gap between (P ) and (D) and if (D) has moreover an optimal solution, the

situation is called strong duality. If v(P ) � v(D) � ", with " � 0, one has "-duality gap

for (P ) and (D). If one of these situations holds for (Px�) and (Dx�) for all x� 2 X�, it

will be called stable. These regularity conditions are formulated by using epigraphs and

"-subdi¤erentials. When " = 0 one rediscovers recent results on stable strong and total

duality and zero duality gap from the literature.

Motivated by recent results on stable strong and total duality for constrained convex

optimization problems in [19, 18, 48, 47, 61] and the ones on zero duality gap in [59, 60]

one introduces in this chapter several regularity conditions which characterize "-duality

gap statements (with " � 0) for a constrained optimization problem and its Lagrange,

Fenchel and Fenchel-Lagrange dual problems, respectively. One extends many of the re-

sults in the mentioned papers, which are recovered as special cases when " = 0, delivering

thus generalizations of the classical Farkas-Minkowski and basic constraint quali�cations.

Moreover some statements in [19, 18, 12, 59, 60], which arise from our results in the special

case " = 0, are extended by removing convexity and topological hypotheses, while various

assertions from [59, 60] are improved by working in locally convex spaces instead of Ba-

nach spaces and removing the continuity and nonempty domain interior assumptions of

the involved functions. Also, in this chapter one presents results concerning "-optimality

conditions and "-Farkas-type. The author�s contributions are presented in the following

theorems 2.1.4, 2.1.10, 2.1.12, 2.1.15, 2.1.16, 2.1.19, 2.1.21, 2.1.22, 2.1.27, 2.1.29, 2.1.31,

2.1.32, 2.1.36, 2.1.40, 2.1.42, 2.1.43, 2.1.49, 2.1.52, 2.1.54, 2.2.1, 2.2.4, 2.2.8, 2.2.9, 2.2.10,

2.2.12, 2.2.14, 2.2.15, 2.2.19, 2.2.22, 2.2.23, 2.2.27, 2.2.29, 2.2.30, 2.2.34, 2.2.38, 2.2.41;

corollaries: 2.1.6, 2.1.8, 2.1.11, 2.1.13, 2.1.18, 2.1.20, 2.1.25, 2.1.28, 2.1.30, 2.1.34, 2.1.37,

2.1.41, 2.1.45, 2.1.46, 2.1.47, 2.1.50, 2.1.51, 2.1.53, 2.2.7, 2.2.37; remarks: 2.1.5, 2.1.9,

2.1.14, 2.1.17, 2.1.23, 2.1.24, 2.1.33, 2.1.38, 2.1.44, 2.2.2, 2.2.5, 2.2.6, 2.2.11, 2.2.13, 2.2.16,

2.2.17, 2.2.20, 2.2.21, 2.2.24, 2.2.25, 2.2.28, 2.2.31, 2.2.32, 2.2.35, 2.2.36, 2.2.39, 2.2.40,

2.2.42 and Lemma 2.1.3. Some of these results can be found in [7].

The third chapter is devoted to present di¤erent regularity conditions that equivalently
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characterize "-duality gap statements for optimization problems consisting of the sum of

a function and the precomposition of cone-increasing function with a vector function.

Farkas-type results for inequality systems involving convex functions using approaches

based on conjugate duality were given in [26, 27]. Then, these results were extended at

convex problems involving composed convex functions in [22]. The regularity conditions

given in this part are formulated by using epigraphs and "-subdi¤erentials. When " = 0 one

rediscovers recent results on stable strong and total duality and zero duality gap from the

literature. Also, there are given "-optimality conditions and "-Farkas-type results using

the results presented along of the chapter. In order to characterize the solutions of an

optimization problem involving composed convex functions, it is important to provide a

formula with "-subdi¤erentials. If the reader is interested in more such results he/she can

consult papers like [11, 22, 24, 33, 34, 35, 64]. The author�s contributions are presented

in the following theorems: 3.1.2, 3.1.8, 3.1.15, 3.1.19, 3.1.24, 3.1.25, 3.1.27, 3.1.29, 3.2.1,

3.2.2, 3.2.3, 3.2.4, 3.2.5, 3.2.6, 3.3.1, 3.3.6, 3.3.8, 3.3.13, 3.4.1, 3.4.2, 3.4.5, 3.4.6, 3.4.8,

3.4.9, 3.4.10, 3.4.11; corollaries: 3.1.4, 3.1.6, 3.1.10, 3.1.12, 3.1.17, 3.1.18, 3.1.20, 3.1.21,

3.3.2, 3.3.9; remarks: 3.1.3, 3.1.7, 3.1.9, 3.1.13, 3.1.14, 3.1.16, 3.1.22, 3.1.23, 3.1.26, 3.1.28,

3.3.3, 3.3.4, 3.3.5, 3.3.7, 3.3.10, 3.3.11, 3.3.12, 3.3.14, 3.3.15, 3.4.3, 3.4.4, 3.4.7. Some of

these results can be found in [6].

In the fourth chapter one dealt with a modern research area, namely, entropy opti-

mization, which has various backgrounds: mathematicians, physycists, engineers, etc. One

gave some generalizations for the existing problems concerning usual entropy optimization

and one catalogued them into �ve cases. For each problem from every case one attached

the Lagrange and Fenchel-Lagrange duals, then one gave regularity conditions that as-

sure the strong duality. Also, one presented results concerning optimality conditions for

each case. The author�s contributions are presented in the following theorems: 4.2.1, 4.2.3,

4.2.4, 4.2.5, 4.2.7, 4.2.8, 4.2.9, 4.2.11, 4.2.12, 4.2.13, 4.2.15, 4.2.16, 4.2.17, 4.2.19, 4.2.20;

corollaries: 4.2.2, 4.2.6, 4.2.10, 4.2.14, 4.2.18 and Proposition 4.1.1.These results can be

found in [8].

Motivated by [1, 2, 3], in the �fth chapter one attached to a given optimization prob-

lem, an �-approximated problem and one obtained results concerning relations between

the solutions of those problems. The mathematical programming problems were studied
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by many authors (see [63, 71]). The solutions of optimization problems had been given

by means of the Lagrange multipliers and the saddle points of the Lagrange function

associated to the optimization problem. In order to give weaker conditions for solving the

optimization problems, various classes of generalized convex functions have been intro-

duced. An example is given by the invex functions, introduced and used �rst by Hanson

[52] and Craven [36]. Later, Antczak gave a new method for solving a nonlinear math-

ematical programming problem and was called �-approximated method. It consists in a

construction of an �-approximated problem by modifying both the objective and constraint

functions of the primary problem at an arbitrary, but �xed, point x. Also, one obtained

results concerning relations between the solutions of the mentioned problems and the

saddle points of the Lagrangian functions attached to them. The author�s contributions

are presented in the following theorems: 5.2.1, 5.2.6, 5.2.7, 5.2.8, 5.3.1, 5.3.2, 5.3.3, 5.3.4;

examples: 5.2.2, 5.2.3, 5.2.5 and Remark 5.2.4. Most of these results can be found in [5].
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Chapter 1

Preliminary notions and results

In this chapter one presents some basic notions and results in convex analysis, concerning

to sets and functions, which one needs and uses in this work. These notions can be found

in many books and monographes such as [9, 12, 80].
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Chapter 2

Characterizations of "-duality gap

statements for constrained

optimization problems

For this part one considers two separated locally convex vector spaces X and Y and their

continuous dual spaces X� and Y �, endowed with the weak� topologies w(X�; X) and

w(Y �; Y ) respectively. Let the nonempty closed convex cone C � Y and its dual cone C�.

Let U be a nonempty subset of X and h : X ! Y � a proper vector function. Denote

A = fx 2 U : h(x) 2 �Cg and assume this set non-empty. For a proper function

f : X ! R ful�lling A \ dom(f) 6= ; consider the optimization problem

inf
x2A

f(x): (P )

One denotes by v(P ) the optimal objective value of the optimization problem (P ). In

the following one will write min(max) instead of inf(sup) when the corresponding in�mum

(supremum) is attained.

For x� 2 X� one also considers the linearly perturbed optimization problem

inf
x2A

[f(x) + hx�; xi] : (Px�)

The Fenchel dual problem for the problem (Px�) is

sup
�2X�

f�f �(�)� �U(�x� � �)g : (DF
x�)

10



To (Px�) one can attach the Lagrange dual problem

sup
�2C�

inf
x2U
[f(x) + hx�; xi+ (�h)(x)]; (DL

x�)

which can be equivalently written as

sup
�2C�

�(f + (�h))�U(�x�): (DL
x�)

For a � 2 C�, the inner minimization problem that appears in the �rst formulation of

(DL
x�) can be rewritten as

inf
x2X

[f(x) + hx�; xi+ �U(x) + (�h)(x)]:

To this problem one can attach di¤erent Fenchel type dual problems, obtaining via (DL
x�)

some Fenchel-Lagrange type dual problems to (Px�). The name Fenchel-Lagrange is given

to the folowing dual problems because they are thus �combinations� of the classical

Fenchel and Lagrange dual problems. Keeping together �U and (�h) one gets the fol-

lowing Fenchel-Lagrange type dual problem to (Px�)

sup
�2C�;
�2X�

f�f �(�)� (�h)�U(�x� � �)g : (Dx�)

When f and �U are put together, one can obtain

sup
�2C�;
�2X�

f�f �U(�)� (�h)�(�x� � �)g : ( eDx�)

When f , (�h) and �U are separated, the following Fenchel-Lagrange-type dual problem

to (Px�) is obtained

sup
�2C�;
�;�2X�

f�f �(�)� (�h)�(�)� �U(�x� � �� �)g (Dx�)

When x� = 0 these duals to (P ) are denoted simply by (DL); (DF )(D); ( eD) and (D),
respectively.

2.1 "�duality gap statements involving epigraphs for

Lagrange, Fenchel and Fenchel-Lagrange duality

Motivated by the characterizations of the stable strong duality from [18, 19] one gives in

this section several equivalent representations of di¤erent instances of "-duality gap for
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(P ) and its duals by means of epigraphs. Inspired by [59, 60] one also gives regularity

conditions which characterize "-duality gap statements for (P ) and its duals by means of

functions h� and h�U de�ned as h
�; h�U : X

� ! R by h�(x�) = inf
�2C�

(�h)�(x�) and h�U(x
�) =

inf
�2C�

(�h)�U(x
�), for x� 2 X�. From the de�nitions it follows that [�2C�epi(�h)� � epi(h�),

respectively [�2C�epi(�h)�U � epi(h�U). Moreover, in this section, one gives some "-Farkas-

type results obtained from the regularity conditions presented.

2.1.1 Lagrange duality

One gives the results concerning Lagrange duality.

Theorem 2.1.4 (H.-V. Boncea, S.-M. Grad, [7]) Let f : X ! R be proper and

ful�lling A \ dom(f) 6= ; and " � 0. The condition

epi (f + �A)
� �

[
�2C�

epi(f + (�h))�U � (0; ") (RCEL)

holds if and only if for all x� 2 X� there exists � 2 C� such that

v(Px�) � �
�
f + (�h)

��
U
(�x�) + ": (2.1.1)

Remark 2.1.5 The quantity in the right-hand side of (2:1:1) is not necessarily

v(DL
x�) + ", as the suprema in (D

L
x�) are not shown to be attained at �. Though, (2:1:1)

implies v(Px�) � v(DL
x�) + ".

If we take " = 0 in Theorem 2.1.4 we obtain the next result.

Corollary 2.1.6 Let f : X ! R be proper and ful�lling A \ dom(f) 6= ;. The

condition

epi (f + �A)
� =

[
�2C�

epi(f + (�h))�U

holds if and only if for all x� 2 X� there exists � 2 C� such that

v(Px�) = �
�
f + (�h)

��
U
(�x�):

If we take f(x) = 0 for all x 2 X, (RCEL) becomes

epi(�A) �
[
�2C�

epi(�h)�U � (0; ") (RCEL0 )
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Corollary 2.1.8 Let f : X ! R be proper and ful�lling A \ dom(f) 6= ; and " � 0.

The condition (RCEL0 ) holds if and only if for each x
� 2 X� there exits � 2 C� such that

inf
x2A

hx�; xi � �(�h)�U(�x�) + ": (2.1.2)

Remark 2.1.9 If we take " = 0 in Corollary 2.1.8 we get equality in both the condition

(RCEL0 ) and the relation (2:1:2).

Theorem 2.1.10 (H.-V. Boncea, S.-M. Grad, [7]) Let f : X ! R be proper and

ful�lling A \ dom(f) 6= ; and " � 0. The condition

epi(f + �A)
� � epi inf

�2C�
(f + �h)�U � (0; ") (RCIL)

holds if and only if there is stable "�duality gap for the problems (P ) and (DL), i.e. one

has "-duality gap for the pair of problems (Px�) and (DL
x�) for all x

� 2 X�.

If we take " = 0 in Theorem 2.1.10 we get the following result.

Corollary 2.1.11 Let f : X ! R be proper and ful�lling A \ dom(f) 6= ;. The

condition

epi(f + �A)
� = epi inf

�2C�
(f + �h)�U

holds if and only if there is stable zero duality gap for the problems (P ) and (DL), i.e.

one has zero duality gap for the pair of problems (Px�) and (DL
x�) for all x

� 2 X�.

We consider the folowing regularity condition for f and A:

epi(f + �A)
� � epi(f ��h�U)� (0; "): (RCI)

Theorem 2.1.12 Let " � 0. Let the condition 0 2 sqri(dom(f)� dom(h)\U) holds.

The set A and the function f satisfy the condition (RCI) if and only if there is stable

"�duality gap for the problems (P ) and (DL), i.e. one has "�duality gap for the pair of

problems (Px�) and (DL
x�), for all x

� 2 X�.

If we take " = 0 in Theorem 2.1.12 we obtain the following result.

Corollary 2.1.13 Let the condition 0 2 sqri(dom(f) � dom(h) \ U) holds. The set

A and the function f satisfy the condition

epi(f + �A)
� = epi(f ��h�U)

if and only if there is stable zero duality gap for the problems (P ) and (DL), i.e. one has

zero duality gap for the pair of problems (Px�) and (DL
x�), for all x

� 2 X�.
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Using (RCEL) one can obtain the following "-Farkas-type result.

Theorem 2.1.15 (i) Suppose that (RCEL) holds. If f(x) + hx�; xi � "=2 for all

x 2 X then there exists � 2 C� such that
�
f + (�h)

��
U
(�x�) � "=2,

(ii) If there exists � 2 C� such that
�
f + (�h)

��
U
(�x�) � �"=2, then f(x)+ hx�; xi �

"=2 for all x 2 X.

2.1.2 Fenchel duality

The results concerning Fenchel duality follow like in the case of Lagrange duality.

Theorem 2.1.16 Let f : X ! R be proper and ful�lling A \ dom(f) 6= ; and " � 0.

The condition

epi (f + �A)
� � epi(f �) + epi(�U)� (0; ") (RCEF )

holds if and only if for all x� 2 X� there exists � 2 X� such that

v(Px�) � �f �(�)� �U(�x� � �) + ": (2.1.3)

We consider the folowing regularity condition for f and A:

epi(f + �A)
� � epi(f ���U)� (0; "): (RCIF )

Theorem 2.1.19 Let f : X ! R be proper and ful�lling A \ dom(f) 6= ; and

" � 0. The condition (RCIF ) holds if and only if and there is stable "�duality gap for

the problems (P ) and (DF ), i.e. one has "�duality gap for the pair of problems (Px�) and

(DF
x�) for all x

� 2 X�.

From (RCEF ) we can obtain the following "-Farkas-type result.

Theorem 2.1.21 (i) Suppose that (RCEF ) holds. If f(x) + hx�; xi � "=2 for all

x 2 X then there exists � 2 X� such that f �(�) + �U(�x� � �) � "=2,

(ii) If there exists � 2 X� such that f �(�)+�U(�x���) � �"=2, then f(x)+hx�; xi �

"=2 for all x 2 X.

2.1.3 Fenchel-Lagrange duality

In this subsection one will give regularity conditions using epigraphs for all the three types

of Fenchel-Lagrange duals.
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Fenchel-Lagrange dual of type I (Dx�)

One starts with the results for the �rst type of Fenchel-Lagrange duality.

Theorem 2.1.22 (H.-V. Boncea, S.-M. Grad, [7]) Let f : X ! R be proper and

ful�lling A \ dom(f) 6= ; and " � 0. The condition

epi (f + �A)
� �

[
�2C�

(epi(f �) + epi(�h)�U)� (0; ") (RCE)

holds if and only if for all x� 2 X� there exist � 2 C� and � 2 X� such that

v(Px�) � �f �(�)� (�h)�U(�x� � �) + ": (2.1.4)

Remark 2.1.24 If we take f(x) = 0, the condition (RCE) becomes (RCEL0 ) and we

rediscover Corollary 2.1.8.

Theorem 2.1.27 (H.-V. Boncea, S.-M. Grad, [7]) Let f : X ! R be proper and

ful�lling A \ dom(f) 6= ; and " � 0. The condition

epi(f + �A)
� � epi(f ��h�U)� (0; ") (RCI)

holds if and only if there is stable "�duality gap for the problems (P ) and (D), i.e. one

has "�duality gap for the pair of problems (Px�) and (Dx�) for all x� 2 X�.

Theorem 2.1.29 (H.-V. Boncea, S.-M. Grad, [7]) Let f : X ! R be proper and

ful�lling A \ dom(f) 6= ; and " � 0. The condition

epi (f + �A)
� � epi(f �) + epi(h�U)� (0; ") (RCP )

holds if and only if for all x� 2 X� there exists � 2 X� such that

v(Px�) � sup
�2C�

�
�f �(�)� (�h)�U(�x� � �)

	
+ ":

From (RCE) one can obtain the following "-Farkas-type result.

Theorem 2.1.31 (i) Suppose that (RCE) holds. If f(x)+hx�; xi � "=2 for all x 2 X

then there exist � 2 C� and � 2 X� such that f �(�) + (�h)�U(�x� � �) � "=2,

(ii) If there exist � 2 C� and � 2 X� such that f �(�)+ (�h)�U(�x���) � �"=2, then

f(x) + hx�; xi � "=2 for all x 2 X.

15



Fenchel-Lagrange dual of type II ( eDx�)

Now are given the results concerning the second type of Fenchel-Lagrange duality.

Theorem 2.1.32 Let f : X ! R be proper and ful�lling A \ dom(f) 6= ; and " � 0.

The condition

epi (f + �A)
� �

[
�2C�

(epi(f �U) + epi(�h)
�)� (0; ") (]RCE)

holds if and only if for all x� 2 X� there exist � 2 C� and � 2 X� such that

v(Px�) � �f �U(�)� (�h)�(�x� � �) + ": (2.1.5)

Theorem 2.1.36 Let f : X ! R be proper and ful�lling A \ dom(f) 6= ; and " � 0.

The condition

epi(f + �A)
� � epi(f �U�h�)� (0; ") (]RCI)

holds if and only if there is stable "�duality gap for the problems (P ) and ( eD), i.e. one
has "�duality gap for the pair of problems (Px�) and ( eDx�) for all x� 2 X�.

Theorem 2.1.40 Let f : X ! R be proper and ful�lling A \ dom(f) 6= ; and " � 0.

The condition

epi (f + �A)
� � epi(f �U) + epi(h�)� (0; ") (]RCP )

holds if and only if for all x� 2 X� there exists � 2 X� such that

v(Px�) � sup
�2C�

�
�f �U(�)� (�h)�(�x� � �)

	
+ ":

From (]RCE) one can obtain the following "-Farkas-type result.

Theorem 2.1.42 (i) Suppose that (]RCE) holds. If f(x)+hx�; xi � "=2 for all x 2 X

then there exist � 2 C� and � 2 X� such that f �U(�) + (�h)
�(�x� � �) � "=2,

(ii) If there exist � 2 C� and � 2 X� such that f �U(�)+ (�h)
�(�x���) � �"=2, then

f(x) + hx�; xi � "=2 for all x 2 X.

Fenchel-Lagrange dual of type III (Dx�)

The results concerning the third type of Fenchel-Lagrange duality follow.

Theorem 2.1.43 (H.-V. Boncea, S.-M. Grad, [7]) Let f : X ! R be proper and

ful�lling A \ dom(f) 6= ; and " � 0. Then the condition

epi (f + �A)
� �

[
�2C�

(epi(f �) + epi(�h)� + epi(�U))� (0; ") (RCE)
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holds if and only if for all x� 2 X� there exist � 2 C� and �, � 2 X� such that

v(Px�) � �f �(�)� (�h)�(�)� �U(�x� � � � �) + ": (2.1.6)

Theorem 2.1.49 (H.-V. Boncea, S.-M. Grad, [7]) Let f : X ! R be proper and

ful�lling A \ dom(f) 6= ; and " � 0. The condition

epi(f + �A)
� � epi(f ��h���U)� (0; ") (RCI)

holds if and only if and there is stable "�duality gap for the problems (P ) and (D), i.e.

one has "�duality gap for the pair of problems (Px�) and (Dx�) for all x� 2 X�.

Theorem 2.1.52 (H.-V. Boncea, S.-M. Grad, [7]) Let f : X ! R be proper and

ful�lling A \ dom(f) 6= ; and " � 0. The condition

epi (f + �A)
� � epi(f �) + epi(h�) + epi(�U)� (0; ") (RCP )

holds if and only if for all x� 2 X� there exist �; � 2 X� such that

v(Px�) � sup
�2C�

�
�f �(�)� (�h)�(�)� �U(�x� � � � �)

	
+ ":

From (RCE) one can obtain the following "-Farkas-type result.

Theorem 2.1.54 (i) Suppose that (RCE) holds. If f(x)+hx�; xi � "=2 for all x 2 X

then there exist � 2 C� and �; � 2 X� such that f �(�)+(�h)�(�)+�U(�x�����) � "=2,

(ii) If there exist � 2 C� and �; � 2 X� such that f �(�)+(�h)�(�)+�U(�x�����) �

�"=2, then f(x) + hx�; xi � "=2 for all x 2 X.

2.2 "�duality gap statements involving "�subdi¤e-

rentials for Lagrange, Fenchel and Fenchel-

Lagrange duality

One introduces regularity conditions to characterize "-duality gap statements, using "-

subdi¤erentials, too, when the existence of an "-optimal solution to the primal problem

is assumed. Recall that, for x� 2 X�, x 2 A \ dom(f) is an "-optimal solution to (Px�)

if and only if 0 2 @"(f + x� + �A)(x), which is equivalent to �x� 2 @"(f + �A)(x). From

the results presented in this and previous section one can derive other useful statements

concerning "-optimality conditions.
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2.2.1 Lagrange duality

One gives the results concerning Lagrange duality.

Theorem 2.2.1 (H.-V. Boncea, S.-M. Grad, [7]) Let the proper function f : X ! R,

x 2 A \ dom(f) and " � 0. Then

@"(f + �A)(x) =
[
�2C�

@"+(�h)(x)(f + �U + (�h))(x) (RCLL)

holds if and only if for each x� 2 X� for which x is an "-optimal solution to (Px�) there

exists � 2 C� such that

f(x) + hx�; xi � �(f + (�h))�U(�x�) + ": (2.2.1)

Remark 2.2.2 The quantity in the left-hand side of (2:2:1) is not necessarily v(Px�),

while in the right-hand side one have something smaller than v(DL
x�)+". However, (2:2:1)

implies v(Px�) � v(DL
x�) + ".

Theorem 2.2.4 (H.-V. Boncea, S.-M. Grad, [7]) Let the proper function f : X ! R,

x 2 A \ dom(f) and " � 0. Then

@"(f + �A)(x) =
\
�>0

[
�2C�

@"+�+(�h)(x)(f + �U + (�h))(x) (RCSL)

holds if and only if for each x� 2 X� for which x is an "-optimal solution to (Px�) it holds

f(x) + hx�; xi � sup
�2C�

inf
x2U

[f(x) + hx�; xi+ (�h)(x)] + ": (2.2.2)

Remark 2.2.5 Relation (2:2:2) implies v(Px�) � v(DL
x�) + ", without being a conse-

quence of it in general.

In the following we give a result concerning "-optimality conditions.

Theorem 2.2.9 Suppose that the condition (RCIL) is ful�lled.

(a) Let "; � � 0. If x is an "-optimal solution of the problem (P ), then there exists

� 2 C� such that

(f + (�h))�U(0) + (f + (�h))U(x) � "+ � + (�h)(x): (2.2.3)

Moreover, � is an ("+ �)-optimal solution of the problem (DL).

(b) If there exists � 2 C� such that the relation (2:2:3) holds for x 2 X and � 2 C�

then x is an "-optimal solution of the problem (P ). Moreover, � is an (" + �)-optimal

solution of the problem (DL).
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2.2.2 Fenchel duality

Further one gives the results for the Fenchel duality.

Theorem 2.2.10 Let the proper function f : X ! R, x 2 A \ dom(f) and " � 0.

Then

@"(f + �A)(x) =
[

"i�0;i=1;2
"1+"2="

(@"1f(x) + @"2�U(x)) (RCLF )

holds if and only if for each x� 2 X� for which x is an "-optimal solution to (Px�) there

exists � 2 X� such that

f(x) + hx�; xi � �f �(�)� �U(�x� � �) + ": (2.2.4)

Theorem 2.2.12 Let the proper function f : X ! R, x 2 A \ dom(f) and " � 0.

Then

@"(f + �A)(x) =
\
�>0

[
"i�0;i=1;2
"1+"2="+�

(@"1f(x) + @"2�U(x)) (RCSF )

holds if and only if for each x� 2 X� for which x is an "-optimal solution to (Px�) it holds

f(x) + hx�; xi � sup
�2X�

f�f �(�)� �U(�x� � �)g+ ": (2.2.5)

Now, we give a result concerning "-optimality conditions.

Theorem 2.2.14 Suppose that the condition (RCIF ) is ful�lled.

(a) Let "; � � 0. If x is an "-optimal solution of the problem (P ), then there exists

� 2 X� such that

(i) f(x) + f �(�) �


�; x

�
+ "1,

(ii) �U(��) + �U(x) �


��; x

�
+ "2,

(iii) "1 + "2 = "+ �.

Moreover, � is an ("+ �)-optimal solution of the problem (DF ).

(b) If there exist "1; "2 � 0 and � 2 X� such that the relations (i)-(iii) hold for

x 2 X and � 2 X� then x is an "-optimal solution of the problem (P ). Moreover, � is

an ("+ �)-optimal solution of the problem (DF ).

2.2.3 Fenchel-Lagrange duality

In this subsection one will give regularity conditions using "-subdi¤erentials for all the

three types of Fenchel-Lagrange duals.
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Fenchel-Lagrange dual of type I (Dx�)

One starts with the �rst type of Fenchel-Lagrange duality.

Theorem 2.2.15 (H.-V. Boncea, S.-M. Grad, [7]) Let the proper function f : X ! R,

x 2 A \ dom(f) and " � 0. Then

@"(f + �A)(x) =
[
�2C�

"i�0; i=1;2
"1+"2="+(�h)(x)

(@"1f(x) + @"2(�U + (�h))(x)) (RCL)

holds if and only if for each x� 2 X� for which x is an "-optimal solution to (Px�) there

exist � 2 C� and � 2 X� such that

f(x) + hx�; xi � �f �(�)� (�h)�U(�x� � �) + ": (2.2.6)

Theorem 2.2.19 (H.-V. Boncea, S.-M. Grad, [7]) Let the proper function f : X ! R,

x 2 A \ dom(f) and " � 0. Then

@"(f + �A)(x) =
\
�>0

[
�2C�

"i�0; i=1;2
"1+"2="+�+(�h)(x)

(@"1f(x) + @"2 (�U + (�h)) (x)) (RCS)

holds if and only if for each x� 2 X� for which x is an "-optimal solution to (Px�) it holds

f(x) + hx�; xi � sup
�2C�;
�2X�

f�f �(�)� (�h)�U(�x� � �)g+ ": (2.2.7)

Further, we give the following result concerning "-optimality conditions.

Theorem 2.2.22 Suppose that the condition (RCI) is ful�lled.

(a) Let "; � � 0. If x is an "-optimal solution of the problem (P ), then there exist

� 2 C� and � 2 X� such that

(i) f(x) + f �(�) �


�; x

�
+ "1,

(ii) (�h)�U(��) + (�h)U(x) � h��; xi+ "2:,

(iii) "1 + "2 = "+ � + (�h)(x).

Moreover, (�; �) is an ("+ �)-optimal solution of the problem (D).

(b) If there exist "1; "2 � 0, � 2 C� and � 2 X� such that the relations (i)-(iii) hold

for x 2 X, � 2 C� and � 2 X� then x is an "-optimal solution of the problem (P ).

Moreover, (�; �) is an ("+ �)-optimal solution of the problem (D).
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Fenchel-Lagrange dual of type II ( eDx�)

Further one gives the results concerning the second type of Fenchel-Lagrange duality.

Theorem 2.2.23 Let the proper function f : X ! R, x 2 A \ dom(f) and " � 0.

Then

@"(f + �A)(x) =
[
�2C�

"i�0; i=1;2
"1+"2="+(�h)(x)

(@"1fU(x) + @"2(�h)(x)) (]RCL)

holds if and only if for each x� 2 X� for which x is an "-optimal solution to (Px�) there

exist � 2 C� and � 2 X� such that

f(x) + hx�; xi � �f �U(�)� (�h)�(�x� � �) + ": (2.2.8)

Theorem 2.2.27 Let the proper function f : X ! R, x 2 A \ dom(f) and " � 0.

Then

@"(f + �A)(x) =
\
�>0

[
�2C�

"i�0; i=1;2
"1+"2="+�+(�h)(x)

(@"1fU(x) + @"2(�h)(x)) (]RCS)

holds if and only if for each x� 2 X� for which x is an "-optimal solution to (Px�) it holds

f(x) + hx�; xi � sup
�2C�;
�2X�

f�f �U(�)� (�h)�(�x� � �)g+ ": (2.2.9)

Further, we give the following result concerning "-optimality conditions.

Theorem 2.2.29 Suppose that the condition (]RCI) is ful�lled.

(a) Let "; � � 0. If x is an "-optimal solution of the problem (P ), then there exist

� 2 C� and � 2 X� such that

(i) fU(x) + f �U(�) �


�; x

�
+ "1,

(ii) (�h)�(��) + (�h)(x) � h��; xi+ "2:,

(iii) "1 + "2 = "+ � + (�h)(x).

Moreover, (�; �) is an ("+ �)-optimal solution of the problem ( eD).
(b) If there exist "1; "2 � 0, � 2 C� and � 2 X� such that the relations (i)-(iii) hold

for x 2 X, � 2 C� and � 2 X� then x is an "-optimal solution of the problem (P ).

Moreover, (�; �) is an ("+ �)-optimal solution of the problem ( eD).
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Fenchel-Lagrange dual of type III (Dx�)

The results concerning the third type of Fenchel-Lagrange duality follow.

Theorem 2.2.30 (H.-V. Boncea, S.-M. Grad, [7]) Let the proper function f : X ! R,

x 2 A \ dom(f) and " � 0. Then

@"(f + �A)(x) =
[
�2C�

"i�0; i=1;2;3
"1+"2+"3="+(�h)(x)

(@"1f(x) +N
"2
U (x) + @"3(�h)(x)) (RCL)

holds if and only if for all x� 2 X� for which x is an "-optimal solution to (Px�) there

exist � 2 C� and �; � 2 X� such that

f(x) + hx�; xi � �f �(�)� (�h)�(�)� �U(�x� � � � �) + ": (2.2.10)

Remark 2.2.31 (H.-V. Boncea, S.-M. Grad, [7]) The quantity in the left-hand side of

(2:2:10) is not necessarily v(P ), while in the right-hand side one have something smaller

than v(Dx�) + ". However, (2:2:10) implies v(Px�) � v(Dx�) + ".

Theorem 2.2.34 (H.-V. Boncea, S.-M. Grad, [7]) Let the proper function f : X ! R,

x 2 A \ dom(f) and " � 0. Then

@"(f + �A)(x) =
\
�>0

[
�2C�

"i�0; i=1;2;3
"1+"2+"3="+�+(�h)(x)

(@"1f(x) +N
"2
U (x) + @"3(�h)(x)) (RCS)

holds if and only if for each x� 2 X� for which x is an "-optimal solution to (Px�) it holds

f(x) + hx�; xi � sup
�2C�;
�;�2X�

f�f �(�)� �U(�x� � � � �)� (�h)�(�)g+ ": (2.2.11)

We give now the following result concerning "-optimality conditions.

Theorem 2.2.41 Suppose that the condition (RCI) is ful�lled.

(a) Let "; � � 0. If x is an "-optimal solution of the problem (P ), then there exist

� 2 C� and �; � 2 X� such that

(i) f(x) + f �(�) �


�; x

�
+ "1,

(ii) (�h)(x) + (�h)�(�) � h�; xi+ "2,

(iii) �U(x) + �U(��� �) � h��� �; xi+ "3,

(iv) "1 + "2 + "3 = "+ � + (�h)(x).
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Moreover, (�; �; �) is an ("+ �)-optimal solution of the problem (D).

(b) If there exist "1; "2; "3 � 0, � 2 C� and �; � 2 X� such that the relations (i)-(iv)

hold for x 2 X, � 2 C� and �; � 2 X� then x is an "-optimal solution of the problem

(P ). Moreover, (�; �; �) is an ("+ �)-optimal solution of the problem (D).

Remark 2.2.42 Similar statements concerning "-optimality conditions for (P ) and

its considered dual problems, were also obtained in [18, 19]. The results about "-optimality

conditions presented in this chapter extend the results obtained in the mentioned papers.
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Chapter 3

Characterizations of "-duality gap

statements for composed

optimization problems

Consider two separated locally convex vector spaces X and Y and their continuous dual

spaces X� and Y �, endowed with the weak� topologies w(X�; X) and w(Y �; Y ) respec-

tively. On Y one considers the partial ordering �5C�induced by the convex cone C.
Let f : X ! R be a proper function, g : Y ! R be a proper function, which is also C-

increasing and h : X ! Y � be a proper vector function ful�lling domg\ (h(domf)+C) 6=

;. Unless otherwise stated, these hypotheses remain valid throught the entire chapter.

Consider the optimization problem

inf
x2X

[f(x) + (g � h)(x)]: (PC)

For x� 2 X� one also considers the linearly perturbed optimization problem

inf
x2X

[f(x) + (g � h)(x)� hx�; xi] : (PCx�)

To this problem one can attach di¤erent dual Fenchel-Lagrange-type problems. If f

and (�h) are taken together one gets the following dual to (PCx�)

sup
�2C�

f�g�(�)� (f + (�h))�(x�)g: (DC
x�
)
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When f and (�h) are separated, one gets the following dual problem

sup
�2C�;
�2X�

f�g�(�)� f �(�)� (�h)�(x� � �)g: (DC
x�)

One denotes by v(PC) the optimal objective value of the optimization problem (PC).

Note that v(DC
x�) � v(DC

x�) � v(PCx�) for all x� 2 X�. When x� = 0 these duals to (PC)

are denoted simply by (DC) and (DC), respectively.

Between (PC) and its duals one always has weak duality, i.e. v(PC) � v(DC), respec-

tively, v(PC) � v(DC). When v(PC) = v(DC) one says that there is zero duality gap

between (PC) and (DC) and if (DC) has moreover an optimal solution, the situation is

called strong duality. If v(PC)�v(DC) � ", with " � 0, one has an "-duality gap for (PC)

and (DC). If one of these situations holds for (PCx�) and (D
C
x�) for all x

� 2 X�, it will be

called stable.

In the following one writes min(max) instead of inf(sup) when the corresponding

in�mum (supremum) is attained.

3.1 "-duality gap statements using epigraphs

Let " � 0. Consider the regularity conditions�������
f(x�; 0; r) : (x�; r) 2 epi(f + g � h)�g � [f0g � epi(g�) +

S
�2C�

f(a;��; r) :

(a; r) 2 epi((f + (�h))�)g] \ (X� � f0g � R)� (0; 0; ")
(RC)

and ����������
f(x�; 0; r) : (x�; r) 2 epi(f + g � h)�g � [f0g � epi(g�) + f(x�; 0; r) :

(x�; r) 2 epi(f �)g+
S
�2C�

f(a;��; r) : (a; r) 2 epi((�h)�)g]\

(X� � f0g � R)� (0; 0; ")

(RC)

They are inspired by the closedness type regularity conditions from [11], but unlike there,

we do not use convexity and topological hypotheses for most of the proven statements.

Theorem 3.1.2 (H.-V. Boncea, S.-M. Grad, [6]) The condition (RC) is ful�lled if

and only if for any x� 2 X� there exists a � 2 C� such that

(f + g � h)�(x�) � g�(�) + (f + (�h))�(x�)� ": (3.1.1)
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Remark 3.1.3 (H.-V. Boncea, S.-M. Grad, [6]) In the left-hand side of (3:1:1) one can

easily recognize �v(PC
x�
). The quantity in the right-hand side of (3:1:1) is not necessarily

�v(DC
x�
)� ", as the supremum in (DC

x�
) is not shown to be attained at �. Though, (3:1:1)

implies v(PC
x�
) � v(DC

x�
) + ", which actually means that for (PC

x�
) and (DC

x�
) there is "-

duality gap. Thus, (RC) yields that there is stable "-duality gap for (PC) and (DC). Note

also that � 2 C� obtained in Theorem 3.1.2 is an "-optimal solution of (DC
x�
).

Similar results can be obtained for (DC) by making use of (RC) as follows.

Theorem 3.1.8 (H.-V. Boncea, S.-M. Grad, [6]) The condition (RC) is ful�lled if

and only if for any x� 2 X� there exist some � 2 C� and � 2 X� such that

(f + g � h)�(x�) � g�(�) + f �(�) + (�h)�(x� � �)� ": (3.1.2)

In order to characterize formulae similar to (3:1:1) and (3:1:2), where appear actually

the optimal values of (DC) and (DC), let us consider the following regularity conditions

epi(f + g � h)� � epi inf
�2C�

[g�(�) + (f + (�h))�(�)]� (0; ") (RCI)

and

epi(f + g � h)� � epi inf
�2C�
�2X�

[g�(�) + f �(�) + (�h)�(� � �)]� (0; "): (RCI)

Theorem 3.1.15 (H.-V. Boncea, S.-M. Grad, [6]) The condition (RCI) is ful�lled if

and only if for any x� 2 X� we have

(f + g � h)�(x�) � inf
�2C�

[g�(�) + (f + (�h))�(x�)]� ": (3.1.3)

Remark 3.1.16 (H.-V. Boncea, S.-M. Grad, [6]) Relation (3:1:3) means actually

v(PC
x�
) � v(DC

x�
) + ", i.e. we have stable "-duality gap for (PC) and (DC).

Theorem 3.1.19 (H.-V. Boncea, S.-M. Grad, [6]) The condition (RCI) is ful�lled if

and only if for any x� 2 X� we have

(f + g � h)�(x�) � inf
�2C�
�2X�

[g�(�) + f �(�) + (�h)�(x� � �)]� ": (3.1.4)

Remark 3.1.22 (H.-V. Boncea, S.-M. Grad, [6]) Taking into consideration Theorem

3.1.2, Theorem 3.1.8, Theorem 3.1.15 and Theorem 3.1.19 we get the following implica-

tions: (RC) ) (RC) ) (RCI) and (RC) ) (RCI) ) (RCI). Using, for instance, [11,

Example 3.10] one can construct examples that show that the opposite implications are

not valid in general.
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3.2 Special cases

The results one gave for composed functions can be particularized for combinations of

functions that appear often in both theoretical and practical problems.

3.3 "-duality gap statements using subdi¤erentials

In this section we show that the relations (3:1:1); (3:1:2); (3:1:3); (3:1:4) can be character-

ized by regularity conditions involving subdi¤erentials, too.

Theorem 3.3.1 (H.-V. Boncea, S.-M. Grad, [6]) One has

@(f + g � h)(x) �
\
�>0

[
"1;2�0

"1+"2="+�
�2C�\@"2g(h(x))

@"1(f + (�h))(x) (RCSC)

for all x 2 X if and only if (3:1:3) holds for all x� 2 R(@(f + g � h)).

In the following result we give another characterization for relation (3:1:1), this time

by making use of (")-subdi¤erentials.

Theorem 3.3.6 (H.-V. Boncea, S.-M. Grad, [6]) One has

@(f + g � h)(x) �
[
"1;2�0
"1+"2="

�2C�\@"2g(h(x))

@"1(f + (�h))(x) (RCLC)

for all x 2 X if and only if for all x� 2 R(@(f + g � h)), there exists � 2 C� such that

(3:1:1) holds.

The following result characterizes the relation (3:1:4).

Theorem 3.3.8 (H.-V. Boncea, S.-M. Grad, [6]) One has

@(f + g � h)(x) �
\
�>0

[
"1;2�0

"1+"2+"3="+�
�2C�\@"3g(h(x))

@"1f(x) + @"2(�h)(x) (RCSC)

for all x 2 X if and only if for all x� 2 R(@(f + g � h)), (3:1:4) holds.

In the following result we characterize relation (3:1:2).

Theorem 3.3.13 (H.-V. Boncea, S.-M. Grad, [6]) One has

@(f + g � h)(x) �
[
"1;2�0

"1+"2+"3="+�
�2C�\@"3g(h(x))

@"1f(x) + @"2(�h)(x) (RCLC)
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for all x 2 X if and only if for all x� 2 R(@(f + g � h)), there exist � 2 C� and � 2 X�

such that (3:1:2) holds.

Remark 3.3.15 (H.-V. Boncea, S.-M. Grad, [6]) Looking at the conditions (RC)

and (RCLC) one can observe that (RC) implies (3:1:1) for all x� 2 X� and (RCLC)

implies (3:1:1) for all x� 2 R(@(f + g � h)), which means that (RC) implies (RCLC).

Analogously, (RC) implies (3:1:2) for all x� 2 X� and (RCLC) implies (3:1:2) for all

x� 2 R(@(f + g � h)), which means that (RC) implies (RCLC).

3.4 Results concerning "-optimality conditions, "-

Farkas statements and ("; �)-saddle points

From the results presented in the previous sections one can derive other useful statements

concerning "-optimality conditions, "-Farkas assertions and characterizations for ("; �)-

saddle points as follows. We begin with the "-optimality conditions.

One considers the following conditions

(epi(f+g�h)�)\(f0g�R) � (epi inf
�2C�

[g�(�)+(f+(�h))�(�)])\(f0g�R)�(0; "); (RCI0)

�������
(epi(f + g � h)�) \ (f0g � R) � (epi inf

�2C�
�2X�

[g�(�) + f �(�) + (�h)�(� � �)])

\(f0g � R)� (0; "):
(RCI

0
)

Theorem 3.4.1 (H.-V. Boncea, S.-M. Grad, [6]) (a) Let "; � � 0. Suppose that the

condition (RCI0) is ful�lled. If x is an "-optimal solution of the problem (PC), then there

exist "1; "2 � 0, and � 2 C� such that

(i) g�(�) + g(h(x)) � (�h)(x) + "2;

(ii) (f + (�h))�(0) + (f + (�h))(x) � "1;

(iii) "1 + "2 = "+ �.

Moreover, � is an ("+ �)-optimal solution of the problem (DC).

(b) If there exist "1; "2 � 0 and � 2 C� such that the relations (i)-(iii) hold for x 2 X

and � 2 C� then x is an ("+ �)-optimal solution of the problem (PC). Moreover, � is an

("+ �)-optimal solution of the problem (DC).

The similar statement for (DC) can be proven analogously.
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Theorem 3.4.2 (H.-V. Boncea, S.-M. Grad, [6]) (a) Let "; � � 0. Suppose that the

condition (RCI
0
) is ful�lled. If x is an "-optimal solution of the problem (PC), then there

exist "1; "2; "3 � 0, � 2 C� and � 2 X� such that

(i) g�(�) + g(h(x)) � (�h)(x) + "3;

(ii) f �(�) + f(x) �


�; x

�
+ "1;

(iii) (�h)�(��) + (�h)(x) �


��; x

�
+ "2;

(iv) "1 + "2 + "3 = "+ �.

Moreover, (�; �) is an ("+ �)-optimal solution of the problem (DC).

(b) If there exist "1; "2; "3 � 0, � 2 C� and � 2 X� such that the relations (i)-(iv)

hold for x 2 X, � 2 C� and � 2 X� then x is an ("+ �)-optimal solution of the problem

(PC). Moreover, (�; �) is an ("+ �)-optimal solution of the problem (DC).

In the following we give "-Farkas-type results for (PC) and its duals, too. Let us

consider the following regularity conditions�������
f(0; 0; r) : (0; r) 2 epi(f + g � h)�g � [f0g � epi(g�) +

S
�2C�

f(a;��; r) :

(a; r) 2 epi((f + (�h))�)g] \ (f0g � f0g � R)� (0; 0; ");
(RC0)

����������
f(0; 0; r) : (0; r) 2 epi(f + g � h)�g � [f0g � epi(g�) + f(0; 0; r) :

(0; r) 2 epi(f �)g+
S
�2C�

f(a;��; r) : (a; r) 2 epi((�h)�)g]\

(f0g � f0g � R)� (0; 0; "):

(RC
0
)

Theorem 3.4.5 (H.-V. Boncea, S.-M. Grad, [6]) (i) Suppose that (RC0) holds. If

f(x) + (g � h)(x) � "=2 for all x 2 X then there exists � 2 C� such that g�(�) + (f +

�h)�(0) � "=2.

(ii) If there exists � 2 C� such that g�(�)+(f+�h)�(0) � �"=2, then f(x)+(g�h)(x) �

"=2 for all x 2 X.

Analogously, one can prove the following statements for (PC) and (DC), too.

Theorem 3.4.6 (H.-V. Boncea, S.-M. Grad, [6]) (i) Suppose that (RC
0
) holds. If

f(x) + (g � h)(x) � "=2 for all x 2 X then there exist � 2 C� and � 2 X� such that

f �(�) + g�(�) + (�h)�(��) � "=2.

(ii) If there exist � 2 C� and � 2 X� such that f �(�) + g�(�) + (�h)�(��) � �"=2,

then f(x) + (g � h)(x) � "=2 for all x 2 X.
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Nevertheless, one can extend the investigations from this section also towards gener-

alized saddle points.

The Lagrangian function assigned to (PC) � (DC) is LC : X � Y � ! R, de�ned by

(cf. [12])

LC(x; �) =

8<: f(x) + (�h)(x)� g�(�); if � 2 C�

�1; otherwise.

Let � � 0. We say that (x; �) 2 X � Y � is (�; ")-saddle point of the Lagrangian LC if

LC(x; �)� � � LC(x; �) � LC(x; �) + "; for all (x; �) 2 X � Y �:

Theorem 3.4.10 (H.-V. Boncea, S.-M. Grad, [6]) Assume that g is a convex and

lower semicontinuous function ful�lling g(y) > �1 for all y 2 Y . If (x; �) is an (�; ")-

saddle point of LC then x 2 X is an (" + �)-optimal solution to (PC), � 2 C� is an

("+ �)-optimal solution to (DC) and there is ("+ �)-duality gap for the pair of problems

(PC) and (DC), i.e. v(PC) � (DC) + "+ �.

An analogous result with Theorem ?? can be formulated for the pair of problems

(PC) and (DC) with the corresponding Lagrangian function given by (cf. [12]) LC :

X �X� � Y � ! R

LC(x; �; �) =

8<: h�; xi+ (�h)(x)� f �(�)� g�(�); if � 2 C�

�1; otherwise.

Theorem 3.4.11 (H.-V. Boncea, S.-M. Grad, [6]) Assume that g is a convex and

lower semicontinuous function ful�lling g(y) > �1 for all y 2 Y . If (x; �) is an (�; ")-

saddle point of LC then x 2 X is an (" + �)-optimal solution to (PC), � 2 C� is an

("+ �)-optimal solution to (DC) and there is ("+ �)-duality gap for the pair of problems

(PC) and (DC), i.e. v(PC) � (DC) + "+ �.
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Chapter 4

Convex optimization problems with

entropy-like objective functions

4.1 Regularity conditions for strong duality when the

primal problem has entropy-like objective func-

tions

Consider the non-empty convex setX � Rn. Motivated by [13, 37, 38, 39, 40] we introduce

the following problem

inf
x2X
h(x)50

(
kX
j=1

gj(x)�j

�
fj(x)

gj(x)

�)
; (P�)

where f = (f1; : : : ; fk)T : X ! Rk, g = (g1; : : : ; gk)T : X ! Rk, h = (h1; : : : ; hm)T : X !

Rm, � = (�1; : : : ;�k) : R+ ! (Rk)�, ful�lling fj(x) � 0 and gj(x) > 0 for all x 2 X such

that h(x) � 0.

So far no assumption of convexity or concavity regarding the functions involved in

(P�) has been made. As we are trying to cover a large number of di¤erent problems as

special cases of (P�), the properties of the respective functions will be �exible.

As the dual obtained directly from (P�) seems rather unattractive for computational

issues, we could resort to the method used in [13]. It consists in attaching a problem

whose Lagrange and Fenchel-Lagrange duals are easier computable than the one to the

primal problem. The most important connection between the two problems stands in the
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equality between their optimal objective values. In order to deal with the problem (P�)

by means of duality we try to bring it in the form

inf
(x;s;t)2A

(
kX
j=1

tj�j

�
sj
tj

�)
; (P 0)

where

A = f(x; s; t) 2 X � Rk+ � int(Rk+) : h(x) 5 0;	(f(x); s) = 0;


(g(x); t) = 0g:

Additional properties of the functions f and g, as well as the functions 	 : Rk+�Rk+ !

Rk and 
 : int(Rk+) � int(Rk+) ! Rk are introduced in order to assure the convexity of

the problem (P 0) and to obtain

inf(P�) = inf(P 0):

After considering some convexity or concavity properties for f and g we determine the

Lagrange and Fenchel-Lagrange dual problems to the corresponding attached problems.

As the strong duality statements we use require the convexity of the primal problem,

we consider further the functions hj; j = 1; : : : ;m, convex and the inequalities in A

concerning f(x) and g(x) are chosen in order to assure the convexity of the set. Because

of the following assertion we consider further the functions �j; j = 1; : : : ; k, convex too.

Proposition 4.1.1 If �j is convex, then (sj; tj) 7�! tj�j

�
sj
tj

�
is convex, j = 1; :::; k.

The proof of the previous Proposition can be seen as an extended case of [4, Lemma

2.1] to Rk+ � R
k

+.

This last result, alongside the convexity of A, guaranteed by construction, yields that

(P 0) is a convex optimization problem. Therefore it is suitable for the application of the

Lagrange and Fenchel-Lagrange duality.

The expresion from the problem (P�) can be seen as a composition of two functions.

Let us consider C � R2k a closed convex cone and S � Rm a convex cone. On R2k

we consider the partial order induced by C, "5C", de�ned by z 5C y , y � z 2 C

and let (R2k+ )� = R2k+ [ f1R2k+ g. Consider, also, X � Rn, the convex and C-increasing

function u : (R2k+ )� ! R, the C-convex function v : X ! (R2k+ )� and the convex function

h : Rn ! Rm.
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The problem (P�) can be seen as a composed convex optimization problem, i.e.

inf
x2X

h(x)2�S

(u � v)(x): (PCC)

Inspired by [12], we can attach to this problem a Fenchel-Lagrange type dual problem,

namely

sup
�2S�;�2C�
p2X�

f�u�(�)� (�Tv)�(p)� (�Th)�(�p)g: (DCC)

For the pair of problems (PCC) � (DCC) there is strong duality if one of the regularity

conditions (RCCCi ); i = 1; : : : ; 4 (cf. [12]) is ful�lled. These regularity conditions are������ 9x
0 2 X \ v�1(R2k+ ) such that u is continuous at v(x0) and

h(x0) 2 �int(S)
(RCCC1 )

������ u is lower semicontinuous, v is star C-lower semicontinuoush is S-epi closed and 0 2 sqri(R2k+ � v(X));
(RCCC2 )

������ u is lower semicontinuous, v is star C-lower semicontinuoush is S-epi closed and 0 2 core(R2k+ � v(X));
(RCCC20 )

������ u is lower semicontinuous, v is star C-lower semicontinuoush is S-epi closed and 0 2 int(R2k+ � v(X));
(RCCC200 )

dim(lin(R2k+ � v(X))) <1 and int(R2k+ ) \ ri(v(X)) 6= ;; (RCCC3 )����������
u is lower semicontinuous, v is star C-lower semicontinuous

h is S-epi closed and
S
�2C�

(epi(�v)� + (0; u�(�))) is

closed in the topology w(Rn+;Rn)� R:

(RCCC4 )

Further, let us consider u(s; t) =
Pk

j=1 tj�j

�
sj
tj

�
and v(x) = (g(x); f(x)). We note

with u+(�), the monotone conjugate of u de�ned as (cf. [71]) u+(�) = sup
x=0
f�Tx� u(x)g.

Calculating it, we get that u+(�) = sup
s�0
t>0

[ass+ att� t�
�
s
t

�
] = sup

t>0
[att+sup

s�0
(ass� t�

�
s
t

�
)].

If we take b := s
t
we get that sup

s�0
[ass� t�

�
s
t

�
] = sup

b�0
[asbt� t� (b)] = t�+(as). So,

u+(�) = sup
t>0
t[at + �+(as)] =

8<: 0; at + �+(as) 5 0
+1; else.
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4.2 Some particular cases for the cone

Taking some particular cases for the cone C, we can obtain the following problems. We

attach them the Lagrange and Fenchel-Lagrange dual problems and in order to obtain

strong duality we give the adequate regularity conditions.

First case. C = (�Rk+) � f0g, �j -decreasing, fj -concave and gj -a¢ ne for all

j = 1; :::; k: In this case consider

A =
�
(x; s; t) 2 X � Rk+ � int(Rk+) : h(x) 5 0; f(x) = s; g(x) = t

	
:

We have inf(P�) = inf(P 0).

The Lagrange dual problem to (P�) in the �rst case, becomes

sup
�50;�2Rk;
=0;

�+j (�j)+�j�0;j=1;:::;k

inf
x2X

�
�Tf(x) + �Tg(x) + 
Th(x)

�
(D�

L1)

and its Fenchel-Lagrange dual problem is:

sup
�50;�2Rk;
=0

�+j (�j)+�j�0;j=1;k
p;q2X�

�
�(�Tf)�(p)� (�Tg)�(q)� (
Th)�(�p� q)

	
: (D�

FL1)

We know that weak duality always holds. In order to get strong duality we give the

following regularity condition.

9(x0; s0; t0) 2 ri(X)� int(Rk+)� int(Rk+) :

8>>>>>><>>>>>>:

f(x0) > s0;

g(x0) = t0;

hj(x
0) � 0; if j 2 L;

hj(x
0) < 0; if j 2 N;

(CQ1)

where we have divided the set f1; : : : ;mg into two disjunctive sets as follows

L = fj 2 f1; : : : ;mg : hj is the restriction to X of an a¢ ne functiong

and N = f1; : : : ;mg nL.

Theorem 4.2.1 (H.-V. Boncea, S.-M. Grad, [8]) If the constraint quali�cation (CQ1),

is ful�lled then there is strong duality between problems (P 0) and (D�
FL1), i.e. (D

�
FL1) has

an optimal solution and v(P 0) = v(P�) = v(D�
FL1):

Taking into consideration that v(D�
FL1) � v(D�

L1) � v(P�) we obtain the following

corollary.
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Corollary 4.2.2 (H.-V. Boncea, S.-M. Grad, [8]) If the constraint quali�cation

(CQ1), is ful�lled then there is strong duality between problems (P 0) and (D�
L1), i.e. (D

�
L1)

has an optimal solution and v(P 0) = v(P�) = v(D�
L1).

Theorem 4.2.3 (H.-V. Boncea, S.-M. Grad, [8]) (a) Let the constraint quali�cation

(CQ1) be ful�lled and assume that the primal problem (P�) has an optimal solution x.

Then the dual problem (D�
FL1) has an optimal solution, too, let it be (�; �; 
; p; q), and

the following optimality conditions are true,

(i)
Pk

j=1 gj(x)�j

�
fj(x)

gj(x)

�
= �(�Tf)�(p)� (�Tg)�(q)� (
Th)�(�p� q); j = 1; : : : ; k;

(ii) �+j (�j) + �j � 0; j = 1; :::; k

(iii) h(x) 5 0.
(b) If x is a feasible point to (P�) and (�; �; 
; p; q) is feasible to (D�

FL1) ful�lling the

optimality conditions (i)-(iii), then there is strong duality between (P�) and (D�
FL1).

Moreover, x is an optimal solution to the primal problem and (�; �; 
; p; q) an optimal

solution to the dual.

Theorem 4.2.4 (H.-V. Boncea, S.-M. Grad, [8]) (a) Let the constraint quali�cation

(CQ1) be ful�lled and assume that the primal problem (P�) has an optimal solution x.

Then the dual problem (D�
L1) has an optimal solution, too, let it be (�; �; 
), and the

following optimality conditions are true,

(i)
Pk

j=1 gj(x)�j

�
fj(x)

gj(x)

�
= inf

x2X

h
�Tf(x) + �

T
g(x) + 
Th(x)

i
; j = 1; : : : ; k;

(ii) �+j (�j) + �j � 0; j = 1; :::; k

(iii) h(x) 5 0.
(b) If x is a feasible point to (P�) and (�; �; 
) is feasible to (D�

L1) ful�lling the

optimality conditions (i)-(iii), then there is strong duality between (P�) and (D�
L1).

Moreover, x is an optimal solution to the primal problem and (�; �; 
) an optimal

solution to the dual.

Special case. Consider �j (x) = � ln(x); x > 0 for all j = 1; :::; k. The problem (P�)

turns out to be the problem treatead in [13].

In the following we present the other four cases without exposing the duals and the

results concerning the strong duality and optimality conditions, which are similar to the

�rst case.

Second case: C = Rk+�f0g, �j -increasing, fj -convex and gj -a¢ ne for all j = 1; :::; k.
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In this case consider

A =
�
(x; s; t) 2 X � Rk+ � int(Rk+) : h(x) 5 0; f(x) 5 s; g(x) = t

	
:

Special case. Taking �j (x) = x; and gj(x) = 1; for all j = 1; :::; k; and considering

fj(x) = kj(x � yj) we obtain the Steiner-Fermat problem in [51], to which we may add

some constraints by properly choosing h.

Third case. C = Rk+ � (�Rk+), �j -increasing, fj -convex and gj -concave for all

j = 1; :::; k: Moreover assume �j(y) � 0; 8y 2
n
f(x)
g(x)

: x feasible to (P�)
o
. The feasible

set of (P 0) is in this case

A =
�
(x; s; t) 2 X � Rk+ � int(Rk+) : h(x) 5 0; f(x) 5 s; g(x) = t

	
:

Special case. For �j (x) = �1; and gj(x) = lnxj; x > 0 for all j = 1; :::; k; X = int(Rn+)

and h(x) = Ax� b we obtain the Burg entropy problem in [32].

Fourth case. C = (�Rk+) � Rk+, �j -decreasing, fj -concave and gj -convex for all

j = 1; :::; k; with the additional assumption �j(y) � 0; 8y 2 ff(x)g(x)
: x feasible to (P�)g.

In this case

A =
�
(x; s; t) 2 X � Rk+ � int(Rk+) : h(x) 5 0; f(x) = s; g(x) 5 t

	
:

Special case. Set �j (x) = �j 1x ; x > 0; �j > 0 for all j = 1; :::; k: The objective function

of the problem (P�) is the one in the scalarized problem treatead in [77].

Fifth case. C = f0g � f0g, fj and gj a¢ ne for all j = 1; :::; k. In this case we have

A =
�
(x; s; t) 2 X � Rk+ � int(Rk+) : h(x) 5 0; f(x) = s; g(x) = t

	
:

Special case. For fj(x) = xj and gj(x) = dj; for all j = 1; :::; k and hj(x) = 	j(Ajx +

�j) + b
T
j x+ cj; j = 1; :::;m; we obtain the problem in [75].
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Chapter 5

On the � � (1; 2) approximated

optimization problems

For this section one considers X a nonempty subset of Rn, x0 an interior point of X,

f : X ! R a di¤erentiable function at x0; g : X ! Rm a twice di¤erentiable function at

x0 and let � : X �X ! Rn be a function.

One considers the optimization problem:8>>><>>>:
min f(x)

x 2 X

g(x) 5 0;

(P�)

One denotes by z(P�) := fx 2 X : g(x) 5 0g the set of all feasible solutions of problem
(P�). For solving the optimization problem (P�), there are various manners to approach

(see [63, 65]). One of these manners is that for problem (P�) one can attache another

optimization problem, whose solutions gives us the (information about) optimal solutions

of the initial problem (P�) (see [1, 3, 43, 44, 45]).

Further, one attaches to problem (P�), the problem:8>>>>>><>>>>>>:

minF (x) := f(x0) + hrf(x0); �(x; x0)i

x 2 X

G(x) := g(x0) + [rg(x0)](�(x; x0))+

+1
2



[r2g(x0)](�(x; x0)); �(x; x0)

�
5 0;

(AP�)
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where



[r2g(x0)](�(x; x0)); �(x; x0)

�
: = (



[r2g1(x

0)](�(x; x0)); �(x; x0)
�
; :::;


[r2gm(x
0)](�(x; x0)); �(x; x0)

�
):

Let us denote with z(AP�) := fx 2 X : G(x) 5 0g the set of all feasible solutions of

Problem (AP�).

5.1 Preliminary notions and results

One gives here some known notions and results, which needed in this chapter and which

can be found in books and monographies like [63, 65].

5.2 �� Approximated optimization problem

In this section one considers X a nonempty subset of Rn, x0 an interior point of X,

f : X ! R a di¤erentiable function at x0, g : X ! Rm twice di¤erentiable functions at

x0 and � : X �X ! Rn a function.

Theorem 5.2.1 (H.-V. Boncea, D. Duca, [5])Let g be a second order invex function

at x0 w.r.t. �: If ex is a feasible solution of the problem (P�), then ex is a feasible solution
of the problem (AP�), i.e. z(P�) � z(AP�):

Example 5.2.2 (H.-V. Boncea, D. Duca, [5]) We consider the following optimization

problem: 8>>><>>>:
min f(x) = ln(x+ 1)

x 2 (�1;1) � R

g(x) = x2 � 2x 5 0:

(P )

The set of feasible solutions of problem (P ) is z(P ) = [0; 2]: For x0 = 0 and � : R�R!

R, de�ned by �(x; x0) = x� x0 = x, the problem (AP ) is8<: minF (x) = x

G(x) = x2 � 2x 5 0:
(AP )

We have z(AP ) = z(P ).
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Example 5.2.3 (H.-V. Boncea, D. Duca, [5]) We consider the following optimization

problem: 8>>><>>>:
min f(x) = x1

x = (x1; x2) 2 R2

g(x) = �x1 + x42 5 0:

(P �)

The set of feasible solutions of the problem (P �) is z(P �) = fx 2 R2 : g(x) 5 0g : For
x0 = (0; 0) and � : R� R! R, de�ned by

�(x; y) = x� y, for all (x; y) 2 R� R;

the problem (AP �) is 8>>><>>>:
minF (x) = x1

x = (x1; x2) 2 R2

G(x) = �x1 5 0:

(AP �)

We have (1; 5) 2 z(AP �), but (1; 5) =2 z(P �). So z(P �) ( z(AP �):

Theorem 5.2.6 (H.-V. Boncea, D. Duca, [5]) Let g be a second order incave function

at x0 w.r.t. �: If x is a feasible solution of the problem (AP�), then x is a feasible solution

of the problem (P�), i.e. z(AP�) � z(P�):

Theorem 5.2.7 (H.-V. Boncea, D. Duca, [5]) Let f be a quasi-incave function at x0

w.r.t. �, g be a second order avex function at x0 w.r.t. � and �(x0; x0) = 0. If x0 2 X

is an optimal solution of the original problem (P�), then x0 is an optimal solution of the

problem (AP�).

Theorem 5.2.8 (H.-V. Boncea, D. Duca, [5]) Let f be a pseudo-invex function at x0

w.r.t. �, g be a second order invex function at x0 w.r.t. � and �(x0; x0) = 0:

If x0 is an optimal solution of Problem (AP�), then x0 is an optimal solution of

Problem (P�).
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5.3 Equivalence between saddle points of the

��approximated problem and of the original

problem

In this section one considers X a nonempty subset of Rn, x0 an interior point of X,

f : X ! R a di¤erentiable function at x0, g : X ! Rm twice di¤erentiable function at

x0 and � : X � X ! Rn a function. One denotes the lagrangian of the problem (AP�),

L�AP : X � Rm+ ! R , de�ned by

L�AP (x; v) : = f(x0) +


rf(x0); �(x; x0)

�
+


v; g(x0)

�
+

+

�
v; [rg(x0)](�(x; x0)) + 1

2



[r2g(x0)](�(x; x0)); �(x; x0)

��
;

for all (x; v) 2 X � Rm+ .

Theorem 5.3.1 Let X be a subset of Rn, x0 be an interior point of X , f : X ! R,

g : X ! Rm be di¤erentiable functions at x0. If there exists v0 2 Rm+ such that (x0; v0) 2

X � Rm+ is a saddle point of the lagrangian L�P , then x
0 is an optimal solution of the

original problem (P�).

Theorem 5.3.2 Let X be a convex subset of Rn, x0 be an interior point of X,

f : X ! R, g : X ! Rm are convex functions. If x0 2 X is an optimal solution of the

problem (P�) then there exists v0 2 Rm+ such that (x0; v0) 2 X � Rm+ is a saddle point of

the lagrangian L�P :

Theorem 5.3.3 (H.-V. Boncea, D. Duca, [5]) Let the problem (P�) be (1; 2)- order KT

invex at x0 w.r.t. �, g be a second order invex function at x0 w.r.t. � and �(x0; x0) = 0. If

(x0; v0) 2 X �Rm+ is a saddle point of the lagrangian L
�
AP , then x

0 is an optimal solution

of the original problem (P�).

Theorem 5.3.4 (H.-V. Boncea, D. Duca, [5]) Assume that �(x0; x0) = 0,


[r2g(x0)](�(x; x0)); �(x; x0)

�
; v0
�
= 0, for all x 2 X and a suitable constraint quali�-

cation for the problem (P�) is satis�ed at x0. If x0 is an optimal solution of the problem

(P�), then there exists a point v0 2 Rm+ such that (x0; v0) 2 X � Rm+ is a saddle point of

the lagrangian L�AP .
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