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Ch. 1

General description of the

topic

In this thesis I present my results obtained as co-author or single author,

concerning the approximation of functions by integral type operators of real

and of complex variable.

Approximation Theory appeared in the 19th century as an important

section of Mathematical Analysis. It mainly consists in the approxima-

tion of intricated elements of a space (in general functions), with simpler

elements from computational point of view (in general algebraic or trigono-

metric polynomials, piecewise polynomials, splines, etc). Also, deals with

quantitative characterizations for the error of approximation, in terms of

K-functionals or moduli of smoothness.

Chronologically , in 1895 Karl Weierstrass has obtained the first approx-

imation result expressed by the following theorem.

Theorem I. For any f : [a, b] → R continuous on [a, b], there exists a

sequence of algebraic polynomials, Pmn(x) = a0x
mn + .+amn−1x+amn, such

that limn→∞ Pmn(x) = f(x), uniformly on x ∈ [a, b].
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6 CH. 1. GENERAL DESCRIPTION OF THE TOPIC

Also, Weiesrtrass obtained an analogue for the approximation by trigono-

metric polynomials.

In 1912, the first constructive proof of Theorem I was obtained by S. N.

Bernstein, who proved that the now so-called Bernstein polynomials given

by

Bn(f)(x) =
n∑
k=0

(
n

k

)
xk(1− x)n−kf)k/n),

converge to any continuous function f , uniformly in [0, 1].

In 1942, T. Popoviciu has obtained the following error estimate

|Bn(f)(x)− f(x)| ≤ 3

2
ω1(f ; 1/

√
n),∀x ∈ [0, 1], n ∈ N,

which is the first quantitative result in approximation by Bernstein polyno-

mials. Here ω1(f ; δ) = sup{|f(x)−f(y)|;x, y ∈ [0, 1], |x−y| ≤ δ} represents

the modulus of continuity of f .

In parallel with the approximation by algebraic polynomials, the ap-

proximation by trigonometric polynomials of continuous and 2π periodic

functions, was developed and in 1900, the first constructive result was ob-

tained by L. Fejér. He showed that if f : R → R is a 2π periodic and

continuous function on R, then denoting the Fourier sum of order n by

Sn(f)(x) =
∑n

k=0 ak cos(kx) + bk sin(kx), were ak and bk are the Fourier

coefficients of f , it follows that the arithmetic mean of Sn denoted by

Tn(f)(x) = S0(f)(x)+...+Sn(f)(x)
n+1

, converges uniformly to f on R.

In 1911, D. Jackson obtained the first quantitative result in trigono-

metric approximation, by proving that if f : R → R is continuous and

2π periodic, then the sequence of trigonometric polynomials now called the

Jackson’s polynomials and denoted by Jn(f)(x), n ∈ N, satisfy the error

estimate

|Jn(f)(x)− f(x)| ≤ Cω2(f ; 1/n),∀x ∈ R, n ∈ N,
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where ω2(f ; δ) = sup{|f(x + h) − 2f(x) + f(x − h)|; 0 ≤ h ≤ δ, x ∈ R}

denotes the second order modulus of smoothness of f .

As a generalization of the above mentioned results, beginning with 1950

and until even our days, another very important direction in approxima-

tion of functions was developed under the name of Korovkin (or Popoviciu-

Korovkin, or Bohman-Korovkin) theory, dealing with approximation by var-

ious positive and linear operators. Here we can mention the classical contri-

butions of Popoviciu, Bohman, Korovkin, Shisha-Mond and many others.

These results say, in essence, that given a sequence of positive and linear

operators (Ln(f))n∈N, in order to be uniformly convergent on [a, b] to the

continuous function f , it is good enough to check that Ln(ek) → ek, for

k = 0, 1 and 2, uniformly on [a, b], where e0(x) = 1, e1(x) = x şi e2(x) = x2.

In the case of approximation of continuous complex functions of complex

variables by polynomials or by entire functions, we can mention the clas-

sical results of Müntz-Szász, Carleman, Runge, Faber, Walsh, Arakelian,

Mergelyan, Dzyadyk and many others.

This thesis is structured in four chapters.

In the present Chapter 1, after the above introduction to approximation

Theory, we shortly describe below the contents of the thesis.

In Chapter 2 titled ”Approximation by nonlinear integral operators”,

the basic idea is the replacement of the classical integral in the expressions

of some integral linear operators, by more general integrals (which are not

linear) and to study the approximation properties of the new obtained op-

erators.

This chapter has three sections.

Thus, in the first section, titled ”Quantitative errors in the Durrme-

yer-Choquet case”, in the expression of the classical Bernstein-Durrmeyer
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polynomials, the Lebesgue integral is replaced by the nonlinear Choquet in-

tegral with respect to a monotone and submodular set function. In this way,

we obtain nonlinear approximation operators. For the pointwise and uni-

form approximation, we obtain quantitative estimates of the approximation

error in terms of moduli of continuity. In addition, estimate of the approx-

imation error in Lp-approximation, 1 ≤ p < +∞, with respect to some

LP K-functional is proved. Many concrete results for particular choices of

the submodular set functions are obtained here. It is pointed out that the

possibility of choice for various submodular set functions allows to obtain

better estimates of the approximation errors.

The second section titled ”Approximation in Lp by Kantorovich-Choquet

types”, deals with quantitative approximation in the Lp norm, with the error

estimate obtained in terms of a K-functional for the Bernstein-Kantorovich-

Choquet polynomials, completing thus the quantitative estimates for the

pointwise and uniform approximation in terms of moduli of continuity ob-

tained in the paper Gal [42].

In the third section of the chapter titled ”Approximation by possibilis-

tic integral operators”, we reconsider the Feller’s scheme which generates

linear and positive operators, by replacing the classical Lebesgue integral,

with the nonlinear so-called possibilistic integral. This fact allows to gener-

ate nonlinear approximation operators having good approximation proper-

ties, operators including the max-product operators studied by B. Bede, L.

Coroianu and S.G. Gal in numerous papers (see also their research mono-

graph [7] appeared at Springer). Quantitative approximation properties for

some convolution possibilistic operators obtained through Feller’s scheme

are proved.

In Chapter 3 titled ”Arbitrary order by linear integral operators on R+”,
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starting from a sequence λn > 0, n ∈ N, converging to zero arbitrary fast,

we construct sequences of Baskakov-Kantorovich, Szász-Kantorovich, Szász-

Durrmeyer, Szász-Durrmeyer-Stancu and Baskakov-Szász-Durrmeyer-Stancu

operators, converging to the approximated function f : [0,∞) → R with

the order of convergence ω1(f ;
√
λn).

We may say that the results in this chapter are of definitive type (that is,

the best possible). Also, they have a strong unifying character, namely for

various choices of the nodes λn, one may reobtain previous results obtained

by other authors.

In Chapter 4 titled ”Arbitrary order by linear Kantorovich operators in

C”, we apply the ideas in Chapter 3 to the case of aproximation of ana-

lytic functions of complex variable in simply or multiply connected compact

subsets in C, by complex Baskakov-Kantorovich-Faber operators, Szász-

Kantorovich-Faber operators, Baskakov-Kantorovich-Walsh operators and

Szász-Kantorovich-Walsh operators.

Starting again from a sequence λn > 0, n ∈ N, converging to zero ar-

bitrarily rapid, we construct sequences of Baskakov-Kantorovich-Faber op-

erators, Szász-Kantorovich-Faber operators, Baskakov-Kantorovich-Walsh

operators and Szász-Kantorovich-Walsh operators attached to an analytic

function of some exponential growth in a simple or multiple connected com-

pact set, which approximate f with the order O(λn).

This chapter has six sections. The first three sections deal with ap-

proximation in simply connected compact sets by Baskakov-Kantorovich-

Faber operators and by Szász-Kantorovich-Faber operators, while the next

three sections deal with approximation in multiply connected compact sets

by Baskakov-Kantorovich-Walsh operators and by Szász-Kantorovich-Walsh

operators.
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sures, submitted.

The original results obtained in the thesis are the following :

Chapter 2. Theorem 2.1.6 was published in the paper [51].

Theorem 2.1.8 is new and appear for the first time in the thesis. Lemma

2.1.9 and Example 2.1.1 were published in [51].

Examples 2.1.12 and 2.1.13 were published in the paper [51].

Theorem 2.1.16, Remark 2.1.17 and Corollary 2.1.18 were published

in [52].

Theorem 2.2.2 and Remark 2.2.3 were published in [53].

Theorems 2.3.3, 2.3.4, 2.3.5 and 2.3.6 were published in [23].

Chapter 3. Lemma 3.2.1, Theorem 3.2.2, Corollary 3.2.3, Lemma 3.3.1,

Theorem 3.3.2, Corollary 3.3.3, Lemma 3.4.1, Theorem 3.4.2, Corollary

2.4.3, Lemma 3.4.4, Theorem 3.4.5, Corollary 3.4.6, Lemma 3.5.1, Theo-

rem 3.5.2 and Corollary 3.5.3, were published in the paper [71].

Chapter 4. Definition 4.1.1, Theorem 4.1.2, Lemma 4.2.1, Theorem 4.2.2

and Theorem 4.3.1 were published in the paper [72].

Definition 4.4.2, Theorem 4.5.2 and Theorem 4.6.1 are new and appear

for the first time in the thesis.

Key words : monotone and submodular set function, Choquet integral,

Bernstein-Durrmeyer-Choquet operator, Bernstein-Durrmeyer-Choquet op-

erator, Kantorovich-Choquet operator, quantitative pointwise, uniform and

Lp estimates, moduli of continuity, K-functionals, nonlinear possibilistic

integral, possibilistic Picard operators, possibilistic Gauss-Weierstrass op-

erators, possibilistic Poisson-Cauchy operators, generalized Baskakov-Kan-

torovich, Szász-Kantorovich, Baskakov-Durrmeyer, Szász-Durrmeyer oper-

ators of real variable, linear and positive operators, modulus of continu-

ity, arbitrary order of approximation, generalized Baskakov-Kantorovich-
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Faber, Szász-Kantorovich-Faber, Baskakov-Kantorovich-Walsh and Szász-

Kantorovich-Walsh operators of complex variable, simply connected com-

pact sets, multiple connected compact sets, Faber polynomials, Faber-Walsh

polynomials.

I express my deep gratitude to professor dr. Sorin G. Gal, for his im-

portant support in elaborating this thesis.



Ch. 2

Approximation by nonlinear

integral operators

In this chapter we deal with the study of the approximation properties of the

integral operators, in the case when the classical linear integral is replaced

with the nonlinear Choquet integral and with the nonlinear possibilistic

integral. The chapter consists in three sections : in the first section we

deal with the Bernstein-Durrmeyer-Choquet operators, in the second section

with the Kantorovich-Choquet operators and in the third section we deal

with the possibilistic operators.

2.1 Quantitative errors by Durrmeyer-Cho-

quet type

In this section we study the Bernstein-Durmeyer operators of d-variables,

Mn,µ, in which the integrals written in terms of a Borel type measure µ (in-

cluding therefore the Lebesgue measure too) defined on the d-dimensional

13



14CH. 2. APPROXIMATION BY NONLINEAR INTEGRAL OPERATORS

simplex, are replaced by Choquet integrals with respect to a family of mono-

tone and submodular set function Γn,x, n ∈ N, x ∈ Sd. The new operators

are nonlinear and generalize the linear Bernstein-Durrmeyer operators. For

these operators, which could be called Bernstein-Durrmeyer-Choquet op-

erators, we obtain uniform, pointwise and Lp quantitative approximation

results in terms of moduli of continuity and K-functionals.

Also, in the one dimensional case, some concrete examples improving

the classical error estimates are obtained.

2.1.1 Introduction

Let the standard simplex in Rd

Sd = {(x1, ..., xd); 0 ≤ x1, ..., xd ≤ 1, 0 ≤ x1 + ...+ xd ≤ 1}.

Inspired by the paper [11], in the recent papers [8], [9] and [57], uniform,

pointwise and Lp convergence (respectively) of Mn,µ(f)(x) to f(x) (as n→

∞) were obtained, where Mn,µ(f)(x) denotes the linear, mixed Bernstein-

Durrmeyer operator of d-variables, with respect to a bounded Borel measure

µ : Sd → R+, defined by (supposing that f is µ-integrable on Sd)

Mn,µ(f)(x)

=
∑
|α|=n

∫
Sd
f(t)Bα(t)dµ(t)∫
Sd
Bα(t)dµ(t)

·Bα(x) :=
∑
|α|=n

c(α, µ) ·Bα(x), x ∈ Sd, n ∈ N.

(2.1)

In the above formula (2.1), we used the notations α = (α0, α1, ..., αn), with

αj ≥ 0 for all j = 0, ..., n, |α| = α0 + α1 + ...+ αn = n and

Bα(x) =
n!

α0! · α1! · ... · αn!
(1− x1 − x2 − ...− xd)α0 · xα1

1 · ... · x
αd
d
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:=
n!

α0! · α1! · ... · αn!
· Pα(x).

The qualitative kind results in [8] and [9] on pointwise and uniform con-

vergence, where extended in [50] to the more general setting when µ is only

a monotone, bounded and submodular set function on Sd and the integrals

appearing in formula (2.1), represent Choquet integrals with respect to µ.

The main goal of this section is to present quantitative pointwise, uni-

form and Lp estimates in terms of the modulus of continuity and of K-

functionals, in approximation by the more general multivariate Bernstein-

Durrmeyer-Choquet polynomial operators written in terms of Choquet in-

tegrals on the standard d-dimensional simplex, defined by

Mn,Γn,x(f)(x) =
∑
|α|=n

c(α, µn,α,x) ·Bα(x), x ∈ Sd, n ∈ N, (2.2)

where

c(α, µn,α,x) =
(C)

∫
Sd
f (t)Bα(t)dµn,α,x(t)

(C)
∫
Sd
Bα(t)dµn,α,x(t)

=
(C)

∫
Sd
f (t)Pα(t)dµn,α,x(t)

(C)
∫
Sd
Pα(t)dµn,α,x(t)

and for every n ∈ N and x ∈ Sd, Γn,x = (µn,α,x)|α|=n is a family of bounded,

monotone, submodular and strictly positive set functions on BSd .

If the family Γn,x reduces to one bounded, monotone, submodular and

strictly positive set function (i.e. µn,α,x = µ for all n, x and α), then the

operator given by (2.2) reduces to the operator considered in [50].

If d = 1 and the Choquet integrals are taken with respect to some

concrete possibility measures, the estimates in terms of the modulus of

continuity are detailed. Examples improving the estimates given by the

classical operators also are presented.
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2.1.2 Preliminaries

Firstly, we present a few known concepts in possibility theory useful for the

next considerations. For details, see, e.g., [27].

Definition 2.1.3 For the non-empty set Ω, denote by P(Ω) the family

of all subsets of Ω.

(i) A function λ : Ω→ [0, 1] with the property sup{λ(s); s ∈ Ω} = 1, is

called possibility distribution on Ω.

(ii) P : P(Ω) → [0, 1] is called possibility measure, if it satisfies the

axioms P (∅) = 0, P (Ω) = 1 and P (
⋃
i∈I Ai) = sup{P (Ai); i ∈ I} for all

Ai ⊂ Ω, and any I, an at most countable family of indices. Note that if

A,B ⊂ Ω, A ⊂ B, then the last property easily implies that P (A) ≤ P (B)

and that P (A
⋃
B) ≤ P (A) + P (B).

Any possibility distribution λ on Ω, induces the possibility measure Pλ :

P(Ω) → [0, 1], Pλ(A) = sup{λ(s); s ∈ A}, A ⊂ Ω. Also, if f : Ω → R+,

then the possibilistic integral of f on A ⊂ Ω with respect to Pλ is defined

by (Pos)
∫
A
fdPλ = sup{f(t) · λ(t); t ∈ A} (see, e.g., [27], Chapter 1).

Some known concepts and results concerning the Choquet integral can

be summarized by the following.

Definition 2.1.4 Suppose Ω 6= ∅ and let C be a σ-algebra of subsets in

Ω.

(i) (see, e.g., [78], p. 63) The set function µ : C → [0,+∞] is called

a monotone set function (or capacity) if µ(∅) = 0 and µ(A) ≤ µ(B) for

all A,B ∈ C, with A ⊂ B. Also, µ is called bounded if µ(Ω) < +∞ and

submodular if

µ(A
⋃

B) + µ(A
⋂

B) ≤ µ(A) + µ(B), for all A,B ∈ C.

(ii) (see, e.g., [78], p. 233, or [17]) If µ is a monotone set function,
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normalized on C and if f : Ω → R is C-measurable (i.e., for any Borel

subset B ⊂ R we have f−1(B) ∈ C), then for any A ∈ C, the Choquet

integral is defined by

(C)

∫
A

fdµ =

∫ +∞

0

µ
(
Fβ(f)

⋂
A
)
dβ +

∫ 0

−∞

[
µ
(
Fβ(f)

⋂
A
)
− µ(A)

]
dβ,

with Fβ(f) = {ω ∈ Ω; f(ω) ≥ β}. If f ≥ 0 on A, then above we get∫ 0

−∞ = 0.

The function f will be called Choquet integrable on A if (C)
∫
A
fdµ ∈ R.

In what follows, we list some known properties of the Choquet integral.

Remark 2.1.5 If µ : C → [0,+∞] is a monotone set function, then the

following properties hold :

(i) For all a ≥ 0 we have (C)
∫
A
afdµ = a · (C)

∫
A
fdµ (if f ≥ 0 then

see, e.g., [78], Theorem 11.2, (5), p. 228 and if f is of arbitrary sign, then

see, e.g., [24], p. 64, Proposition 5.1, (ii)).

(ii) For all c ∈ R and f of arbitrary sign, we have (see, e.g., [78], pp.

232-233, or [24], p. 65) (C)
∫
A

(f + c)dµ = (C)
∫
A
fdµ+ c · µ(A).

If µ is submodular too, then for all f, g of arbitrary sign and lower

bounded, we have (see, e.g., [24], p. 75, Theorem 6.3)

(C)

∫
A

(f + g)dµ ≤ (C)

∫
A

fdµ+ (C)

∫
A

gdµ.

(iii) If f ≤ g on A then (C)
∫
A
fdµ ≤ (C)

∫
A
gdµ (see, e.g., [78], p. 228,

Theorem 11.2, (3) if f, g ≥ 0 and p. 232 if f, g are of arbitrary sign).

(iv) Let f ≥ 0. If A ⊂ B then (C)
∫
A
fdµ ≤ (C)

∫
B
fdµ. In addition, if

µ is finitely subadditive, then (C)
∫
A
⋃
B
fdµ ≤ (C)

∫
A
fdµ+ (C)

∫
B
fdµ.

(v) It is immediate that (C)
∫
A

1 · dµ(t) = µ(A).

(vi) The formula µ(A) = γ(M(A)), where γ : [0, 1]→ [0, 1] is an increas-

ing and concave function, with γ(0) = 0, γ(1) = 1 and M is a probability
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measure (or only finitely additive) on a σ-algebra on Ω (that is, M(∅) = 0,

M(Ω) = 1 and M is countably additive), gives simple examples of normal-

ized, monotone and submodular set functions (see, e.g., [24], pp. 16-17,

Example 2.1). For example, we can take γ(t) =
√
t.

If the above γ function is increasing, concave and satisfies only γ(0) = 0,

then for any bounded Borel measure m ≤ 1, µ(A) = γ(m(A)) gives a simple

example of bounded, monotone and submodular set function.

Note that any possibility measure µ is normalized, monotone and sub-

modular. Indeed, the axiom µ(A
⋃
B) = max{µ(A), µ(B)} implies the

monotonicity, while the property µ(A
⋂
B) ≤ min{µ(A), µ(B)} implies the

submodularity.

(vii) If µ is a countably additive bounded measure, then the Choquet

integral (C)
∫
A
fdµ reduces to the usual Lebesgue type integral (see, e.g.,

[24], p. 62, or [78], p. 226).

2.1.3 Pointwise and uniform estimates

The following general quantitative estimates in pointwise and uniform ap-

proximation hold.

Theorem 2.1.6 (Gal-Trifa [51]) For each fixed n ∈ N and x ∈ Sd,

let Γn,x = {µn,α,x}|α|=n be a family of bounded, monotone, submodular and

strictly positive set functions on BSd.

(i) For every f ∈ C+(Sd), x = (x1, ..., xd) ∈ Sd, n ∈ N, we have

|Mn,Γn,x(f)(x)− f(x)| ≤ 2ω1(f ;Mn,Γn,x(ϕx)(x))Sd ,

where Mn,Γn,x(f)(x) is given by (2.2), ‖x‖ =
√∑d

i=1 x
2
i , ϕx(t) = ‖t − x‖

and ω1(f ; δ)Sd = sup{|f(t)− f(x)|; t, x ∈ Sd, ‖t− x‖ ≤ δ}.
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(ii) Suppose that the family Γn,x does not depend on x. Then, for any

f ∈ C+(Sd) and n ∈ N, we get

‖Mn,Γn(f)− f‖C(Sd) ≤ 2K

(
f ;

∆n

2

)
,

where ∆n =
∑d

i=1 ‖Mn,Γn(|ϕei − xi1|)‖C(Sd),

K(f ; t) = inf
g∈C1

+(Sd)
{‖f − g‖C(Sd) + t‖∇g‖C(Sd)},

C1
+(Sd) is the subspace of all functions g ∈ C+(Sd) with continuous parti-

al derivatives ∂ig, i ∈ {1, ..., d} and ‖∇g‖C(Sd) = maxi={1,...,d}{‖∂ig‖C(Sd)},

ϕei(x) = xi, i ∈ {1, ..., d}, x = (x1, ..., xd), 1(x) = 1, for all x ∈ Sd.

Remark 2.1.7 (Gal-Trifa [51]) The positivity of function f in Theo-

rem 2.1.6, (i), (ii) is necessary because of the positive homogeneity of the

Choquet integral used in its proof. However, if f is of arbitrary sign and

lower bounded on Sd with f(x) − m ≥ 0, for all x ∈ Sd, then the state-

ment of Theorem 2.1.6, (i), (ii) can be restated for the slightly modified

Bernstein-Durrmeyer-Choquet operator defined by

M∗
n,Γn,x(f)(x) = Mn,Γn,x(f −m)(x) +m.

Indeed, in the case of Theorem 2.1.6, (i), this is immediate from ω1(f −

m; δ)Sd = ω1(f ; δ)Sd and from M∗
n,Γn,x

(f)(x)− f(x) = Mn,Γn,x(f −m)(x)−

(f(x) − m). Note that in the case of Theorem 2.1.6, (ii), since we may

consider here that m < 0, we immediately get the relations

K(f −m; t) = inf
g∈C1

+(Sd)
{‖f − (g +m)‖C(Sd) + t‖∇g‖C(Sd)}

= inf
g∈C1

+(Sd)
{‖f − (g +m)‖C(Sd) + t‖∇(g +m)‖C(Sd)}

= inf
h∈C1(Sd), h≥m

{‖f − h‖C(Sd) + t‖∇h‖C(Sd)}.
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2.1.4 Particular cases of operators

Since the estimates in Theorem 2.1.6, (i), (ii) are of very general and abstract

form, involving the apparently difficult to be calculated Choquet integrals, it

is of interest to obtain concrete expressions for the orders of approximation.

In this sense, we will apply Theorem 2.1.6, (i) for d = 1 and for some

special choices of the submodular set functions.

Thus, we will consider the case of the measures of possibility. Denot-

ing pn,k(x) =
(
n
k

)
xk(1 − x)n−k, let us define λn,k(t) =

pn,k(t)

kkn−n(n−k)n−k(nk)
=

tk(1−t)n−k
kkn−n(n−k)n−k

, k = 0, ..., n. Here, by convention we consider 00 = 1, so that

the cases k = 0 and k = n have sense.

By considering the root k
n

of p′n,k(x), it is easy to see that max{pn,k(t); t ∈

[0, 1]} = kkn−n(n − k)n−k
(
n
k

)
, which implies that each λn,k is a possibility

distribution on [0, 1]. Denoting by Pλn,k the possibility measure induced by

λn,k and Γn,x := Γn = {Pλn,k}nk=0 (i.e. Γ is independent of x), the nonlinear

Berntein-Durrmeyer polynomial operators given by (2.2), in terms of the

Choquet integrals with respect to the set functions in Γn, will become

Dn,Γn(f)(x) =
n∑
k=0

pn,k(x) ·
(C)

∫ 1

0
f(t)tk(1− t)n−kdPλn,k(t)

(C)
∫ 1

0
tk(1− t)n−kdPλn,k(t)

. (2.3)

It is easy to see that any possibility measure Pλn,k is bounded, monotone,

submodular and strictly positive, n ∈ N, k = 0, 1, ..., n, so that we are under

the hypothesis of Theorem 2.1.6.

We can state the following result.

Theorem 2.1.8. Let Dn,Γn(f)(x) be given by (2.3), f ∈ C+([0, 1]),

x ∈ [0, 1] and n ∈ N, n ≥ 2. We have :

(i)

|Dn,Γn(f)(x)− f(x)|



2.1. QUANTITATIVE ERRORS BY DURRMEYER-CHOQUET TYPE21

≤ 2ω1

(
f ;

(1 +
√

2)
√
x(1− x) +

√
x√

2n
+

1 + |1− 2x|
2n

)
[0,1]

.

(ii)

‖Dn,Γn(f)− f‖C[0,1] ≤ 6ω1

(
f ;

1√
n

)
[0,1]

.

2.1.5 Examples improving the classical estimates

This section contains some concrete examples improving the classical esti-

mates.

Example 2.1.11 (Gal-Trifa [51]) Since the Bernstein-Durrmeyer-Cho-

quet type operators in this section can be defined with respect to a family

of Borel or Choquet measures, combined in various ways, this fact offers a

very high flexibility and generality, allowing to construct operators having

even better approximation properties. As a first example, it is clear that

Bn(f)(x) can also be viewed as the Bernstein-Durrmeyer-Choquet operators

in the case when Γn,x is composed by the Dirac measures δk/n, k = 0, ..., n.

With this occasion, we note that since the Dirac measures are not strictly

positive, it is clear that the strict positivity of the set functions in Theorem

2.1.6 is not always necessary.

Example 2.1.12 (Gal-Trifa [51]) In formula (2.3), let us replace the

family of measures of possibilities Γn = {Pλn,k}nk=0, by the family Γn =

{νn,0, νn,n, µn−2,k−1, k = 1, ..., n − 1}, where the set functions µn−2,k−1, k =

1, ..., n − 1 are the Lebesgue measure, νn,0 = δ0 (Dirac measure), νn,n is

a monotone, submodular and strictly positive set function and define the

genuine Bernstein-Durrmeyer-Choquet operators by

Un,Γn(f)(x) = pn,0(x) ·
(C)

∫ 1

0
f(t)(1− t)ndνn,0

(C)
∫ 1

0
(1− t)ndνn,0

+pn,n(x) ·
(C)

∫ 1

0
f(t)tndνn,n

(C)
∫ 1

0
tndνn,n
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+
n−1∑
k=1

pn,k(x) ·
(C)

∫ 1

0
f(t)pn−2,k−1(t)dµn−2,k−1(t)

(C)
∫ 1

0
pn−2,k−1(t)dµn−2,k−1(t)

.

Denoting by Gn(f)(x), the classical genuine Bernstein-Durmeyer operator

(see, e.g., [54]), we immediately obtain

Un,Γn(f)(x)− f(x) = Gn(f)(x)− f(x) +xn

[
(C)

∫ 1

0
f(t)tndνn,n(t)

(C)
∫ 1

0
tndνn,n(t)

− f(1)

]
.

Let us choose νn,n defined by νn,n(A) = ν(A), where for example, ν(A) =√
m(A) or ν(A) = sin[m(A)].

Suppose that f ≥ 0 and strictly increasing on [0, 1]. Since

(C)

∫ 1

0

f(t)tndνn,n(t) =

∫ ∞
0

νn,n({t ∈ [0, 1]; f(t)tn ≥ λ})dλ

=

∫ ∞
0

ν({t ∈ [0, 1]; f(t)tn ≥ λ})dλ

= (C)

∫ 1

0

f(t)tndν(t)

≤ f (1) · (C)

∫ 1

0

tndνn,n(t),

it immediately follows

(C)
∫ 1

0
f(t)tndνn,n(t)

(C)
∫ 1

0
tndνn,n(t)

− f(1) ≤ f (1)− f(1) = 0.

Since the strict convexity of f implies Gn(f)(x)− f(x) > 0 for all x ∈ (0, 1)

(see, e.g., Lemma 2.1, (iv) in [54]), similar reasonings with those for the

previous example show that if f ≥ 0 is strictly convex and strictly increasing

on [0, 1] implies

|Un,Γn(f)(x)− f(x)|

< max

{
|Gn(f)(x)− f(x)|, xn

∣∣∣∣∣(C)
∫ 1

0
f(t)tndµ(t)

(C)
∫ 1

0
tndµ(t)

− f(1)

∣∣∣∣∣
}
.
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Therefore, Un,Γn(f)(x) approximates better f on (0, 1) than Gn(f)(x).

Example 2.1.13 (Gal-Trifa [51]) In formula (2.3), let us replace the

family Γn of measures of possibilities Pλn,k , k = 0, ..., n, by the family con-

sisting in the Dirac measures δk/n, k = 0, 1, ..., n − 1, (which are Borel

measures and therefore with the corresponding Choquet integrals reduc-

ing to the classical ones) together with a monotone, submodular, strictly

positive set function Pλn,n := νn,n defined by νn,n(A) = ν(A), where for

example, ν(A) =
√
m(A) or ν(A) = sin[m(A)].

Then, denoting by

Bn(f)(x) =
n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k

n

)
the classical Bernstein operators (see [69]), for Dn,Γn in (2.3) we get

Dn,Γn(f)(x)− f(x)

=

[
n−1∑
k=0

pn,k(x)f

(
k

n

)
+ xn ·

(C)
∫ 1

0
f(t)tndνn,n(t)

(C)
∫ 1

0
tndνn,n(t)

]
− f(x)

= Bn(f)(x)− f(x) + xn

[
(C)

∫ 1

0
f(t)tndνn,n(t)

(C)
∫ 1

0
tndνn,n(t)

− f (1)

]
,

where by similar reasonings with those from Example 5.2, for f strictly

increasing on [0, 1] it follows

(C)
∫ 1

0
f(t)tndνn,n(t)

(C)
∫ 1

0
tndνn,n(t)

− f (1) ≤ 0.

Suppose now that f ≥ 0 is strictly increasing and strictly convex on

[0, 1]. The strict convexity of f implies (see [69]) Bn(f)(x) − f(x) > 0 for

all x ∈ (0, 1), so, for x ∈ (0, 1), Dn,Γn(f)(x) approximates better f than

Bn(f)(x), since

|Dn,Γn(f)(x)− f(x)|

< max

{
|Bn(f)(x)− f(x)|, xn

∣∣∣∣∣(C)
∫ 1

0
f(t)tndνn,n(t)

(C)
∫ 1

0
tndνn,n(t)

− f(1)

∣∣∣∣∣
}
.
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2.1.6 Quantitative Lp-approximation

The main aim of the present subsection is to study quantitative Lp-appro-

ximation results, 1 ≤ p <∞, for the case when Γn,x reduces to one element

µ, which is a particular normalized, monotone and submodular set function

called distorted Borel measure , i.e. for the Bernstein-Durrmeyer-Choquet

operators given by

Dn,µ(f)(x) =
∑
|α|=n

c(α, µ) ·Bα(x), x ∈ Sd, n ∈ N,

where

c(α, µ) =
(C)

∫
Sd
f(t)Bα(t)dµ(t)

(C)
∫
Sd
Bα(t)dµ(t)

=
(C)

∫
Sd
f(t)Pα(t)dµ(t)

(C)
∫
Sd
Pα(t)dµ(t)

.

But due to the fact that (C)
∫ 1

0
fdµ is not, in general, additive as function

of f (it is only subadditive), even in the simple case when, for example

p = 1 and d = 1, for f ∈ L1
µ (meaning that f is B[0,1]-measurable and

‖f‖L1
µ

= (C)
∫ 1

0
|f(t)|dµ(t) <∞), we get

‖Dn,µ(f)‖L1
µ
≤

n∑
k=0

(C)

∫ 1

0

(
n

k

)
tk(1−t)n−k|f(t)|dµ(t) ≤ (n+1)·‖f‖L1

µ
, n ∈ N.

This fact implies that in the most general case for µ, quantitative es-

timates in Lp-approximation by Bernstein-Durrmeyer-Choquet operators,

seem to remain an open question.

However, for a large subclass of normalized, monotone and submodular

set functions called distorted probability Borel measures, in the present

subsection we obtain quantitative Lp-approximation results, 1 ≤ p < +∞,

in terms of an appropriate K-functional.

If µ : BSd → [0,+∞) is a monotone set function and 1 ≤ p < +∞, then

we make the following notations :

Lpµ(Sd) = {f : Sd → R; f is BSd-measurable and (C)

∫
Sd
|f(t)|pdµ(t) < +∞},
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Lpµ,+(Sd) = Lpµ(Sd)
⋂
{f : Sd → R+},

C(Sd) = {f : Sd → R; f is continuous on Sd},

endowed with the norm ‖F‖C(Sd) = sup{|F (x)|;x ∈ Sd},

C+(Sd) = {f ∈ C(Sd); f ≥ 0 on Sd},

C1
+(Sd) is the subspace of all functions g ∈ C+(Sd) with continuous partial

derivatives ∂g/∂xi, i ∈ {1, ..., d},

‖∇g‖C(Sd) = max
i={1,...,d}

{∥∥∥∥ ∂g∂xi
∥∥∥∥
C(Sd)

}
,

K (f ; t)Lpµ = inf
g∈C1

+(Sd)
{‖f − g‖Lpµ + t‖∇g‖C(Sd)}, t ≥ 0,

with the notation ‖F‖Lpµ =

(
(C)

∫
Sd
|F (t)|pdµ(t)

)1/p

,

IC[0, 1] = {g : [0, 1]→ [0, 1] : g(0) = 0, g(1) = 1, g is concave and strictly

increasing on [0, 1] and there exists g′(0) < +∞}.

Also, denote by D(BSd) the class of all set functions µ : BSd → [0,+∞) of

the form µ(A) = g(M(A)), for all A ∈ BSd , where g ∈ IC[0, 1] and M is a

strictly positive, probability Borel measure on BSd . In the words of Remark

2.1.5, (vi), any such a µ will be called distorted probability Borel measure.

Remark 2.1.15 According to Remark 2.1.5, (vi), any µ ∈ D(BSd)

is a normalized, monotone, strictly positive and submodular set function.

Simple examples of µ ∈ D(BSd) are µ(A) = sin[π · m(A)/2], or µ(A) =

arctan[tan(1) · m(A)], or µ(A) = 2m(A)
1+m(A)

, or µ(A) = (1 − e−m(A)) · e
e−1

,

or µ(A) = ln[1 + (e − 1)m(A)], for all A ∈ BSd , where m denotes the

d-dimensional Lebesgue measure.

The main result of this subsection is the following.
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Theorem 2.1.16 (Gal-Trifa [52]) Let 1 ≤ p < ∞. If µ ∈ D(BSd), with

µ = g ◦M , g ∈ IC[0, 1] and M a strictly positive, probability Borel measure

on BSd, then for all f ∈ Lpµ,+(Sd), n ∈ N, we have

‖f −Dn,µ(f)‖Lpµ ≤ c ·K
(
f ;

∆n,p

c

)
Lpµ

,

where c = 1+g′(0)(p+1)/p, ∆n,p =
∑d

i=1 ‖Dn,µ(|ϕi(x)−ϕi(·)|)‖Lpµ, ϕi(x) = xi

for x = (x1, ..., xd) ∈ Sd.

Remark 2.1.17 (Gal-Trifa [52]) The positivity of function f in Theorem

2.1.16 is necessary because of the positive homogeneity of the Choquet inte-

gral used in the proof. However, if f is of arbitrary sign and lower bounded

on Sd with f(x) − m ≥ 0, for all x ∈ Sd, then the statement of Theo-

rem 2.1.16 can be restated for the slightly modified Bernstein-Durrmeyer-

Choquet operator defined by

D∗n,µ(f)(x) = Dn,µ(f −m)(x) +m,

where we have D∗n,µ(f)(x)−f(x) = Dn,µ(f−m)(x)− (f(x)−m). Note that

we may consider here that m < 0 and we immediately get the relations

K(f −m; t)Lpµ = inf
g∈C1

+(Sd)
{‖f − (g +m)‖Lpµ + t‖∇g‖C(Sd)}

= inf
g∈C1

+(Sd)
{‖f − (g +m)‖Lpµ + t‖∇(g +m)‖C(Sd)}

= inf
h∈C1(Sd), h≥m

{‖f − h‖Lpµ + t‖∇h‖C(Sd)}.

Corollary 2.1.18 (Gal-Trifa [52]) Under the hypothesis and notations

in Theorem 2.1.16, we have the estimate

‖f −Dn,µ(f)‖Lpµ ≤ c ·K
(
f ;
d · cp
c
· 1√

n

)
Lpµ

,

where cp > 0 is a constant that depends only p and c is given by Theorem

2.1.16
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2.2 Lp approximation by Kantorovich-Cho-

quet type

The aim of the present section is to continue the direction of research in

the previous subsection, to Lp approximation by Bernstein-Kantorovich-

Choquet operators.

With the notations used in the previous subsection and suggested by the

classical forms of the linear and positive operators of Bernstein-Kantorovich,

in Gal [42] it was defined the following Bernstein-Kantorovich-Choquet op-

erators/polynomials with respect to Γn,x = {µn,k,x}nk=0, by the formula

Kn,Γn,x(f)(x) =
n∑
k=0

pn,k(x) ·
(C)

∫ (k+1)/(n+1)

k/(n+1)
f(t)dµn,k,x(t)

µn,k,x([k/(n+ 1), (k + 1)/(n+ 1)])
,

where pn,k(x) =
(
n
k

)
xk(1− x)n−k.

In order to be well defined these operators, it is good enough if, for

example, we suppose that f : [0, 1] → R+ is a B[0,1]-measurable function,

bounded on [0, 1].

Remark 2.2.1 It is clear that if µn,k,x = M , for all n, k and x, where M is

the Lebesgue measure, then the above polynomials become the classical ones.

Also, if µn,k,x = δk/n (the Dirac measures), since k/n ∈ (k/(n+ 1), (k+

1)/(n+1)), it is immediate that Kn,Γn,x(f)(x) become the Bernstein polyno-

mials. This fact shows the great flexibility of the formulas of these operators.

More exactly, we can generate very many kinds of approximation operators,

by choosing for some µn,k,x the Lebesgue measure, for some others µn,k,x,

the Dirac measures and for the others µn,k,x, some Choquet measures.

Note that pointwise and uniform approximation by Kn,Γn,x(f)(x) were

studied in [42].
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In this section we study quantitative Lp-approximation results, 1 ≤ p <

∞, for the Bernstein-Kantorovich polynomials Kn,Γn,x(f)(x) when Γn,x =

{µ}. In this case, we denote it by Kn,µ.

But as in the case of Bernstein-Durrmeyer-Choquet polynomials stud-

ied in the previous subsection, even in the simple case when, for exam-

ple p = 1, for f ∈ L1
µ (meaning that f is B[0,1]-measurable and ‖f‖L1

µ
=

(C)
∫ 1

0
|f(t)|dµ(t) < ∞), considering for example the operator Kn,µ, we

easily get

‖Kn,µ(f)‖L1
µ
≤

n∑
k=0

(C)

∫ 1

0

pn,k(x)dµ(x) ·
(C)

∫ (k+1)/(n+1)

k/(n+1)
f(t)dµ(t)

µ([k/(n+ 1), (k + 1)/(n+ 1)])

≤
n∑
k=0

(C)

∫ (k+1)/(n+1)

k/(n+1)

f(t)dµ(t) ≤ (n+ 1) · ‖f‖L1
µ
.

This is due to the fact that (C)
∫ 1

0
fdµ is is not, in general, additive as

function of f (it is only subadditive).

Therefore, quantitative estimates in Lp-approximation by Bernstein-

Kantorovich-Choquet polynomials, remain, in the general case, an open

question.

However, in what follows, as in the case of Lp- approximation by Bernstein-

Durrmeyer-Choquet operators, for a large class of distorted Lebesgue mea-

sures, we will be able to prove Lp-approximation results.

With the notations in the previous subsection, we can state the following.

Theorem 2.2.2 (Trifa [53]) Let 1 ≤ p < ∞. If µ ∈ D(B[0,1]), then for all

f ∈ Lpµ,+[0, 1], n ∈ N, we have

‖f −Kn,µ(f)‖Lpµ ≤ cp ·K
(
f ;

1

2
√
n+ 1

)
Lpµ

,

where cp = 1 + g′(0)(p+1)/p.
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2.3 Approximation by possibilistic integral

operators

In this section, we construct sequences of nonlinear approximation opera-

tors, by replacing in the classical Feller’s probabilistic scheme the Lebesgue

integral by the so-called possibilistic integral. In particular, for the discrete

case, are reobtained all the so-called max-product Bernstein type opera-

tors, together with their qualitative approximation properties. Moreover,

we study the convergence of the nonlinear possibilistic operators of Picard,

Gauss-Weierstrass and Poisson-Cauchy types.

2.3.1 Introduction

The quantitative approximation properties for the max-product operators of

Bernstein, Favard-Szász-Mirakjan, Baskakov, Bleimann-Butzer-Hahn and

Meyer-König-Zeller kinds, were deeply studied in, e.g., the papers [5], [6],

[19]-[22].

Recently, in the paper [39], by using the Bernstein’s idea in [12], (see

also [58]) and based on a Chebyshev-type inequality in possibility theory,

these kinds of operators were interpreted as possibilistic expectations of

some discrete fuzzy variables (with various possibilistic distributions), fact

which allowed to obtain qualitative convergence results.

Talking about possibility theory, we can mention that it is a well-develo-

ped mathematical theory which deals with some types of uncertainties and

which is considered as an alternative to probability theory (see, e.g., [27],

[18]) .

The main goal of this section is to develop a possibilistic alternative to

the well-known Feller’s probabilistic scheme in approximation. This scheme
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allows to give natural approach to the max-product operators and to intro-

duce and study many new possibilistic approximation operators.

Describing shortly, the Feller’s probabilistic scheme for construction lin-

ear and positive approximation operators (see, e.g., [32], Chapter 7, or [3],

Section 5.2, pp. 283-319), attaches to any continuous, bounded function

f : R→ R, integral operators of the form

Ln(f)(x) =

∫
Ω

f ◦ Z(n, x)dP =

∫
R
fdPZ(n,x).

Here P is a probability, (Ω, C) is a measurable space, Z : N×I →M2(Ω), I

is a subinterval in R,M2(Ω) denotes the space of all square integrable ran-

dom variables on Ω with respect to P and where PZ(n,x) = P (Z−1(n, x)(B)),

B-Borel measurable subset of R, represents the distribution of the random

variable Z(n, x) with respect to P .

Denoting now by E(Z(n, x)) and V ar(Z(n, x)) the expectance and the

variance of Z(n, x), respectively, under the hypothesis

lim
n→∞

E(Z(n, x)) = x, and lim
n→∞

V ar(Z(n, x)) = 0, uniformly on I,

the Feller’s scheme states that for all f as above, Ln(f) converges to f

uniformly on each compact subinterval of I.

In addition, if for the random variable Z(n, x), its probability density

function λn,x is known, then for any f we can write the following important

constructive representation formula

Ln(f)(x) =

∫
R
fdPZ(n,x) =

∫
R
f(t) · λn,x(t)dP (t).

It is not without interest to mention here that in the recent paper [40],

the classical Feller’s scheme was generalized by replacing the above classical

integral with the nonlinear Choquet integral.
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In what follows, by analogy with the previous ideas, we introduce a

Feller kind scheme based on the possibilistic integral, fact which allows to

construct various convergent sequences of nonlinear operators. As particu-

lar cases, all the so-called max-product Bernstein type operators and their

qualitative convergence are reobtained. Also, new nonlinear possibilistic

convergent operators of Picard, Gauss-Weierstrass and Poisson-Cauchy type

are considered by this Feller’s scheme.

2.3.2 Possibilistic Feller’s scheme

We begin by summarizing some known concepts in possibility theory, which

will be used in what follows (see, e.g., [27] or [18]).

Definition 2.3.1. Let Ω be a non-empty set.

(i) Any application X : Ω→ R is called fuzzy variable.

(ii) A function λ : Ω→ [0, 1] with the property sup{λ(s); s ∈ Ω} = 1 is

called possibility distribution on Ω.

(iii) The possibility expectation of a fuzzy variable X (on Ω), with

the possibility distribution λ is defined by Msup(X) = sups∈Ω X(s)λ(s).

Also, the possibility variance of X is defined by Vsup(X) = sup{(X(s) −

Msup(X))2λ(s); s ∈ Ω}.

(iv) Let Ω 6= ∅. A possibility measure is a maping P : P(Ω) → [0, 1]

which satisfies the following axioms : P (∅) = 0, P (Ω) = 1 and P (
⋃
i∈I Ai) =

sup{P (Ai); i ∈ I} for all Ai ∈ Ω and any at most countable family of indices

I. This last property immediately implies that if A ⊂ B, then P (A) ≤ P (B)

and P (A
⋃
B) ≤ P (A) + P (B).

Any possibility distribution λ on Ω, induces the possibility measure given

by the formula Pλ(A) = sup{λ(s); s ∈ A}, for all A ⊂ Ω (see, e.g., [27]).

To each fuzzy variable X : Ω→ R, we can attach its so-called distribu-
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tion measure with respect to a possibility measure P induced by a possibility

distribution λ, by the formula

PX : B → R+, PX(B) = P (X−1(B)) = P ({ω ∈ Ω;X(ω) ∈ B}), B ∈ B,

where R+ = [0,+∞) and B is the class of all Borel measurable subsets in

R.

It is easy to see that PX is a possibility measure on B, induced by the

possibility distribution defined by

λ∗X : R→ [0, 1], λ∗X(t) = sup{λ(ω);ω ∈ X−1(t)}, if X−1(t) 6= ∅,

λ∗X(t) = 0, if X−1(t) = ∅.

(v) (see, e.g., [18]) The possibilistic integral of f : Ω → R+ on A ⊂ Ω,

with respect to the possibilistic measure Pλ induced by the possibilistic

distribution λ, is defined by

(Pos)

∫
A

f(t)dPλ(t) = sup{f(t) · λ(t); t ∈ A}.

In order to realize our goal, denote by V arb(Ω) the family of all bounded

X : Ω→ R and by V arb+(Ω) the family of all bounded X : Ω→ R+. Also,

for any interval I ⊂ R, let us take Z : N × I → Y , with Y = V arb(Ω) or

Y = V arb+(Ω).

Note that if for all (n, x) ∈ N× I it follows Z(n, x) ∈ V arb+(Ω), then for

Msup(Z(n, x)) and Vsup(Z(n, x)) given by Definition 2.3.1, (iii), we can give

the formulas

Msup(Z(n, x)) = (Pos)

∫
Ω

Z(n, x)(t)dPλ(t) := αn,x, (2.4)

Vsup(Z(n, x)) = (Pos)

∫
Ω

(Z(n, x)(t)− αn,x)2dPλ(t) := σ2
n,x. (2.5)
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Now, having in mind the classical Feller’s scheme, to f : R → R+ we can

attach the sequence of nonlinear operators given by

Ln(f)(x) := (Pos)

∫
R
f(t)dPZ(n,x)(t), n ∈ N, x ∈ I, (2.6)

with PZ(n,x) defined as in Definition 2.3.1, (iv).

Firstly, we state that for the operators given by (2.6), the next auxiliary

result holds.

Lemma 2.3.3. (Coroianu-Gal-Opriş-Trifa [23]) If Z : N×I → V arb(Ω)

and f : R→ R+ is bounded on R, then we can write the formula

Ln(f)(x) = (Pos)

∫
R
f(t)dPZ(n,x)(t) = (Pos)

∫
Ω

f◦Z(n, x)dPλ, x ∈ I (2.7)

where both possibilistic integrals are finite.

Moreover, if f : I → R+ is bounded on the subinterval I ⊂ R and

Pλ({ω ∈ Ω;Z(n, x)(ω) ∈ I}) = 1, then we obtain

Ln(f)(x) = (Pos)

∫
I
f(t)dPZ(n,x)(t) = (Pos)

∫
Ω

f ◦ Z(n, x)dPλ.

Remark. Formula (2.7) can be rewritten as

Ln(f)(x) = sup{f(t) · λ∗Z(n,x)(t); t ∈ R} = sup{f [Z(n, x)(t)] · λ(t); t ∈ Ω},

with λ∗Z(n,x)(t) given by Definition 2.3.1, (iv).

In what follows, suppose that Z(n, x) ∈ V arb+(Ω), imposed by the fact

that the next result involves the quantity αn,x given by formula (2.4).

We are now in position to state the following Feller type result.

Theorem 2.3.4. (Coroianu-Gal-Opriş-Trifa [23]) Suyppose that I ⊂ R

is a subinterval, Z(n, x) ∈ V arb+(Ω) for all (n, x) ∈ N× I and f : R→ R+

is bounded and uniformly continuous on R. With the above notations in
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(2.4), (2.5) and the statement of Lemma 2.3.3, under the hypothesis that

limn→+∞ αn,x = x and limn→+∞ σ
2
n,x = 0, uniformly with respect to x ∈ I,

we get limn→∞ Ln(f)(x) = f(x), uniformly on I.

Remarks. 1) The proof of Theorem 2.3.4, easily implies that the con-

struction of the operators Ln(f)(x) can be generalized by considering that

all three Z, λ and Pλ depend on n and x. More exactly, Ln(f)(x) could be

written in the more general form

Ln(f)(x) := (Pos)

∫
R
f(t)dPZ(n,x)(t) = (Pos)

∫
Ω

f ◦ Z(n, x)dPλn,x , x ∈ I,

where Pλn,x : P(Ω)→ [0, 1], (n, x) ∈ N×I, is a family of possibility measures

induced by the families of distributions λn,x, (n, x) ∈ N × I. This remark

may be used to produce many concrete examples of such operators.

Moreover, it is worth mentioning here that under the hypothesis that

Pλ({ω ∈ Ω;Z(n, x)(ω) ∈ I} = 1, the operators Ln might be attached

to any bounded and continuous function defined on a subinterval I ⊂ R,

f : I → R+, by prolonging f to a bounded continuous function on the whole

R given by f ∗ : R→ R+ and based on the relationship

(Pos)

∫
R
f ∗dPZ(n,x) = (Pos)

∫
I

fdPZ(n,x).

2) If we suppose that f : I → R is lower bounded but not necessarily

positive, then there exists a constant c > 0 with f(x) + c ≥ 0, for all x ∈ I.

In this case, for all n ∈ N, we can attach to f the sequence of approximation

operators

Ln(f)(x)

= (Pos)

∫
I
(f(t) + c)dPZ(n,x)(t)− c = (Pos)

∫
Ω

(f + c) ◦ Z(n, x)dPλn,x − c.

3) In particular, qualitative approximation properties can be deduced

by the Feller’s scheme in Theorem 2.3.4, for all the so-called max-product
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Bernstein-type operators. For example, taking Ω = {0, 1, ..., n}, I = [0, 1],

Z(n, x)(k) = k
n
, f : [0, 1] → R+, λn,x(k) =

pn,k(x)∨n
j=0 pn,j(x)

, where pn,k(x) =(
n
k

)
xk(1− x)n−k and

∨n
j=0 pn,j(x) = maxj={0,...,n}{pn,j(x)}, by Lemma 2.3.3

we get

Ln(f)(x) = (Pos)

∫
Ω

f ◦ Z(n, x)dPλn,x =

n∨
k=0

pn,k(x)f
(
k
n

)
n∨
k=0

pn,k(x)
,

which represent the Bernstein operators B
(M)
n (f)(x) of max-product type,

to which we can apply now Theorem 2.3.4.

Similarly, if, for another example, we consider Ω = {0, 1, ..., k, ..., } and

Pλn,x the possibility measure induced by the possibility distribution

λn,x(k) =
sn,k(x)∨∞
k=0 sn,k(x)

, x ∈ [0,+∞), k ∈ N
⋃
{0},

with sn,k(x) = (nx)k

k!
and

∨∞
k=0 sn,k(x) = maxk={0,1,...,k,...,}{sn,k(x)}, then

from Lemma 2.3,3 we obtain the Favard-Szász-Mirakjan operators of max-

product type.

Also, qualitative approximation results for other max-product type op-

erators, like those of Baskakov, Bleimann-Butzer-Hahn kind and Meyer-

König-Zeller kind can be obtained in an analogous way by using Theorem

2.3.4.

Let us mention that quantitative error estimates in approximation by

max-product type operators, were obtained by other methods in, e.g., [5],

[6], [19]-[22], (see also and their References).
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2.3.3 Approximation by convolution possibilistic op-

erators

Based on the previous possibilistic Feller’s scheme, in this subsection we

define and study the possibilistic variants to the classical convolution oper-

ators of Picard, Gauss-Weierstrass and Poisson-Cauchy, which formally are

given by

Pn(f)(x) =
n

2

∫
R
f(t)e−n|x−t|dt, Wn(f)(x) =

√
n√
π

∫
R
f(t)e−n|t−x|

2

dt,

Qn(f)(x) =
n

π

∫
R

f(t)

n2(t− x)2 + 1
,

respectively, with n ∈ N and x ∈ R.

For Ω = {0, 1, ..., k, ..., } and Z(n, x) as in the above Remark 3, defining

λn,x(k) = e−n|x−k/n|∨∞
k=−∞ e−n|x−k/n|

, by Lemma 2.3.3

Ln(f)(x) = (Pos)

∫
Ω

f ◦ Z(n, x)dPλn,x ,

we get the following possibilistic (or max-product !) Picard operators

P (M)
n (f)(x) =

∨+∞
k=−∞ f(k/n) · e−n|x−k/n|∨+∞

k=−∞ e
−n|x−k/n|

.

Analogously, if λn,x(k) = e−n(x−k/n)
2∨∞

k=−∞ e−n(x−k/n)2
and λn,x(k) = 1/(n2(x−k/n)2+1)∨∞

k=0 1/(n2(x−k/n)2+1)

we get the following possibilistic operators,

W (M)
n (f)(x) =

∨+∞
k=−∞ f(k/n) · e−n(x−k/n)2∨+∞

k=−∞ e
−n(x−k/n)2

, - of Gauss-Weierstrass kind,

Q(M)
n (f)(x) =

∨+∞
k=−∞ f(k/n) · 1

n2(x−k/n)2+1∨+∞
k=−∞

1
n2(x−k/n)2+1

, - of Poisson-Cauchy kind.

Now, denote by BUC+(R), the space of all bounded, positive and uniformly

continuous functions. Qualitative approximation properties for these oper-

ators can be obtained from Theorem 2.3.4. More than that, by the next

result we can obtain quantitative estimates too, as follows.
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Theorem 2.3.5. (Coroianu-Gal-Opriş-Trifa [23]) If f ∈ BUC+(R),

then we have

|P (M)
n (f)(x)− f(x)| ≤ 2 · ω1(f ; 1/n)R.

Theorem 2.3.7. (Coroianu-Gal-Opriş-Trifa [23]) If f ∈ BUC+(R) then

we have

|W (M)
n (f)(x)− f(x)| ≤ 2 · ω1(f ; 1/

√
n)R.

Theorem 2.3.9. (Coroianu-Gal-Opriş-Trifa [23]) If f ∈ BUC+(R), then

we have

|Q(M)
n (f)(x)− f(x)| ≤ 2 · ω1(f ; 1/ (2n))R.
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Ch. 3

Approximation on R+ by

integral operators

Given an arbitrary sequence λn > 0, n ∈ N, with the property that

limn→∞ λn = 0 as fast we want, in this chapter we introduce generalized

Szász-Kantorovich, Baskakov-Kantorovich, Szász-Durrmeyer-Stancu and Bas-

kakov-Szász-Durrmeyer-Stancu operators, such that on each compact subin-

terval in [0,+∞) the order of uniform approximation is ω1(f ;
√
λn). These

generalized operators uniformly approximate a Lipschitz 1 function, on each

compact subinterval of [0,∞), with the arbitrary good order of approxima-

tion
√
λn.

3.1 Introduction

It is known that the classical Baskakov operators are given by the formula

(see, e.g., [4])

Vn(f)(x) =
∞∑
j=0

(
n+ j − 1

j

)
xj

(1 + x)n+j
f(
j

n
)

39
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= (1 + x)−n
∞∑
j=0

(n+ j − 1)!

j!(n− 1)!

xj

(1 + x)j

= (1 + x)−n
∞∑
j=0

n(n+ 1)...(n+ j − 1)

j!

xj

(1 + x)j
.

In the recent paper [49], this operator was modified by replacing n with 1
λn

,

where limn→∞ λn = 0 as fast we want, and the approximation properties

(of arbitrary good order depending on λn) of the new obtained Baskakov

operator defined by the formula

Vn(f ;λn)(x) = (1+x)
−1
λn

∞∑
j=0

1

j!

1

λn
(1+

1

λn
)...(j−1+

1

λn
)(

x

1 + x
)jf(jλn), x ≥0,

were obtained. Above by convention, 1
j!

1
λn

(1 + 1
λn

)...(j − 1 + 1
λn

) = 1 for

j = 0. The complex variable case for Vn(f ;λn) was studied in [48]. Also,

in [38], the above idea was applied to the Jakimovski-Leviatan-Ismail kind

generalization of Szász-Mirakjan operators.

The goal of the present chaper is that based on the above idea, to

introduce modified/generalized Szász-Kantorovich, Baskakov-Kantorovich,

Szász-Durrmeyer-Stancu and Baskakov-Szász-Durrmeyer-Stancu operators

in such a way that on each compact subinterval in [0,+∞) the order of uni-

form approximation is ω1(f ;
√
λn). These modified operators can uniformly

approximate a Lipschitz 1 function, on each compact subinterval of [0,∞)

with the arbitrary good order of approximation
√
λn given at the beginning.

In conclusion, it is worth mentioning for these generalized operators that

since λn ca be chosen with λn ↘ 0 arbitrary fast, in fact it follows that the

order of convergence ω1(f ;
√
λn) is arbitrary good. For this reason, the

results obtained by this chapter have a definitive character (that is they are

the best possible). In the same time, the results also have a strong unifying
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character, in the sense that for various choices of the nodes λn one can

recapture previous approximation results obtained by many other authors.

3.2 Baskakov-Kantorovich operators

It is known that the classical Baskakov-Kantorovich operators are defined

by (see, e.g., [13])

Kn(f)(x) =
∞∑
j=0

(
n+ j − 1

j

)
xj

(1 + x)n+j
n

∫ (j+1)/n

j/n

f(v)dv

= (1 + x)−n
∞∑
j=0

n(n+ 1)...(n+ j − 1)

j!

xj

(1 + x)j
n

∫ (j+1)/n

j/n

f(v)dv.

If we replace n with 1
λn

, then we obtain the generalized Baskakov-Kantoro-

vich operators, defined by the formula

Kn(f ;λn)(x)

= (1 + x)−
1
λn

∞∑
j=0

1

j!

1

λn
(1 +

1

λn
)...(j − 1 +

1

λn
)

xj

(1 + x)j
1

λn

∫ (j+1)λn

jλn

f(v)dv.

Denote everywhere in the paper ek(x) = xk, k = 0, 1, 2, ..., .

This section deals with the approximation properties of the operator

Kn(f ;λn)(x). The main result of this section is the following.

Theorem 3.2.2. (Trifa [71]) Let λn ↘ 0 (with n→∞) as fast we want

and suppose that f : [0,+∞)→ R is uniformly continuous on [0,+∞) (we

write f ∈ UC[0,+∞)). For all x ∈ [0,+∞) and n ∈ N, we have

|Kn(f ;λn)(x)− f(x)| ≤ 2ω1(f ;
√
λn ·

√
x2 + x+ λn/3),

where ω1(f ; δ) = sup{|f(x)− f(y)|;x, y ∈ [0,+∞), |x− y| ≤ δ} denotes the

modulus of continuity of f with the step δ.
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As an immediate consequence of Theorem 3.2.2, we get the following.

Corollary 3.2.3. (Trifa [71]) Let λn ↘ 0 as fast we want and suppose

that f is a Lipschitz function, that is there exists M > 0 such that |f(x)−

f(y)| ≤M |x−y|, for all x, y ∈ [0,∞). Then, for all x ∈ [0,+∞) and n ∈ N

we have

|Kn(f ;λn)(x)− f(x)| ≤ 2M
√
λn ·

√
x+ x2 + λn/3.

Proof. Since by hypothesis f is a Lipschitz function, we easily get ω1(f ; δ) ≤

Mδ, for all δ > 0. Choosing now δ =
√
λn ·

√
x+ x2 + λn/3 and applying

Theorem 3.2.2, we get the desired estimate. �

Remarks. 1) Since f ∈ UC[0,+∞), it is well-known that we get

limδ↘0 ω1(f ; δ) = 0. Therefore, choosing δ = λn, we get that for n → ∞,

since λn ↘ 0, passing to limit with n → ∞ in the estimate in Theorem

3.2.2, it follows that Kn(f ;λn)(x) → f(x), pointwise for any x ∈ [0,+∞).

Now, in order to get uniform convergence in the above results, the expres-

sion
√
x+ x2 + λn/3 must be bounded, fact which holds when x belongs to

a compact subinterval of [0,+∞).

2) If f ∈ UC[0,+∞), then Kn(f ;λn)(x) is well defined, that is

|Kn(f ;λn)(x)| < +∞, for all x ∈ [0,+∞) and n ∈ N.

Indeed, if f is uniformly continuous on [0,+∞) then it is well known that

its growth on [0,+∞) is linear, i.e. there exist α, β > 0 such that |f(x)| ≤

αx+ β, for all x ∈ [0,+∞) (see e.g. [25], p. 48, Problème 4, or [26]). This

immediately implies

|Kn(f ;λn)(x)| ≤ Kn(|f |;λn)(x) ≤ α ·Kn(e1;λn)(x) + β

= α(x+ λn/2) + β < +∞,

for all x ∈ [0,+∞), n ∈ N.
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3.3 Szász-Kantorovich operators

The formula for the classic, linear and positive Szász-Kantorovich operators

is given by (see, e.g., [73])

Sn(f)(x) = e−nx
∞∑
j=0

(nx)j

j!
n

∫ j+1
n

j
n

f(v)dv = e−nx
∞∑
j=0

(nx)j

j!

∫ 1

0

f(
t+ j

n
)dt.

Replacing above n with 1
λn

, we obtain the generalized Szász-Kantorovich

operators, defined by the formula

Sn(f ;λn)(x)

= e−
x
λn

∞∑
j=0

xj

λjnj!

1

λn

∫ (j+1)λn

jλn

f(v)dv = e−
x
λn

∞∑
j=0

xj

λjnj!

∫ 1

0

f(λn(t+ j))dt.

We study here the approximation properties of the operator Sn(f ;λn)(x).

The main result of this section is the following.

Theorem 3.3.2. (Trifa [71]) Let λn ↘ 0 (with n→∞) as fast we want

and suppose that f : [0,+∞)→ R is uniformly continuous on [0,+∞). For

all x ∈ [0,+∞) and n ∈ N, we have

|Sn(f ;λn)(x)− f(x)| ≤ 2ω1(f ;
√
λn ·

√
x+ λn/3),

where ω1(f ; δ) = sup{|f(x)− f(y)|;x, y ∈ [0,+∞), |x− y| ≤ δ} denotes the

modulus of continuity of f with the step δ.

As an immediate consequence of Theorem 3.3.2 we get the following.

Corollary 3.3.3. (Trifa [71]) Let λn ↘ 0 as fast we want and suppose

that f is a Lipschitz function, that is there exists M > 0 such that |f(x)−

f(y)| ≤M |x−y|, for all x, y ∈ [0,∞). Then, for all x ∈ [0,+∞) and n ∈ N

we have

|Sn(f ;λn)(x)− f(x)| ≤ 2M
√
λn ·

√
x+ λn/3.
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Proof. Since by hypothesis f is a Lipschitz function, we easily get ω1(f ; δ) ≤

Mδ, for all δ > 0. Choosing now δ =
√
λn ·

√
x+ λn/3 and applying Theo-

rem 3.3.2, we get the desired estimate. �

3.4 Szász-Durrmeyer type operators

Let us recall that the classical Szász-Durrmeyer operators are given by the

formula (see, e.g., [63])

SDn(f)(x) = n
∞∑
j=0

sn,j(x)

∫ ∞
0

sn,j(t)f(t)dt,

where sn,j(x) = e−nx (nx)j

j!

If we replace n with 1
λn

, then we obtain the generalized Szász-Durrmeyer

operators, defined by the formula

SDn(f ;λn)(x) =
1

λn

∞∑
j=0

e−
x
λn · x

j

λjnj!

∫ ∞
0

e−
t
λn · tj

λjnj!
f(t)dt.

In the first part of this section we study the approximation properties of

the operator SDn(f ;λn)(x).

The first main result of this section is the following.

Theorem 3.4.2. (Trifa [71]) Let λn ↘ 0 as fast we want and suppose

that f : [0,+∞) → R is uniformly continuous on [0,+∞). For all x ∈

[0,+∞) and n ∈ N, we have

|SDn(f ;λn)(x)− f(x)| ≤ 2ω1(f ;
√
λn ·

√
2x+ 2λn).

Proof. Reasoning exactly as in the proof of Theorem 3.2.2, we can write

|SDn(f ;λn)(x)− f(x)| ≤ (1 + δ−1
√
SDn(ϕ2

x;λn)(x))ω1(f ; δ).
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Choosing here δ =
√
SDn(ϕ2

x;λn)(x) and using Lemma 3.4.1, (ii), we obtain

|SDn(f ;λn)(x)− f(x)| ≤ 2ω1(f ;
√
λn ·

√
2x+ 2λn),

which proves the theorem. �

As an immediate consequence of Theorem 3.4.2 we get the following.

Corollary 3.4.3. (Trifa [71]) Let λn ↘ 0 as fast we want and suppose

that f is a Lipschitz function, that is there exists M > 0 such that |f(x)−

f(y)| ≤M |x−y|, for all x, y ∈ [0,∞). Then, for all x ∈ [0,+∞) and n ∈ N

we have

|SDn(f ;λn)(x)− f(x)| ≤ 2M
√
λn ·

√
2x+ 2λn.

Proof. Since by hypothesis f is a Lipschitz function, we easily get ω1(f ; δ) ≤

Mδ, for all δ > 0. Choosing now δ =
√
λn ·
√

2x+ 2λn and applying Theo-

rem 3.4.2, we get the desired estimate. �

In what follows we will introduce and study the generalized Szász-

Durrmeyer-Stancu operators. Thus it is well-known that the classical Szász-

Durrmeyer-Stancu operators are given by the formula (see, e.g., [44])

SD(α,β)
n (f)(x) = n

∞∑
j=0

sn,j(x)

∫ ∞
0

sn,j(t)f

(
nt+ α

n+ β

)
dt,

where 0 ≤ α ≤ β and sn,j(x) = e−nx (nx)j

j!
.

If we replace n with 1
λn

, we obtain:

SD(α,β)
n (f ;λn)(x) =

1

λn

∞∑
j=0

e−
x
λn

( x
λn

)j

j!

∫ ∞
0

e−
x
λn

( x
λn

)j

j!
f

(
t
λn

+ α
1

λn+β

)
dt.

The main result concerning these operators of Stancu type is the follow-

ing.

Theorem 3.4.5. (Trifa [71]) Let 0 ≤ α ≤ β, λn ↘ 0 as fast we want

and suppose that f : [0,+∞)→ R is uniformly continuous on [0,+∞). For



46CH. 3. ARBITRARY ORDER BY INTEGRAL OPERATORS ON R+

all x ∈ [0,+∞) and n ∈ N, we have

|SD(α,β)
n (f ;λn)(x)− f(x)| ≤ 2ω1(f ;

√
λn ·

√
E

(α,β)
n (x)),

where

E(α,β)
n (x) =

λnβ
2

(1 + λnβ)2
x2 +

1− 2β(α + 1)λn
(1 + λnβ)2

x+
λn(α2 + 2α + 2)

(1 + λnβ)2

.

As an immediate consequence of Theorem 3.4.5, we get the following.

Corollary 3.4.6. (Trifa [71]) Let 0 ≤ α ≤ β, λn ↘ 0 as fast we want

and suppose that f is a Lipschitz function, that is there exists M > 0 such

that |f(x)−f(y)| ≤M |x−y|, for all x, y ∈ [0,∞). Then, for all x ∈ [0,+∞)

and n ∈ N we have

|SD(α,β)
n (f ;λn)(x)− f(x)| ≤ 2M

√
λn ·

√
E

(α,β)
n (x).

3.5 Baskakov-Szász-Durrmeyer-Stancu oper-

ators

For 0 ≤ α ≤ β, the classical Baskakov- Szász-Durrmeyer-Stancu operators

are given by the formula (see, e.g., [56])

V (α,β)
n (f)(x) = n

∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)f(
nt+ α

n+ β
dt,

where, sn,j(x) = e−nx (nx)j

j!
and

bn,j(x) =

(
n+ j − 1

j

)
xj

(1 + x)n+j
= (1+x)−n

n(n+ 1)...(n+ j − 1)

j!

xj

(1 + x)j
.
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If we replace n with 1
λn

we obtain the formula:

V (α,β)
n (f ;λn)(x)

=
1

λn

∞∑
j=0

(1 + x)−
1
λn

1
λn

( 1
λn

+ 1)...( 1
λn

+ j − 1)

j!

xj

(1 + x)j

·
∫ ∞

0

e−
t
λn ·

( t
λn

)j

j!
f(

t
λn

+ α
1
λn

+ β
)dt.

The main result of this section is the following.

Theorem 3.5.2. (Trifa [71]) Let 0 ≤ α ≤ β, λn ↘ 0 as fast we want

and suppose that f : [0,+∞)→ R is uniformly continuous on [0,+∞). For

all x ∈ [0,+∞) and n ∈ N, we have

|V (α,β)
n (f ;λn)(x)− f(x)| ≤ 2ω1(f ;

√
λn ·

√
F

(α,β)
n (x)),

where

F (α,β)
n (x) =

1 + λnβ
2

(1 + λnβ)2
x2 +

2− 2λnβ − 2λnαβ

(1 + λnβ)2
x+

λnα
2 + 2λnα + 2λn
(1 + λnβ)2

.

As an immediate consequence of Theorem 3.5.2 we get the following.

Corollary 3.5.3. (Trifa [71]) Let 0 ≤ α ≤ β, λn ↘ 0 as fast we want

and suppose that f is a Lipschitz function, that is there exists M > 0 such

that |f(x)−f(y)| ≤M |x−y|, for all x, y ∈ [0,∞). Then, for all x ∈ [0,+∞)

and n ∈ N we have

|V (α,β)
n (f ;λn)(x)− f(x)| ≤ 2M

√
λn ·

√
F

(α,β)
n (x).
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Ch. 4

Approximation by complex

Kantorovich type operators

By using a sequence λn > 0, n ∈ N with the property that λn → 0 as

fast we want, in this chapter we obtain the approximation order O(λn)

for generalized Baskakov-Kantorovich-Faber operators and for generalized

Szász-Kantorovich-Faber operators, respectively, attached to analytic func-

tions of exponential growth in a continuum (i.e. simply connected compact

set) G ⊂ C. Several concrete examples of continuums G are given for

which this operator can explicitly be constructed. In addition, we also ob-

tain the approximation order O(λn) for generalized Baskakov-Kantorovich-

Faber-Walsh operators and for generalized Szász-Kantorovich-Faber-Walsh

operators attached to analytic functions of exponential growth in a multiply

connected compact set G ⊂ C.

49
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4.1 Simply Connected Compact Sets: Pre-

liminaries

Let λn → 0 as fast we want, satisfying (without any loss of generality)

0 < λn ≤ 1
2
, for all n ∈ N.

Suggested by the method in the paper [48], where for analytic functions

of some exponential growth in simply connected compact sets of the complex

plane, approximation with the arbitrary order O(λn), by the Baskakov-

Faber kind operators of the form

Wn(f ;λn, G; z)

=
∞∑
k=0

ak(f) ·
k∑
j=0

(1 + λn) · ... · (1 + (j − 1)λn) · [0, λn, ..., jλn; ek] · Fj(z)

is obtained. Here Fj(z) represent the Faber polynomials attached to the

compact G (called continuum too), f(z) =
∑∞

k=0 ak(f)Fk(z) represents the

development in Faber series of f on G and [0, λn, ..., jλn; ek] represents the

divided difference of g(z) = ek(z) = zk, on the j + 1 knots 0, λn, ..., jλn.

By this method, the approximation order O(1/n) obtained for the clas-

sical Baskakov operators (i.e. for λn = 1/n) in compact disks with center at

origin in [35], Section 1.9, pp. 124-138, was improved (in [48]) toO(λn) given

by the Baskakov-Faber operators attached to a simply connected compact

subset of C.

Also, it is worth mentioning that this topic concerning quantitative esti-

mates in approximation by other complex operators can be found in many

other papers, see, e.g., the books [35], [36], [56] and in the papers [16], [34],

[45]-[55], [60]-[62].

For our purpose, we briefly recall some basic concepts on Faber polyno-

mials and Faber expansions.
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For G ⊂ C a compact set such that C̃ \G is connected, let A(G) be the

Banach space of all functions that are continuous on G and analytic in the

interior of G, endowed with the norm ‖f‖G = sup{|f(z)|; z ∈ G}. Denoting

Dr = {z ∈ C; |z| < r}, according to the Riemann Mapping Theorem,

there exists a unique conformal mapping Ψ of C̃ \ D1 onto C̃ \G such that

Ψ(∞) = ∞ and Ψ′(∞) > 0. Then, to G one may attach the polynomial

of exact degree n, Fn(z), called Faber polynomial, defined by Ψ′(w)
Ψ(w)−z =∑∞

n=0
Fn(z)
wn+1 , z ∈ G, |w| > 1.

If f ∈ A(G) then

an(f) =
1

2πi

∫
|u|=1

f(Ψ(u))

un+1
du =

1

2π

∫ π

−π
f(Ψ(eit))e−intdt, n ∈ N ∪ {0}

are called the Faber coefficients of f and
∑∞

n=0 an(f)Fn(z) is called the

Faber expansion (series) attached to f on G. It is worth noting that the

Faber series represent a natural generalization of the Taylor series, when

the unit disk is replaced by an arbitrary simply connected domain bounded

by a ”nice” curve.

Detailed properties of Faber polynomials and Faber expansions can be

found in e.g. [33], [70].

Let G be a connected compact subset in C (that is a continuum) and

suppose that f is analytic on G, that is there exists R > 1 such that

f is analytic in GR, given by f(z) =
∑∞

k=0 ak(f)Fk(z), z ∈ GR. Recall

here that GR denotes the interior of the closed level curve ΓR given by

ΓR = {Ψ(w); |w| = R} (and that G ⊂ Gr for all 1 < r < R).

Let 0 < λn ≤ 1
2
, for all n ∈ N, with λn → 0 as fast we want.

In what follows, firstly we will introduce the appropriate form for the

generalized Baskakov-Kantorovich-Faber operators, by using the method in

[48] used to introduce the Baskakov-Faber operators Wn(f ;λn, G; z) men-
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tioned in Introduction.

In this sense, we recall that in [71], we have studied the following form

of the Baskakov-Kantorovich operators of real variable, x ≥ 0,

Kn(λn; f)(x) = (1 + x)−1/λn·

·
∞∑
j=0

1

j!
· 1

λn

(
1 +

1

λn

)
· ... ·

(
j − 1 +

1

λn

)
·
(

x

1 + x

)j
Hn(f)(jλn),

where the function Hn is such that

Hn(f)(jλn) =
1

λn
·
∫ (j+1)λn

jλn

f(t)dt =
1

λn
·
∫ jλn+λn

jλn

f(t)dt.

It is easy to see that we can define Hn(f)(x) = 1
λn
·
∫ x+λn
x

f(t)dt.

Now, applying Theorem 2 in [59], we obtain the representation formula

Kn(f ;λn)(x) =
∞∑
j=0

(1 + λn) ... (1 + (j − 1)λn) · [0, λn, ..., jλn;Hn(f)]xj,

x ≥ 0, where by convention, (1 + λn) ... (1 + (j − 1)λn) = 1 for j = 0.

Supposing that f(z) =
∑∞

k=0 ak(f)zk is analytic in a compact disk |z| ≤

R, for Hn(f)(z) we obtain the representation

Hn(f)(z) =
1

λn
·
∫ z+λn

z

f(t)dt =
1

λn
·
∞∑
k=0

ak(f) ·
∫ z+λn

z

tkdt

=
1

λn
·
∞∑
k=0

ak(f)

k + 1
[(z + λn)k+1 − zk+1] =

∞∑
k=0

ak(f)

k + 1

(
k∑
j=0

(
k + 1

j

)
zjλk−jn

)

=
∞∑
k=0

An,k(f)zk,

where

An,k(f) =
∞∑
j=k

aj(f)

j + 1
λj−kn

(
j + 1

k

)
. (4.1)
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Reasoning as in [48], we can formally introduce the following Baskakov-

Kantorovich operators on compact disk centered at origin, by the formula

Kn(f ;λn)(z) =
∞∑
k=0

An,k(f)·
k∑
j=0

(1+λn)·...·(1+(j−1)λn)·[0, λn, ..., jλn; ek]z
j.

Finally, proceeding exactly as in Definition 2.1 in [48] (that is replacing zj by

Fj(z) ), if f(z) =
∑∞

k=0 ak(f)Fk(z), z ∈ G ⊂ C, where G ⊂ C is a compact

and Fk(z) are the Faber polynomials attached to G, we can introduce the

following definition.

Definition 4.1.1. (Trifa [72]) The generalized Baskakov-Kantorovich-

Faber operators attached to G and f is (formally) defined by

Kn(f ;λn, G; z)

=
∞∑
k=0

An,k(f) ·
k∑
j=0

(1+λn) · ... · (1+(j−1)λn) · [0, λn, ..., jλn; ek]Fj(z), (4.2)

where for j = 0 and j = 1, by convention we take

(1 + λn) · ... · (1 + (j − 1)λn) = 1.

Remark. For λn = 1/n, n ∈ N and G = D1, since Fj(z) = zj, the above

generalized Baskakov-Kantorovich-Faber operators reduce to the classical

complex Baskakov-Kantorovich operators.

The same formal reasonings can be applied to the generalized Szász-

Kantorovich operators, defined in the real case in [71], by the formula

Kn(f ;λn)(x) = e−x/λn
∞∑
j=0

xj

j!λjn
· 1

λn
·
∫ (j+1)λn

jλn

f(v)dv.

Indeed, according to the paper [37], page 976 (and denoting there bn
an

:=

λn), the classical generalized Szász operators, Sn(f ;λn)(z), can formally be
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written by the formula

Sn(f ;λn)(x) = e−x/λn ·
∞∑
j=0

f(jλn) · x
j

λjnj!
.

Then, by formula (1), p. 976 in [37], (written again for bn
an

:= λn) for the

generalized Szász operators, we get the form

Sn(f)(x) = e−x/λn
∞∑
j=0

xj

λjnj!
· f(jλn) =

∞∑
j=0

[0, λn, ..., jλn; f ] · zj.

Keeping the notation for Hn(f)(x), for Kn(f ;λn)(x), we can formally write

Kn(f ;λn)(x) = e−x/λn
∞∑
j=0

xj

j!λjn
·Hn(jλn) =

∞∑
j=0

[0, λn, ..., jλn;Hn] · xj.

Replacing now x by z and considering that f(z) =
∑∞

k=0 ak(f)Fk(z) is the

Faber expansion of f in the compact G, reasoning as in the case of Definition

4.1.1, we can introduce the following concept.

Definition 4.1.2. (Trifa [72]) The generalized Szász-Kantorovich-Faber

operators attached to G and f is (formally) defined by

Kn(f ;λn;G)(z) =
∞∑
k=0

Ak(f)
k∑
j=0

[0, λn, ..., jλn; ek] · Fj(z). (4.3)

4.2 Baskakov-Kantorovich-Faber Operators

In this section, the method in [48] described in Section 4.1, will be applied

to the complex Baskakov-Kantorovich operators studied in the case of real

variable in [71].

The main result of this section is the following.

Theorem 4.2.2. (Trifa [72]) Let λn ↘ 0, 0 < λn ≤ 1
2
, n ∈ N and

f be analytic on the continuum G, that is there exists R > 1 such that
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f is analytic in GR, given by f(z) =
∑∞

k=0 ak(f)Fk(z), z ∈ GR. Also,

suppose that there exist M > 0 and A ∈
(

1
R
, 1
)
, with |ak(f)| ≤ M Ak

k!
,

for all k = 0, 1, ..., (which implies |f(z)| ≤ C(r)MeAr for all z ∈ Gr,

1 < r < R). Here GR denotes the interior of the closed level curve ΓR given

by ΓR = {Ψ(w); |w| = R} and G ⊂ Gr, for all 1 < r < R.

Let 1 < r < 1
A

be arbitrary fixed. Then, there exist an index n0 ∈ N and

a constant C ′′(r, f) > 0 depending on r and f only, such that for all z ∈ Gr

and n ≥ n0 we have

|Kn(f ;λn, G; z)− f(z)| ≤ C ′′(r, f) · λn,

where Kn(f ;λn, G; z) is given by formula (4.2).

Remarks. 1) It is clear that Theorem 4.2.2 holds under the more gen-

eral hypothesis |ak(f)| ≤ Pm(k) · Ak
k!

, for all k ≥ 0, where Pm is an algebraic

polynomial of degree m with Pm(k) > 0 for all k ≥ 0.

2) There are many concrete examples for G when the conformal map-

ping Ψ and the Faber polynomials associated to G, and consequently when

the Baskakov-Kantorovich-Faber operators too, can explicitly be written

(see, e.g., [36], pp. 81-83, or [37]), as follows : G = [−1, 1], G is the

continuum bounded by the m-cusped hypocycloid, G is the regular m-star

(m = 2, 3, ...,), G is the m-leafed symmetric lemniscate, m = 2, 3, ...,, G is

a semidisk, or G is a circular lune.

4.3 Szász-Kantorovich-Faber Operators

In this section, the method in [48] described in Section 4.1, will be applied

to the complex Szász-Kantorovich operators, studied in the case of real

variable in [71].
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The main result of this section is the following.

Theorem 4.3.1. (Trifa [72]) Let λn ↘ 0, 0 < λn ≤ 1
2
, n ∈ N and

f be analytic on the continuum G, that is there exists R > 1 such that

f is analytic in GR, given by f(z) =
∑∞

k=0 ak(f)Fk(z), z ∈ GR. Also,

suppose that there exist M > 0 and A ∈
(

1
R
, 1
)
, with |ak(f)| ≤ M Ak

k!
,

for all k = 0, 1, ..., (which implies |f(z)| ≤ C(r)MeAr for all z ∈ Gr,

1 < r < R). Here GR denotes the interior of the closed level curve ΓR given

by ΓR = {Ψ(w); |w| = R} and G ⊂ Gr, for all 1 < r < R.

Let 1 < r < 1
A

be arbitrary fixed. Then, there exist an index n0 ∈ N and

a constant C ′′(r, f) > 0 depending on r and f only, such that for all z ∈ Gr

and n ≥ n0 we have

|Kn(f ;λn, G; z)− f(z)| ≤ C ′′(r, f) · λn,

where Kn(f ;λn, G; z) is given by formula (4.3).

Remarks. 1) It is clear that Theorem 4.3.1 holds under the more gen-

eral hypothesis |ak(f)| ≤ Pm(k) · Ak
k!

, for all k ≥ 0, where Pm is an algebraic

polynomial of degree m with Pm(k) > 0 for all k ≥ 0.

2) Again, we may indicate many concrete examples for G when the

conformal mapping Ψ and the Faber polynomials associated to G, and con-

sequently when the Szász-Kantorovich-Faber operators too, can explicitly

be written (see, e.g., [36], pp. 81-83, or [37]), as follows : G = [−1, 1], G

is the continuum bounded by the m-cusped hypocycloid, G is the regular

m-star (m = 2, 3, ...,), G is the m-leafed symmetric lemniscate, m = 2, 3, ...,,

G is a semidisk, or G is a circular lune.
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4.4 Multiply Connected Compact Sets: Pre-

liminaries

Let f(z) =
∑∞

k=0 ak(f)Bk(z) be the development of the analytic function f

in Faber-Walsh series on the multiply connected compact G, where Bk(z)

represent the so-called Walsh polynomials attached to G. In the paper [41],

one define and study the complex Szász-Mirakjan-Faber-Walsh operators,

given by the formula (see Definition 3 in [41])

Mn(f ;λn;G)(z) =
∞∑
k=0

ak(f)
k∑
j=0

[0, λn, ..., jλn; ek] ·Bj(z).

The main goal of the next two sections is to obtain similar approximation

properties for the Baskakov-Kantorovich-Faber-Walsh operators in Section

4.5 and for the Szász-Kantorovich-Faber-Walsh operators in Section 4.6.

But firstly, in this section we present some preliminaries on Walsh poly-

nomials.

The Faber polynomials were introduced by Faber in [28] as associated

to a simply connected compact set. They allow the expansion of functions

analytic on that set into a series with similar properties to the classical

power series.

In Walsh [74], were introduced polynomials that generalize the Faber

polynomials, attached to compact sets consisting of several components

(i.e. whose complement is a multiply connected domain). These generalized

Faber polynomials are called Faber-Walsh polynomials and also allow the

expansion of an analytic function into a series with properties again similar

to the power series.

In what follows, let us briefly recall some basic concepts on Faber-Walsh

polynomials and Faber-Walsh expansions we need in the next lines.
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Everywhere in Sections 4.5 and 4.6, G ⊂ C will be considered a compact

set consisting of several components, that is C̃ \G is multiply connected.

Definition 4.4.1. (see, e.g., Walsh [74]) A lemniscatic domain is a

domain of the form {w ∈ C̃; |U(w)| > µ}, where µ > 0 is some constant and

U(w) = Πν
j=1(w − αj)mj for some points α1, ..., αν ∈ C and real exponents

m1, ...,mν > 0 with
∑ν

j=1mj = 1.

In all what follows, we will consider that the points α1, ..., αν have the

property that from them can be chosen a sequence (αj)j∈N such that for any

closed set C not containing any of the points α1, ..., αν , there exist constants

A1(C), A2(C) > 0 with

A1(C) <
|un(w)|
|U(w)|n

< A2(C), n = 0, 1, 2, ..., w ∈ C, (4.4)

where un(w) = Πn
j=1(w − αj).

Let D1, ..., Dν be mutually exterior compact sets (none a single point)

of the complex plane such that the complement of G :=
⋃ν
j=1 Dj in the

extended plane is a ν-times connected region (open and connected set).

According to Theorem 3 in Walsh [75], there exists a lemniscatic domain

K1 = {w ∈ C̃; |U(w)| > µ}

and a conformal bijection

Φ : C̃ \G→ {w ∈ C̃; |U(w)| > µ}, with Φ(∞) =∞, and Φ′(∞) = 1.

Here µ is the logarithmic capacity of G. Further, the inverse conformal

bijection satisfies

Ψ = Φ−1 = {w ∈ C̃; |U(w) > µ} → C̃ \G, with Ψ(∞) = 1 and Ψ′(∞) = 1.

Consider the Green’s functionsH1(w) = log(|U(w)|)−log(µ), H = H1◦Φ

and for r > 1 their level curves

Λr = {w ∈ C;H1(w) = log(r)} = {w ∈ C; |U(w)| = rµ},
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Γ(r) = {z ∈ C;H(z) = log(r)}.

We have Γr = Ψ(Λr). Denote by Gr the interior of Γr and by D∞r the

exterior of Λr (including ∞).

Notice that for 1 < r < β < R we have G ⊂ Gr ⊂ Gβ ⊂ GR.

According to Theorem 3 in Walsh [74], for z ∈ Γr and w ∈ D∞r we have

Ψ′(w)

Ψ(w)− z
=
∞∑
n=0

Bn(z)

un+1(w)
, with Bn(z) =

1

2πi

∫
Λλ

un(t) · Ψ′(t)

Ψ(t)− z
dt, λ > r.

The polynomial Bn(z) is called the n-th Faber-Walsh polynomial attached

to G and (αj)j∈N and according to Lemma 2.5 in Sète [64], the Faber-Walsh

polynomials are independent of the lemniscatic domain and the exterior

mapping function Ψ.

Remarks. 1) The proof of existence of the above conformal mapping Ψ

(and implicitly of the existence of Faber-Walsh polynomials) was obtained

in Walsh [75] and it is based on some results on critical points of polynomials

obtained in the book of Walsh [76].

2) A nice property of the Faber-Walsh polynomials obtained in Walsh

[74], page 31, relation (34), is that

lim sup
k→∞

[‖Bk‖G]1/k = µ,

property which is similar to that for Chebyshev polynomials attached to

the multiply connected compact set G and also holds for many sets of poly-

nomials defined by extremal properties (see Fekete-Walsh [30], [31]). Here

‖ · ‖G denotes the uniform norm on G.

3) Similar to the Faber polynomials, according to Theorem 3 in Walsh

[74], the Faber-Walsh polynomials allow the series expansion of functions

analytic in compact sets. Namely, if f is analytic on the compact set G

(with multiply connected complement), there exists R > 1 such that f is
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analytic in GR and inside GR admits (locally uniformly) the series expansion

f(z) =
∑∞

k=0 ak(f)Bk(z), with

ak(f) =
1

2πi

∫
Λβ

f(Ψ(t))

uk+1(t)
dt, 1 < β < R. (4.5)

4) If G is simply connected, then the Faber-Walsh polynomials become

the Faber polynomials.

5) In our reasonings, we will also need the following estimate, see, e.g.,

Walsh [74], p. 29, relation (26)

|Bk(z)| ≤ A1(rµ)k, for all z ∈ Γr, 1 < r < R, k ≥ 0, (4.6)

where A1 depends on r only.

Also, by the relationship lim supn→∞ |ak|1/k ≤ 1
βµ

in Walsh [74], page 30,

we immediately get the estimate

|ak(f)| ≤ C(β, µ, f)

(βµ)k
, for all k = 0, 1, ..., (4.7)

where C(β, µ, f) > 0 is independent of k. Note that here and in all the next

reasonings we will choose 1 < r < β < R.

6) In the past, while the Faber polynomials were studied and used in

many previously published papers, the Faber-Walsh polynomials have rarely

been studied, excepting the Suetin’s book [70], which contains a short sec-

tion about them. The main reason for neglecting the Faber-Walsh poly-

nomials was the fact that no explicit examples of Walsh’s lemniscatic con-

formal maps were known. But very recently, by the papers [64]-[67], the

Faber-Walsh polynomials were bringed again into attention. Thus, the first

example of Walsh’s lemniscatic conformal maps seems to be mentioned in

the very recent paper of Sète-Liesen [66]. Also, the first explicit formulas for

the Faber-Walsh polynomials were obtained for the case when G consists in
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two disjoint compact intervals in Sète-Liesen [67]. The results in the present

work, are also new contributions to the topic of Faber-Walsh polynomials.

For further properties of Faber-Walsh polynomials, see, e.g., Chapter 13

in Suetin [70].

Having as model the definitions in the paper [72], we also can introduce

the following.

Definition 4.4.2. Let D1, ..., Dν be mutually exterior compact sets

(none a single point) of the complex plane such that the complement of

G :=
⋃ν
j=1Dj in the extended plane is a ν-times connected region (open

and connected set) and suppose that f is analytic in G, that is there exists

R > 1 such that f is analytic in GR, i.e. f(z) =
∑∞

k=0 ak(f)Bk(z) for all

z ∈ GR, where Bk(z) denotes the Faber-Walsh polynomials attached to G

and GR denotes the interior of the closed level curve ΓR.

The generalized Baskakov-Kantorovich-Faber-Walsh operators and the

generalized Szász-Kantorovich-Faber-Walsh operators attached to G and f ,

will formally be defined by

Kn(f ;λn;G)(z) =
∞∑
k=0

An,k(f)
k∑
j=0

[0, λn, ..., jλn; ek] ·Bj(z), (4.8)

and

Kn(f ;λn;G)(z) =
∞∑
k=0

An,k(f)
k∑
j=0

[0, λn, ..., jλn; ek] ·Bj(z), (4.9)

respectively, where

An,k(f) =
∞∑
j=k

aj(f)

j + 1
λj−kn

(
j + 1

k

)
. (4.10)

Everywhere in the next sections, (λn)n∈N is a sequence of real positive

numbers with the property that λn ↘ 0 as fast as we want. Without the

loss the generality, we may suppose that λn ≤ 1
2
, for all n ∈ N.
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4.5 Baskakov-Kantorovich-Walsh Operators

In this section we obtain approximation properties for the Baskakov-Kan-

torovich-Faber-Walsh operators.

We are in a position to state the main result of this section.

Theorem 4.5.2. Let µ ≥ 1 and D1, ..., Dν be mutually exterior compact

sets (none a single point) of the complex plane, such that the complement

of G :=
⋃ν
j=1Dj in the extended plane is a ν-times connected region (open

and connected set). Suppose that f is analytic in G, that is there exists

R > 1 such that f is analytic in GR, i.e. f(z) =
∑∞

k=0 ak(f)Bk(z) for all

z ∈ GR. Also, suppose that there exist M > 0 and A ∈
(

1
Rµ
, 1
µ

)
, with

|ak(f)| ≤ M Ak

k!
, for all k = 0, 1, ..., (which implies |f(z)| ≤ C(r)MeµAr for

all z ∈ Gr, 1 < r < R). Here µ, GR and Gr are those defined in Section

4.4.

Let 1 < r < 1
Aµ

be arbitrary fixed. Then, there exist n0 ∈ N and

C ′′(r, f, µ) > 0 depending on r, µ and f only, such that for all z ∈ Gr

and n ≥ n0 we have

|Kn(f ;λn, G; z)− f(z)| ≤ C ′′(r, f, µ) · λn.

Remarks. 1) Since
∑∞

k=0(k+ 1)Pm(k)(µAr)k < +∞ and
∑∞

k=0 Pm(k+

1) · (µAr)k

k!
< +∞ for any algebraic polynomial Pm of degree ≤ m satisfying

Pm(k) > 0 for all k ≥ 0, it is immediate from the proof that Theorem 4.5.2

holds under the more general hypothesis |ak(f)| ≤ Pm(k) · Ak
k!

, for all k ≥ 0.

2) In the case when the set G is simply connected compact set, Theorem

4.5.2 was obtained in [72].

3) It is worth noting that in fact the condition µ ≥ 1 in Theorem 4.5.2

can be dropped and the conditions on A and r in the statement of Theorem
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4.5.2 can be written as A ∈ (1/R, 1), 1 < r < 1/A (i.e. independent of

the logarithmic capacity µ), simply by suitably normalizing the lemniscatic

domain to be K1 = {w : |U(w)| > 1} and choosing Φ′(∞) = 1/µ > 0.

Indeed, in this case, the attached Faber-Walsh polynomials B̃k(z) and the

Faber-Walsh coefficients ãk(f) in the expansion f(z) =
∑∞

k=0 ãk(f) · B̃k(z),

satisfy (4.5) and (4.6) without the appearance of µk in these estimates (see,

e.g., [41]).

4.6 Szász-Kantorovich-Walsh Operators

In this section we obtain approximation properties for the Szász-Kantorovich-

Faber-Walsh operators.

The main result of this section is the following.

Theorem 4.6.1. Let µ ≥ 1 and D1, ..., Dν be mutually exterior compact

sets (none a single point) of the complex plane, such that the complement

of G :=
⋃ν
j=1Dj in the extended plane is a ν-times connected region (open

and connected set). Suppose that f is analytic in G, that is there exists

R > 1 such that f is analytic in GR, i.e. f(z) =
∑∞

k=0 ak(f)Bk(z) for all

z ∈ GR. Also, suppose that there exist M > 0 and A ∈
(

1
Rµ
, 1
µ

)
, with

|ak(f)| ≤ M Ak

k!
, for all k = 0, 1, ..., (which implies |f(z)| ≤ C(r)MeµAr for

all z ∈ Gr, 1 < r < R). Here µ, GR and Gr are those defined in Section

4.4.

Let 1 < r < 1
Aµ

be arbitrary fixed. Then, there exist n0 ∈ N and

C ′′(r, f, µ) > 0 depending on r, µ and f only, such that for all z ∈ Gr

and n ≥ n0 we have

|Kn(f ;λn, G; z)− f(z)| ≤ C ′′(r, f, µ) · λn.
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Remarks. 1) Since
∑∞

k=0(k+ 1)Pm(k)(µAr)k < +∞ and
∑∞

k=0 Pm(k+

1) · (µAr)k

k!
< +∞ for any algebraic polynomial Pm of degree ≤ m satisfying

Pm(k) > 0 for all k ≥ 0, it is immediate from the proof that Theorem 4.6.1

holds under the more general hypothesis |ak(f)| ≤ Pm(k) · Ak
k!

, for all k ≥ 0.

2) In the case when the set G is simply connected compact set, Theorem

4.6.1 was proved in [72].

3) It is worth noting that in fact the condition µ ≥ 1 in Theorem 4.6.1

can be dropped and the conditions on A and r in the statement of Theorem

4.6.1 can be written as A ∈ (1/R, 1), 1 < r < 1/A (i.e. independent of

the logarithmic capacity µ), simply by suitably normalizing the lemniscatic

domain to be K1 = {w : |U(w)| > 1} and choosing Φ′(∞) = 1/µ > 0.

Indeed, in this case, the attached Faber-Walsh polynomials B̃k(z) and the

Faber-Walsh coefficients ãk(f) in the expansion f(z) =
∑∞

k=0 ãk(f) · B̃k(z),

satisfy (4.5) and (4.6) without the appearance of µk in these estimates (see,

e.g., [41]).
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