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INTRODUCTION 
 

Mesozoic tropical carbonate platforms are well known for their extensive 

paleogeographic distribution. The southern part of the Tethys Ocean was marked by large 

scale development of such paltforms (Ferreri et al., 2004). They form distinct 

sedimentary units which are defined by clear bedding and high rates of sediment 

accumulation.  The main goal of this study is to highlight the cyclic carbonate 

sedimentation in an upper Tithonian–lower Valanginian carbonate succession, by 

integrating various analysis techniques. The carbonate deposits from these region were 

studied on a large scale by various authors. Jekelius (1938), Oncescu (1943), Popescu 

(1966), Bucur (1978), Patrulius et al. (1980), Pleş et al. (2013), Mircescu et al. (2014), 

Mircescu et al. (2016)]. The applied methodology allowed us to 1) identify small scale 

sequences; 2) group such sequences into middle scale sequences; 3) perform a detailed 

biostratigraphic analysis of the entire succession; 4) apply chemostratigraphic and 

microfacies analysis techniques on marker beds in order to highlight subaerial exposure 

processes; 5) reconstruct the evolution of the entire carbonate platform in a sequence 

stratigraphic context.     
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1. Piatra Craiului Massif. Location and geological 

framework 

 
Piatra Craiului Massif forms a 25 km long NE-SW oriented calcareous ridge (Fig. 1). 

Here, the sedimentary succession from this massif represents part of the easternmost 

sector of the Getic Carbonate Platform. These sedimentary formations are included in the 

Getic Nappe (Săndulescu, 1984) which is part of the Median Dacides (Fig. 2). The 

geological evolution of this tectonic unit is marked by the late Jurassic closure of the East 

Vardar Ocean (Maţenco et al., 2010) and the tectonic movements associated with the 

Cretaceous continental colision (Schmid et al., 2008). The carbonate succession from the 

Piatra Craiului Massif forms an integrating part of the ,,Braşov Series” (Patrulius, 1969). 

They form large scale outcrops arround Braşov (Postăvaru and Piatra Mare Massifs, 

Măgura Codlei), in the Piatra Craiului Massif, Dâmbovicioara Area, and the Bucegi 

Mountains. The early Tithonian–early Valanginian sediment accumulation was strongly 

influenced by a paleobathimetric deepening which corresponds to a NW-SE alignment. 

This alignment starts from the Piatra Craiului Massif and stretches towards the Bucegi 

Mountains through the Postăvaru-Piatra Mare Massif (Patrulius, 1969; Bucur et al., 

2010). 

The Piatra Craiului Massif comprises the western flank of a homonymous 

syncline unit which represents an integrating part of the Dâmbovicioara Couloir 

(Patrulius, 1969) (Fig. 2). Bajocian–Bathonian detrital and carbonate deposits form the 

first term of the sedimentary succession. They cover directly the basement belonging to 
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Fig. 1 Location of the Piatra Craiului Massif and the most important geomorphological 
elements  (from http://www.nikonisti.ro/articole/zbor-peste-transilvania-dragos-asaftei/801) 

the Cumpăna and Leaota metamorphic Groups. The next term of the sedimentary cover 

includes upper Callovian–Oxfordian carbonates and siliceous rocks (Jekelius, 1916; 

Oncescu, 1943; Patrulius, 1969; Bucur, 1980; Beccaro and Lazăr, 2007). Kimmeridgian–

lower Valanginian shallow water carbonates represent the bulk of the entire Mesozoic 

succession. They were studied in detail by several authors  (Popescu, 1966; Bucur, 1978; 

Panaiotu, 2000; Bucur et al., 2009; Pleş et al., 2013; Mircescu et al., 2014; Mircescu et 

al., 2016). They are defined by a gradual transition from reef slope deposits to inner 

 

 

 

 

platform peritidal carbonates. 
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Fig. 2 (1- Cumpăna metamorphic series; 2- Leaota metamorphic series; 3- Magmatic rocks; 4- Bajocian-Callovian; 
5- Callovian-Oxfordian; 6- Kimmeridgian-?Valanginian inferior; 7- Hauterivian; 8- Barremian; 9- Aptian; 10- 
Albian; 11- Vraconian-Cenomanian; 12- Turonian-Maastrichtian; 13- Paleogen; 14,15,16,17- Cuaternary deposits; 
after Dimitrescu et al., 1971; Dimitrescu et al., 1974;   Patrulius et al., 1971; Săndulescu et al., 1972, with slight 
changes) 
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2. Materials and methods 

Fieldwork activities were deployed between 2016-2017. A total number of 1163 samples 

were collected and 1163 thin sections were prepared. An additional number of 1000 

previouslz collected samples were reinterpreted.  Sampling was performed at meter to 

centimeter resolution. Bed thickness measurements were made in the field. Standard 

microfacies classification follows Dunham (1963) and Embry and Klovan (1971). Ten 

sections were studied: Poiana Zănoaga-Vf. Piatra Mică, Poiana Zănoaga-Gura Râului, 

Turnu-Curmătura, Padina Închisă-Drumul lui Lehmann, Padina Popii, Ciorânga Mare-Vf. 

Ascuţit-Padinile Frumoase, Padina lui Călineţ, Vlăduşca,  Zaplaz-Lanţuri şi Padina 

Lăncii (Fig. 3). Isotope chemostratigraphy was performed on 37 carbonate powders. 

Marine limestones were sampled from their matrix, by carefully avoiding fractured areas. 

For the supposed subaerially exposed limestones, samples were taken either from the 

iron-oxide pigmented matrix or from black pebble type intraclasts. Isotope analysis was 

performed at the Iso-Analytical Limited Laboratory from Cheshire, Great Britain.  

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Location of the studied sections (A-Poiana Zănoaga-Gura Râului; B-Poiana Zănoaga-Piatra Mică; C-Curmătura-Turnu; 
D-Padina Închisă-Drumul lui Lehmann; E-Padina Popii; F-Ciorânga Mare-Vf. Ascuţit-Padinile Frumoase; G-Padina lui 
Călineţ; H-Vlăduşca; I-Zaplaz-Lanţuri; J-Padina Lăncii) (from Dimitrescu et al, 1971; Dimitrescu et al, 1974;   Patrulius et al, 
1971; Săndulescu et al, 1972, with slight changes). 
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3. Microfacies and microfossils identified in the Kimmeridgian-

Tithonian- ? Lower Valanginian deposits 

 

Twenty-eight lithofacies types were grouped together in eight facies associations (Table 

1) by applying sedimentological and compositional analysis techniques (Table 1). They 

form the main component of the studied sections  

Reef slope deposits and bioconstructions  

This facies association is represented by alternating coral-microbial microencruster 

boundstones and bio-intraclastic rudstones. Corals are encrusted by different associations 

of encrusting organisms (Lithocodium/Bacinella type structures), worm tubes and 

calcareous sponges (Calcistella jachenhausenensis Reitner) (Fig. 3-4).  

Outer platform bioclastic deposits  

These facies types mark the transition from the underlying reefal deposits to the peritidal 

carbonates which form the bulk of the entire carbonate succession (Fig. 5). They 

represent outer platform high energy deposits (bioclastic shoals). This supposition is 

strengthened by the subangular character of the clasts. The presence of micritic rims 

arround various bioclasts  indicates that micritisation occured mainly in low energy 

environments. These bioclasts were subsequently reworked in such high energy settings. 

The faunal assemblage is diverse. It includes both reefal fragments (corals, calcified 

sponges) and inner platform bioclasts (bivalves, gastropods and dasycladalean algae) 
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Outer platform subaerially exposed carbonates 

This carbonate unit has a total thickness o approximately 4 meters. It contains high 

energy, subtidal limestones (peloidal bioclastic grainstone, bioclastic grainstone, 

intraclastic bioclastic grainstone) (Fig. 6) with black pebble type intraclasts and 

fragments of iron-oxide matrix  (Fig. 6). Blackened bioclasts (cyanobacteria nodules, 

coral fragments or calcified sponges) are frequently associated with such intraclasts  (Fig. 

6). Other reworked elements include fragments of iron-oxide rich matrix. Voids are filled 

with vadous silty-argillaceous or ferruginous material. Their margins are bordered mostly 

by dog-tooth cements (Fig. 6).  

Low energy subtidal deposits  

It comprises the following facies types: wackestone-floatstone with gastropods, bindstone 

with bacinellid structures, wackestone with dasycladalean algae (Clypeina sulcata) (Fig. 

7). Faunal diversity is relatively high. Other bioclasts are represented by cyanobacteria 

nodules and mollusks (Fig. 7). Bioturbation is common.  

Peritidal limestones  

Facies associations seven and eight (F7-F8) characterize these limestones which were 

deposited in peritidal settings (Fig. 8). Their accumulation is strongly influenced by tidal 

activity.    

Intertidal limestones  

Facies association F7A comprises the following facies types: fenestral wackestone-

packstone with cyanobacteria nodules, oncoidic wackestone-packstone, peloidal 

wackestone, fenestral wackestone, wackestone with laminoid fenestral structures. 
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Bioclasts are represented by cyanobacteria, miliolid type foraminifera and bivalves.  

Peloids may form distinct laminitic structures wich contain abundant meniscus cement.  

Fenestral pores are frequent. Their dimension ranges from 10 microns to 3 mm. They can 

form systems of laminoid fenestral structures which are filled with granular or 

microgranular sparite. Geopetal sediment is commonly asociated with  these structures. 

Dessication cracks are disposed perpendiculary on the general orientation of the laminae  

.  

Facies association F7B includes the following facies types: peloidal bioclastic grainstone, 

peloidal intraclastic grainstone, intraclastic packstone-grainstone, peloidal intraclastic 

bioclastic packstone-grainstone, intraclastic grainstone, peloidal fenestral grainstone, pel-

oncoidal grainstone. These limestones contain abundant intraclasts and peloids. The 

faunal assemblage of the grainstone type facies includes mainly Rivularia type 

cyanobacteria. Small, subrounded peloids are commonly associated with micritic 

intraclasts.  They may form moderate sorted laminitic structures with subangular to 

subrounded elements.  Rounded to subrounded intraclasts are derived from cyanobacteria 

nodules. In other cases they are well sorted, with dimensions ranging from twenty to 

thirty micrones. Micro-firmground surfaces are very well developed. Bioclasts include 

cyanobacteria nodules and rare bivalves, gastropods or foraminifera. Oncoids have a 

micritic composition. Their nucleus has a disorganised structure while the laminae 

contain fine grains wich form slightly discontinuous features. Cyanobacteria nodules or 

dasycladalean algae can form the nucleus of numerous ooids. Some aggregated ooids 

may present micritic rims and signs of algal-microbial perforations. Meniscus cement is 
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present between all type of grains Sharp transitions from grainstone to wackestone facies 

types are common.  

Supratidal deposits    

This facies association is composed of homogeneous non-fossiliferous mudstone, 

different types of caliches, brecciated mudstone, mudstone-wackestone with structures 

resembling rhizoliths, mudstone-wackestone with rare fenestral structures or wackestone 

with vadoids (Fig. 9). Fenestral structures may be present. Brecciated structures are 

common and the microfauna is very scarce. It includes thin shell bivalves, ostracods and 

rare cyanobacteria. In some cases, microlaminitic structures are developed. They are 

composed of very fine, alternating layers of dark micrite and lighter microsparite. Small 

scale fenestral pores are generated by the lateral growth of cyanobacteria and microbes. 

They can agglutinate muddy carbonate particles which are subsequently washed away, in 

tidal flat areas. The brecciated structures contain vadous silt. Fenestral pores can be filled 

with geopetal sediment.   

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Reef slope deposits (A-B-Coral-microbial boundstone with Crescentiella 
morronensis; C-Coral-microbial boundstone; D-Bioturbations; E-F-Silicified 
packstone; G-H-Bioclastic rudstone) (Scara: 1 mm)  
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Fig. 4 Bioconstructions [A-Coral-microbial boundstone with Crescentiella morronensis; B-Internal sediment with 
various bioclasts; C-D-Boundstone with peloidal wackestone type internal sediment; E-H-Bioclastic rudstone 
(Scara: 1 mm)] 
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Fig. 5 Outer platform bioclastic limestones (A-B-Ooidic bioclastic grainstone with 
dasycladalean algae and cyanobacteria nodules. The ooids are frequently broken and 
regenerated. Their nucleus contains cyanobacteria nodules; C-Peloidal grainstone with 
cyanobacteria nodules; D-Bioclastic peloidal grainstone with gastropods, echinoderm 
plates and cyanobacteria nodules; E-F-Coarse bioclastic grainstone with gastropods, 
bivalves, cyanobacteria nodules and foraminifera. Micritic rims are developed around 
various bioclasts; G-H-Coarse bioclastic grainstone with coral fragments, crustaceans, 
echinoderms and gastropods. Scale: 1 mm) 
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Fig. 6 Outer platform bioclastic carbonates with subaerially exposed intraclasts (A-
Intraclastic bioclastic grianstone with micritised coral fragments, gastropods and 
cyanobacteria nodules; B-subaerially exposed peloidal intraclastic grainstone; C-Peloidal 
bioclastic grainstone with cyanobacteria nodules; D-Peloidal bioclastic grainstone. 
Bioclasts are represented by coral fragments, crustaceans and cyanobacteria nodules. Iron 
oxides and dog-tooth cement fill the voids between various bioclasts and peloids. Rare 
bioclasts include some cyanobacteria nodules. Blackened bioclasts and reworked black 
pebbles are common; F-Blackened coral fragment; G-H: Altered peloidail intraclastic 
grainstone with cyanobacteria nodules. Scale: 1 mm) 
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Fig. 7 Low energy subtidal deposits (A-Intraclastic wackestone with bivalve fragments 
and scarce peloids; B-Wackestone with thick shell gastropods; C-D-Wackestone with 
Bacinella and Lithocodium type structures; E-F-Wackestone with Clypeina sulcata; G-H-
Wackestone with bivalves and gastropods. Scale: 1 mm) 
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Fig. 8 Intertidal limestones (A-Fenestral wackestone; B-Fenestral laminoid wackestone 
with peloidal laminitic structures; C-Oncoidic wackestone-packstone; D-Fenestral 
laminoid wackestone with rare peloids and dessication cracks; E-Peloidal intraclastic 
grainstone. Meniscus cement is present between peloids, intraclasts and other grains; F-
Transition from an ooidic grainstone to a laminoid fenestral wackestone; G-Transition 
from a peloidal grainstone to fenestral wackestone; H-Peloidal oncoidic grainstone with 
cyanobacteria nodules. Meniscus and gravitational cements are present between peloids 
and intraclasts. Scale: 1 mm) 
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Fig. 9 Supratidal limestones (A-B-Homogeneous, non-fossiliferous mudstone; C-
Fenestral wackestone. Geopetal sediment is filling the fenestral pores; D-Mudstone with 
rare thin shell bivalves and cyanobacteria nodules; E-F-Caliches; G-Vadoids; H-
Brecciated mudstone) 
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4. Interpretation of microfacies analysis data 

Litostratigraphic interval I (Fig. 10) is represented by alternating coral-microbial 

microencruster boundstones and bio-intraclastic rudstones. Corals are encrusted by 

different associations of encrusting organisms (Lithocodium/Bacinella type structures), 

worm tubes and calcareous sponges (Calcistella jachenhausenensis Reitner). 

Litostratigraphic interval II includes coarse bio-intraclastic grainstones with gastropods, 

dasycladalean algae, calcified sponges, echinoderm fragments  and benthic foraminifera 

(Fig. 10). Intraclasts are represented at some levels by various-sized black pebbles (mm 

to cm). Some have a brecciated structure consisting of blackened bioclasts encased in a 

muddy matrix which is pigmented with iron oxides. In some cases they consist of 

darkened bioclasts (cyanobacteria nodules, dasycladalean algae). This litostratigraphic 

interval contains a correlatable horizon which can be traced laterally in the studied 

sections. These facies types mark the transition from the underlying reefal deposits to the 

peritidal carbonates which form the bulk of the entire carbonate succession (Fig. 2; Fig. 

5A-B). They represent outer platform high energy deposits (bioclastic shoals). This 

supposition is strengthened by the subangular character of the clasts. The presence of 

micritic rims arround various bioclasts (Fig. 5H) indicates that micritisation occured 

mainly in low energy environments. These bioclasts were subsequently reworked in such 

high energy settings. The faunal assemblage is diverse. It includes both reefal fragments 

(corals, calcified sponges) and inner platform bioclasts (bivalves, gastropods and 

dasycladalean algae) (Mircescu et al., 2016; Săsăran et al., 2017) (Fig. 5D-H).   

 21



Reworked black pebbles may indicate the proximity of a subaerially exposed horizon 

(Vera and Cisneros, 1993). Blackened bioclasts and black pebbles are commonly sourced 

from adjacent intertidal or supratidal depositional environments  (Strasser, 1984). 

Subaerial exposure occurs when the eustatic sea-level drops and large quantities of 

carbonate material fill the available accomodation space, above the reef crest/slope 

(Hillgärtner, 2001; Săsăran et al., 2017). The presence of meniscus micrite could 

represent another argument which sustains the subaerial exposure of the rock fragments.  

The presence of such bioclasts, encased in a muddy, micritic matrix indicate 

accumulation in low energy subtidal lagoonal settings (Tucker and Wright, 1990). The 

muddy, micritic facies are interbedded with high energy outer platform deposits. This 

feature suggests deposition under low energy subtidal conditions, between the 

topographically elevated outer platform bioclastic shoals.   

Litostratigraphic interval III comprises the middle and upper parts of the carbonate 

deposits from the Piatra Craiului Massif (Fig. 10). Peloidal wackestone-packstone facies 

alternate with homogeneous mudstones with cyanobacteria. However, some levels of of 

bioclastic packstone/grainstone with dasycladalean algae and foraminifera were also 

identified in the uppermost part of this interval (Fig. 10). Fenestral structures are 

commonly associated with intertidal environments (Lucia, 1972; Tucker and Wright, 

1990). The presence of very well sorted peloids and ooids indicates prolonged transport 

periods, in a littoral area, with strong wave activity. The muddy facies contain fenestral 

structures, laminoid fenestral structures and abundant cyanobacteria nodules (Fig. 8B, E). 

These features indicate that carbonate sediment was deposited in intertidal restricted 
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ponds or beaches (e.g. Bucur and Săsăran, 2005; Săsăran, 2006). These ponds were 

isolated from the littoral areas were the coarser material was transported and deposited 

(Săsăran et al., 2013).  Pedogenetic alteration is responsible for the development of such 

brecciated structures or dessication cracks (Platt and Wright, 1992; Armenteros and 

Daley, 1998; Freytet and Verrecchia, 2002). Algal microbial mats are formed by 

cyanobacteria, in restricted environments. The presence of scarce ostracods indicates 

deposition in supratidal flat areas which were periodically flooded by waves. Rare 

fenestral structures commonly indicate transitions from intertidal to supratidal 

depositional settings (Săsăran et al., 2017).   

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10 Correlation of the studied section wich indicates the correlatable horizons and the texture of the most important 
carbonate levels 
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5. Biostratigraphy. Age of studied sections 
 

5.1 Biostratigraphic interval A (Kimmeridgian–early Tithonian) (Fig. 

11) 

The first interval contains the following biota: Salpingoporella pygmaea (GÜMBEL, 

1891) Clypeina sulcata (ALTH, 1882), Campbeliella striata (CAROZZI, 1954), 

Steinmanniporella kapelensis (SOKAČ & NIKLER, 1973), Petrascula bursiformis 

(ETALLON, 1859), Neoteutloporella socialis (PRATURLON, 1963), Salpingoporella 

annulata CAROZZI, 1953, Nodosaria sp., Lenticulina sp., Bramkampella arabica 

REDMOND, 1964, Everticyclammina praekelleri BANNER & HIGHTON, 1990, 

Labyrinthina mirabilis WEYNSCHENK, 1951, Lituola baculiformis SCHLAGINTWEIT 

& GAWLICK, 2007, Redmondoides lugeoni (SEPTFONTAINE, 1977), Neokilianina 

rahonensis (FOURY AND VINCENT), 1967, Parurgonina caelinensis CUVILLIER, 

FOURY & PIGNATTI MORANO, 1968,  Coscinoconus alpinus (LEUPOLD), 1936, 

Mohlerina basiliensis (MOHLER, 1938),  Everticyclammina sp. and Coscinophragma 

sp.. The microfossil association identified within this interval (0-410 m) is characteristic 

for the Kimmeridgian–Lower Tithonian interval. Even if some species of algae (e.g. 

Salpingoporella pygmaea or Clypeina sulcata) have a larger stratigraphic distribution, 

most of the identified taxa represent usefull bistratigraphical arguments.  

Salpingoporella pygmaea is known from Bajocian–Aptian carbonate deposits 

(Granier & Deloffre, 1993; Bucur, 1999; Carras et al., 2006) with a high frequency in the 
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Upper Jurassic (Kimmeridgian–Tithonian) (Farinacci & Radoičić, 1991; Senowbari-

Daryan et al., 1994).  

Clypeina sulcata is characteristic for the Kimmeridgian–Berriasian interval. It 

was mostly described from Upper Jurassic, Kimmeridgian–Tithonian sediments 

(Bassoullet et al., 1978).  

Campbeliella striata was mentioned by several authors from Kimmeridgian–

Lower Berriasian limestones (Carozzi, 1954; Farinacci & Radoičić, 1964). However, it 

was often identified in Kimmeridgian–Tithonian deposits (Jaffrezo, 1970; Bernier, 1971). 

Petrascula bursiformis and Neoteutloporella socialis are two species of algae 

which are common for the Upper Jurassic. They were identified in many Kimmeridgian–

Tithonian deposits of the Tethyan realm (Dragastan, 1975; Schlagintweit & Ebli, 1999; 

Bucur et al., 2005; Meinhold et al., 2009; Schlagintweit, 2011). 

Steinmanniporella kapelensis is a rare species known only from Tithonian 

deposits (Sokač & Nikler, 1973; Schlagintweit & Ebli, 1999; Bucur & Săsăran, 2012; 

Mircescu et al., 2014).  

Regarding the foraminiferal assemblage, Neokilianina rahonensis, Parurgonina 

caelinensis and Labyrinthina mirabilis represent the most biostratigraphical important 

taxons for this interval. They were reported mainly from Kimmeridgian–Tithonian 

sediments (Cuvillier et al., 1968; Septfontaine, 1988; Tasli, 1993; Pop & Bucur, 2001; 

Velić, 2007; Pleş et al., 2015).  

Considering this, the whole micropaleontological association identified in this 

biostratigraphic interval (Fig. 2) belongs to the Kimmeridgian–Lower Tithonian. Even if 
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some species of foraminifera (P. caelinensis, N. rahonensis and L. mirabilis) appear in 

the geological record starting with the uppermost Oxfordian (Septfontaine, 1988; 

Bassoullet, 1997; Velić, 2007; Pleş et al., 2015), the presence of radiolarites dated as 

Oxfordian (Mészáros & Bucur, 1980; Beccaro & Lazăr, 2007) just below the limestones 

of interval A, as well as the main associated biota (S. pygmaea, C. sulcata, P. 

bursiformis, R. lugeoni, E. praekelleri, C. alpinus, M. basiliensis) which represent typical 

Kimmeridgian-Tithonian taxa (Bucur, 1999; Schlagintweit et al., 2005), are arguments 

for assigning this interval to Kimmeridgian–Lower Titonian. Most of the mentioned taxa 

are known from carbonates no older than Lower Kimmeridgian (Bassoullet, 1997). In 

addition, the presence of Steinmanniporella kapelensis and several sclerosponge species 

(Calcistella jachenhausenensis, Neuropora lusitanica and Thalamopora lusitanica) 

confirms the Tithonian age of the upper part of biostratigraphic interval A.  

 

5.2 Biostratigraphic interval B (late Tithonian–early Berriasian) (Fig. 

11) 

 

In the second biostratigraphic interval (B), dasycladalean algae are less frequent while 

foraminifera are more abundant. Within this interval we have identified the following 

species:  Salpingoporella annulata CAROZZI, 1953, Clypeina parasolkani FARINACCI 

& RADOIČIĆ, 1991, Seliporella neocomiensis RADOIČIĆ, 1963, Pseudocyclammina 

lituus (YOKOYAMA, 1890), Rectocyclammina chouberti HOTTINGER, 1967, 
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Anchispirocyclina lusitanica (EGGER, 1902), Pseudotextulariella courtionensis 

BRÖNNIMANN, 1966.  

Clypeina parasolkani was described by Farinacci and Radoičić (1991) from 

Upper Tithonian-Berriasian deposits from Turkey (Pontides). Its presence is common in 

simillar deposits from Sardinia (Dieni & Radoičić, 1999), Italy (Apennines) (Bruni et al., 

2007), or Switzerland (Granier et al., 2014).  

Selliporella neocomiensis is a typical species for the Berriasian shallow water 

carbonates (Peybernès, 1976; Luperto-Sinni & Masse, 1986; Granier & Deloffre, 1993; 

Bucur, 1999; Săsăran & Bucur, 2001). 

 Anchispirocyclina lusitanica was mentioned by different authors mostly from 

Upper Tithonian–Berriasian deposits (Fourcade, 1970; Jaffrezo, 1980; Dya, 1992; 

Schlagintweit et al., 2005). 

Pseudotextulariella courtionensis is a Berriasian froaminifer commonly found in 

Lower Cretaceous limestones from Switzerland (Brönnimann et al., 1966), France 

(Darsac, 1983) or Spain (Pyrenees) (Schroeder et al., 2000).  

Pseudocyclammina lituus has a Kimmeridgian–Lower Valanginian distribution 

with a high frequency in Tithonian–Berriasian deposits (Darga & Schlagintweit, 1991; 

Mosshamer & Schlagintweit, 1999). 

It is difficult to trace the boundary between Tithonian and Berriasian inside the 

interval B. The micropaleontological assemblage of this stratigraphic interval (Fig. 2) 

indicates rather an Upper Jurassic-Lower Cretaceous transition. 
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 The first occurrence of Anchispirocyclina lusitanica is recorded at the base of 

biostratigraphic interval B (Fig. 2). This foraminifer is associated with Clypeina 

parasolkani and Pseudocyclammina lituus within the same stratigraphic interval. The 

transition towards Berriasian is indicated by the first occurrence of Seliporella 

neocomiensis (Fig. 2) and Pseudotextulariella courtionensis, thus the upper part of 

biostratigraphic interval B can be attributed to the Lower Berriasian (Granier & Bucur, 

2011) 

 

5.3 Biostratigraphic interval C (late Berriasian–early Valanginian) (Fig. 

11) 

 

Simillar to interval B within the interval C the foraminifera are more abundant than the 

algae. The main microfossils are represented by: Pseudocymopolia jurassica 

(DRAGASTAN, 1968),  Salpingoporella praturloni (DRAGASTAN, 1978), 

Ammobaculites sp.,  Bulbobaculites sp., Pseudocyclammina lituus (YOKOYAMA, 1890)  

,  Pseudocyclammina sp.,  Everticyclammina kelleri (HENSON, 1948), Frentzenella 

involuta (MANTSUROVA & GORBATCHIK), 1982, Coscinoconus campanellus 

(ARNAUD-VANNEAU, BOISSEAU & DARSAC), 1988, Coscinoconus cherchiae 

(ARNAUD-VANNEAU, BOISSEAU & DARSAC), 1988, Nautiloculina bronnimanni 

(ARNAUD-VANNEAU & PEYBERNÈS), 1978, Montsalevia salevensis 

(CHAROLLAIS, BRÖNNIMANN & ZANINETTI), 1966, Scythiolina sp. (Fig. 5J), 

Paracoskinolina?  jourdanensis 
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 FOURY & MOULLADE, 1966, Pfenderina neocomiensis (PFENDER, 1938), 

Freixialina planispiralis RAMALHO, 1969, Protopeneroplis ultragranulata 

(GORBATCHIK, 1971).  

Dasycladalean algae (Pseudocymopolia jurassica, Salpingoporella praturloni) are 

rare. They were identified in a stratigraphic level which is located in the uppermost part 

of this interval. Foraminifera (Protopeneroplis ultragranulata, Paracoskinolina?  

jourdanensis, Pfenderina neocomiensis, Coscinoconus cherchiae, Coscinoconus 

campanellus, Nautiloculina bronnimanni, Montsalevia salevensis, Freixialina 

planispiralis) are abundant within the same level (Fig. 2).  

Pseudocymopolia jurassica and Salpingoporella praturloni are generally known 

from Berriasian–Valanginian deposits (Dragastan, 1975; Jaffrezo, 1980; Bucur, 1985; 

Farinacci & Radoičić, 1991; Bucur & Săsăran, 2005).  

Protopeneroplis ultragranulata has a large stratigraphic distribution (Middle 

Tithonian-Barremian) with an acme in the Berriasian-Valanginian (Altiner, 1991; 

Chiocchini et al.,  1994; Bucur, 1997).  

Paracoskinolina?  jourdanensis was described for the first time from Lower 

Barremian deposits by Foury and Moulade (1966). However, it is frequent in Upper 

Berriasian–Valanginian deposits, in association with Pfenderina neocomiensis (Bucur et 

al., 1995).  

Montsalevia salevensis is known from numerous Valanginian deposits throughout 

Europe (Charollais et al., 1966; Velić & Sokač, 1983; Boisseau, 1987; Ciocchini et al., 

1988; Bucur,  1988; Schroeder et al., 2000).  
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Coscinoconus cherchiae and Coscinoconus campanellus are commonly found in 

Upper Berriasian-Lower Valanginian carbonate rocks from Italy (Mancinelli & Coccia, 

1999), Serbia (Bucur et al., 1995), Romania (Neagu, 1994) or Bulgaria (Ivanova, 2000).   

Concluding, the above mentioned assemblage indicates a late Berriasian-early 

Valanginian age, but the exact position of the boundary between Berriasian and 

Valanginian is difficult to be precised. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 Litostratigraphic and micropaleontological characteristics of the carbonate 
succession from the Piatra Craiului Massif [1-Bioclastic rudstone with coral fragments, 
echinoderm spines; 2-Coarse bioclastic intraclastic grainstone with cyanobacteria 
nodules, dasycladalean algae (Neoteutloporella socialis; Campbeliella striata) and 
gastropods. Black pebbles consist of blackened cyanobacteria nodules; 3-Peloidal 
fenestral packstone with cyanobacteria nodules; 4-Peloidal intraclastic grainstone with 
cyanobacteria nodules and angular/subangular micritic intraclasts; 5-Peloidal bioclastic 
intraclastic grainstone. 6-Peloidal grainstone with cyanobacteria nodules] (Scale bar: 1 
mm). 
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6. Isotope chemostratigraphy 

6.1 Isotope values of the studied intervals 

Platform margin carbonates were sampled for isotope chemostratigraphic analysis in two 

main sections: Ciorânga Mare-Vârful Ascuţit-Padinile Frumoase and Zaplaz-Lanţuri 

(Fig. 12-13). The thickness of sampled intervals ranges between 8 and 10 meters (Fig. 

12-13).  

 

6.1.1 Ciorânga Mare-Vârful Ascuţit-Padinile Frumoase section 

The samples located below the black pebble bearing level (1082-1094, Fig. 14D, bellow 

red rectangle) record values between 0.92 ‰ δ13C şi 2.58 ‰ δ13C. The carbon isotope 

curve increases from 0.92 ‰  δ13C to 2.58 ‰ δ13C. Then, it drops to 0.61 ‰ δ13C and it 

increases again to 2.05 ‰ δ13C.  Carbon isotope values are positive (samples 1095-1098) 

and record similar values both for the black pebbles and for the iron oxide pigmented 

matrix.  For this reason, their values were plotted on the same line. The oxygen curve is 

parallel with the carbon curve (Fig. 14D), and their direction is strikingly similar. The 

oxygen values record a slight increase, bellow the black pebble bearing level , from -4 ‰ 

δ18O  to -1 ‰ δ18O (samples 1082-1086). Its values drop again to  -4  ‰ δ18O and remain 

constant between -4 and -3 ‰ δ18O (samples 1088-1093). For the black pebble bearing 

level, the values drop from -1.5 ‰ δ18O  to -2.8 ‰ δ18O.  
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6.1.2 Zaplaz-Lanţuri section  

In this section, the isotope curve trends are different. The samples located bellow the 

black pebble bearing level have positive values (+ 2 ‰ δ13C) (Samples 624-625, Fig. 

15D, G). Above this level, the carbon isotope values drop until  + 0.5 ‰ δ13C (Sample 

634b f). Isotope values are negative within the black pebble interval. Such values 

characterise both the black pebbles and the iron oxide pigmented matrix. Carbon and 

oxygen isotope data shows simillar values for the matrix and black pebbles. For this 

reason, the values were plotted together on the same line. Isotope values record a slight 

decrease from -0.9 ‰ to -1.1 ‰ δ13C (Samples 626-628) and stay constant at -1.4  ‰ 

δ13C (Samples 630, 631-632). Furthermore, they drop  until -1.9  ‰ δ13C before they 

increase again to -0.5 ‰ δ13C (Samples 634 a). The oxygen isotope values record 

extreme negative values of -4 ‰ δ18O for the samples located bellow and above the black 

pebble bearing level (Samples 625 and 634 b). Between these points they range between  

-1.5 ‰ şi -2.00 ‰ δ18O.   In this section, the carbon and oxygen isotope curves do not 

have a parallel direction. They are defined by a mirror type arrangement.  

6.2 Interpretation 

Carbon stable isotopes represent the best method for highlighting subaerial 

exposure surfaces in carbonate environments (Banner and Hanson, 1990; Oehlert and 

Swart, 2014). Oxygen isotopes are used on a lesser extent since diagenesis has a stronger 

impact on their values (Allan and Mathews, 1982). Fragments of subaerially exposed 
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carbonates are present in the outer platform deposits of the Ciorânga Mare-Vârful 

Ascuţit-Padinile Frumoase section. The presence of black pebbles and blackened 

bioclasts in a predominat marine, packstone-grainstone matrix (Fig. 14F-G) represent 

additional arguments in this sense. Carbon isotope values record positive values  both for 

the black pebble intraclasts and for the matrix. Upper Jurassic carbon isotope curves were 

produced mainly from pelagic deposits of the Tethyan and Boreal domains (Weissert and 

Channel, 1989; Weissert and Mohr, 1996; Katz et al., 2005; Michalik et al., 2009; Žák et 

al., 2011; Coimbra and Oloriz, 2012). The carbon isotope curves from the Ciorânga 

Mare-Vârful Ascuţit-Padinile Frumoase section are simillar with other carbon isotope 

values obtained by various authors from  Tithonian pelagic carbonates of the Tethyan 

domain (Weissert and Channel, 1989-Italy; Price et al., 2016-Hungary; Weissert and 

Mohr, 1996-Switzerland). Isotope chemostratigraphy studies were performed on a lesser 

extent on Tithonian shallow water carbonates. Thus, a quality check and a  comparison 

with other pelagic data is necessary, in order to create a suitable chemostratigraphic 

model. Amodio et al. (2008) indicate that the Middle Jurassic–Lower Cretaceous pelagic 

isotope curves are simillar with their analogue shallow water correspondent. The isotope, 

microfacies and diagenetic characteristics of the Zaplaz-Lanţuri samples confirm the 

existence of subaerial exposure processes. The negative values of the black pebble carbon 

isotope samples (Zaplaz-Lanţuri section) suggest enrichment in organic matter. 

Longmann (1980) indicates that such processes may occur under subaerial exposure 

conditions. As a consequence, carbon isotope values will become more negative. In 

addition, the matrix hosting these intraclasts has the same negative values. Black pebbles 
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are frequently associated with subaerial exposure and meteroric diagenesis (Freytet and 

Plaziat, 1982; Strasser and Davaud, 1983; Strasser, 1984).  Their development is 

associated with terrestrial plant decay and impregnation of pre-existing carbonate 

material with organic matter. Meteoric diagenesis will trigger carbonate material 

alteration and such negative shifts of carbon isotope values   (Gradstein, 2012). These 

values characterise subaerially exposed surfaces (samples 634 a-b) (Allan and Mathews, 

1983; Lohmann, 1988; Algeo et al., 1992) where dissolution processes are very active 

under the action of meteoric water. Dissolution alternates with short-lived carbonate 

reprecipitation and the carbon isotope composition shifts progressively towards more 

negative values (Salomons and Mook, 1986). Meteoric diagenesis is indicated by the 

presence of vadous silt  (Longman, 1980) and meniscus micrite (Fig. 15B, yellow 

circles). This type of cement is formed durring meteoric diagenesis and subaerial 

exposure (Longman, 1980; Hillgärtner et al., 2001). In this diagenetic context, it can be 

associated with abundant micritic rims and meniscus sparite (Fig. 15B, yellow circles) 

(Hillgärtner et al., 2001). The existing microfossil asociations indicate a lower Tithonian 

age for these intervals. These are equivalent, outer platform carbonate levels  which 

contain fragments of reworked subaerially exposed limestones  or in situu subaerially 

exposed carbonates. The two sections show simillar microfacies characteristics. 

However, their geochemical imprint is totally different. A possible scenario could suggest 

that the carbonate levels from the Ciorânga Mare-Vârful Ascuţit-Padinile Frumoase were 

forming a more distal depositional area. Black pebbles and blackened bioclasts were 
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sourced from an adjacent subaerially exposed surface. By contrast, in the Zaplaz-Lanţuri 

section, the subaerial exposure is evident and in-situu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 Microfacies and isotope values from the outer platform deposits of the Ciorânga 
Mare-Vârful Ascuţit-Padinile Frumoase section [(A-B- Altered intraclastic peloidal 
grainstone; C-Peloidal intraclastic grainstone; D-Isotope values of the sampled interval; 
E-G-Polished slabs indicating isotope values for both matrix and black pebble type 
intraclasts) (Scale: A-C-1 mm; E-G-1 cm).   
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Fig. 13 Microfacies and isotope values from the outer platform deposits of the Zaplaz-
Lanţuri section [A-Peloidal intraclastic packstone. It contains fenestral pores filled with 
vadous silt. In addition, meniscus micrite and sparite form bridges between well sorted 
peloids (yellow circle); B-Bioclastic grainstone with corals and cyanobacteria nodules. 
Meniscus micrite is present between various peloids and intraclasts (yellow circles). 
Micritic rims are developed on gastropod fragments (white circle). The yellow arrow 
indicates the presence of black pebble type intraclasts; C-Altered bioclastic grainstone 
with dasycladalean algae and cyanobacteria nodules. The original sparite is replaced by 
abundant iron oxides; D-Isotope values for the studied interval; E-G-Polished slabs 
indicating isotope values for both matrix and black pebble type intraclasts] (Scale: A-C-1 
mm; E-G-1 cm) 
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7. Vertical facies stacking patterns, small scale sequences and 

medium scale sequences 

Two distinct depositional units were identified by analysing the vertical stacking patterns 

of the most important facies types. The first one contains alternating low and high energy 

outer platform limestones. The second one is defined by inner platform peritidal 

carbonates  (Fig. 14). They contain vertically stacked small scale sequences which are in 

turn grouped in  middle scale sequences. The basal part of the Ciorânga Mare-Vârful 

Ascuţit-Padinile Frumoase section contains lower Tithonian outer platform carbonates 

which pass vertically into lower Tithonian–Berriasian–lower Valanginian peritidal 

limestones. Upper Tithonian–lower Valanginian peritidal limestones form the 

sedimentary succession of the Vlăduşca section. Small scale sequences show hierarchical 

stacking patterns in both studied sections. Each small scale sequence is composed of 

elementary sequences. An elementary sequence comprises either an individual carbonate 

bed or a series of carbonate beds from the same depositional setting   (Strasser et al., 

1999; Strasser and Vedrine, 2009). In this study we use the scheme proposed by Strasser 

et al. (1999). These authors described in detail the concept of deepening-shallowing 

sequences. Such small sequences are bordered by flooding surfaces. They contain an 

initial transgressive component (blue triangles, Fig. 14), which is disposed directly on the 

basal flooding surface. Shallowing upward deposits overlay this initial transgressive unit 

(red triangles, Fig. 14) (deepening-shallowing sequences defined by transgressive 

surfaces). They are covered by another succesive flooding surface.       
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These structures represent the equivalent correspondent of a parasequence, sensu Van 

Wagoner et al. (1988). The application of this terminology represents the most suitable 

way to describe peritidal carbonates (Strasser, 1994).  To be more precise, sequence 

stratigraphic concepts have to be integrated in the description of small scale sequences in 

order to explain their depositional history in a more dynamic context. The lack of a 

detailed geochronological study on the carbonate platform creates difficulties in asigning 

fifth to sixth order cycles or thirth to fourth order parasequences (sensu Van Wagoner et 

al., 1988; Husinec and Read, 2004; Anderson, 2004a, b). The existing microfossil 

assemblages did not allow a clear delineation of each stratigraphic stage. Thus, it is 

extremely difficult to establish a temporal connotation for these genetic units.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 

Fig. 14 Vertical facies distribution of the main facies types in the Cioranga Mare-Vf. Ascutit-Padinile Frumoase section 
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8. Sequence stratigraphic implications 

Thick packages of slope and reef carbonates were deposited durring Kimmeridgian–Early 

Tithonian. Further details regarding the microfacies and depositional features of these 

limestones can be found in Pleş et al. (2013), Mircescu et al. (2014; 2016) and references 

therein. Lower Tithonian outer platform carbonates cover these Upper Jurassic basal 

units. The subaerially exposed horyzon can be associated with a laterally continuous 

sequence boundary. This hypothesis is strengthened by the existing microfacies, 

diagenetic and chemostratigraphic data.  The sequence boundary is located in the middle 

part of the outer platform carbonates (Fig. 2). It is covered directly by thick packages of 

transgressive bioclastic and ooidic carbonates.  Subaerial exposure and meteroric 

diagenesis are usually associated with such sequence boundaries wich are covered 

directly by transgressive units (Strasser, 1999; Hillgärtner et al., 2001). The initial 

flooding is followed by the development of aggradational deposits. Compact carbonate 

banks start to develop. Their thickness is constant (0.75 m, Fig. 14A) and vertical facies 

transitions are common, from pure oolitic to pure bioclastic units or a combination of 

these two cathegories. Such topographically elevated regions shelter low energy areas, 

where finer sediment will acumulate. Simillar depositional models were described by 

Enos (1977) or Purdy (1974). The entire peritidal succession has a prograding character. 

The small scale sequences represent incomplete carbonate cycles with missing subtidal 

units (Fig. 14).  

Low amplitude marine level changes are indicated by the presence of very rare caliches 

and shallow water conditions (Husinec and Read, 2007). Autocyclic processes were 
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responsible for the formation of the small scale sequences. They involve shoreline 

progradation and lateral transitions of intertidal and supratidal facies belts (Ginsburg, 

1971; Matti and McKee, 1976; Pratt and James, 1986). Such processes are typical for 

shallow water carbonate platforms (Strasser, 1994). The thining tendencies of successive 

superimposed small scale sequences indicate a decrease in the available accomodation 

space and progradation of the entire succession. Littoral intertidal deposits are missing 

from the uppermost part of the succession. They are replaced by restricted intertidal or 

supratidal limestones. As the entire succession is prograding, conditions become 

restricted and the available accommodation space is reduced (Goldhammer and 

Lehmann, 1991). The formation of deepening-shallowing sequences follows two major 

stages. There is an initial stage when carbonate production is high. Accommodation space 

is created imediately above de flooding surfaces and littoral intertidal sediments are 

deposited. The presence of abundant peloids and ooids indicate open marine conditions. 

Maximum carbonate production in  carbonate peritidal systems is commonly associated 

with initial sea-level rise and creation of accommodation space (Strasser, 1994). The 

second stage involves a sea-level drop which will create shallower conditions. Thining 

upward tendencies suggest a reduction of the available accommodation space and 

transitions towards shallow environments. Environmental conditions become more 

restricted and the intertidal ponds and swamps are isolated from open marine areas 

(Strasser and Vedrine, 2009). Carbonate sediment is produced mainly by Rivularia type 

cyanobacteria (Săsăran et al., 2013). As the accommodation space is reduced, restricted 

intertidal deposits will prograde and migrate laterally over the basal littoral intertidal 
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deposits. Middle scale sequence facies distribution can be explained by such deepening-

shallowing tendencies. This evolutional model shares simillar characteristics with other 

models proposed by various authors (Strasser, 1991; Strasser and Hillgärtner, 1998). 

Slight deepening and recurrent open marine conditions characterise the high energy 

subtidal deposits from the upper part of the studied sections. Normal marine conditions 

are indicated by the presence of abundant echinoderm plates.  These lithological units 

mark the transition towards the upper Valanginian marlstones. A sharp contact separates 

the subtidal deposits from the overlying lithological units. This surface is equivalent with 

the same discontinuity identified by Patrulius (1969) in the Dâmbovicioara area. 

Grădinaru et al. (2016) described this limit as a drowning unconformity. The entire 

peritidal succession from the Piatra Craiului Massif contains deepening-shallowing small 

scale sequences which are grouped in middle scale sequences. The former have a general 

shallowing upward tendency. These deposits are bordered by two major diagnostic 

surfaces. The first one is a sequence boundary which coincides with the lower Tithonian 

black pebble horizon. The second one is a drowning unconformity which marks the 

contact with the upper Valanginian marlstones.   

9. Conclusions 

The entire Kimmeridgian–lower Valanginian carbonate succession from Piatra Craiului 

(eastern part of the Getic Carbonate Platform) has a total thickness of 1200 m. It is 

defined by a gradual transition from reefal, to outer platform and peritidal depositional 

settings. The outer platform carbonates were deposited in high energy conditions, 

overlaying directly the basal reefal deposits.  They contain a large scale diagnostic 
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surface which is represented by a laterally continuous sequence boundary.   Isotope and 

microfacies data confirm the suberial exposure scenario. 

1) Shallow water peritidal carbonates were accumulating in the Piatra Craiului 

sedimentary area and deep water pelagic carbonates were deposited in the Bucegi zone. 

The Postăvaru-Piatra Mare area represented an intermediary slope sector where allodapic 

depostion was common. These carbonate rocks contain a mixture of shallow water and 

calpionellid rich pelagic material. 

 

2) The peritidal succession contains superimposed small to middle scale 

sequences. Deepening-shallowing tendencies characterise the small scale sequences. A 

general shallowing upward trend defines the middle scale sequences. Autocyclic 

processes were responsible for the formation of such structures. They involved mainly 

shoreline progradation and lateral migration of facies belts.  

3) These incomplete peritidal cycles are marked by progressive transitions from 

intertidal to supratidal depositional settings. As the carbonate succession was prograding 

environmental conditions became more restricted. Carbonate material was produced by 

Rivularia type cyanobacteria.  

4) Inner platform subtidal carbonates form the uppermost part of the studied 

sections. Their base marks a gradual deepening of the depositional environment in a 

slight transgressive context.  

5) In terms of biostratigraphy, the age of the studied succession is lower 

Tithonian–lower Valanginian. The exisiting microfossil assemblages did not allow a 
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clear delineation of the most important stages. Thus, it is extremely difficult to 

determine the influence of allocyclic processes in the formation of small scale 

sequences.  
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