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Thesis Summary

1.1 Intelligent Rehabilitation Systems Using Motion Sensors

1.1.1 Introduction

This research aims to explore the potential of artificial intelligence for interactive rehabilitation
systems based on video games and motion cameras, which are currently used in clinical prac-
tice. With a vast application in physical and cognitive therapy, these systems provide a more
personalised and accessible way of rehabilitation, revolutionising healthcare delivery and im-
proving clinical outcomes, for a better quality of life.

In our work, we focused on obtaining better user experience personalisation, utilising the
motion data from the 3D camera (in our case, the Microsoft Kinect and Orbbec sensors), not only
from the exercise movements for physical therapy, but also from the indirect input which arises
while interacting with the system: body language, actions, and other user states and emotions
which are expressed through gestures.

With this in mind, we have concentrated our research around two important topics: the first
is improving gesture recognition and the second is enhancing user experience. Intelligent ges-
ture recognition was performed based on the 3D skeleton data streaming from motion sensors
like the Microsoft Kinect. For this, several machine learning techniques were used to classify
postures and time series gestures. Furthermore, we have proposed a method to improve the
performance of these algorithms when used with certain time series multi-joint gestures. In
what concerns user experience, our aim was to apply dynamic game difficulty balancing con-
cepts adapted to elderly people, which constitute a relevant category of end-users of interactive
rehabilitation systems.

Based on the results, a system can analyse movements performed by the user and generate
feedback regarding the correctness of their exercise and how it can be improved, acting like
a virtual intelligent assistant. Moreover, it can adjust visual and other sensory aspects of the
virtual environment, according to the indirect gestural input, modifying game settings for an
optimal user experience of the exergames.

These results were destined to be applied to systems for active ageing, especially the MIRA
platform – a medical software containing cognitive and physical exergames for the rehabilita-
tion of several patient groups, including children and older people [Can+17].

1.1.2 Pose and gesture recognition

We have commenced our work by analyzing several machine learning techniques to classify
poses and gestures recorded with Kinect 1 and Kinect 2 sensors, in the form of skeleton data.
We have compared the way the classifiers’ performance (accuracy, precision, time to build the
model) is influenced by factors like sensor input accuracy (referring to the improved hardware
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of Kinect 2 in comparison to Kinect 1), data interpretation (referring to the number of classes
contained by the dataset to classify), and sample data size (referring to the number of joints
considered for a pose sample).

Therefore, we aimed to make use of these results to help decide for a particular type of ges-
ture recognition system which sensor is best to use, but also which combination of algorithms
and way of interpreting data will yield the best outcomes. Furthermore, we have approached in
our research several methods for improving movement analysis and accuracy of gesture recog-
nition, besides some practical approaches to integrate the user input and utilize motion anal-
ysis to drive personalisation in the interaction of the user with rehabilitation systems (namely
MIRA). Algorithms used in our experiments are based on the implementations from the Weka
[Hal+09] and GRT [GKO11] libraries.

The original contribution in this research area consists of creating several databases of mean-
ingful poses and gestures using sensors Kinect 1 and Kinect 2, and comparing the results and
efficiency of several classifiers. For this we have analysed the sensor type and gesture complex-
ity, as well as the data size and characteristics for both poses and gestures which influence the
accuracy of the results. Of these, special attention is given to comparing HMM and DTW for
time-series gesture recognition.

1.1.3 Motion analysis

Another important contribution is proposing a new method for motion analysis which sepa-
rates different movement components (pose, movement amplitude and movement main trajec-
tory), separating active and passive joints, in order to improve gesture recognition and extract
information on movement correctness. Tested on our database and existing Kinect benchmarks,
this method improves the accuracy obtained with previously used algorithms (DTW, HMM)
and enhances our motion analysis model.

1.1.4 Dynamic game balancing

In the area of dynamic game difficulty balancing, we propose a new emotional-motivational
game balancing model tailored for active ageing game systems based on indirect input derived
from postures or gestures of the user. This model focuses on adjusting the UI or difficulty
features according to the user performance, considering the particularities of players from the
elder people group.

1.2 Thesis contents and main results

This work is structured into seven chapters, as follows:

• Chapter 1: We introduce the thesis topic and main areas of application in rehabilitation
[Mol+14; Mol+17] of existing eHealth systems, namely MIRA [Can+17].

• Chapter 2: We present the state-of-the-art on gesture recognition and motion analysis
for physical therapy, focusing on the use of motion sensors, especially Microsoft Kinect
[Mic17], but also other 3D cameras which are currently widely used.

• Chapter 3: This chapter presents our original contribution in pose recognition, for which
we have obtained several promising results published in [Căl16a; Căl16d; CC18]. We
found that Kinect 2 has a great potential in improving overall accuracy and precision of
most of the classifiers we considered, comparing it with Kinect 1. On the downside, it also
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implies more complex and time consuming computations. Thus, Kinect 2 is preferable,
but it is not yet proved to constitute a universal best option for gesture recognition sys-
tems, as there are classifiers that give results on Kinect 1 data which are close to the best
obtained with Kinect 2, requiring a significantly reduced computation time. For example,
the best accuracy is with Simple Logistic (98.20%) on Kinect 1, a close value to the best
accuracy on Kinect 2 with Multilayer Perceptron of 99.08% (with 5.54s, respectively 65.93s
time required to build the model).

We also found that some classifiers (for example Hoeffding Tree, Bagging, Naive Bayes or
Naive Bayes Updateable) improve their accuracy when class specificity and the number
of classes are increased, where applicable.

• Chapter 4: In this chapter, the original contribution is presented in the approach to-
wards the classification of time-series gestures. The results published in [Căl16c] were
very promising for both sensors (up to 97.85%). They show that there is a good potential
in time series gesture recognition classifiers for recognising complex one-hand gestures,
such as shapes of letters or digits.

When we compared the performance of the two algorithms depending on database size,
we discovered that DTW performs better with fewer entries per class (a drop in accuracy
from 97.80% to 66.6%, when we increased the number of entries per class). In what con-
cerns HMM, the algorithm yielded a similar or higher accuracy when we increased the
number of samples per class. The best overall result was obtained by DTW (97.80% on
Kinect 1), whereas the highest value for HMM was a bit lower (96.35% on Kinect 2). Still,
DTW is dependent on the database size, which, if increased too much, will negatively
affect its performance. This makes HMM preferable for gesture recognition in systems
that are dynamically created and adjusted, while DTW might be a better option for static
systems, in which the number of samples is previously established and there is a non-
modifiable set of the gestures we want to classify.

• Chapter 5: Moving forward, this chapter presents an original contribution in motion anal-
ysis, proposing a method to increase accuracy for the classification of multi-joint complex
gestures. A better classification accuracy was obtained after applying our method, with
improvements of up to 56% for HMM and up to 32% for DTW, respectively. Further-
more, a positive correlation between movement amplitude and the EF feature was found
(r=0.92), a result from which we can easily derive user feedback to help patients improve
on the physical performance of an exercise. The proposed model and the results obtained
have been presented in [CPB17].

• Chapter 6: This chapter describes our original contribution regarding dynamic game dif-
ficulty balancing and the way in which we are able to use indirect motion input from the
users to personalise their interaction. Based on these results we look into a practical appli-
cation for game difficulty balancing in active ageing systems for elderly people, proposing
a tailored model presented in [Căl16b]. The second part of this chapter features clinical
implications outlined by independent researchers from the academic and medical field
[STS15; Sta+16; Mol+17].

• Chapter 7: In this chapter we draw the main conclusions of our research and specify the
most relevant directions and potential improvements that we propose as future work.
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1.3 The importance of this research and main conclusions

In this thesis we have explored the use of Kinect and machine learning methods for gesture
recognition and motion analysis, obtaining results that are reliable to be explored further for
use in practice (over 90% accuracy for pose and gesture recognition). Ultimately, we aim to
construct an intelligent virtual assistant that is able to provide adequate feedback to patients
using home-based rehabilitation systems on how to improve their movement performance.

All these research findings have been aimed to support and improve existing commercial
rehabilitation systems, such as MIRA, which is used in over 70 clinical institutions across 7
countries. Its impact in enhancing the experience of rehabilitation therapy and its outcomes
and other benefits have been quantified by collaborating partners from the rehabilitation do-
main and independent clinical researchers [STS15; Sta+16; Mol+17] in feasibility studies and
randomised controlled trials.

There are several other potential directions to make use of our research findings, extend-
ing to other systems which use motion cameras for interaction. Furthermore, recognising user
states or emotions, gesture prediction or gesture generation are some of the other topics of high
interest as future work.
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