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by Traian Ionut LUCA

Global context is generating challenges to optimize production of en-
ergy. Production of energy is a complex process with long, medium
and short term objectives, regulated and deregulated markets. An-
alyzing a daily production and consumption chart, a fluctuation is
visible. We compare this fluctuation with a spread, the peak load
being the most extreme point.

Our objective, for the research study which has generated this
thesis, is: To create, solve and validate a mathematical model which will
shave the peak load by minimizing fluctuation of energy and maximizing
the economic performance.

Shaving the peak load will generate a supra-production of energy
which, according to the strategy of power plant, might be addressed
for example by energy storage, demand side management, electric
vehicles strategy or by human interference to adjust the production
plan. Shifting the production will generate changes in the produc-
tion diagram, which might reduce the economic performance of the
power plant. To mitigate this risk, a bi-criteria optimization problem
might be used, the first component of the objective function being fo-
cused on peak-load, while the second component being focused on
economic performance.
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First part of our thesis (Chapters 2 and 3) is dedicated to anal-
ysis and development of mathematical tools necessary during our
research. Measures for fluctuation and methods to solve bi-criteria
optimization problems are evaluated and developed. To solve bi-
criteria optimization problems we have used equivalent parametric
problems with Kuhn-Tucker conditions and approximate problems.
Chapter 3 is dedicated to approximate problems and their connec-
tion to the initial problem. Invexity, incavity and avexity are used to
prove conditions such that an efficient solution of an initial bi-criteria
optimization problem remain efficient also for the approximate prob-
lem and reciprocally.

Key to shave the peak load, by minimizing fluctuation, is to find
a proper measure of spread able to target directly the most extreme
point. Few measures of spread have been evaluated, conclusion be-
ing that maximum absolute deviation satisfies our request.

Turnover is employed as measure for economic performance and
simple technical constraints, which limit the amount of energy to be
produced, are used.

Minimax measure for fluctuation of energy was defined starting
from maximum absolute deviation. Energy price is included in the
measure. Minimax measure for fluctuation is generating minimax
model for energy. Using some equivalent bi-criteria and paramet-
ric problems, efficient solution is computed and verified using real
data. Efficient production plan proved to have good and excellent
behavior compared to real production data.

Input data required for minimax measure are increasing the com-
plexity of the model. To reduce complexity, we have created a new
measure for fluctuation of energy and called it index measure for
fluctuation. A new model for peak-load shaving, index model, is
generated. Using again some equivalent bi-criteria and parametric
problems we manage to compute the efficient solution. Efficient pro-
duction plan proved to have good behavior compared to real pro-
duction data.

Minimax and index models use only simple technical constraints.
Inclusion of more complex technical constraints, profit as measure
of economic performance, a better estimation for input data and a
new approach for dealing with the transition from night period to
day period will open new research directions and might improve the
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accuracy of solution.
Our thesis is structured in six chapters.

First chapter is dedicated to the general context of energy which gen-
erates challenges for optimization.
Second chapter is dedicated to evaluate some mathematical tools
used in our research. Bi-criteria optimization problems and Kuhn-
Tucker conditions are presented. Some measures of spread are pre-
sented and evaluated for finding a starting point in defining our mea-
sures for fluctuation of energy.
Chapter 3 is dedicated to development of conditions such that effi-
cient solution of initial bi-criteria optimization problem will remain
efficient also for the approximate problem and reciprocally. Approx-
imation is creating a proper environment for solving in a more effi-
cient way complex energy problems which might arise due to tech-
nical constraints.
Chapter 4 is dedicated to the minimax energy model. It presents
the minimax measure for fluctuation of energy, development, solv-
ing and validation of minimax model.
Chapter 5 is dedicated to index energy model. Its development is
stimulated by the complexity of input data required by minimax
model. A new measure for fluctuation of energy is introduced. De-
velopment, solving and validation of index model are presented. In-
dex is less complex than minimax and easier to be applied, but per-
formances are less accurate.
Chapter 6 presents some conclusions of our research, an analysis and
comparison for the two models and some possibilities to extend and
improve the two models developed.

Our contributions to this thesis might be summarized as: a new
approach, based on bi-criteria optimization problems, for shaving
the peak load of energy; Theorems 3.3.1, 3.3.2, 3.3.5, 3.3.6, 3.3.9, 3.3.10,
3.3.11, 3.3.12, 3.4.3, 3.4.4, 3.4.5, 3.4.6, 3.4.7, 3.4.8, 3.4.9, 3.4.10, 3.5.3,
3.5.4, 3.5.5, 3.5.6, 3.5.7, 3.5.8, 3.5.9, 3.5.10, 3.6.1, 3.6.2, 3.6.3, 3.6.4,
3.6.5, 3.6.6, 3.6.7, 3.6.8; Examples 3.3.3, 3.3.7, 3.4.11, 3.4.12, 3.5.11,
3.5.12, 3.5.13; definition of minimax measure for fluctuation (4.1)

and index measure for fluctuation (5.1); bi-criteria problems (4.2)

and (5.2) used for shaving the peak load; Lemma 4.4.1 and Lemma
5.4.1 used to transform energy problems (4.2) and (5.2) in equivalent
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problems easier to be solved; Theorem 4.4.11 which proves that or-
der of scenarios does not change the solution; Theorem 4.4.5 which
computes the optimal solution for parametric model (4.4); Theorem
4.4.12 which computes the efficient solution for minimax model (4.2);
Theorem 5.4.5 which computes the optimal solution for parametric
model (5.4); Theorem 5.4.6 which computes the efficient solution for
index energy model (5.2); tests for minimax and index models per-
formed using real data and some economic analysis for Kuhn-Tucker
multipliers; classification, using Definitions 4.4.6, 4.4.7 and 4.4.8, of
Kuhn-Tucker multipliers based on to their capacity to generate feasi-
ble and optimal solutions for parametric optimization problem.

Results presented in this thesis were disseminated at two interna-
tional conferences:

Bi-criteria problems for energy optimization, presented at Confer-
ence: International Conference on Approximation Theory and
its Applications, organized in Sibiu, Romania during 26-29 May
2016.

Bi-criteria models for energy markets, presented at Conference:
Management International Conference, organized in Monastier
di Treviso, Italy, during 24-27 May 2017.

and in nine articles:

Minimax rule for energy optimization [98], published in Comput-
ers and Fluids, an ISI journal with an Impact Factor of 2.221
and a 5-years Impact Factor of 2.610.

Index model for peak-load shaving in energy production [92], sub-
mitted to Engineering Optimization, an ISI Journal with an Im-
pact Factor of 1.728.

Bi-criteria models for peak-load shaving [90], accepted for publi-
cation by Journal of Academy of Business and Economics, a
journal indexed in EBSCO, EconLit, Ulrich’s, Index Coperni-
cus, Research Bible.

Approximations of objective function in bi-criteria optimization prob-
lems [96], accepted for publication by European International
Journal of Science and Technology, a journal indexed in Google
Scholar, NewJour, Hochschulbibliothek Reutlingen, CrossRef.
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Approximations of objective function and constraints in bi-criteria
optimization problems [95], submitted to Journal of Numerical
Analysis and Approximation Theory, a journal indexed in Math-
ematical Reviews, Zentralblatt MATH.

Approximations of bi-criteria optimization problem [94], submitted
to Studia Universitatis Babes-Bolyai Mathematica, a journal in-
dexed in Mathematical Reviews, Zentralblatt MATH, EBSCO,
ProQuest Ulrichsweb.

Relations between η - approximation problems of a bi-criteria opti-
mization problem [97], submitted to Annals of the Tiberiu Popovi-
ciu Seminar of Functional Equations, Approximation and Con-
vexity, a journal indexed in Mathematical Reviews, Zentralblatt
MATH, American Mathematical Society.

Bi-criteria problems for energy optimization [39], published in Gen-
eral Mathematics, a journal indexed in Zentralblatt MATH, EB-
SCO, Mathematical Reviews, Index Copernicus.

Portfolio optimization algorithms [93], published in Studia Uni-
versitatis Babes-Bolyai Negotia, a journal indexed in EBSCO,
Index Copernicus, ERIH PLUS.

and are supported by our previous work reflected in books, articles
and conferences:

Matematici economice. Elemente de programare liniara si teoria prob-
abilitatilor [19], a book published by Presa Universitara Clu-
jeana.

Strict fixed points results for multivalued contractions on gauge spaces
[122], published in Fixed Point Theory, an ISI journal with an
Impact Factor of 1.030 in 2010.

Uniqueness algebraic conditions in the study of second order ellip-
tic systems [18], published in International Journal of Pure and
Applied Mathematics, a journal indexed in Scopus.

Maximum principles for a class of second order parabolic systems in
divergence form [20], published in Journal of Nonlinear Func-
tional Analysis and Differential Equations, a journal indexed in
Scopus, Web of Science, Zentralblatt MATH.
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Automotive industry and performances of US Economy, published
in International Journal of Finance and Economics, a journal
indexed in EBSCO, Ulrich’s, Index Copernicus, EconLit.

Consumer’s inflation expectations in Romania [147], published in
International Journal of Business Research, a journal indexed in
EBSCO, Ulrich’s, Index Copernicus, EconLit.

Comparative analysis of low-cost airlines websites [77], published
in Proceedings of IABE - 2009 Las Vegas - Annual Conference,
a volume indexed in EBSCO, Ulrich’s, Index Copernicus, Econ-
Lit.

Economic applications of dynamic optimization, presented at Con-
ference: 10th International Symposium on Generalized Con-
vexity and Monotonicity, organized in Cluj Napoca, Romania,
during 22-27 August 2011.

A relation between transportation problems and profit, presented
at Conference: Current Issues of Regional Development, orga-
nized in Sec, Czech Republic, during 26-27 June 2007.

Key words: approximation theorems, generalized convexity, peak load
shaving, bi-criteria problems, energy fluctuation minimization, economic
performance maximization, parametric optimization, Kuhn-Tucker condi-
tions.
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Chapter 1

General context of energy
optimization

Evolution of humanity is highly dependent on energy. According
to International Energy Agency (IEA) [66] the main energy sources are
coal, oil and gas (67.4% of total fuels used). This generates high CO2

emissions, with impact on climate change, transposed among others
by an increase of global average temperature [115].
Adding the projected increase of population [150], the projected in-
crease of energy consumption [151], the topology, capacity and asso-
ciated costs of power grids and the anthropogenic factors, it is obvi-
ous that there are a lot of challenges related to production of energy.

Production of energy is a highly complex environment with three
main actors (producers, consumers and independent system oper-
ators) and long, medium and short term objectives [37]. Specific
requirements and day-ahead markets [80], make energy problems
complex [37], [118], difficult to solve and with a lot of challenges.

Results in this field have been obtained among others in: [50, 102,
123, 13, 8, 127, 84, 55, 117, 118, 154, 161, 58, 27, 28, 81, 56, 44, 36, 30,
67, 1, 103, 153, 114, 41, 7, 42, 108, 100, 130, 132, 87, 131].

Increased consumption of electricity, combined with increased
magnitude, frequency and duration of extreme heat events, due to
climate change, will result in higher peak loads, creating pressure
on: (i) producers [9, 23, 138, 146], (ii) power grids and (iii) price of
electricity [132].

Conventional approach for dealing with peak load is based on
non-economically feasible solutions. A more preferable approach,
which has become an important research area is peak load shaving
[149]. Three main strategies might be applied to realize a peak load
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shaving: (i) energy storage systems – ESS, (ii) electric vehicles – EV
and (iii) demand side management – DSM.

Important contributions to peak load shaving are presented in
[15, 23, 24, 26, 33, 47, 49, 51, 57, 68, 70, 72, 87, 82, 88, 111, 130, 113,
108, 107, 116, 120, 128, 134, 139, 141, 144, 145, 149, 156, 157, 158, 162].

The peak load of energy which we aim to shave, is visible in Fig-
ure 1.1.

FIGURE 1.1: Evolution of electricity in Romania in 4th
of December 2015

Same figure shows a fluctuation of energy, which might be re-
garded as a spread.

Our objective for this research is to create, solve and validate a math-
ematical model which will shave the peak load by minimizing fluctuation of
energy and maximizing the economic performance.
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Chapter 2

Mathematic tools

2.1 Introduction

Bi-criteria optimization problems are playing a central role in our
research. For this Chapter we define two objectives: (i) to present
methods used for solving bi-criteria optimization problems and (ii)
to analyze known measures for spread of data in order to identify a
starting point for defining measures for fluctuation of energy.

2.2 Multi-criteria optimization problem and

efficient points

Definition 2.2.1 Let X ⊆ Rn and f = (f1, f2, ...fm)
T : X → Rm. The

optimization problem {
min f (x)

x ∈ X
(2.1)

is called a multi-criteria optimization problem.

Remark 2.2.2 If m = 2 the multi-criteria optimization problem defined
above is called bi-criteria optimization problem.

In our study, the first component of the objective function is fluc-
tuation of energy, with a key role in shaving the peak load. The sec-
ond component of the objective function is economic performance of
the power plant, influencing accuracy of solution.

Solution of a multi-criteria optimization problem has to realize a
trade off between all components of objective. This solution is called
efficient point or efficient solution.
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Definition 2.2.3 A feasible solution x∗ ∈ X of problem (2.1) is an efficient
solution if @x ∈ X such that

f (x) ≤ f (x∗)

f (x) 6= f (x∗) .

Multi-criteria optimization problems have several applications in
fields like: financial investments [16, 76], engineering, biology [69],
data analysis [21] or logistics [119].

2.3 Solving a bi-criteria problem

Optimization problems might be solved by analytical methods (com-
pute the exact solution based on mathematical proofs), numerical
methods (approximate the solution using appropriate iterations) or
using an approximation problem for the initial optimization prob-
lem.

“Scalarization“ methods [62, 106, 142, 17] are frequently used for
bi-criteria optimization problems. The importance degree of each
component of the objective function might be established a priori or
during the process.

[32] shows that numerical methods for solving bi-criteria opti-
mization problems are inspired from biology [64, 74, 34, 71], physics
[60, 85], geography [54, 52] or from social culture [155, 31].

2.3.1 Equivalence of Yu

Theorem 2.3.1 (Yu [160]) .
Let f1, f2, g1, g2, ..., gm : Rn → R linear functions and X = {x ∈ Rn :

gi (x) ≤ 0, i = 1,m}.
A point x∗ ∈ X is an efficient solution for bi-criteria optimization problem{

min (f1 (x) , f2 (x))

x ∈ X
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if and only if ∃λ ∈ (0, 1) such that x∗ is an optimal solution for parametric
optimization problem{

min (λf1 (x) + (1− λ) f2 (x))
x ∈ X

Using this Theorem, the bi-criteria optimization problem is trans-
formed into an equivalent parametric optimization problem.

One of the methods used to solve optimization problems is based
on Lagrange conditions (when constraints are equalities) or Kuhn-
Tucker conditions (when constraints are inequalities). Associated
multipliers are representing the shadow price. They provide the
marginal behavior of the objective function with respect to the con-
stant value of the corresponding constraint and offer important strate-
gical information. It is the reason for choosing this method for solv-
ing bi-criteria optimization problems, instead of “ particle swarm op-
timization“ a common method for energy optimization.

2.3.2 Kuhn-Tucker Theorems

Let us consider the following nonlinear optimization problem
minf (x)

gi (x) ≤ 0, i = 1,m

x ∈ X
(2.2)

where X ⊆ Rn, f : X → R and gi : X → R, i = 1,m.

Definition 2.3.2 The constraint gi (x) ≤ 0, with i = 1,m, is called active
at x0 if gi (x0) = 0 and inactive at x0 if gi (x0) < 0.

The following Theorem is presenting necessary Kuhn-Tucker con-
ditions for existence of solution for nonlinear optimization problem
(2.2).

Theorem 2.3.3 (Kuhn-Tucker [73], [79]: necessary conditions) .
Let X ⊆ Rn be an open and nonempty set, x∗ ∈ X a feasible solution for

problem (2.2) and functions f : X → R and gi : X → R, i = 1,m dif-
ferentiable at x∗. Suppose that gradient vectors 5gi (x∗) corresponding to
active constraints are linear independent. If x∗ ∈ X is an optimal solution
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for problem (2.2), then there exists multipliers λi ∈ R, i = 1,m such that

∇f (x∗) +
m∑
i=1

λi∇gi (x∗) = 0

λigi (x
∗) = 0, i = 1,m

λi ≥ 0, i = 1,m.

It is well known that, in general, the necessary Kuhn-Tucker con-
ditions for optimum are not sufficient too. Adding some additional
requirements, the necessary conditions become sufficient too.

Theorem 2.3.4 (Kuhn-Tucker [61], [79]: sufficient conditions) .
Let X ⊆ Rn be an open and nonempty set, x∗ ∈ X a feasible solution

for problem (2.2) and functions f : X → R and gi : X → R, i = 1,m

differentiable in x∗ and convex. If there exists multipliers λi ∈ R, i = 1,m

such that
∇f (x∗) +

m∑
i=1

λi∇gi (x∗) = 0

λigi (x
∗) = 0, i = 1,m

λi ≥ 0, i = 1,m.

then x∗ is an optimal solution for optimization problem (2.2).

During time, mathematicians have been preoccupied to replace
convexity in sufficient Kuhn-Tucker conditions, with a weaker one.
Mangasarian [99] and Hanson [61] have contributed by introducing
pseudo and cvasi convexity, respectively invexity.

2.3.3 Karush Theorem

While studying at University of Chicago, William Karush has devel-
oped his own version for Kuhn-Tucker conditions. Being preoccu-
pied to determine necessary and sufficient conditions for existence
of minimum for a function f = f (x1, x2, ...xn), knowing that con-
straints gα (x1, x2, ...xn) ≥ 0, α = 1,m are fulfilled and functions f
and gα, α = 1,m are subject to continuity and differentiability, he
has formulated the following Theorem:

Theorem 2.3.5 (Karush theorem [73]: preliminary result) .
If f (x0) is a minimum then there exists multipliers l0, lα not all zero such
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that the derivatives Fxi of the function

F (x) = l0f (x) +
m∑
α=1

lαgα (x)

all vanish at x0. [Karush, 1939, pp. 12-13]

Multiplier l0 is used to compute the Lagrangian and no sign re-
strictions are imposed for multipliers lα. To avoid this situation, ad-
ditional restrictions called regularity conditions are necessary. Karush
has defined admissible direction and admissible arc.

Definition 2.3.6 A vector λ = (λ1, λ2, ...λn) is called admissible direction
if

n∑
i=1

∂gα
∂xi

(
x0
)
λi ≥ 0, α = 1,m.

Definition 2.3.7 An arc x : [0, t0]→ Rn is called admissible, if gα (x (t))
≥ 0, for any α = 1,m and t ∈ [0, t0].

Definition 2.3.8 An arc x : [0, t0]→ Rn starts from x0 to direction λ, if

xi (0) = x0i , i = 1, n

x
′

i (0) = λi, i = 1, n.

Using these regularity conditions, Karush is formulating the fol-
lowing Theorem:

Theorem 2.3.9 (Karush [73]) .
Suppose that for each admissible direction λ there is an admissible arc issu-
ing from x0 in the direction λ. Then a first necessary condition for x0 to be
a minimum is that there exist multipliers lα ≤ 0, α = 1,m such that the
derivatives Fxi of the function

F = f +
m∑
α=1

lαgα

all vanish at x0. [Karush, 1939, pp.13].

In 1976 Kuhn is partially publishing Karush’s dissertation, em-
phasizing his contribution to the development of nonlinear program-
ming [78].
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2.3.4 John Theorem

Fritz John was preoccupied, among others, by extending Lagrange
multipliers to cases when constraints are inequalities.

Theorem 2.3.10 (John [73]) .
Let R be a set of points in Rn, S a set of points in R and R′ the set of all
points x ∈ R, which satisfy

G (x, y) ≥ 0, for all y ∈ S

where G : R× S → R.
Let F : R→ R and x0 be an interior point of R and a point of R′with

F
(
x0
)
= min

x∈R′
F (x) .

Then there exists a finite set of points y1...ys in S and numbers λ0, λ1, ...λs
which do not all vanish, such that

G (x0, yr) = 0, r = 1, s

λ0 ≥ 0

λ1 > 0, ...λs > 0, 0 ≤ s ≤ n

and the function

φ (x) = λ0F (x)−
s∑
r=1

λrG (x, yr)

has a critical point at x0.

Due to geometrical context in which John has developed his the-
orem, he was using parameters y ∈ S which are not present in the
theorems formulated by Karush or Kuhn-Tucker.

2.4 Measures of spread

2.4.1 Variance

The best known measure of spread is variance. It measures the spread
of some values around their average or expected value, being de-
fined as:

σ = E
[
(X − µ)2

]
, (2.3)
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where X is a random variable and µ is its average or expected value.
Variance has several application, some of them being available in

[3, 10, 11, 22, 29, 43, 45, 46, 48, 59, 63, 65, 83, 86, 101, 104, 105, 110,
121, 133, 135, 136, 137, 140, 143]. Quadratic form of variance makes it
very complex and difficult to be applied and explained. Variance is
measuring how far the values are spread around the expected value,
offering an average distance of spread. Thus variance is not targeting
directly the most extreme value and we consider it not suitable for
our objective.

2.4.2 Mean absolute deviation

Mean absolute deviation is obtained by replacing quadratic form of
variance with module. It is defined as:

σ = E [|X − µ|] (2.4)

where X is a random variable and µ is its average or expected value.
[75, 76] have successfully applied mean absolute deviation in some

analysis, but for our objective we can’t consider it, due to the fact that
an average spread is calculated, without targeting directly the most
extreme value.

2.4.3 Maximum absolute deviation

Maximum absolute deviation is defined as

σ = max (|X − µ|) , (2.5)

where X is a random variable and µ is its average or expected value.
It was successfully applied in [16, 159]. From its definition, maxi-

mum absolute deviation is addressing the most extreme point, satis-
fying our requests. Thus we might consider it as a starting point for
developing a proper measure for fluctuation of energy.
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Chapter 3

Approximation theorems for
bi-criteria optimization
problems

3.1 Introduction

Practical problems arising from different fields of activity might gen-
erate highly complex multi-criteria optimization problems. Approx-
imation problems are representing one of the method used to solve
these complex practical problems. Antczak [4, 5, 6], Duca [12, 25,
38, 40, 124], Popovici [126, 2] have contributed, among others, to this
method of solving optimization problems.

3.2 Basic concepts

Let X be a set in Rn, x0 an interior point of X , η : X × X → X and
f : X → R. If f is differentiable at x0 then we denote:

F 1 (x) = f (x0) +∇f (x0) η (x, x0)

and call it first η−approximation of f
and if f is twice differentiable at x0 then we denote:

F 2 (x) = f (x0) +∇f (x0) η (x, x0) +
1

2
η (x, x0)

T ∇2f (x0) η (x, x0) .

and call it second η−approximation of f .

Definition 3.2.1 Let X be a nonempty set of Rn, x0 an interior point of
X , f : X → R a function differentiable at x0 and η : X ×X → X . Then
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function f is:
invex at x0 with respect to η if for all x ∈ X we have:

f (x)− f (x0) ≥ ∇f (x0) η (x, x0)

or equivalently:
f (x) ≥ F 1 (x) ;

incave at x0 with respect to η if for all x ∈ X we have:

f (x)− f (x0) ≤ ∇f (x0) η (x, x0)

or equivalently
f (x) ≤ F 1 (x) ;

avex at x0 with respect to η if it is both invex and incave at x0 w.r.t. η.

Definition 3.2.2 LetX be a nonempty set of Rn, x0 an interior point ofX ,
f : X → R a function twice differentiable at x0 and η : X×X → X . Then
function f is:
second order invex at x0 with respect to η if for all x ∈ X we have:

f (x)− f (x0) ≥ ∇f (x0) η (x, x0) +
1

2
η (x, x0)

T ∇2f (x0) η (x, x0)

or equivalently:
f (x) ≥ F 2 (x) ;

second order incave at x0 with respect to η if for all x ∈ X we have:

f (x)− f (x0) ≤ ∇f (x0) η (x, x0) +
1

2
η (x, x0)

T ∇2f (x0) η (x, x0)

or equivalently:
f (x) ≤ F 2 (x) ;

second order avex at x0 with respect to η if it is both second order invex
and second order incave at x0 w.r.t. η.

Let X be a nonempty set of Rn, x0 an interior point of X, η : X ×
X → X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.
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We consider the bi-criteria optimization problem
(
P 0,0
0

)
, defined

as: 
min (f1, f2) (x)

x = (x1, x2, ...xn) ∈ X
gt (x) ≤ 0, t ∈ T
hs (x) = 0, s ∈ S.

Assuming that functions f1, f2, are differentiable of order i, j ∈
{1, 2} and functions gt, (t ∈ T ) , hs, (s ∈ S) are differentiable of or-
der k ∈ {0, 1, 2}, we will approximate original problem

(
P 0,0
0

)
by

problems
(
P i,j
k

)
: 

min
(
F i
1, F

j
2

)
(x)

x = (x1, x2, ...xn) ∈ X
Gk
t (x) ≤ 0, t ∈ T

Hk
s (x) = 0, s ∈ S

where (i, j) ∈ {(1, 0) , (1, 1) , (2, 0) , (2, 1) , (2, 2)}, k ∈ {0, 1, 2} and
F 0
1 = f1, F

0
2 = f2, G

0
t = gt (t ∈ T ) , H0

s = hs (s ∈ S).
We denote by

Fk =
{
x ∈ X : Gk

t (x) ≤ 0, t ∈ T, Hk
s (x) = 0, s ∈ S

}
, k ∈ {0, 1, 2}

the set of feasible solutions for bi-criteria optimization problem
(
P i,j
k

)
,

where (i, j) ∈ {(1, 0) , (1, 1) , (2, 0) , (2, 1) , (2, 2)} and k ∈ {0, 1, 2}.

3.3 First and second η - approximations for

components of objective function on the

same feasible set

In this section we will study conditions such that efficient solutions
of approximated problems

(
P 1,0
0

)
,
(
P 1,1
0

)
,
(
P 2,0
0

)
,
(
P 2,1
0

)
and

(
P 2,2
0

)
will remain efficient also for original problem

(
P 0,0
0

)
and reciprocally.

Theorem 3.3.1 (Luca and Duca [96]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) f1 is differentiable at x0 and invex1 at x0 with respect to η,
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b) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 1,0
0

)
, then x0 is an efficient solution

for
(
P 0,0
0

)
.

Theorem 3.3.2 (Luca and Duca [96]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) f1 is differentiable at x0 and incave1 at x0 with respect to η,

b) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 0,0
0

)
, then x0 is an efficient solution

for
(
P 1,0
0

)
.

Example 3.3.3 (Luca and Duca [96]) .
Let the initial bi-criteria optimization problem

(
P 0,0
0

)
be:

min f (x) = (x21 + x22;x1 − 2x2)

−x1 − x2 + 2 ≤ 0

x1;x2 ≥ 0

(3.1)

x0 = (1, 1) ∈ F0 is an efficient solution for problem (3.1) and the value of
function f is f (1, 1) = (2,−1).
The approximate problem

(
P 1,0
0

)
will be

minF (x) = (2x1 + 2x2 − 2;x1 − 2x2)

−x1 − x2 + 2 ≤ 0

x1;x2 ≥ 0

(3.2)

Because F (1, 1) = (2,−1) ≥ (2,−4) = F (0, 2), it follows that x0 =

(1, 1) ∈ F0 is not an efficient solution for the problem
(
P 1,0
0

)
.

Remark 3.3.4 Conditions such that efficient solution of problem
(
P 1,1
0

)
will remain efficient for problem

(
P 0,0
0

)
and reciprocally have been studied

in [40].

Theorem 3.3.5 (Luca and Duca [96]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
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X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) f1 is twice differentiable at x0 and invex2 at x0 with respect to η,

b) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 2,0
0

)
, then x0 is an efficient solution

for
(
P 0,0
0

)
.

Theorem 3.3.6 (Luca and Duca [96]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) f1 is twice differentiable at x0 and incave2 at x0 with respect to η,

b) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 0,0
0

)
, then x0 is an efficient solution

for
(
P 2,0
0

)
.

Example 3.3.7 (Luca and Duca [96]) .
Let the initial bi-criteria optimization problem

(
P 0,0
0

)
be:


min (x21 + x1x2 + x22 − 19.25x1 − 19.875x2;x1 + x2)

−x21 + 6x1 − 1− x2 ≤ 0

4x1 + x2 − 20 ≤ 0

x1;x2 ≥ 0

(3.3)

An efficient solution for problem (3.3) is x0 = (3, 8). The corresponding
approximate problem

(
P 2,0
0

)
is:

min (x21 + x1x2 + x22 − 19.25x1 − 19.875x2;x1 + x2)

−x21 + 6x1 − 1− x2 ≤ 0

4x1 + x2 − 20 ≤ 0

x1;x2 ≥ 0

(3.4)

which is identical with initial problem (3.3) and thus they have the same
efficient solution.
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Remark 3.3.8 Example 3.3.7 shows that if second order incavity of f1 from
condition a) of Theorem 3.3.6 is not satisfied it might be possible to obtain
the same efficient solution.

Theorem 3.3.9 (Luca and Duca [96]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) f1 is twice differentiable at x0 and invex2 at x0 with respect to η,

b) f2 is differentiable at x0 and invex1 at x0 with respect to η,

c) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 2,1
0

)
, then x0 is an efficient solution

for
(
P 0,0
0

)
.

Theorem 3.3.10 (Luca and Duca [96]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) f1 is twice differentiable at x0 and incave2 at x0 with respect to η,

b) f2 is differentiable at x0 and incave1 at x0 with respect to η,

c) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 0,0
0

)
, then x0 is an efficient solution

for
(
P 2,1
0

)
.

Theorem 3.3.11 (Luca and Duca [96]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) f1 is twice differentiable at x0 and invex2 at x0 with respect to η,

b) f2 is twice differentiable at x0 and invex2 at x0 with respect to η,
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c) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 2,2
0

)
, then x0 is an efficient solution

for
(
P 0,0
0

)
.

Theorem 3.3.12 (Luca and Duca [96]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) f1 is twice differentiable at x0 and incave2 at x0 with respect to η,

b) f2 is twice differentiable at x0 and incave2 at x0 with respect to η,

c) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 0,0
0

)
, then x0 is an efficient solution

for
(
P 2,2
0

)
.

3.4 First and second η-approximations for com-

ponents of objective function on the first

η -approximation of feasible set

In this section we will study conditions such that efficient solutions
of approximated problems

(
P 1,0
1

)
,
(
P 2,0
1

)
,
(
P 2,1
1

)
and

(
P 2,2
1

)
will re-

main efficient also for initial problem
(
P 0,0
0

)
and reciprocally.

Conditions for the relation
(
P 0,0
0

)
vs.
(
P 1,1
1

)
have been studied in [40]

so we will not analyze them anymore.

Theorem 3.4.1 (Duca and Ratiu [40]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X ×X → X ,
and gt, hs : X → R, (t ∈ T, s ∈ S).

Assume that:

a) for each t ∈ T , the function gt is differentiable at x0 and invex1 at x0
with respect to η,

b) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0
with respect to η,
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then
F0 ⊆ F1.

Theorem 3.4.2 (Duca and Ratiu [40]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X ×X → X ,
and gt, hs : X → R, (t ∈ T, s ∈ S).

Assume that

a) for each t ∈ T , the function gt is differentiable at x0 and incave1 at x0
with respect to η,

b) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0
with respect to η,

then
F1 ⊆ F0.

Theorem 3.4.3 (Luca and Duca [95]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) x0 ∈ F0,

b) for each t ∈ T , the function gt is differentiable at x0 and invex1 at x0
with respect to η,

c) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0
with respect to η,

d) f1 is twice differentiable at x0 and invex2 at x0 with respect to η,

e) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 2,0
1

)
, then x0 is an efficient solution

for
(
P 0,0
0

)
.

Theorem 3.4.4 (Luca and Duca [95]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:
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a) x0 ∈ F1,

b) for each t ∈ T , the function gt is differentiable at x0 and incave1 at x0
with respect to η,

c) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0
with respect to η,

d) f1 is twice differentiable at x0 and incave2 at x0 with respect to η,

e) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 0,0
0

)
, then x0 is an efficient solution

for
(
P 2,0
1

)
.

Theorem 3.4.5 (Luca and Duca [95]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) x0 ∈ F0,

b) for each t ∈ T , the function gt is differentiable at x0 and invex1 at x0
with respect to η,

c) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0
with respect to η,

d) f1 is differentiable at x0 and invex1 at x0 with respect to η,

e) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 1,0
1

)
, then x0 is an efficient solution

for
(
P 0,0
0

)
.

Theorem 3.4.6 (Luca and Duca [95]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) x0 ∈ F1,
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b) for each t ∈ T , the function gt is differentiable at x0 and incave1 at x0
with respect to η,

c) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0
with respect to η,

d) f1 is differentiable at x0 and incave1 at x0 with respect to η,

e) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 0,0
0

)
, then x0 is an efficient solution

for
(
P 1,0
1

)
.

Theorem 3.4.7 (Luca and Duca [95]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) x0 ∈ F0,

b) for each t ∈ T , the function gt is differentiable at x0 and invex1 at x0
with respect to η,

c) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0
with respect to η,

d) f1 is twice differentiable at x0 and invex2 at x0 with respect to η,

e) f2 is differentiable at x0 and invex1 at x0 with respect to η,

f) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 2,1
1

)
, then x0 is an efficient solution

for
(
P 0,0
0

)
.

Theorem 3.4.8 (Luca and Duca [95]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) x0 ∈ F1,
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b) for each t ∈ T , the function gt is differentiable at x0 and incave1 at x0
with respect to η,

c) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0
with respect to η,

d) f1 is twice differentiable at x0 and incave2 at x0 with respect to η,

e) f2 is differentiable at x0 and incave1 at x0 with respect to η,

f) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 0,0
0

)
, then x0 is an efficient solution

for
(
P 2,1
1

)
.

Theorem 3.4.9 (Luca and Duca [95]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) x0 ∈ F0,

b) for each t ∈ T , the function gt is differentiable at x0 and invex1 at x0
with respect to η,

c) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0
with respect to η,

d) f1 is twice differentiable at x0 and invex2 at x0 with respect to η,

e) f2 is twice differentiable at x0 and invex2 at x0 with respect to η,

f) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 2,2
1

)
, then x0 is an efficient solution

for
(
P 0,0
0

)
.

Theorem 3.4.10 (Luca and Duca [95]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) x0 ∈ F1,
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b) for each t ∈ T , the function gt is differentiable at x0 and incave1 at x0
with respect to η,

c) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0
with respect to η,

d) f1 is twice differentiable at x0 and incave2 at x0 with respect to η,

e) f2 is twice differentiable at x0 and incave2 at x0 with respect to η,

f) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 0,0
0

)
, then x0 is an efficient solution

for
(
P 2,2
1

)
.

Example 3.4.11 (Luca and Duca [95]) .
Let the initial bi-criteria optimization problem

(
P 0,0
0

)
be:

min (x1 − 2x2;x1 + x2)

−x1x2 + 1 ≤ 0

x1;x2 ≥ 0.

An efficient solution of problem
(
P 0,0
0

)
is x0 = (1, 1) ∈ F0 and the value

of the objective function in x0 is f(1, 1) = (−1, 2).
The approximate problems

(
P i,j
1

)
, with (i, j) ∈ {(1, 0), (1, 1),

(2, 0), (2, 1), (2, 2)} are:
min (x1 − 2x2;x1 + x2)

−x1 − x2 + 2 ≤ 0

x1;x2 ≥ 0.

The value of objective function for problem
(
P i,j
1

)
in x = (0, 2) ∈ F1 is(

F i
1, F

j
2

)
(0, 2) = (−4, 2). Thus x0 = (1, 1) ∈ F1 is not an efficient

solution for approximate problem
(
P i,j
1

)
.

Example 3.4.12 (Luca and Duca [95]) .
Let the initial bi-criteria optimization problem

(
P 0,0
0

)
be:

min
(
x21 + (x2 − π − 1)2; (x1 +

1
10
)2 − 1

2
(x2 + 1)2

)
−x1 − sinx1 + x2 ≤ 0

x1 − 5π
2
≤ 0

x1;x2 ≥ 0.



22
Chapter 3. Approximation theorems for bi-criteria optimization

problems

An efficient solution of problem
(
P 0,0
0

)
is x0 = (π

2
, 1 + π

2
) ∈ F0 and the

value of the objective function in x0 is f(π
2
, 1 + π

2
) = (π

2

2
; π2

8
− 9π

10
− 199

100
).

The approximate problem
(
P 1,1
1

)
is:

min
(
πx1 − πx2 + π + π2

2
; (π + 1

5
)x1 − (π

2
+ 2)x2 − π2

8
+ π

2
+ 1

100

)
−x1 + x2 − 1 ≤ 0

x1 − 5π
2
≤ 0

x1;x2 ≥ 0.

The value for the objective function of problem
(
P 1,1
1

)
in x = (5π

2
, 1+ 5π

2
) ∈

F1 is F 1(5π
2
, 1 + 5π

2
) = (π

2

2
, 9π2

8
− 9π

2
− 199

100
) Thus x0 = (π

2
, 1 + π

2
) is not

an efficient solution for problem
(
P 1,1
1

)
.

3.5 First and second η - approximations for

components of objective function on the

second η - approximation of feasible set

In this section we will study conditions such that efficient solutions
of approximated problems

(
P 1,0
2

)
,
(
P 2,0
2

)
,
(
P 2,1
2

)
and

(
P 2,2
2

)
will re-

main efficient also for original problem
(
P 0,0
0

)
and reciprocally.

Theorem 3.5.1 (Duca and Boncea [12]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X ×X → X ,
and gt, hs : X → R, (t ∈ T, s ∈ S).

Assume that:

a) for each t ∈ T , the function gt is twice differentiable at x0 and invex2 at
x0 with respect to η,

b) for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at
x0 with respect to η,

then
F0 ⊆ F2.

Theorem 3.5.2 (Duca and Boncea [12]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X ×X → X ,
and gt, hs : X → R, (t ∈ T, s ∈ S).

Assume that
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a) for each t ∈ T , the function gt is twice differentiable at x0 and incave2 at
x0 with respect to η,

b) for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at
x0 with respect to η,

then
F2 ⊆ F0.

Theorem 3.5.3 (Luca and Duca [94]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) x0 ∈ F0,

b) for each t ∈ T , the function gt is twice differentiable at x0 and invex2 at
x0 with respect to η,

c) for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at
x0 with respect to η,

d) f1 is twice differentiable at x0 and invex2 at x0 with respect to η,

e) f2 is differentiable at x0 and invex1 at x0 with respect to η,

f) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 2,1
2

)
, then x0 is an efficient solution

for
(
P 0,0
0

)
.

Theorem 3.5.4 (Luca and Duca [94]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) x0 ∈ F2,

b) for each t ∈ T , the function gt is twice differentiable at x0 and incave2

at x0 with respect to η,

c) for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at
x0 with respect to η,
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d) f1 is twice differentiable at x0 and incave2 at x0 with respect to η,

e) f2 is differentiable at x0 and incave1 at x0 with respect to η,

f) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 0,0
0

)
, then x0 is an efficient solution

for
(
P 2,1
2

)
.

Theorem 3.5.5 (Luca and Duca [94]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) x0 ∈ F0,

b) for each t ∈ T , the function gt is twice differentiable at x0 and invex2 at
x0 with respect to η,

c) for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at
x0 with respect to η,

d) f1 is differentiable at x0 and invex1 at x0 with respect to η,

e) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 1,0
2

)
, then x0 is an efficient solution

for
(
P 0,0
0

)
.

Theorem 3.5.6 (Luca and Duca [94]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) x0 ∈ F2,

b) for each t ∈ T , the function gt is twice differentiable at x0 and incave2

at x0 with respect to η,

c) for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at
x0 with respect to η,

d) f1 is differentiable at x0 and incave1 at x0with respect to η,
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e) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 0,0
0

)
, then x0 is an efficient solution

for
(
P 1,0
2

)
.

Theorem 3.5.7 (Luca and Duca [94]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) x0 ∈ F0,

b) for each t ∈ T , the function gt is twice differentiable at x0 and invex2 at
x0 with respect to η,

c) for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at
x0 with respect to η,

d) f1 is twice differentiable at x0 and invex2 at x0 with respect to η,

e) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 2,0
2

)
, then x0 is an efficient solution

for
(
P 0,0
0

)
.

Theorem 3.5.8 (Luca and Duca [94]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) x0 ∈ F2,

b) for each t ∈ T , the function gt is twice differentiable at x0 and incave2

at x0 with respect to η,

c) for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at
x0 with respect to η,

d) f1 is twice differentiable at x0 and incave2 at x0 with respect to η,

e) η (x0, x0) = 0.
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If x0 is an efficient solution for
(
P 0,0
0

)
, then x0 is an efficient solution

for
(
P 2,0
2

)
.

Theorem 3.5.9 (Luca and Duca [94]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) x0 ∈ F0,

b) for each t ∈ T , the function gt is twice differentiable at x0 and invex2 at
x0 with respect to η,

c) for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at
x0 with respect to η,

d) f1 is twice differentiable at x0 and invex2 at x0 with respect to η,

e) f2 is twice differentiable at x0 and invex2 at x0 with respect to η,

f) η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 2,2
2

)
, then x0 is an efficient solution

for
(
P 0,0
0

)
.

Theorem 3.5.10 (Luca and Duca [94]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) x0 ∈ F2,

b) for each t ∈ T , the function gt is twice differentiable at x0 and incave2

at x0 with respect to η,

c) for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at
x0 with respect to η,

d) f1 is twice differentiable at x0 and incave2 at x0 with respect to η,

e) f2 is twice differentiable at x0 and incave2 at x0 with respect to η,

f) η (x0, x0) = 0.
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If x0 is an efficient solution for
(
P 0,0
0

)
, then x0 is an efficient solution

for
(
P 2,2
2

)
.

Example 3.5.11 (Luca and Duca [94]) .
Let the initial bi-criteria optimization problem

(
P 0,0
0

)
be:

min
(
−
(
x1 − 3π

5

)2 − (x2 − 2π
5
− 1
)2

;−x1 + x2

)
−x1 − sinx1 + x2 ≤ 0

x1 − 5π
2
≤ 0

x1;x2 ≥ 0.

An efficient solution of problem
(
P 0,0
0

)
is x0 = (π

2
, 1 + π

2
) ∈ F0.

The approximate problem
(
P 0,0
2

)
is:

min
(
−
(
x1 − 3π

5

)2 − (x2 − 2π
5
− 1
)2

;−x1 + x2

)
−x1 + x2 +

1
2

(
x1 − π

2

)2 − 1 ≤ 0

x1 − 5π
2
≤ 0

x1;x2 ≥ 0.

Because f(3π
4
; 3π

4
+1− π2

32
) < f(π

2
, 1+ π

2
), it follows that efficient solution

of the problem (P 0,0) is not efficient also for the problem
(
P 0,0
2

)
.

Example 3.5.12 Let’s consider the same initial problem as in Example 3.5.11.
The approximate problem

(
P 1,1
2

)
is:

min
(
−π

5
x1 − π

5
x2 +

9π2

50
+ π

5
; −x1 + x2

)
−x1 + x2 +

1
2

(
x1 − π

2

)2 − 1 ≤ 0

x1 − 5π
2
≤ 0

x1;x2 ≥ 0.

Because F 1(3π
4
; 3π

4
+ 1 − π2

32
) < F 1(π

2
, 1 + π

2
), it follows that efficient

solution of the problem (P 0,0) is not efficient also for the problem
(
P 1,1
2

)
.

Example 3.5.13 (Luca and Duca [94]) .
Let’s consider the same initial problem as in Example 3.5.11. The approxi-

mate problem
(
P 2,2
2

)
is:

min
(
−π

2

(
x1 − π

2

)2 − π+2
2

(
x2 − 1− π

2

)2 − π
5
x1 − π

5
x2 +

9π2

50
+ π

5
; −x1 + x2

)
−x1 + x2 +

1
2

(
x1 − π

2

)2 − 1 ≤ 0

x1 − 5π
2
≤ 0

x1;x2 ≥ 0.
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Because F 2(3π
4
; 3π

4
+ 1 − π2

32
) < F 2(π

2
, 1 + π

2
), it follows that efficient

solution of the problem (P 0,0) is not efficient also for the problem
(
P 2,2
2

)
.

3.6 Relations between η - approximation prob-

lems for
(
P 0,0
0

)
3.6.1 Relations between

(
P i,j
0

)
and

(
P i,j
1

)
Theorem 3.6.1 (Luca and Duca [97]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) x0 ∈ F1,

b) for each t ∈ T , the function gt is differentiable at x0 and incave1 at x0
with respect to η,

c) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0
with respect to η.

1. If f1 is differentiable at x0 and x0 is an efficient solution for problem(
P 1,0
0

)
, then x0 is an efficient solution for problem

(
P 1,0
1

)
.

2. If f1 is twice differentiable at x0 and x0 is an efficient solution for
problem

(
P 2,0
0

)
, then x0 is an efficient solution for problem

(
P 2,0
1

)
.

3. If f1 is twice differentiable at x0, f2 is differentiable at x0 and x0 is an
efficient solution for problem

(
P 2,1
0

)
, then x0 is an efficient solution

for problem
(
P 2,1
1

)
.

4. If f1 is twice differentiable at x0, f2 is twice differentiable at x0 and
x0 is an efficient solution for problem

(
P 2,2
0

)
, then x0 is an efficient

solution for problem
(
P 2,2
1

)
.

Theorem 3.6.2 (Luca and Duca [97]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:
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a) x0 ∈ F0,

b) for each t ∈ T , the function gt is differentiable at x0 and invex1 at x0
with respect to η,

c) for each s ∈ S, the function hs is differentiable at x0 and avex1 at x0
with respect to η.

1. If f1 is differentiable at x0 and x0 is an efficient solution for problem(
P 1,0
1

)
then x0 is an efficient solution for problem

(
P 1,0
0

)
.

2. If f1 is twice differentiable at x0 and x0 is an efficient solution for
problem

(
P 2,0
1

)
then x0 is an efficient solution for problem

(
P 2,0
0

)
.

3. If f1 is twice differentiable at x0, f2 is differentiable at x0 and x0 is
an efficient solution for problem

(
P 2,1
1

)
then x0 is an efficient solution

for problem
(
P 2,1
0

)
.

4. If f1 is twice differentiable at x0, f2 is twice differentiable at x0 and
x0 is an efficient solution for problem

(
P 2,2
1

)
then x0 is an efficient

solution for problem
(
P 2,2
0

)
.

3.6.2 Relations between
(
P i,j
0

)
and

(
P i,j
2

)
Theorem 3.6.3 (Luca and Duca [97]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) x0 ∈ F2,

b) for each t ∈ T , the function gt is twice differentiable at x0 and incave2

at x0 with respect to η,

c) for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at
x0 with respect to η.

1. If f1 is differentiable at x0 and x0 is an efficient solution for problem(
P 1,0
0

)
, then x0 is an efficient solution for problem

(
P 1,0
2

)
.

2. If f1 is twice differentiable at x0 and x0 is an efficient solution for
problem

(
P 2,0
0

)
, then x0 is an efficient solution for problem

(
P 2,0
2

)
.
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3. If f1 is twice differentiable at x0, f2 is differentiable at x0 and x0 is an
efficient solution for problem

(
P 2,1
0

)
, then x0 is an efficient solution

for problem
(
P 2,1
2

)
.

4. If f1 is twice differentiable at x0, f2 is twice differentiable at x0 and
x0 is an efficient solution for problem

(
P 2,2
0

)
, then x0 is an efficient

solution for problem
(
P 2,2
2

)
.

Theorem 3.6.4 (Luca and Duca [97]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) x0 ∈ F0,

b) for each t ∈ T , the function gt is twice differentiable at x0 and invex2 at
x0 with respect to η,

c) for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at
x0 with respect to η.

1. If f1 is differentiable at x0 and x0 is an efficient solution for problem(
P 1,0
2

)
then x0 is an efficient solution for problem

(
P 1,0
0

)
.

2. If f1 is twice differentiable at x0 and x0 is an efficient solution for
problem

(
P 2,0
2

)
then x0 is an efficient solution for problem

(
P 2,0
0

)
.

3. If f1 is twice differentiable at x0, f2 is differentiable at x0 and x0 is
an efficient solution for problem

(
P 2,1
2

)
then x0 is an efficient solution

for problem
(
P 2,1
0

)
.

4. If f1 is twice differentiable at x0, f2 is twice differentiable at x0 and
x0 is an efficient solution for problem

(
P 2,2
2

)
then x0 is an efficient

solution for problem
(
P 2,2
0

)
.

3.6.3 Relations between
(
P i,j
1

)
and

(
P i,j
2

)
Theorem 3.6.5 (Luca and Duca [97]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X×X → X ,

and gt, hs : X → R, (t ∈ T, s ∈ S).
Assume that:



3.6. Relations between η - approximation problems for
(
P 0,0
0

)
31

a) for each t ∈ T , the function gt is twice differentiable at x0 and∇2gt (x0)

is negative semi-definite,

b) for each s ∈ S, the function hs is twice differentiable at x0 and∇2hs (x0)

is null definite,

then

F1 ⊆ F2.

Theorem 3.6.6 (Luca and Duca [97]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X×X → X ,

and gt, hs : X → R, (t ∈ T, s ∈ S).
If

a) for each t ∈ T , the function gt is twice differentiable at x0 and∇2gt (x0)

is positive semi-definite,

b) for each s ∈ S, the function hs is differentiable at x0 and ∇2hs (x0) is
null definite,

then

F2 ⊆ F1.

Theorem 3.6.7 (Luca and Duca [97]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) x0 ∈ F2,

b) for each t ∈ T , the function gt is twice differentiable at x0 and∇2gt (x0)

is positive semi-definite,

c) for each s ∈ S, the function hs is twice differentiable at x0 and∇2hs (x0)

is null definite.

1. If f1 is differentiable at x0 and x0 is an efficient solution for problem(
P 1,0
1

)
, then x0 is an efficient solution for problem

(
P 1,0
2

)
.

2. If f1 is twice differentiable at x0 and x0 is an efficient solution for
problem

(
P 2,0
1

)
, then x0 is an efficient solution for problem

(
P 2,0
2

)
.
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3. If f1 is twice differentiable at x0, f2 is differentiable at x0 and x0 is an
efficient solution for problem

(
P 2,1
1

)
, then x0 is an efficient solution

for problem
(
P 2,1
2

)
.

4. If f1 is twice differentiable at x0, f2 is twice differentiable at x0 and
x0 is an efficient solution for problem

(
P 2,2
1

)
, then x0 is an efficient

solution for problem
(
P 2,2
2

)
.

Theorem 3.6.8 (Luca and Duca [97]) .
Let X be a nonempty set of Rn, x0 an interior point of X, η : X × X →
X , T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X →
R, (t ∈ T, s ∈ S) functions.

Assume that:

a) x0 ∈ F1,

b) for each t ∈ T , the function gt is twice differentiable at x0 and∇2gt (x0)

is negative semi-definite,

c) for each s ∈ S, the function hs is twice differentiable at x0 and∇2hs (x0)

is null definite.

1. If f1 is differentiable at x0 and x0 is an efficient solution for problem(
P 1,0
2

)
then x0 is an efficient solution for problem

(
P 1,0
1

)
.

2. If f1 is twice differentiable at x0 and x0 is an efficient solution for
problem

(
P 2,0
2

)
then x0 is an efficient solution for problem

(
P 2,0
1

)
.

3. If f1 is twice differentiable at x0, f2 is differentiable at x0 and x0 is
an efficient solution for problem

(
P 2,1
2

)
then x0 is an efficient solution

for problem
(
P 2,1
1

)
.

4. If f1 is twice differentiable at x0, f2 is twice differentiable at x0 and
x0 is an efficient solution for problem

(
P 2,2
2

)
then x0 is an efficient

solution for problem
(
P 2,2
1

)
.

3.7 Conclusions

This chapter was dedicated to study of some conditions such that
efficient solution of a bi-criteria optimization problem remains effi-
cient also for the approximate problem and reciprocally. Our con-
tributions to this Chapter, consisting of 32 Theorems and 7 counter-
examples, were disseminated in [96], [95], [94] and [97].
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Chapter 4

Minimax model for energy
optimization

4.1 Introduction

This chapter is minimax model for energy optimization. It is a bi-
criteria optimization problem which aims to shave the peak load by
minimizing fluctuation of energy and maximizing economic perfor-
mance of the power plant.

Starting from maximum absolute deviation we will define a mea-
sure for fluctuation of energy production. Economic performance of
the power plant will be measured by turnover.

4.2 Minimax measure for fluctuation

of energy

Maximum absolute deviation, presented in Chapter 2, is targeting
directly the most extreme value. Thus, it will represent the starting
point in developing a measure for fluctuation of energy. [35, 132,
152] emphasize elasticity of energy price. Consequently we consider
adequate to introduce energy price in the measure of fluctuation.

Definition 4.2.1 Minimax fluctuation of energy is the maximum, over all
time periods, for difference between energy produced at certain time mo-
ments and a predefined level of energy, multiplied with price of energy at
the corresponding time moment.

Remark 4.2.2 Predefined level of energy might be for example a random
value chosen by energy plant or the average amount of energy produced
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during a certain period from the past. Of course, when the average is em-
ployed, it might be necessary to adjust it with a factor to cover the projected
increase of demand.

Denoting by 1, 2, ..., i, ...., n the time horizon considered and
xi - energy produced at time moment i, i = 1, n,

pi - price of energy at time moment i, i = 1, n,

r - predefined level of energy,
ε - minimum level of energy assumed by the power plant to be

delivered in the power grid,
ρ - maximum level of energy assumed by the power plant to be

delivered in the power grid,
and considering that ε ≤ r ≤ ρ, the minimax fluctuation of energy is

max
i=1,n
|pixi − pir| . (4.1)

4.3 Problem formulation

Let’s consider a power plant which aims to shave the peak load by
minimizing fluctuation of energy, without decreasing its economic
performances. It is obvious that we are dealing with a bi-criteria
optimization problem. Its first component is minimax measure of
fluctuation (4.1) and the second is turnover defined as

n∑
i=1

pixi.

Considering simple technical constraints which limit the amount
of energy produced, the minimax model is defined as min

(
max
i=1,n
|pixi − pir| , −

n∑
i=1

pixi

)T
ε ≤ xi ≤ ρ, i = 1, n.

(4.2)
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4.4 Computing the solution

To determine the efficient solution for problem (4.2) we will intro-
duce the following bi-criteria equivalent problem

min

(
y, −

n∑
i=1

pixi

)T
|pixi − pir| ≤ y, i = 1, n

ε ≤ xi ≤ ρ, i = 1, n.

(4.3)

their equivalence being proved by the following Lemma

Lemma 4.4.1 [98] Let’s consider the bi-criteria optimization problems (4.2)
and (4.3).

a) If x ∈ Rn is an efficient solution for problem (4.2), then (x, y) ∈
Rn×R, with y = max

i=1,n
|pixi − pir| is an efficient solution for problem

(4.3).

b) If (x, y) ∈ Rn × R, with y = max
i=1,n
|pixi − pir| is an efficient solution

for problem (4.3), then x ∈ Rn is an efficient solution for problem
(4.2).

Using results of Yu [160], Bot et all [14] and Geoffrion [53] the bi-
criteria problem (4.3) is equivalent to the following parametric opti-
mization problem 

min

{
λy − (1− λ)

n∑
i=1

pixi

}
|pixi − pir| ≤ y, i = 1, n

ε ≤ xi ≤ ρ, i = 1, n.

(4.4)

with λ ∈ (0, 1) and the following Lemma holds.

Lemma 4.4.2 [98] (x, y) ∈ Rn × R is an efficient solution for bi-criteria
problem (4.3) if and only if ∃λ ∈ (0, 1) such that (x, y) ∈ Rn × R is an
optimal solution for parametric optimization problem (4.4)

Remark 4.4.3 Considering the equivalence between problems (4.2) and
(4.3), respectively problems (4.3) and (4.4), it follows from transitivity that
problems (4.2) and (4.4) are equivalent. This means that in order to com-
pute the efficient solution for (4.2) we have to determine the optimal solu-
tion for (4.4).
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Remark 4.4.4 In the process of computing the optimal solution, we will
split the set {1, 2, ..., n} in subsets like {1, 2, ..., l} and {l + 1, l + 2, ..., n},
or {1, 2, ..., l}, {l + 1, l + 2, ...,m} and {m+ 1,m+ 2, ..., n}. If price is
constant on such an interval, it will be denoted by p.

The following theorem is computing an optimal solution for para-
metric optimization problem (4.4).

Theorem 4.4.5 (Luca and Mahalov [98]; parametric minimax) .
The optimal solutions for parametric optimization problem (4.4) are:

1. If λ < n
n+1

, then {
x∗i = ρ, i = 1, n

y∗ = p (ρ− r)

or

• if p1 ≤ pj, j = l + 1, n, then


x∗i = ρ, i = 1, l

x∗j = r + y∗

pj
, j = l + 1, n

y∗ = p (ρ− r)

where p1 = pi, i = 1, l.

• else problem has no solution.

2. If λ = n
n+1

, then  x∗i = r + y∗

pi
, i = 1, n

y∗ = min
i=1,n
{pi (ρ− r)} .

3. If λ > n
n+1

, then {
x∗i = r, i = 1, n

y∗ = 0.

4. If λ < l
l+1

, then

• if pj < p, j = l + 1, n, then
x∗i = ρ, i = 1, l

x∗j = ρ, j = l + 1, n

y∗ = p (ρ− r)
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where p1 = pi, i = 1, l.

• else problem has no solution.

5. If λ = l
l+1

, then

• if pj < pi, i = 1, l, j = l + 1, n, then
x∗i = r + y∗

pi
, i = 1, l

x∗j = ρ, j = l + 1, n

y∗ = min
i=1,l
{pi (ρ− r)} , if pj < pi.

• else problem has no solution

6. If λ < l+(n−m)
l+(n−m)+1

, then

• if pj ≤ p ≤ pi, i = 1, l, j = l + 1,m, then
x∗i = r + y∗

pi
, i = 1, l

x∗j = ρ, j = l + 1,m

x∗k = ρ, k = m+ 1, n

y∗ = p (ρ− r)

where p3 = pk, k = m+ 1, n.

• else problem has no solution.

Definition 4.4.6 Possible combinations are the combinations of Kuhn-
Tucker multipliers, determined for a fixed i ∈ {1, 2, ..., n} for which com-
plementarity slackness and dual feasibility conditions are fulfilled.

Definition 4.4.7 Feasible combinations are those possible combinations
for which the gradient of Lagrangian is zero.

Definition 4.4.8 Critical combinations are those feasible combinations
for which a solution does not exist if they are combined.

Remark 4.4.9 Due to the fact that the optimization problem (??18)) is a
convex one, it follows that Kuhn-Tucker conditions are both necessary and
sufficient.

Remark 4.4.10 During proof of Theorem 4.4.5 it can be noticed that for
scenario 5 one of the partial derivatives of Lagrangian is not equal to zero.
This means that scenario 5 will not generate a solution by its own, but
combined with other scenarios, it might generate a solution.
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Theorem 4.4.11 (Luca and Mahalov [98]; order of scenarios) .
The order of scenarios, used to compute an optimal solution for parametric

optimization problem (4.4), does not influence the solution.

Theorem 4.4.12 (Luca and Mahalov [98]; energy minimax) .
The efficient solution for bi-criteria energy optimization problem (4.2) is

1. If λ < n
n+1

and there is a single price for energy, then


x∗i = ρ, i = 1, n

y∗ = p (ρ− r)
TR = npρ

or

• if energy is sold against two different prices during 24 hours and
p1 ≤ pj, j = l + 1, n, then



x∗i = ρ, i = 1, l

x∗j = r + y∗

pj
, j = l + 1, n

y∗ = p1 (ρ− r)

TR = lp1ρ+ r
n∑

j=l+1

pj + (n− l) y∗.

where p1 = pi, i = 1, l.

• else problem has no solution.

2. If λ = n
n+1

, then 
x∗i = r + y∗

pi
, i = 1, n

y∗ = min
i=1,n
{pi (ρ− r)}

TR = r
n∑
i=1

pi + ny∗.

3. If λ > n
n+1

, then 
x∗i = r, i = 1, n

y∗ = 0

TR = r
n∑
i=1

pi.

4. If λ < l
l+1

, then
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• if pj < p1, j = l + 1, n, then

x∗i = ρ, i = 1, l

x∗j = ρ, j = l + 1, n

y∗ = p (ρ− r)

TR = lpρ+ ρ
n∑

j=l+1

pj.

where p1 = pi, i = 1, l.

• else problem has no solution.

5. If λ = l
l+1

, then

• if pj < pi, i = 1, l, j = l + 1, n, then

x∗i = r + y∗

pi
, i = 1, l

x∗j = ρ, j = l + 1, n

y∗ = min
i=1,l
{pi (ρ− r)}

TR = ly∗ + r
l∑

i=1

pi + ρ
n∑

j=l+1

pj.

• else problem has no solution.

6. If λ < l+(n−m)
l+(n−m)+1

, then

• if pj ≤ p3 ≤ pi, i = 1, l, j = l + 1,m, then

x∗i = r + y∗

pi
, i = 1, l

x∗j = ρ, j = l + 1,m

x∗k = ρ, k = m+ 1, n

y∗ = p (ρ− r)

TR = ly∗ + r
l∑

i=1

pi + ρ
n∑

j=l+1

pj + (n−m) pρ.

where p3 = pk, k = m+ 1, n.

• else problem has no solution.
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4.5 Model validation and conclusions

4.5.1 Testing of solution

To test the minimax model we have used data regarding consump-
tion and production of electricity provided by Transelectrica [148]
and energy price established by Romanian Energy Regulatory Au-
thority [129]. Using Box&Whisker and Grubbs tests data were vali-
dated and used to generate the input for minimax model: ε = 3666

MW, ρ = 10808 MW si r = 6970 MW.
To evaluate performances of the minimax model, the optimal pro-

duction plan computed with Theorem 4.4.5 was compared with real
data from 4th of December 2015. Results obtained have been dissem-
inated in [90].

Besides planning and economic advantages associated to peak
load shaving, we consider that minimax model generates several
additional advantages like: (i) incentives for power plants to de-
velop storage systems, (ii) incentives to invest in green energy to
compensate the production shift, to reduce CO2 emissions and to re-
duce production cost, (iii) reduced fatigue, maintenance and devel-
opment costs for equipments of power plant (iv) increased efficiency
for power plant or (v) a more stable and efficient power grid.

4.5.2 Conclusions

Tests performed for minimax model prove its capacity to shave the
peak load. Thus, the objective of our research is realized.

Results presented during this chapter have been disseminated in
[90] and [98].
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Chapter 5

Index model for energy
optimization

5.1 Introduction

Predefined level specific for minimax measure of fluctuation is in-
creasing the complexity of the model. Moreover, the efficient fron-
tier is limited, because a point situated under the predefined level
will never be Pareto efficient (due to absolute value, the point will
generate the same fluctuation as its symmetric but turnover will be
smaller).

To simplify minimax model and to make it more friendly for prac-
titioners we will define a new model for peak load shaving – index
model. We will need a new measure for fluctuation of energy. Eco-
nomic performance of the power plant will be evaluated by turnover.

A comparison between minimax and index models, emphasiz-
ing the conceptual differences between them was presented at ICATA
2016 and published in [39].

5.2 Index measure for fluctuation of energy

Skipping the predefined level, specific to minimax, the reference point
for fluctuation is lost. Another parameter, more friendly for practi-
tioners has to be used as reference point. In production it is natural
to express loading of an equipment as percentage from its maximum
capacity [109, 112].
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Using the notations introduced in Chapter 4 and the above men-
tioned idea, the index measure for fluctuation of energy is defined as

max
i=1,n

{
xi
ρ
pi

}
. (5.1)

Elasticity of energy price, explained during previous Chapter, has
determined us to keep price also in the index measure for fluctuation.

5.3 Problem formulation

Let’s consider again the bi-criteria optimization problem developed
for a power plant which aims to shave the peak load . By replac-
ing minimax measure of fluctuation with index measure (5.1), the
following problem is obtained for index model min

(
max
i=1,n

{
xi
ρ
pi

}
;−

n∑
i=1

pixi

)T
ε ≤ xi ≤ ρ, i = 1, n.

(5.2)

5.4 Computing the solution

To determine the efficient solution for the problem (5.2) we introduce
the following bi-criteria optimization problem

min

(
y;−

n∑
i=1

pixi

)T
xi
ρ
pi ≤ y, i = 1, n

ε ≤ xi ≤ ρ, i = 1, n

(5.3)

their equivalency being established by the following Lemma.

Lemma 5.4.1 [92] Let’s consider the bi-criteria optimization problems (5.2)
and (5.3).

a) If x ∈ Rn is an efficient solution for problem (5.2), then (x, y) ∈
Rn × R, with y = max

i=1,n

{
xi
ρ
pi

}
is an efficient solution for problem

(5.3).

b) If (x, y) ∈ Rn × R, with y = max
i=1,n

{
xi
ρ
pi

}
is an efficient solution for

problem (5.3), then x ∈ Rn is an efficient solution for problem (5.2).
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Using again the idea to transform the bi-criteria problem into a
parametric one and based on Theorem 2.3.1 of Yu [160] and similar
results of Bot et all [14] and Geoffrion [53] the bi-criteria optimization
problem (5.3) is equivalent to the following parametric optimization
problem 

min

{
λy − (1− λ)

n∑
i=1

pixi

}
xi
ρ
pi ≤ y, i = 1, n

ε ≤ xi, i = 1, n

xi ≤ ρ, i = 1, n

(5.4)

with λ ∈ (0, 1) and the following is true

Lemma 5.4.2 [92] (x, y) ∈ Rn × R is an efficient solution for bi-criteria
problem (5.3) if and only if ∃λ ∈ (0, 1) such that (x, y) ∈ Rn × R is an
optimal solution for parametric optimization problem (5.4).

Remark 5.4.3 To determine the efficient solution for problem (5.2) it is
sufficient to determine the optimal solution for problem (5.4).

Remark 5.4.4 In the process of computing the optimal solution for para-
metric optimization problem (5.4) we will split the set {1, 2, ..., n} in sev-
eral subsets like {1, 2, ...l}, {l + 1, l + 2, ...m}, {m+ 1,m+ 2, ...t} and
{t+ 1, t+ 2, ...n}. If on such a set or subset the price is constant we will
denote it by p∗.

The following Theorem presents an optimal solution for the para-
metric optimization problem (5.4).

Theorem 5.4.5 (Luca and Duca [92]; parametric index) .
An optimal solution (x∗, y∗) ∈ Rn×R for parametric optimization problem
(5.4) is:

1. If λ = ρn
1+ρn

and
min
i=1,n

pi

max
i=1,n

pi
≥ ε

ρ
, then

 x∗i =
ρ
pi
y∗, i = 1, n

y∗ ∈
[
max
i=1,n

ε
ρ
pi; min

i=1,n
pi

]
else solution does not exist.
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2. If λ > ρn
1+ρn

, then {
x∗i = ε, i = 1, n

y∗ = ε
ρ
p,

where p = pi, i = 1, n,
else solution does not exist.

3. If λ < ρn
1+ρn

, then {
x∗i = ρ, i = 1, n

y∗ = p,

where p = pi, i = 1, n,
else solution does not exist.

4. If λ = ρl
1+ρl

and
min
i=1,l

pi

max
i=1,l

pi
≥ ε

ρ
, then



x∗i =
ρ
pi
y∗, i = 1, l

x∗j = ρ, j = l + 1, n

y∗ =



p2, if min
i=1,l

pi = pj, j = l + 1, n

∈
[
max
j=l+1,n

pj; min
i=1,l

pi

]
, if max

i=1,l

ε
ρ
pi ≤ pj < min

i=1,l
pi, j = l + 1, n

∈
[
max
i=1,l

ε
ρ
pi; min

i=1,l
pi

]
, if pj < max

i=1,l

ε
ρ
pi, j = l + 1, n

where p2 = pj, j = l + 1, n,
else solution does not exist.

5. If λ < ρl
1+ρl

, then


x∗i = ρ, i = 1, l

x∗j = ρ, j = l + 1, n

y∗ = p1, if p1
pj
≥ 1, j = l + 1, n

where p1 = pi, i = 1, l,
else solution does not exist.

6. If λ > ρl
1+ρl

, then


x∗i = ε, i = 1, l

x∗j = ρ, j = l + 1, n

y∗ = ε
ρ
p1, if p1

pj
≥ ρ

ε
, j = l + 1, n



5.4. Computing the solution 45

where p1 = pi, i = 1, l,
else solution does not exist.

7. If λ < ρn
1+ρn

and
min
i=1,l

pi

max
i=1,l

pi
≥ ε

ρ
, then



x∗i =
ρ
pi
y∗, i = 1, l

x∗j = ρ, j = l + 1, n

y∗ = p2, if


max
i=1,l

pi ≤ ρ
ε
p2

p2 ≤ min
i=1,l

pi

where p2 = pj, j = l + 1, n,
else solution does not exist.

8. If λ > ρl
1+ρl

and p2
p1

= ε
ρ
, then


x∗i = ε, i = 1, l

x∗j = ρ, j = l + 1, n

y∗ = ε
ρ
p1 = p2

where p1 = pi, i = 1, l and p2 = pj, j = l + 1, n,
else solution does not exist,

9. If λ > ρn
1+ρn

and
min
i=1,l

pi

max
i=1,l

pi
≥ ε

ρ
, then



x∗i =
ρ
pi
y∗, i = 1, l

x∗j = ε, j = l + 1, n

y∗ = ε
ρ
p2, if


max
i=1,l

pi ≤ p2

ε
ρ
p2 ≤ min

i=1,l
pi

where p2 = pj, j = l + 1, n,
else solution does not exist.
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10. If λ > ρm
1+ρm

,
min
i=1,l

pi

max
i=1,l

pi
≥ ε

ρ
and p3

p2
= ε

ρ
, then



x∗i =
ρ
pi
y∗, i = 1, l

x∗j = ε, j = l + 1,m

x∗k = ρ, k = m+ 1, n

y∗ = ε
ρ
p2 = p3, if


max
i=1,l

pi ≤ p2

ε
ρ
p2 ≤ min

i=1,l
pi

where p2 = pj, j = l + 1,m and p3 = pk, k = m+ 1, n,
else solution does not exist.

11. If λ > ρl+ρ(n−m)
1+ρl+ρ(n−m)

and
min
i=1,l

pi

max
i=1,l

pi
≥ ε

ρ
, then



x∗i =
ρ
pi
y∗, i = 1, l

x∗j = ρ, j = l + 1,m

x∗k = ε, k = m+ 1, n

y∗ = ε
ρ
p3, if


max
i=1,l

pi ≤ p3

ε
ρ
p3 ≤ min

i=1,l
pi

pj ≤ ε
ρ
p3, j = l + 1,m

where p3 = pk, k = m+ 1, n,
else solution does not exist.

12. If λ < ρl+ρ(n−m)
1+ρl+ρ(n−m)

and
min
i=1,l

pi

max
i=1,l

pi
≥ ε

ρ
, then



x∗i =
ρ
pi
y∗, i = 1, l

x∗j = ρ, j = l + 1,m

x∗k = ρ, k = m+ 1, n

y∗ = p3, if


max
i=1,n

pi ≤ ρ
ε
p3

p3 ≤ min
i=1,n

pi

pj ≤ p3, j = l + 1,m

where p3 = pk, k = m+ 1, n,
else solution does not exist.
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13. If λ > ρ(m−l)
1+ρ(m−l) and p3

p2
= ε

ρ
, then

x∗i = ρ, i = 1, l

x∗j = ε, j = l + 1,m

x∗k = ρ, k = m+ 1, n

y∗ = ε
ρ
p2 = p3, if pi ≤ ε

ρ
p2, i = 1, l

where p2 = pj, j = l + 1,m and p3 = pk, k = m+ 1, n,
else solution does not exist.

14. If λ > ρl+ρ(t−m)
1+ρl+ρ(t−m)

,
min
i=1,l

pi

max
i=1,l

pi
≥ ε

ρ
and p4

p3
= ε

ρ
, then



x∗i =
ρ
pi
y∗, i = 1, l

x∗j = ρ, j = l + 1,m

x∗k = ε, k = m+ 1, t

x∗s = ρ, s = t+ 1, n

y∗ = ε
ρ
p3 = p4, if


max
i=1,l

pi ≤ p3

ε
ρ
p3 ≤ min

i=1,l
pi

pj ≤ ε
ρ
p3, j = l + 1,m

where p3 = pk, k = m+ 1, t and p4 = ps, s = t+ 1, n,
else solution does not exist.

Based on Lemma 5.4.1, Theorem 5.4.5 is providing an efficient
solution x∗ ∈ Rn for problem (5.2).

The values for the objective function of problem (5.2) are pro-
vided by: (a) Theorem 5.4.5 in case of fluctuation and (b) the follow-
ing Theorem in case of turnover, where TR denotes the turnover of
the power plant.

Theorem 5.4.6 (Luca and Duca [92]; energy index) .
The values for second member of the objective function from problem (5.2)

are:

1. TR = nρy∗, where y∗ is defined by Theorem 5.4.5 item 1;

2. TR = ε
n∑
i=1

pi;

3. TR = ρ
n∑
i=1

pi;
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4. TR = ρly∗ + ρ
n∑

j=l+1

pj , where y∗ is defined by Theorem 5.4.5 item 4;

5. TR = lρp1 + ρ
n∑

j=1+1

pj , where p1 = pi, i = 1, l;

6. TR = lεp1 + ρ
n∑

j=l+1

pj , where p1 = pi, i = 1, l;

7. TR = nρ p2, where p2 = pj, j = l + 1, n;

8. TR = nεp1, where p1 = pi, i = 1, l;

9. TR = nεp2, where p2 = pj, j = l + 1, n;

10. TR = nεp2, where p2 = pj, j = l + 1,m;

11. TR = (n−m+ l)εp3 + ρ
m∑

j=l+1

pj , where p3 = pk, k = m+ 1, n;

12. TR = (n−m+ l)ρp3 + ρ
m∑

j=l+1

pj , where p3 = pk, k = m+ 1, n;

13. TR = (n− l)εp2 + ρ
l∑

i=1

pi, where p2 = pj, j = l + 1,m;

14. TR = (n−m+ l)ε p3 + ρ
m∑

j=l+1

pj , where p3 = pk, k = m+ 1, t.

5.5 Model validation and conclusions

5.5.1 Testing of solution

Index model is tested using the same date as for minimax model.
Two test were performed for the index model, difference being

generated by input data ε si ρ.
Same inputs as for minimax model were used during the first test.
Existence and no-critical conditions specified by Theorem 5.4.5 were
not satisfied in case of several solutions. For the second test, inputs
were estimated and calculated such that conditions specified by The-
orem 5.4.5 are satisfied for as much solutions as possible. Results ob-
tained are better compared to the first test and sugest a sensitivity of
the model to input data.
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5.5.2 Concluzii

Tests performed prove the capacity of index model to shave the peak
load. Thus, the objective of our research is realized. Additional
advantages associated to peak load shaving, like: (i) incentives for
power plants to develop storage systems, (ii) incentives to invest
in green energy to compensate the production shift, to reduce CO2

emissions and to reduce production cost, (iii) reduced fatigue, main-
tenance and development costs for equipments of power plant (iv)
increased efficiency for power plant or (v) a more stable and efficient
power grid. remain valid also for index model, remain valid also for
index model.

Index model is more friendly to practitioners and easyer to be im-
plemented, but has a lower accuracy compared to minimax model.

Results presented during this chapter are disseminated in [90, 92].
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Chapter 6

Conclusions

Global context is generating challenges for energy optimization, a
current research topic being peak load shaving.

Analyzing a production chart reveals fluctuation in energy pro-
duction. These fluctuations might be regarded as a spread of values.
Defining a proper measure for fluctuation of energy (a measure able
to target the most extreme value) and minimizing it might generate
a peak load shaving. Power diagram modification due to peak load
shaving is generating supra-production at other time moments. Ac-
cording to the strategy of the power plant, supra-production might
be addressed by: (i) Energy Storage Systems, (ii) electric vehicles, (iii)
demand side management or (iv) human interferences for planning
alteration.

Literature is presenting a strong connection between technical
and economical components. Thus power diagram modification (due
to peak load shaving) might generate a decrease of economic perfor-
mances. A bi-criteria optimization problem is required to mitigate
this risk.

Thus, the objective of our research might be formulated as to cre-
ate, solve and validate a mathematical model which will shave the peak load
by minimizing fluctuation of energy and maximizing the economic perfor-
mance.

We have developed two mathematical models (minimax and in-
dex model) for this problem generated by a real life context. To solve
the models we transformed them in equivalent parametric optimiza-
tion problems. Kuhn-Tucker conditions were used to compute the
optimal solutions for parametric problems, which have generated
the efficient solutions for problems (4.2) si (5.2)).
Despite popularity of “particle swarm optimization“ in energy field,



Chapter 6. Conclusions 51

Kuhn-Tucker conditions were used due to economic meaning of mul-
tipliers, which offer strategic information to decision makers.

Solutions provided by both models were tested using real data.
Both model have achieved the objective to shave the peak load.

Profit as measure for economic performance, additional technical
constraints, a more accurate prediction for input data, power grid
topology and a better transition from day to night periods might gen-
erate more complex model able to provide more accurate solutions.
A few references for dealing with identified challenges are available
in [125], [77], [147], [122], [18], [20], [91], [89].

The method used to solve minimax and index models might have
a low efficiency for more complex models. Chapter 3 of our the-
sis is presenting a method for solving an initial bi-criteria optimiza-
tion problem

(
P 0,0
0

)
by attaching approximate problems

(
P i,j
k

)
. Link

between the two sets of problems is created by the replacement of
some functions with their η - approximations of first or second or-
der. Chapter 3 is presenting sufficient conditions such that efficient
solution of initial problem

(
P 0,0
0

)
will remain efficient also for the ap-

proximate problem
(
P i,j
k

)
and reciprocally.
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ysis for fuel diversification”. In: Energy Economics 31.2 (2009),
pp. 249 –256.

[58] G. Gross and D. Finlay. “Generation Supply Bidding in Per-
fectly Competitive Electricity Markets”. In: Computational and
Mathematical Organization Theory 6.1 (2000), pp. 83–98.

[59] N.H. Hakansson. “Multi-period mean variance analysis: To-
ward a general theory of portfolio choice”. In: Journal of Fi-
nance 26.4 (1971), pp. 857–884.

[60] C. Hamzacebi and F. Kutay. “Continuous functions minimiza-
tion by dynamic random search technique”. In: Applied Math-
ematical modelling 31.10 (2007), pp. 2189–2198.

[61] M. Hanson. “On sufficiency of the Kuhn-Tucker conditions”.
In: Journal of Mathematical Analysis and Applications 80 (1981),
pp. 545–550.



58 BIBLIOGRAPHY

[62] M. Hartikainen, K. Miettinen, and M.M. Wiecek. “PAINT: Pareto
front interpolation for nonlinear multiobjective optimization”.
In: Computational Optimization and Applications 52.3 (2012), pp. 845–
867.

[63] B. von Hohenbalken. “A finite algorithm to maximize certain
pseudoconcave functions on polytopes”. In: Mathematical Pro-
gramming 9.1 (1975), pp. 189–206.

[64] J.H. Holland. Adaptation in natural and artificial systems. The
University of Michigan Press, (1975).

[65] X. Huang and L. Qiao. “A risk index model for multi-period
uncertain portfolio selection”. In: Information Science 217 (2012),
pp. 108–116.

[66] International Energy Agency. Key World Energy Statistics 2015.
(2015).

[67] S. Islam. “The role of renewable energy in the energy system”.
In: Energy Economics 17.2 (1995), pp. 117 –124.

[68] N. Jayasekara, M.A.S. Masoum, and Wolfs P.J. “Optimal oper-
ation of distributed energy storage systems to improuve dis-
tribution network load and generation hosting capability”. In:
IEEE Transactions on Sustainable Energy 7.1 (2016), pp. 250–261.

[69] Y. Jin. “Pareto-optimality is everywhere: From engineering
design, machine learning, to biological systems”. In: IEEE 3rd
International Workshop on Genetic and Evolving Systems (2008),
p. 1.

[70] V. Kalkhambkar, R. Kumar, and R. Bhakar. “Energy loss min-
imization through peak shaving using energy storage”. In:
Perspectives in Science 8 (2016), pp. 162 –165.

[71] D. Karaboga and B. Basturk. “On the performance of artificial
bee colony (ABC) algorithm”. In: Applied Soft Computing 8.1
(2008), pp. 687–697.

[72] T. Kerdphol et al. “Optimization of a battery energy storage
system using particle swarm optimization for stand-alone mi-
crogrids”. In: International Journal of Electrical Power and Energy
Systems 81 (2016), pp. 32 –39.



BIBLIOGRAPHY 59

[73] T.H. Kjeldsen. “A contextualized historical analysis of the
Kuhn-Tucker theorem in nonlinear programming: The impact
of World War 2”. In: Historia Mathematica 27 (2000), pp. 331–
361.

[74] J.D. Knowles and D.W. Corne. “Approximating the nondom-
inated front using the Pareto archived evolution strategy”. In:
Evolutionary Computation 8.2 (2000), pp. 149–172.

[75] H. Konno. “Portfolio optimization using L1 risk function”. In:
IHSS Report, Institute of Human and Social Science, Tokyo Insti-
tute of Technology 88.9 (1988).

[76] H. Konno and H. Yamazaki. “Mean absolute deviation port-
folio optimization model and its applications to Tokyo Stock
Market”. In: Management Science 37.5 (1991), pp. 519–531.

[77] L.A. Kovacs, T.I. Luca, and Z. Elthes. “Comparative analysis
of low-cos airlines websites”. In: Proceedings of the IABE - 2009
Las Vegas - Annual Conference 6.1 (2009), pp. 122–129.

[78] H. Kuhn. “Nonlinear programming: a historical view”. In:
Nonliear Programming - Proceedings of a Symposium in Applied
Mathematics of the American Mathematical Society and Society for
Industrial and Applied Mathematics a.a (1976), pp. 1–26.

[79] H. Kuhn and A. Tucker. “Nonlinear programming”. In: Pro-
ceedings of the Second Berkeley Symposium on Mathematical Statis-
tics and Probability (1951), pp. 481–492.

[80] R. Kwon and D. Frances. Optimization-Based Bidding in Day-
Ahead Electricity Auction Markets: A Review of Models for Power
Producers. Springer Berlin Heidelberg, (2012), pp. 41–59.

[81] D. Ladurantaye, M. Gendreau, and J. Y. Potvin. “Strategic Bid-
ding for Price-Taker Hydroelectricity Producers”. In: IEEE Trans-
actions on Power Systems 22.4 (2007), pp. 2187–2203.

[82] J. Leadbetter and L. Swan. “Battery storage system for resi-
dential electricity peak demand shaving”. In: Energy and Build-
ings 55 (2012), pp. 685 –692.

[83] C.F. Lee, J.E. Finnerty, and D.H. Wort. “Index models for port-
folios selection”. In: Handbook of Quantitative Finance and Risk
Management (2010), pp. 111–124.



60 BIBLIOGRAPHY

[84] C. Lemarechal et al. “Bundle methods applied to the unit-co-
mmitment problem”. In: Seventeenth IFIP TC7 Conference on
System Modelling and Optimization (1996), pp. 395–402.

[85] B. Li and W. Jiang. “Chaos optimization method and its appli-
cation”. In: Control Theory and Applications 14.4 (1997), pp. 613–
615.

[86] D. Li and W.L. Ng. “Optimal dynamic portfolio selection: Mul-
tiperiod mean-variance formulation”. In: Mathematical Finance
10.3 (2000), pp. 387–406.

[87] J. Li, A. Mahalov, and P. Hyde. “Impacts of agricultural irri-
gation on ozone concentrations in the Central Valley of Cal-
ifornia and in the contiguous United States based on WRF-
Chem simulations”. In: Agricultural and Forest Meteorology 221
(2016), pp. 34–49.

[88] C. Lu et al. “Optimal Sizing and Control of Battery Energy
Storage System for Peak Load Shaving”. In: Energies 7.12 (2014),
pp. 8396–8410.

[89] T.I. Luca. “A relation between transportation problems and
profit”. In: Current Issues of Regional Development Conference,
Sec, Czech Republic (2007).

[90] T.I. Luca. “Bi-criteria models for peak-load shaving”. In: Jour-
nal of Academy of Business and Economics-accepted for publication
(2018).

[91] T.I. Luca. “Economic applications of dynamic optimization”.
In: 10th International Symposium on Generalized Convexity and
Monotonicity, Cluj-Napoca, Romania (2011).

[92] T.I. Luca. “Index model for peak-load shaving in energy pro-
duction”. In: Engineering Optimization-submitted (2018).

[93] T.I. Luca. “Portfolio optimization algorithms”. In: Studia Ne-
gotia 3 (2015), pp. 51–79.

[94] T.I. Luca and D.I. Duca. “Approximations of bi-criteria opti-
mization problem”. In: Studia Universitatis Babes-Bolyai Math-
ematica – submitted (2018).



BIBLIOGRAPHY 61

[95] T.I. Luca and D.I. Duca. “Approximations of objective func-
tion and constraints in bi-criteria optimization problems”. In:
Journal of Numerical Analysis and Approximation Theory – sub-
mitted (2018).

[96] T.I. Luca and D.I. Duca. “Approximations of objective func-
tion in bi-criteria optimization problems”. In: European Inter-
national Journal of Science and Technology – accepted for publica-
tion (2018).

[97] T.I. Luca and D.I. Duca. “Relations between η - approximation
problems of a bi-criteria optimization problem”. In: Annals of
the Tiberiu Popoviciu Seminar of Functional Equations, Approxi-
mation and Convexity – submitted (2018).

[98] A. Mahalov and T.I. Luca. “Minimax rule for energy opti-
mization”. In: Computers and Fluids: Special issue Chuck Leith
151 (2017), pp. 35–45.

[99] O. Mangasarian. “Convexity and the Kuhn-Tucker conditions
”. In: Journal of the Society for Industrial and Applied Mathematics
Serie A Control 3.2 (1965), pp. 281–290.

[100] R. Marcato and C. Sagastizabal. “Introducing environmental
constraints in generation expansion problems”. In: Numerical
Linear Algebra with Applications 14.4 (2007), pp. 351–368.

[101] H. Markowitz. “Portfolio selection”. In: The Journal of Finance
7.1 (1952), pp. 77–91.

[102] M.G. Martinez, A. Diniz, and C. Sagastizabal. “A comparative
study of two forward dynamic programming techniques for
solving local thermal unit commitment problem”. In: Proceed-
ings of the 16th Power Systems Computation Conference (2008).

[103] A.G. Martins et al. “A Multiple Objective Linear Program-
ming Approach to Power Generation Planning with Demand-
Side Management (DSM)”. In: International Transactions in Op-
erational Research 3.3-4 (1996), pp. 305–317.

[104] R.C. Merton. “An analytic derivation of the efficient portfolio
frontier”. In: Journal of Financial and Quantitative Analysis 7.4
(1972), pp. 1851–1872.



62 BIBLIOGRAPHY

[105] R.C. Merton. “Lifetime portfolio selection under uncertainity:
The continuous time case”. In: Review of Economics and Statis-
tics 51.3 (1969), pp. 247–257.

[106] K. Miettinen and M.M. Makela. “Interactive bundle-based me–
thod for nondifferentiable multiobjective optimization: nim-
bus”. In: Optimization 34.3 (1995), pp. 231–246.

[107] S. Mishra, P. Palanisamy, and Hemamalini S. “Efficient power
flow management and peak shaving in a microgrid-PV sys-
tem”. In: Proceedings of the International Conference on Renew-
able Energy and Sustainable Development (2013). URL: https:
//arxiv.org/abs/1807.07180.

[108] H. Morais et al. “Optimal scheduling of a renewable micro-
grid in an isolated load area using mixed-integer linear pro-
gramming”. In: Renewable Energy 35.1 (2010), pp. 151 –156.

[109] C.J. Morrison. A microeconomic approach to the measurement of
economic performance: productivity growth, capacity utilization and
related performance indicators. New York: Springer, (2012).

[110] J. Mossin. “Optimal multiperiod portfolio policies”. In: Jour-
nal of Business 41.2 (1968), pp. 215–229.

[111] M. Motalleb, E. Reihani, and R. Ghorbani. “Optimal place-
ment and sizing of the storage supporting transmission and
distribution networks”. In: Renewable Energy 94 (2016), pp. 651
–659.

[112] P. Muchiri and L. Pintelon. “Performance measurement us-
ing overall equipment effectiveness (OEE): literature review
and practical application discussion”. In: International Journal
of Production Research 46.13 (2008), pp. 3517–3535.

[113] M. Muratori and G. Rizzoni. “Residential Demand Response:
Dynamic Energy Management and Time-Varying Electricity
Pricing”. In: IEEE Transactions on Power Systems 31.2 (2016),
pp. 1108–1117.

[114] T. Nakata, K. Kubo, and A. Lamont. “Design for renewable
energy systems with application to rural areas in Japan”. In:
Energy Policy 33.2 (2005), pp. 209 –219.

[115] NASA Goddard Institute for Space Studies. Giss Surface Tem-
perature Analysis (GIS TEMP). (2018).

https://arxiv.org/abs/1807.07180
https://arxiv.org/abs/1807.07180


BIBLIOGRAPHY 63

[116] A. Nourai, V.I. Kogan, and Schafer C.M. “Load leveling re-
duces T&D line losses”. In: IEEE Transactions on Power Deliv-
ery 24.3 (2008), pp. 2168–2173.

[117] M. Nowak and W. Römisch. “Stochastic Lagrangian Relax-
ation Applied to Power Scheduling in a Hydro-Thermal Sys-
tem under Uncertainty”. In: Annals of Operations Research 100.1
(2000), pp. 251–272.

[118] R. Nürnberg and W. Römisch. “A Two-Stage Planning Model
for Power Scheduling in a Hydro-Thermal System Under Un-
certainty”. In: Optimization and Engineering 3.4 (2002), pp. 355–
378.

[119] A. Palacio et al. “Bi-criteria optimization model for locating
maritime container depots: application to the port of Valen-
cia”. In: Networks and Spatial Economics 16.1 (2016), pp. 331 –
348.
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