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Abstract

An interdisciplinary context is presenting using concepts from chemistry and
biochemistry in order to investigate molecular behavior of chemical structures and
their effects at the biological systems level underlying molecular similarity. The aim of
the study was to describe and understand the correlation between structural
characteristics of inorganic and organic compounds as well as their clustering based
on similarity and their effects at cellular level. In vitro tested compounds include
arsenates and probiotic mixtures, starting from the understanding of molecular
behavior in terms of the similarity of inorganic compounds (represented by metal ions)
and organic (represented by classes of anti-inflammatory compounds, steroidal
derivatives) in water and respectively, in silico. The “Literature survey” section is
structured on three chapters (Chapter 1. Describing molecular structure, Chapter 2.
Correlation of the molecular structure with properties and biological activities, Chapter
3. Molecular expression at transcriptomic level). A series of approaches presented in
the "Personal contributions" section structured in five chapters were derived around
the concepts presented in the previous section. Understanding the molecular
behavior of inorganic compounds in water (Chapter 5), of organic compounds in silico
(Chapter 6) as well as the relationships between structural properties and biological
activity (Chapter 7) continued with the characterization of the therapeutic effects of
tested compounds at the cellular level in Chapters 8 and 9) (Figure 0).

Keywords

molecular similarity, chemical properties, topological indoces, molecular descriptors
and fingerprints, biological activities, compounds clusters, arsenates, probiotics, gene

expression, transcriptomics
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Figure 0. Research framework



CHAPTER 1. DESCRIBING MOLECULAR STRUCTURE

Molecular properties and chemical structure-properties/bioactivity relationships
served in understanding the effects on biological systems. Interdisciplinarity is

considered a fundamental factor in the research activity carried out.
1.3. Chemical structures graphs

A graph (Figure 1.3.a) is defined as a pair of two sets, a set with a finite humber of
points (vertices) and a set of discrete pairs of distinct points, while a diagram (Figure
1.3.b) contains a set of finite number of points together with a set of ordered pairs of
distinct points. In a multigraph (Figure 1.3.c) we consider two points that can be

joined by more than one edge (Diudea et al., 2001).

=R

(b)
(©) (S) (P)

O+ o

Figure 1.3. Graph representations. Graph (a), diagraph (b), multigraph (c); C (cycle):
chain that leaves and returns to one and the same vertex; S (star): set of vertices
joined by a common line (Sv' , with v' = v-1); T (tree): branched structure; P (path):
chain (unbranched) - adapted after (Diudea et al., 2001).

The numerical representations of graphs (Figure 1.3) are integrated into algorithms.
Representations may be of a functional type for empirical molecular formulas,
molecular weights (Harsa et al., 2014), constitutional diagrams (2D), atomic
coordinates (Kochev et al., 2003), topological indices, adjacent matrices, distance
(Diudea et al., 2007, 2001; Harsa et al., 2014), some of which are given in Table 1.1:



Table 1.1. Exemple de reprezentari functionale pentru structuri moleculare

Type Representations
Numbered graph 1
\2
3
7 4
6 5
Connectivity tables 112
2,1,1
2,21
3,2,4
4,3,2
Liniar anotation SMILES:
CC(C(=0)C1=CC=CC=C1)0O
ROSDAL.:
1-2-3-4=5-6-7-2
Adjacency matrix 01 0 0O
1 01 00
01 010
001 01
00010
Distance matrix 01 2 3 4
1 01 2 3
21 0 1 2
321 01
4 3210

The similarity between two entities (atoms, molecules, molecular fragments, even
groups of molecules) is defined as a function of their cumulative properties, based on
relationships with each other belonging to the same group, this similarity can also be
estimated based on topology and molecular geometry.



CHAPTER 2. CORRELATION OF MOLECULAR STRUCTURE WITH
PROPERTIES AND BIOLOGICAL ACTIVITIES

Based on specific similar characterstics the molecules can be grouped using

clustering algorithms.
2.1. Clustering

Clustering is a proceeding in which different sets of objects/molecules are assigned to
certain classes depending on their degree of similarity rendered by spatial or temporal
features/properties. Specific empirical calculations are used to identify specific
characteristics (Coltekin et al., 2010; Dodge, 2011).

2.2. Similarity measures

By defining molecular similarity as a measure of the degree of overlapping of two
molecules in a given space, we will now recall a series of measures by which we can

characterize the similarity between molecules.

Table 2.1. Frequently used similarity measures in binary representations (0;1) for two
molecules (A;B)

Measures Name Algorithm
Euclidian Dag= [a+b-2x]"
Hamming _
Distances (Manhattan) Dag=a+b-x
1-X
S I Dag=
oerge ABT
Tanimoto _ X
T SA,B -
Similarity (Jaccard) a+b-x
coefficients Dice _ 2x
(Czekanowski) AT asb
Cosine Spp= =
Correlation (Ochiai) ~ Jab
coefficients b Sag = ad-bc
earson ~  Jl@+b)a+c)b+d)c+d)




Measures Name Algorithm

Legend A, B - two distinct molecules

a - characteristic molecule A

b - characteristic molecule B

c - distinct characteristic (different then a) molecule A
d - distinct characteristic (different then b) molecule B
x=a(\b

Da g = distance between two molecules (A,B)

Sag = similarity between two molecules (A,B)

To express the similarity of two molecules, the most common measures considered
are the Euclidean distances, Hamming (Manhattan), Soergel (Albrecht et al., 2004;
Allen et al., 2001; Bero et al., 2017), Tanimoto coefficient (Rogers and Tanimoto,
1960), Dice index (Czekanowski) (Bero et al., 2017; Willett et al., 1998) and Cosine
(Ochiai) correlation coefficient (Willett et al., 1998), Pearson (Pearson, 1895) (Table
2.1).

Tanimoto or Jaccard coefficient (Reynolds et al., 1992) is a standard coefficient,
dependent on the absence/presence of a characteristic, thus representing a 2D
measure (Ma et al., 2011; Willett et al., 1998). In the table below (Table 2.2) the

principle of the Tanimoto coefficient is illustrated.

Table 2.2. Principle of the Tanimoto coefficient illustration

a b c d a a d c b A=3

a b b c d a c a a B=4

1 1 0 0 0 1 0 0 0 |AﬂB|=3
ANB]

=0.75
A +[B|-|ANB|

Tanimoto (A4,Ba) =

a, b, ¢, d - characteristics molecules A, respectively B

Thus taking two molecules (A, B) and having the representative characteristics (a, b,
c, d) of each molecule, it is considered 0 the absence of a certain characteristic (e.g.,
the absence of an atom in a particular position within a molecule, in comparison with

another molecule) and with 1 the presence of that specific characteristic (Table 2.2).



The results obtained applying similarity measures (Figure 2.1) can be used in the
establishment of topologies, in the classification and grouping of components

belonging to a set of molecules of interest (Diudea et al., 2001).

Euclidian Hamming

SIMILARITY MEASURES

Tanimoto Pearson

Cosine Dice

y
Molecule 1
Molecule 2
Molecule 3

Topology Clustering Classification

Figure 2.1. Similarity measures can lead to molecular characterization from a
topological point of view, to clustering based on similarity and even classification
based on certain properties / characteristics.

2.3. Matrix similarity calculation

The matrices can be a measure of the distance between two points/atoms (A, B) (the
adjacent matrix) within a molecule located in a space, expressed by a function d (A,
B), where d (A, B)=0if A=B and d (A, B) = 1 otherwise. The result of an association
of numerical values corresponding to the atomic distances within the molecules takes
into account 3 axioms, namely:

1) d(A, B) 2 0 si d(A, B) = 0, A=B (reflexivity)

2) d(A, B) = d(B, A) (symmetry or commutativity)

3) d(A, B) + d(B, C) 2 d(A, C) (subadditivity)

Similarity measures in 2D space allow the topological representation of chemical
structures (Table 2.3):



Table 2.3. Molecular representations (molecule 1 — m1, molecule 2 — m2, molecule 3
- m3)
m1 m2

Or-

m1, m2, m3 = molecule 1, 2, 3

m3

The distances between atoms can be represented (Jantschi, 2000) - any of the
matrices exemplified below (Table 2.4, Table 2.5, Table 2.6, Table 2.7) is similarly

applicable.

Constructed adjacency matrix (Table 2.4) corresponding to chemical structures (m1,
m2, m3) (Table 2.3):

Table 2.4. Adjacency matrix representation for m1, m2, m3

[Ad]1234567 | [Ad12345678 | [Ad12345678
1 o0o1q10000/ |1 O1100000/|1 01100001
2 10010002 100100002 100100000
3 1000010(3 10000101 |3 10000100
4 01001004 010010004 010010000
5 0001010 (%5 00010100 |5 00010100
6 0010101 |6 001010106 ©00101010
7 0000010 (7 O0OOO0OO0100 |7 ©OOOOO0O10O0

8 00100000 (8 10000000

m1 m2 m3

It is known that the numbering of atoms is arbitrary, so using these matrices in this
form is not possible. The sum of the elements in m2 and m3 is the same (8 in [Ad])
(Table 2.4), 61 in [Di] (Table 2.5)) so the sum of the elements does not discriminate
the two structures. The problem of numbering can be eliminated if topological indices

are considered (Diudea et al., 2001).

The distance matrix (Table 2.5) carries additional information than adjacency matrix -
instead of the "0" values (except for the main diagonal) there are now the topological

distances (the number of bonds) between the atoms (Jantschi, 2000; Minkin, 1999).



Table 2.5. Distance matrix representation for m1, m2, m3

[Dil1234567 | [D112345678 ||[Di]l123456 738
1 0112323 1 01123232 1 01123231
2 1021234 2 10212343 2 102123472
31203212 312032121 312032122
4 21301123 4 21301234 4 21301233
5 3221012 532210123 532210124
6 2312101 6 23121012 6 23121013
7 3423210 7 342321083 734232104

8 23143230 8 12234340

m1 m2 m3

In Table 2.6 si Table 2.7 au fost sunt considerate secvente de numere si descriptori

topologici (aplicabile atat la linii cat si la coloane, rezultdnd acelasi lucru) care permit

analiza de similaritate intramoleculara (in interiorul moleculei) (Table 2.6) si respectiv

intermoleculara (intre molecule) (Table 2.7):

In Table 2.6 and Table 2.7 there were considered sequence of numbers and

topological descriptors (applicable to both lines and columns, resulting in the same)

that allowed the intramolecular similarity analysis (inside the molecule) (Table 2.6)

and intermolecular (between molecules) (Table 2.7):

Table 2.6. Distance matrix representation for m1, m2, m3
— intramolecular simmilarity

1

N O o A WDN

[Di]|112]3/14/56|70.1.234 %
0[11/213|23
11021123 4
12/0(312|1 2
211310/11123
3(22/11/0/12
2131121101
34231210

1.2.2.2.0 12
1221113
1.2.3.1.0 |11
1.2.2.2.0[12
1.2.3.1.0 |11
1.3.2.1.0|10
1.1.22.1]15

[Di]|12/314/5/6/7(8/0.1.23.4 X

1

O N O g M WDN

0112|3123 |2
102(112/13143
11210312121
213011234
3121211101123
231121110/1|2
3412/13|1211/03
231114131230

1.2.3.2.0
1.2.221
1.3.3.1.0
1.2.221
1.2.3.2.0
1.3.3.1.0
1.1.2.31
1.1.2.31

14
16
12
16
14
12
18
18

[Di]|121314/5/6/7(8/0.1.234 X

1

O N O g M WDN

0[1/123231/1.3.22.0
10212342 12844
1203/2/122/1.24.1.0
2/11/3/0|1/2 (3|3 112:2:3:0
322110124 12344
2(3/12/1013/1.3.22.0
3423210411222
1223/4131401.1.222

13
15
13
15
15
13
19
19

m1

m2

m3




1 3 ’ 8
2 6 7 2 6 7 2 6 7
4 5 4 ° 4 5
It can be observed that the sequence of numbers "1.2.3.1.0", "1.2.2.2.0", "1.3.2.1.0",
"1.2.21.1", "1.1.2.2.1" correctly identifies the similarites between atoms -

intramolecular simmilarity.

Not the same can be said about the sume although it can be in this case a similarity
indicator as well. The conclusion is that for the analysis of similarity between atoms
should be used the sequences of the type "1.2.3.1.0", "1.2.2.2.0", "1.3.2.1.0",
"1.2.2.1.1" (Jantschi, 2000). For intermolecular similarity analysis (Table 2.7) one way

to expand is to sum up and another is to keep distinctness.

Table 2.7. Distance matrix representation for m1, m2, m3
— intermolecular simmilarit

[Di] 112131456 7| 01234 2z [Di]112 345678 01234 2z [Di]|1]2 /3145|6178 0.1.2.3.4 >
1 01121323 12220 |12 1 011/2/13123|21.23.20 14 1 101/1/213]2(3/11.3.2.20 13
2 101211121314 122141 13 2 101211123 4312221 16 2 10(2/112/3 412 12311 15
3 12032112 1231.0 |11 3 112101312121 1.3.3.1.0 12 3 112|013 /12/1/22|1.24.1.0 13
4 211/3/01/2.3] 12220 |12 4 12(11/30/(123|41.22.21 16 421301233- 15
5) 3212|1101 |2| 1.231.0 |11 51322110123 /1.2.3.20 14 5 1312121 /0/1/2 |4 1.23.1.1 15
6 2311211101 1.3.21.0 |10 6 |2 3/1/12/1/0/12/1.3.3.1.0 12 6 |2/3/11/2(1/0/113]1.3.2.2.0 13
7 3/4121312|1]0| 1.1.2.21 15 7 31412312/10/3/1.1.2.3.1 18 7 1314/2/13/12/1/0141.1.2.2.2 19

0.7.0.0.0.. 8 2/13114/3/1230/(1.1.2.3.1 18 8 (112|213 /4/3/41(01.1.2.2.2 19
0.1.2.3.4 0.1.5.1.0.. 0.7.0.0.0..

52000 02420. XY

U 0.0.44.0..
7.14.14.10.2 4.4.0.0
8.16.20.16.4
m1 m2 m3
8 8
1 3 3 1
2 6 7 2 6 7 s
4 5 4 5 i 5

Thus, considering the matrix (Table 2.7), and computing the Minkowski distance

(Minkowski, 1953) between two atoms/two edges (a generalized form of Manhattan

distance - see Table 2.1), d= Z\ p; —q; |, where p; = number of edges at distance i for



molecule A, gi = = number of edges at distance i for molecule B, d = distance, is
obtained (Table 2.7):
d(m1,m2) = |7-8| + |14-16] + |14-20]| + |10-16] + |2-4|=1+2+6+6 +2 =17
d(m1,m3) = |7-8| + |14-16] + |14-20]| + |10-14| + |2-6| =1+2+6+4 + 4 =17
d(m2,m3) = |8-8| + |16-16] + |20-20| + |16-14| + |4-6| =

2.4. Molecular descriptors and fingerprints

Consideration of several molecular descriptors (see Figure 2.3) is very often found in
similarity analyzes (Bender et al., 2009), so that by different combinations they result
in new descriptors and then their applicability follows correlation methods or main

component analyzes.

Descriptors (ﬁ

Space Properties =) | QSAR

1D, 2D, 3D logP, MolWt QSPR
Molecules| s — Simil_ari.ty
Fingerprints Pl’edICtI.on
11 000 1000 | == Clsterng

- 11 I \ etc.

Figure 2.3. Using molecular descriptors and fingerprints in chemistry. The calculation
of similarity between two molecules is based on space (1D, 2D, 3D) and molecular
properties (lipophilicity - logP, molecular weight - MolWt) and numerical calculations
are made using fingerprints as 1100 ... 00. The results allow the initiation of analyzes
such as QSAR, QSPR, molecular similarity, prediction, clustering, etc. - figure
adapted after (Dong et al., 2015).

The fingerprints (Doucet si Weber, 1996; Rarey si Dixon, 1998) does no represent
information regarding to coordinates of a molecule, but these can codify a molecular

structure in series of binary values (eg. 01001) (see Figure 2.3).

Three types of topological indices are described in literature as most commonly used,

namely:

» Wiener index: integer numerical representations obtained from graphs correlated

with some properties (Singh et al., 2008);

10



» Molecular connectivity indices: in this case, they are represented by real numbers
and are held out of graphs with integer numbers correlated with some properties
(Diudea et al., 2001);

» Topological indices represented by real numbers derived from graphs with real
numbers correlated with certain properties (Bender, 2005).

The molecular scaffolds represent a common method in the search for similarity

(Egieyeh et al., 2016; Velkoborsky si Hoksza, 2016). By using a scaffold-like molecule

as a model from a set of molecules, a "query" model is created based on the similarity

(Willett, 2011).

2.5. Quantitative structure-activity/property relationships

By applying QSAR (Quantitative Structure-Activity Relationship) or QSPR
(Quantitative Structure-Property Relationship), it is possible to describe the chemical
structure - biological activity, property - biological activity or even chemical structure -
physical property rerlationships which can leads to analyze and collect data both in
terms of quantity and qualitatively, and it is then possible to interpret the degree of

similarity between certain compounds.
2.6. Machine learning

Machine learning allow the application of computational algorithms (eg Matrices,
linear models) in the computer environment (through programming languages and
specific computing environments - R in RStudio) (RStudio, 2014) on real sets of

experimental data. Among the alternatives that can be used are:

= Combinations of structural chemical descriptors and target sequences can be
generated using SVMs (support vector machines) embedded analyzes (Bleakley si
Yamanishi, 2009; Jiang et al., 2007; Mishra et al., 2010);

= Measuring similarity (Ding et al., 2013): generation of similarity matrices for pairs of
compounds related to their chemical structures occurs. Among the methods that
include them, it can be mentioned the Kernel regression (Chen et al., 2015), BLM
(bipartite local method) (Bleakley si Yamanishi, 2009), PKM (pairwise kernel
method) (Ding et al.,, 2013), least squares method (Legendre, 1805), Laplacian

11



(Terfloth, 2003; Thomson et al., 2003), Gaussian interactions (Doucet si Weber,
1996; Jantschi et al., 2015), Bayesian matrix (Nidhi et al., 2006).

CHAPTER 3. MOLECULAR EXPRESSION AT TRANSCRIPTOMIC LEVEL

The transcriptome is defined as representing the set of all RNA molecules in a cell or
a population of cells (Trapnell et al., 2011). These include RNA encoding (RNAc) and
non-coding (RNAc), long non-coding RNA (RNAI), small nuclear RNA (RNA),
ribosomal RNA (RNA).

The most common type of RNA studied is messenger RNA due to its function of
transporting genetic information from DNA required for protein synthesis (Wang et al.,
2009). This variety enabled the development of different technologies to understand

and predict gene expression in biological systems.

The effects of the compounds are investigated at the level of the biological systems
(Bose, 2013) through responses expressed at the genome level, predicting the
mechanism of action being possible. The relationship between the biological
responses and the mode of action of a compound described at the genetic level can

lead to the identification of prognostic or diagnostic biomarkers.
3.1. Methods of gene expression evaluation - Microarray vs RNA-Seq

Microarray techniques allow the measurement of changes in the expression of
thousands of genes following their exposure to the action of a particular drug
compound (Yu et al., 2006). The principle of operation is based on the attachment of

DNA molecules to a solid surface, often called chip (Figure 3.2).

Compared to microarray analysis, new techniques such as RNA-Seq, in addition to
shortening the DNA extraction and sequencing period, allow for the analysis of very
old DNA fragments and the analysis of continuous changes at the level of

transcriptoma, allowing direct quantification of gene expression .
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The RNA-Seq principle is based on RNA isolation, complementary DNA (cDNA)
conversion (Sequences 1, Sequences 2), quality control, sequence library

sequencing, and sequencing on a Next Generation Sequencing (NGS) platform.

DNA

ATGATATCGTAA DNA

Frrrrrrrren ATGATATCGTAA
TACTAGAGCATT TNERERERREE

| | ! TACTAGAGCATT
Protein Protein Protein l l l
Protein Protein Protein
NH2 NH2 | | |
( NH2 NH NH2
[ X ] I [ X J
/ CH2 Coupling CH2
\ > | a
CH A " HO—CH /N
| RW\;! \F:R“ Binding | : R! \RaR
Chip substrate (epoxide) Chip substrate (epoxide)

Figure 3.2. The principle of microarray attachment of DNA molecules on the solid
surface of the chip by covalent linkages through amino-aliphatic (NH2) groups -
Figure made using the working instrument - ChemBioDraw Ultra 12.0 (Milne, 2010)
and adapted after (Stears et al., 2003).

RNA-Seq technique (RNA sequencing) compared to microarray allows for a more

detailed analysis from the point of view of:

- gene expression measurement;
- understanding the alternative splicing of genes;

- post-transcriptional modifications.

The generated data can be analyzed to identify new transcription factors, new
combinations of alternative genes, and understanding the functionality of the
transcriptoma (MRNA, ncRNA, IncRNA) (Kukurba si Montgomery, 2016) (Figure 3.3).

If the microarray is based on the potential for hybridization to samples which are
labeled with sequences of the target cDNA, RNA-Seq use advanced techniques for
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sequencing, such as Next-Generation Sequencing (NGS) for sequencing RNA by
direct sequencing of the strand cDNA (Figure 3.3). In both cases (Bourdon-Lacombe
et al., 2015), after obtaining the differentially expressed genes, cellular functionality
and pathways expression can be further pursued using the statistical methods and

bioinformatics packages that will be mentioned below.

[RNA Isolation|

| J |
Microarray RNA-Seq
[Hybridization] [Sequence 1] [Sequence 2]
i ( L - )
Scanning Quality control of rows
L |\ J/
[Quantification ] - = \
L Preparation of the library
(cRNA)
[ Raw intensities ] h 1 g
N
- l’ Re-assembly of de novo-alignment
Correction and data with the reference genome
normalization
L Gene expression New sequences\
Gene expression | | quantification of genes )

[Statistical analysis|

4 4

[ Differentially expressed genes }

L L

[Pathway prediction/genes involved in response to different factors ]

Figure 3.3. Microarray vs RNA-Seq — adapted after (Corney et al., 2013).

3.2. Molecular analysis

For gene expression analysis, a variety of screening methods can be used to identify

pathways and genes expressed in response to different factors: determination of
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differentially expressed genes (DEGSs); signature matching; protein-protein (I-P-P)
(network) networks (PPl network); networks of coexpression network (Alexander-
Dann et al., 2018) (Figure 3.4).

/£
| DNA 5 RNA —» Protein

i i 3
[ gRT- PCR ] [ Microarray J [ RNA-Seq ]

!

Gene expression

| ! | i}
Differential Signature P-P-I Co-
expression matching network expression

\ | | I

[Pathway prediction/genes involved]

Figure 3.4. Types of analysis of gene expression following cellular exposure to a
particular compound - adapted after (Alexander-Dann et al., 2018).

3.2.1. Differentially expressed genes

Differentially expressed genes are useful in the process of identifying specific
biomarkers such as tumor biomarkers, toxicity, prognosis or diagnosis (Shi et al.,
2008).

An ideal marker is detected prior to traditional pathological symptoms and is

characterized by high specificity and sensitivity as well as mechanical relationships of
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biological relevance (Rininger et al., 2000). A gene is considered to be differentially

expressed if the observed difference between two different conditions is statistically

significant (Alexander-Dann et al., 2018; Anjum et al., 2016) Table 3.1.

Tableul 3.1. Analytical measures to determine a DEGs

Method | Principle Calculation Utility
Calculate the ratio in gene | F, =log,(E,, )-log,(E,,)
expression between sample - easy to
and control. It is expressed | F - fold change interpret
F in the logarithm in the base | 5 . gene
old o -19-9 - small
change 2, wherg It is equgl to O, if E - expression samples
there is no difference. i .
Depending on the cut-off, a- condllFlon a (ex. treated) | - variations
DEGs with values between | P- condition b (ex. oceur
0.5 and 2 are determined. | untreated)
Comparing gene rows by Ee
expression by applying a R, = E - comparison
nonparametric test. o of results
Rank R - ratio from different
product g-gene platforms
E - expression - used in
a - condition a (ex. treated) | meta-
b- condition b (ex. analyzes
untreated)
Comparison of the mean average(d)
value of gene expression in t= W
samples. It is based on the W - high
null hypothesis where the d = Xarys statistical
i - Aa~ . e
?ﬁ:ﬁgztsiirssee(éutil' While Xa - the mean of the number S|t%n|f|ca|1nce
t-test, compare two samples, of genes attributed to - . enV?rrl:eIT
ANOVA | ANOVA allows comparison | condition a 3isetril§) te?l y
for multiple samples. Yp - the mean of the number u
of genes attributed to and have the
condition b same
o (d) variability of genes, o= | Variation
standard deviation
n - number of tested pairs
Uses data for prediction of P(BIA )+ P(A i
differentiated expression P(A|B) = % cct)IrTs?Jmin
o g
_ probabilities and standard _ more
Bayesian | deviation. P(A|B) - probability of significant
condition A if condition B is | than t-test
results

present
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Method | Principle Calculation Utility
P(B|A) - probability of
condition B if condition A is
present
P(A) - probability of priority
condition A
P(B) - probability of priority
condition B
For comparing gene p=
expression, it uses real (@+bl(c+d)(a+c)(b+d)
expression counting. alblcldin!
where, - requires
Exact Cal Cg | Total exact copies
test GeneX | a|b | at+b of mRNAE)
Restgeng c| d | c+d
Total atgb+d n
Ca - condition A
Cg - condition B

To measure these, a number of statistical methods are considered, such as: fold
change (level of gene expression) (Love et al., 2014; Tarca et al., 2006), Rank
product (Breitling et al., 2004; Hong et al., 2006), liniar methods (ANOVA, t-test)
(Trapnell et al., 2013), Bayesian methods (Hardcastle si Kelly, 2010), exact test (Auer
si Doerge, 2010; Love et al., 2014), embedded in various computing packages such
as limma (Tarca et al., 2006), weighted average difference method (Kadota et al.,
2008), RankProd (Hong et al., 2006), Cuffdiff 2 (Trapnell et al., 2013), baySeq
(Hardcastle si Kelly, 2010), DESeq2 (Love et al., 2014), edgeR (Robinson et al.,
2009). The utility and principle of the methods is shown in Table 3.1.

3.2.2. Signature matching

In the methods of Signature matching, DEGs are assessed against a library
containing transcriptome profiles in order to predict potential effects (Hettne et al.,
2013).

By comparing the changes in gene expression resulting from exposure to certain

compounds, their effects on a biological system with their structural properties can be
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correlated, separated by what is a molecular similarity analysis. Using also reference

gene reference libraries, the similarity of the compounds in the gene expression

space can be measured (Lamb et al., 2006).

3.2.3. Protein-protein interaction network

Protein-protein interaction network (PPl network) allows the visualization and

characterization of the biological response after the exposure of a particular

compound (therapeutic effect or toxic effect - see Figure 3.5) at the cellular level.

Figure 3.5.
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h% characterization |:> Toxic effect

Exemplified representation (compound: arsenic trioxide) of the integration

of experimental and computational data in biological systems to characterize
biological responses through association networks (biological pathways and protein
interactions) - Figure adapted after (Orozcoa et al., 2016).
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In Figure 3.5, we can see how arsenic trioxide acts on targets on a molecular level.
The biological pathways involved and the interactions between proteins can be
analyzed by differentiating expression of the resulting genes. The characterization of
the biological response occurs depending on the predictions of the pathways

involved.
3.2.4. Co-expression network

Co-expression networks use all of the transcriptom-related measures, which creates
a strong correlation between genes and biological effects. Methods applied to date
are found in examples such as: Context Likelihood of Relatedness (Taylor et al.,
2008), Weighted Gene Co-expression Network Analysis’ — WGCNA (Zhang si
Horvath, 2005) .

The methods allow the correlation and comparison of the networks of gene
expression with a strong impact in predicting the effects of the tested compounds.
The similarities and differences of each response for each compound are thus
highlighted. The dependence of co-expression methods on determining correlations
between gene expressions is associated with the use of a minimum number of

replicates.
3.3. Similarity applicability at gene expression level

The transfer of the similarity concept to the gene expression level has been
increasingly advanced in recent years. The entire libraries have been created with
descriptive information so that the similarity of the compounds can be measured in
the expression space of the genes. One of the current approaches refers to
Connectivity mapping that can describe the action of compounds at genes level (Sirci
et al., 2017).

Through numerical representations, the relationships between the compounds and
the expression of the genes can be analyzed. A series of measures to calculate the

similarity of gene expression have been developed using graphs as representations

19



of genes, where the nodes are considered to be genes, and the edges link the genes

if there is a relationship between them (Yona et al., 2006).

PERSONAL CONTRIBUTIONS

Molecular similarity has been illustrated by describing the behavior of inorganic
compounds in water (Chapter 5), continuing with the description of the characteristics
of organic compounds based on similarity (Chapter 6) and the quantification of
relations between structural characteristics and properties (Chapter 7), reaching
modeling and characterization at the transcriptomic level of the response of the
inorganic compounds (arsenates) (Chapter 8), the probiotics (Chapter 9) following the

treatment of the breast and intestinal epithelial cell lines in vitro (Figure 4.1).

> Describing inorganic structures |

|—o{ Molecular arrangements and their properties |

L Chapter 5. Hydration models of monovalentions

% Describing organic structures and quantitative structure-property relationships

| Similarity in classes of compounds ‘

|—» Chapter 6. Molecular similarity in classes of anti-inflammatories

| Quantitative structure-property relationships |

I—» Chapter 7. Quantitative structure-property relationship on steroids

—{ Molecular expression at transcriptomic level ‘

—»| Arsenates effect in vitro

|—» Chapter 8. Understanding the effect of arsenates treatment on breast
cancer cell lines using gene expression analysis

—| Investigation of Lactobacillus therapeutic benefits in vitro

|—P Chapter 9. Understanding therapeutic effects of Lactobacillus
on intestinal cell lines using gene expression analysis

RESEARCH FRAMEWORK BASED ON LITERATURE SURVE

Figure 4.1. Research framework based on literature survey
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CHAPTER 4. RESEARCH FRAMEWORK

4.1. Molecular arrangements and their properties

In order to investigate and describe the behavior of inorganic structures in water, the
structural characteristics and their properties were observed in the resulting molecular
arrangements. In this context, Chapter 5 presents the hydration models obtained on
the basis of the interaction modeling of six monovalent ions (NH,*, F*, CI, Li*, Na* and

K*) with water molecules (Pruteanu et al., 2016).
4.2. Similarity in classes of compounds

An own collection of compounds from plant species known to have anti-inflammatory
potential has been considered and presented in Chapter 6. Similarity has been
calculated between the natural compounds and a set of drug compounds used in the
treatment of inflammatory disorders. Thus, the study wanted to highlight other natural

sources of compounds with similar properties.
4.3. Quantitative structure-property relationships

To validate a quantitative structure-property relationship model was considered a set
of 40 similar molecules (Pruteanu et al., 2016) from PubChem (https://pubchem.
ncbi.nlm.nih.gov/) belonging to a class of steroids and their lipophilicity property
expressed logarithmically by the octanol-water partition coefficient (logP, usually <5)
referring to the concentration ratio of the non-ionized species of a compound (Chapter
7).

4.4. Quantitative structure-property relationships

Molecular behavior was also observed at the cellular level, so following the treatment
of three cell lines of arsenates breast cancer and a normal cell line (HUMEC) for
control, changes in gene expression were investigated. It has been proposed to
evaluate the effect of arsenates at the transcriptomic level and to investigate the
mechanisms of action (activation of apoptosis, autophagy, reduction of cellular

proliferation) to understand the behavior of the arsenates in vitro (Chapter 8).
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4.5. Investigation of Lactobacillus therapeutic benefits in vitro

Regarding the therapeutic effects of organic compounds, a probiotic solution of three
species of Lactobacillus was considered (Taranu et al., 2018). Following treatment of
porcine intestinal epithelial cells (IPEC-1) with the mixture of lactobacilli was followed

behavior of these compounds at gene expression level. (Chapter 9).

CHAPTER 5. HYDRATION MODELS OF MONOVALENT IONS

5.1. Materials and methods

In Table 5.1 are the distance values calculated by different methods (Experimental,
MP4/6-31G*, MP3/6-31G*, MP2/6-31G*, M06-2X/6-31G*, HF/6-31G*, HF/3-21G*,
HF/STO-3G) and the values closest to each other are given by the calculation: M06-
2X/6-31G*, HF/3-21G* and MP3/6-31G* (Russell, 2006).

Table 5.1. The length d(O—H) in water: experimental vs. calculated (Russell, 2006)

Method d(O—H) pm
Experimental 95.78
MP4/6-31G* 97.03
MP3/6-31G* 96.68
MP2/6-31G* 96.89
MO06-2X/6-31G* 96.56
HF/6-31G* 94.73
HF/3-21G* 96.65
HF/STO-3G 98.92

5.1.2. lon-water clusters
The workflow describing this procedure is detailed in the steps as follows:

» Step 1: water molecules have been placed in the vicinity of ions of interest

» Step 2*: geometry optimization was performed
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» Step 3*: more water molecules have been added to the unoccupied spaces in the

vicinity of the investigated ions

* Steps 2 and 3 were repeated until no change was observed in the arrangements of

the groups of the first substrate.
The steps described above were applied for each ion under investigation.
5.1.3. Building congeners cages

The dodecahedron cages were constructed according to the methods described in
the literature (Burnham et al., 2006; Grayson et al., 2009) for each investigated cation

(NH4", Li*, Na* si K*) and the structures obtained are presented in Figure 5.1.

6 O-H in & 6 O-H out

|d(Li,0) = 1791 pm|

0,,L15H,s: stable

OpNgHs,: stable

0,5KsH,,: stable

0O14NagH>,: instable

|d(Na,0) =275+46 pm|

o

TORTTRAS o

Figure 5.1. The dodecahedron groups for cations NH,*, Li*, Na* and K* (O - red; H -
blue; N - dark blue; Li, Na, K - pink)
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Binding length averages were compared using the ANOVA statistical test with a level
of significance 0.33% (a = 0.05 adjusted by the number of comparisons considered,

in this case the number being the number of ions investigated; a* = 0.05/[6*(6-1)/2]).

Considering Bonferroni test (Biella et al., 2008) the results showed significant
differences. To test the differences between the angles formed between ion-water
groups, the Friedman ANOVA test (Pruteanu et al., 2016), the statistical analysis
being performed using the Statistics software (vV.8.)

(http://software.dell.com/products/statistica/).
5.1.4. Simmetry and molecular stability

In the case of ammonia (O12NgHs5p) six O-H bonds are stabilized within the formed
group and six O-H bonds are stabilized outside the structure (as can be seen in
Figure 5.1).

The formation and / or stability of the dodecahedron groups integrating the water

molecules were predominantly investigated when formed with ammonia.

/LI_: ’)\ -o:N
N Y

[ - f

N

\fd JY (O.N)20Hso

Figure 5.2. General structure of OxN2o.xHso (O or N - red; H - blue)
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5.2. Results and discussions
5.2.1. Stability of ion-water clusters

The stable ion-water groups identified in the present case have been shown to be
those formed with:

e four (NH4"-4H,0 and Li*-4H,0);

e five (CI"-5H,0 and Na*-5H,0);

e six (F-6H,0 and K*-6H,0) water molecules.

The stable groups mentioned are represented in the figure below (Figure 5.3) with the
mention that the ion-water groups are naturally formed and without constraints, since

the silico model was carried out with the water molecules.
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5 & f

Figure 5.3. a) Group NH4"-4H,0, b) Group Li*-4H,0, ¢) Group CI"-5H,0, d) Group
Na*-5H,0, e) Group F-6H.,0, f) Group K*-6H,0.

The first ion analyzed (NH;") has been selected as a reference for the reproducibility
of the calculation and for the validation of the analysis method, and the results
obtained are in agreement with known data (Clegg si Brimblecombe, 1989; Galasheyv,
2013; Guerra et al., 2014; Janeiro-Barral si Mella, 2006).

The calculated bindings and angles appear to be very close to their values when
naturally occurring in the aqueous environment. For Na’(H20)z, CI'(H.0)7, and
Na*(H20)100 using PBHaT algorithm (Burnham et al., 2006) has been identified at
least globally. This algorithm is a hybrid capable of efficiently sampling the partition

function from the global minimum to the liquid state.
5.2.2. Molecular symmetry

Analyzing the groups of water-ions, it is shown that the arrangement of the water
molecule around the investigated ions is not symmetrical even if it appears to be
symmetrical at first glance (see Figure 5.3a). Subsequent addition of water
molecules, after the initial bond was created, it can be seen that asymmetry is

increasingly evident.
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It can be said that the molecular arrangement is expected to lose its symmetry when
it comes to orbitals with higher energies. In fact, it is hard to believe that when water
is dissolved in water in diluted solutions, the arrangement of water molecules will

follow the expected symmetry of the fundamental ion state in vitro.

As expected, since different ion-water groups have been investigated, the lengths of
the bonds and the angles between the bonds differ from one group to another. The

results are shown in Tables (Table 5.2 and Table 5.3):

Table 5.2. Length of bonds and angles between bonds in the grouping CI"-5H,0 and

F-6H,0O
Distance Angles
d(Atom...Atom) | pm (Atom...Atom) ) (Atom...Atom) ©)
d(Atom...Atom) d(Atom...Atom)
Group CI'-5H,0
d(H...Cl) 265 | (H...Cl)2g1—(H...Cl)307 | 67 | (H...Cl)274—(H...Cl)2g1 | 96
d(H...Cl) 274 | (H...Cl)274—(H...Cl)307 | 76 | (H...Cl)265—(H...Cl)274 | 101
d(H...Cl) 281 | (H...Cl)og1—(H...Cl)2g4 | 82 | (H...Cl)265—(H...Cl)284 | 129
d(H...Cl) 284 | (H...Cl)274—(H...Cl)284 | 82 | (H...Cl)284—(H...Cl)307 | 140
d(H...Cl) 307 | (H...Cl)265—(H...Cl)307 | 89 | (H...Cl)265—(H...Cl)281 | 146
Group F-6H;0
d(H...F) 179 | (H...F)170—~(H...F)184 | 77 | (H...F)1ga—(H...F)1g5 | 89
d(H...F) 182 | (H...F)1ga—(H...F)1g7 | 85 | (H...F)170—(H...F)185 | 90
d(H...F) 183 | (H...F)1g2—(H...F)1g3 | 85 | (H...F)1g3—(H...F)1s7 | 93
d(H...F) 184 | (H...F)170—(H...F)1g3 | 86 | (H...F)1go—~(H...F)1s7 | 109
d(H...F) 185 | (H...F)1s5—(H...F)1s7 | 87 | (H...F)170—~(H...F)1s7 | 162
d(H...F) 187 | (H...F)1g3—(H...F)184 | 88 | (H...F)1go—~(H...F)184 | 165
(H...F)179—(H...F)182 89 (H...F)183—(H...F)185 177

In the case of anions CI" si F* the bond between water molecules and ions is created
with the contribution of water hydrogen ions, the region around the anions being rich
in electrons. This explains why the distances and angles of the resulting molecular
arrangements are given in relation to these hydrogen atoms (see Table 5.2 for CI" and
F).

H...CI" distancs in grouping CI-5H,0 are close to those values of the distance
between H...CI" in normal size clathrate, where high angles are possible (Laage si
Hynes, 2007).
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As can be seen for chloride ion, there is no symmetry due to the additional effect of
the presence of free energy corresponding to d-type orbits (see Table 5.2). Another

finding is visible in the number of water molecules surrounding the anion.
5.2.3. Electronegativity

The difference in electronegativity between the fluoride ions and the chlorine ions is
highlighted, the fluoride ion being able to attract six hydrogen atoms of the water
molecules in the first layer, while the chlorine ion having lower electronegativity

attracts only 5 hydrogen atoms water molecules.

By comparing the standard deviation between the angular values obtained and the
expected values, it is noted that the standard deviation is twice as high as that
obtained in the flour-water ion group. For these calculations the platonic structure with

five edges and six faces was considered (6x90°, 3x120°, 1x180°).

Taking into account the angles for the fluoride ion dissolved in water, the arrangement
of the water molecules in the first layer surrounding the F" ion is close to what is

meant by a bi-pyramidal square arrangement (Table 5.2).

In the present case, because of the electronegativity difference between oxygen and
fluoride ion, it can be seen that the arrangement is a bi-pyramidal square asymmetric

type formed by the hydrogen atoms surrounding the fluoride ion.

For cations, things are exactly the opposite so that the bond between the water
molecules and the cations is formed by the oxygen atoms. Due to this, and the
situation where the number of coordination is decreasing with the increase of the
atomic number observed in the case of the anions (6 for F°, 5 for CI'), is reversed for

cations (see Table 5.3).

Table 5.3. The length of the bonds and angles between the bonds in the cation-water
groups: NH;"-4H,0, Li*-4H,0, Na*-5H,0, K*-6H,0

Distance Angles

(Atom...Atom) ) (Atom...Atom)
d(Atom...Atom) d(Atom...Atom)

d(Atom...Atom) | pm

GI'OUp NH4+'4H20
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Distance Angles
d(0...H) 95 | (H...0)e5—(O...H)gs 105
d(N...H) 101 (H...N)1o1—(N...H)101 109
d(O...H) 208] (H...Cl)os—(O...H)20s | 113
Group Li*-4H,0
d(Li...0) 193] (Li...O)195—(Li...O)195 | 99 | (Li...O)193—(Li...O)o00 | 111
d(Li...0) 194 (Li...O)104—(Li...O)o00 | 104 | (Li...O)104—(Li...O)195 | 116
d(Li...0) 196 (Li...0)196—(Li...0)200 | 110 | (Li...O)193—(Li...O)104 | 117
d(Li...0) 200
Group Na*-5H,0
d(Na O) 231 (NaO)234—(Na 0)239 84 (NaO)234—( 0)235 97
d(NaO) 234 (Na...0)235—(Na ..0)239 85 (Na...O)231 ( ..0)234 100
d(Na...O) 235 (Na...O)231—(Na...O)239 88 (Na...O)234 ( ---0)236 123
d(Na...O) 236 (Na...O)1—(Na...O)ss5| 93 | (Na...O)ps—(Na...O)pzs | 135
d(Na O) 239 (NaO)235—(NaO)236 94 (Na )231 ( 0)235 178
Group K*:6H,0
d(0..K) 278] (0..K )og5—( O..K )a93 | 58.1 | (O...K )o7e—( O..K )ogs | 94.4
d(0...K) 279] (0..K )ag1—( O..K )ogs | 79.0 | (O..K )og1—( O..K )o05 | 100.5
d(0...K) 281] (0..K )oga—( O..K )og3 | 79.1 | (0..K )oro—( O..K )ogs | 121.6
d(0...K) 284 (0..K )276—( O..K )ag1 | 80.8 | (O...K )oga—( O..K )ogs | 127.8
d(0...K) 285] (0..K )25t~ O..K )ags | 81.3 | (0..K )o7e—( O..K )5 | 128.8
d(O...K) 293] (0..K )o79—( O..K )293 | 86.2 | (O...K )oro—( O..K )og1 | 157.1
(O...K Yaze—( O...K )oss | 86.3 | (O...K Ja7s—( O..K )ag3 | 173.0
(0..K)275—(0..K)oze | 92.5

The average bond lengths between the investigated ion-water groups proved to be
significantly different (ANOVA test with a p value, p = 3:107"°). The Bonferroni post-
hoc test identified significant differences with respect to the binding lengths for the
following pair of groups (differences were considered significant according to the

significance level adjusted by 0.3333%):

= Average bond length for grouping NH,"-4H,O proved to be less significant
compared to that observed in the group CI"-5H,0 (where p=10"®), group Na*-5H,0
(p=8.7-10®), and group K*-6H,0 (p=5-10"9).

= Average bond length for grouping Li*-4H,O proved to be less significant compared
to that observed in the group CI-5H,0 (p=2.3-107°), and group K*-6H,0 (1.6-10).
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Average bond length for grouping CI'-5H,0 proved to be significant compared to
that observed in the group F+6H,0 (p=5-10").

Average bond length for grouping F-6H,O was found to be significantly lower

compared to that observed in the group K*:6H,0 (p=2:10"").
The analysis of the angles presented in Table 5.2 and 5.3 led to the following:

As expected, the smallest angle between the bonds was observed in a group of 6

water molecules, respectively, in the group K*-6H,0 (angle=58.1°).

No significant differences were observed when the angles between the links were
statistically investigated (Statistica Friedman ANOVA=4.27 p=0.5119).

The results obtained in this case are associated with the concept of "infinite dilution",

for which, for example, one can say that there are no other ions in the neighborhood
(Table 5.4).

Table 5.4 contain:

The ratio between water and ammonia for each group of this type (H2O and NH3);

Number of hydronium ions (HzO" column) and hydroxide ions (HO™ column) freed

from group formation;
Load rate released per total number of water molecules involved ([*']/H.O column);

The reaction leading to group formation (the "Training Reaction" column, which

also represents the verification key for the previous calculations);

The rate of nitrogen and oxygen atoms corresponding to the whole arrangement in

the total mixture of water and ammonia.

Table 5.4. Conformations for OxNog.xHso

No| Group | H,O| NH4 HsO0* | HO'| [7"1/H,0O Reaction N/(N+0)%

0 |OgNypg |0 |20 |10 |0 |+(10)/(0+10) | 20NH3 + 10H,O0 — | 18/28=100

OoN20H50 + 10H30+

1 |ONig |2 18 | 8 0 +(8)/(2+8) 18NH3; + 10H,O0 — 18/28=64.3
O5N1gH50 + 8H3O+
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No| Group | H,0| NH3 HsO0* | HO| [7"1/H,0 Reaction N/(N+0)%

2 |[O4Nyg |4 16 | 6 0 +(6)/(6+4) 16NH3; + 10H,0 — 16/26=61.5
O4N46H50 + 6H30+

3 [OsNws |5 |15 |5 |0 | +(5)(5+5) | 15NHs+ 10H,0 — | 15/25=60.0
OsN1sHso + 5H30"

4 [ONis |6 |14 (4 [0 |+(@)(4+6) | 14NHs+ 10H,0 — | 14/24=58.3
O6N14Hso + 4H30"

5 | OgNy2 |8 12 | 2 0 +(2)/(2+8) 12NH3 + 10H,O — | 12/22=54.5
OgN12Hsg + 2H30"

6 [OpNiyp |10 |10 | O 0 +(0)/(0+10) | 10NH3 + 10H,O — | 10/20=50.0
O1oN1oHs0

7 |OiNg |12 |8 |0 2 -(2)/(2+12) 8NH;3; + 14H,0 — 8/22=36.4
O12NgH50 + 2HO

8 [OuNe |14 |6 |0 |4 |-(4)(4+14) |6NHs+ 18H,0 — | 6/24=25.0
O14NeH50 + 4HO

9 [OwsNs |15 |5 |0 |5 |+(5)(5+15) |5NHs + 20H,0 — | 5/25=20.0
O15NsH50 + SHO

10{O6Ng |16 |4 | O 6 +(6)/(6+16) | 4NH3; + 22H,0 — 4/26=15.4
O46NsH50 + 6HO

11/ 0O4N2 |18 |2 |0 8 +(8)/(8+18) | 2NH3 + 26H,0 — 2/28=07 .1
O18NoH50 + 8HO

12/ OxoNp |20 |0 |O 10 | +(10)/(10+20) ONH;3 + 30H0 — 0/30=0.00
O5oNogH59 + 10HO"

The angles between the ion-water groupings for the investigated ions were

successfully obtained and the groups formed with a considerable number of water

molecules can explain the dissolution of the ions investigated in water.

The "considerable number" of molecules or, in this case, referred to as the "magic

number of clusters”, to which they were investigated for:

» LiyNag-n, NapKs-n, and KnLig-n (Fournier, 2008);

= (CsH5N)n (H20)m (n=1~2, m=1~4) (DeBlase et al., 2015);

* Methyl tert-butyl ether (MTBE) - water groups (Di Palma si Bende, 2013);

= H'(NH3)(piridin)(H20)n, H*(NH3)(piridin)(H20), (n = 18, 20 si 27) (Ryding et al.,
2012);

(H20)20, found in clathrate) (Hvelplund et al., 2010).

H*(NH3)s5(H20)20 (tetrahedral ammonia encapsulated in a dodecahedron structure
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For Na*(H20)20, CI'(H20)47, and Na*(H20)100 using PBHaT algorithm (Burnham et al.,

2006) a global minimum was identified. This algorithm is a hybrid capable of

efficiently sampling the partition function from the global minimum to the liquid state.

5.4. Conclusions

= Significant difference among congeners

in the tendency of equilibrium

arrangements as a result of interactions between water molecules (in this case

the SM8 model was used); This algorithm is a hybrid capable of efficiently

sampling the partition function from the global minimum to the liquid state.

* In the absence of other ions (at an infinite dilution) the arrangement is generally

altered symmetry;

» |In the presence of other ions (in concentrated solutions), the dodecahedron

groups containing 8 lithium and 4 potassium atoms are symmetrical and stable

while the dodecahedron groups containing 6 sodium atoms are unstable while the

symmetry is altered.

CHAPTER 6. MOLECULAR SIMILARITY IN CLASSES OF ANTI-

6.1. Materials and methods

INFLAMMATORIES

» Data collection of natural compounds with anti-inflammatory activity, from the

literature;

Apply similarity measures with DataWarrior.

6.1.1. Data collection

Table 6.1. Information of interest collected for Dipteracanthus prostratus species

acid

NCBI_ID Compounds SMILES Uniprot_ID — Targets
Taxonomy
1052855 | Protocatechuic | OC(=O)c1ccc(c(c1)0)0 075496, P22748,

P23280, ....

Galllic acid

OC(=0)c1cc(O)c(c(c1)0)0

P10145, P22748,
P23280, ....
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Galllic acid

methyl ester

COC(=0)c1cc(0O)c(c(c1)0)0

P83916, P55789,
B2RXHZ2, ....

For example, experimental data show that 15 plant species belonging to the

Acanthaceae family have been studied for their anti-inflammatory effect, and 39

genes belonging to the Acanthaceae family are known (Table 6.2).

Table 6.2. Plant species (36) belonging to the 8 families considered

Family Gender/species Taxonomy NCBI_ID
Acanthaceae Acanthus ilicifolius 328098
42% | Adhatoda vasica 141317
Andrographis paniculata 175694
Asteracantha longifolia 883475
Asystasia gangetica 141292
Barleria prionitis 4189
Barleria lupulina 101743
Dipteracanthus prostratus 1052855
Elytraria acaulis 640489
Nelsonia campestris 4193
Phlogocanthus thyrsiflorus 526790
Pseuderanthemum 1685563
palatiferum
Rhinacanthus nasutus 537489
Ruellia tuberosa 441035
Thunbergia laurifolia 504053
Achariaceae Carpotroche brasiliensis 1633205
8% | Flacourtia indica 210376
Gynocardia odorata 124848
Agaricaceae Agaricus blazei 79798
5% | Agaricus bisporus 5341
Aizoaceae Glinus oppositifolius 764175
6% | Trianthema portulacastrum 3548
Alariaceae Undaria pinnatifida 74381
3%
Alisma plantago-aquatica 262913
- subsp. Orientale
Altingiaceae Liquidambar styraciflua 4400
3%
Amaranthaceae | Aerva javanica 240009
30% | Alternanthera philoxeroides 381410
Alternanthera sessilis 221762
Amaranthus spinosus 124765
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Family Gender/species Taxonomy NCBI_ID

Celosia cristata 124768
Salicornia herbacea 259302
Suaeda maritima 126913
Cyathula prostrata 221766
Pupalia lappacea 240105
Spinacia oleracea 3562

Anti-inflamatoarele ChEBI (in numar de 225 de compusi) au fost comparate cu un
numar de 283 de compusii naturali extrasi anterior din baza de date colectata (Table
6.4 din sectiunea Results and discussions) din 35 specii de plante ce apartin a 8
familii (Table 6.2).

6.1.2. Scaffold based similarity

From the set of molecules, it is possible to highlight the central fragment common to
most of the molecules, so substitutes are those that differ and confer different

structural conformations.

For example, in Table 6.3, for the genistein molecule (DataWarrior representation),
we can observe the types of molecular representations after which the calculations

were performed to characterize the set of natural compounds collected.

Table 6.3. Molecular scaffolds representations taking as an example genistein
molecule from the collection of natural compounds - representation from DataWarrior
(Sander et al., 2015)

Genistein

Scaffold Representation
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Genistein

(a) Simple ring systems

(b) Ring systems with substitution models
S - substituents
Is - exo-cyclic substituent, apart from

hydrogen

scisc
\
O !SC/SC.rSC
[ I
— Is !
Cscéc

(c) Ring systems with substitution models
carbon/hetero

Is - exo-cyclic substituent, apart from
hydrogen

['C] - any atom substituent apart from H
and C

(d) Ring systems without atomic
substituents

Is - exo-cyclic substituent, apart from
hydrogen
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Genistein

(e) Scaffold/Murcko skeleton AN
P
O
=
O\ % |
X
(f) Murcko skeleton graph
(g) Central ring system 07X

With DataWarrior, similarity has been calculated in different ways depending on the
purpose and the method we wanted to apply. Starting from the simplified
computational method of molecular similarity in calculating similarity in 3D space that

takes into account both the geometry and the way of binding the atoms.

The result was comparing molecules through these descriptors specific to each
molecule in the set. The resulting results (similarity score) based on Euclidean SOM

calculations (Self Organizing Map) (Sander et al., 2015) and the Tanimoto calculation
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(Willett, 2011), show how many common compounds have in common, and how

similar the two molecules are (section Results and discussions).
6.1.3. Principal component analysis and data screening

Based on scaffolds, similarity graphics such as PCA (Principal component Analysis)
were built into DataWarrior. Also, the molecules in the vicinity of a major molecule

were generated from similarity point of view.

To calculate the similarity, the Tanimoto coefficient was considered, and by the

descriptors considered, according to (Sander et al., 2015):

» Binary fragments of substructure fragments (FragFp) were used;
= Stereochemistry was considered, duplicate fragments were counted and

heteroatoms encoded (SkelSpheres).
The work algorithm was considered in the following steps:

» Positioning the set of molecules in 2D space;

= Calculating the matrix of similarity between all molecules;

= Locating the most similar neighboring molecules;

= Between two neighboring molecules, highlighting the attraction forces that
grow with the similarity score and the distance between them,;

» Visualization of similarity and similar molecules.
6.2. Results and discussions
6.2.2. Similarity clusters
The visualization of similarity relationships is highlighted based on clusters formed by
correlation with more similar neighborhood components. The data was generated

using DataWarrior software following similarity calculations comparing the two sets of
annotated molecules ANTIINFLAMMATORY (blue) and CHEBI (red) (Figure 6.2).
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Figure 6.2. Similarity clusters resulting from neighborhood similarity calculation
(DataWarrior view) - cluster 1 (C1), cluster 2 (C2) example.).

This correlation of the similarity between the data sets was made on the basis of the
calculation of the Bravais-Pearson coefficient, resulting in a correlation coefficient

very close to the ideal value 1, r = 0.0990 (Figure 6.2).

Clusters formed as can be seen in Figure 6.2 (example cluster 1 composed of
molecules corresponding to the IDs 443, 556, 441, 74, 205, 76, 183, 518, 258, 465,
464, such as cluster 2 composed of molecules corresponding IDs: 146, 125, 549,
428, 38, 36, 578, 408, 400, 181) are subgroups of molecules connected to each other
based on the neighborhood belonging to both analyzed datasets, indicating a good

correlation between them in terms of similarity.

Based on structural descriptors (SMILES) and SkelSpheres, while also considering
the structural scaffolds of the type of simple cyclic systems corresponding to the
components, similarity was observed in the clusters formed (Figure 6.3 and Figure
6.4).
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I e ——
Structure of SMILES Similarity [SkelSpheres] 0 0.25 0.5 0.75 1

Ring Systems Similarity [SkelSpheres] 0 0.25 0.5 0.75
DATASET O ANTIINFLAMMATORY [ CHEBI

Figure 6.3. Similarity based on Ring Systems, SMILES and SkelSpheres descriptors,
forms clusters whose components are very similar in structural terms. Similarity to the
main leader (leader) ID 152 (see Supplementary Table 6.1) of the set of natural
compounds.

A high degree of similarity is highlighted having as a leader (main components) of
comparison, one molecule in each cluster. In Figure 6.3, the main component is the
ID number 152 corresponding to vanillinic acid in the set of natural compounds
(ANTIINFLAMMATORY).

In Figure 6.4, the main component is the ID number 109 corresponding to the
oleanolic acid in the set of natural compounds. The similarity relationships of the

components of the two mentioned clusters are shown in Table 6.5.
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Figure 6.4. Similarity based on Ring Systems, SMILES and SkelSpheres descriptors
forms clusters whose components are very similar in structural terms. Similarity to the
main (leader) ID 109 (see Supplementary Table 6.1) of the set of natural compounds.

Table 6.5. The similarity relationships of the components of the two similarity clusters

(with the appropriate leaders considered) representatives of Figures 6.3 and 6.4.
Cluster leader 1 Cluster leader 2

(ANTIINFLAMMATORY:A) (ANTIINFLAMMATORY:A)

OH

/O o)

HO

152 109
Set

ID | Structure 2D Score | Set ID

455 oH 1 CHEBI| 242
/O (o)

HO
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Cluster leader 1

(ANTIINFLAMMATORY:A)

OH

Cluster leader 2
(ANTIINFLAMMATORY:A)

152 109
454 o 1 CHEBI| 162 1 A
/O o)
HO:QA
o\
599 i 1 CHEBI| 406 0.934 | CHEBI
Howo/\
HO
585 "1 CHEBI| 385 he £° 0.933 | CHEBI
HODMO s
HO
555 /\/@/OH 1 CHEBI| 408 0.927 | CHEBI
=z
461 | ° o 1 CHEBI| 422 0.910 | CHEBI
HO
o\
446 | O~F° 1 CHEBI| 369 0.900 | CHEBI
Ho/é\OH
OH
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Cluster leader 1 Cluster leader 2

(ANTIINFLAMMATORY:A) (ANTIINFLAMMATORY:A)
OH
O
-~ 0]
HO
152 109
46 % 0.916 | A 148 0.877 | A
N0 X0
0.877 | CHEBI

66 oH 10.887 | A 502
/OWO
HO

99 | L0 0.858 | A
Ho/é\ok
98 oH 0.849 A
HO
O
5
325 oH 0.845 | A
HOW
(¢}
HO
155 oH 0.839 A
HO
o
HO

71 /\/(53 0.829 A

Taking into account one leader component of each distinct similarity cluster, it is

noticed how global similarity calculated considering neighborhood changes in
agreement with them (152 and 109). By focusing on the two clusters with a similarity

score almost equal to 1, we can see the similarity between the compounds of the two
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sets (CHEBI and natural anti-inflammatory compounds). Thus the most similar

compounds from the two clusters can be found in Table 6.5.

6.2.3. Self organizing map

Figure 6.5. Self Organizing Map for arranging molecules according to the similarity of
scaffolds to the compounds and viewing similarity clusters on the basis of the
SkelSpheres neighborhood and descriptors (see DataWarrior).

By SOM we have taken into account the exact similarity values (Figure 6.5), and in
the case of PCA, the scaffolds are separated according to two or three main

components, as can be seen in the following (Fig. 6.6, Figure 6.7, Figure 6.8).
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6.2.4. Principal component analysis

A

10

-4 ‘
Figure 6.6. Analysis of the main components in the vicinity of Y, following the
similarity calculation using the molecular scaffold and FragFp (according to the
DataWarrior result) with a 23.2% variation of the main component 1 and 24.6% of the
main component 2.

A

10

-2 o ° ...

-4
Figure 6.7. Analysis of the main components in the vicinity of X, following the
similarity calculation using the molecular scaffold and FragFp (according to the
DataWarrior result), with a 35.6% variation of the main component 1 and 40.2% of the
main component 2.
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Following the two figures (Figure 6.6 and Figure 6.7), one can say that there is a
significant similarity between the molecules and that there is a small number of
molecules that are not similar to them. Considering stereochemistry, the SkelSpheres
descriptor counted the duplicate fragments and encoded the heteroatoms by

calculating similarity based on this descriptor (Figure 6.8).

DATASET @ ANTIINFLAMMATORY @ CHEBI

max of Neighbor Similarity SkelSpheres 82% ©-0.4 ¢-0.2 0 °02 004 006 @08

Figure 6.8. 3D view of the similarity of the molecules of the two sets of data
(ANTHNFLAMMATORY - blue, CHEBI - red) and its assessment through the main
components analysis (CP) using the SkelSpheres descriptor in the 3D space.

In the main component analysis (PCA) in 3D space, the similarity between

components is confirmed by the graph in Figure 6.8. Similarity is thus rendered by the
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statistical significance given by the result of the similarity score of 82% with values
between 0.6 and 0.8.

6.4. Conclusions

= A series of natural compounds in the collected data set are similar to the

structures of the drug compounds in the set taken as a reference;

= A chemical compound and its derivative can be found in a variety of plant

extracts;

» The results contribute to the periodic confirmation and recurrence of compounds
found to have anti-inflammatory activity.

CHAPTER 7. QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIP ON
STEROIDS
7.1. Materials and methods

Table 7.1. The 40 derivatives of the 7B-hydroxysteroid molecule

No Publ%hem logP| |No. PubI(Bhem logP| |No. Publ%hem logP| |No. Publ%hem logP
112760132 10.2| | 11]76310266 | 8.2| | 21|57390981 | 5.2| | 3176322257 |10.7
270682679 | 7.1 | 12/56663807 | 6.4| | 22|16758147| 8.5 | 3276325907 | 3.8
3|70682680| 6.5 | 1356847117 | 6.2| | 23|22213946| 6.2| | 3376327928 | 3.8
4/70688976| 6.2| | 14/70686910 6| | 24/16759984 | 5.9| | 3476333144 | 4.2
5/70693211| 6.2| | 1570691082 | 7.1| | 2516758161 | 4.2| | 35|371617 6.1
6/70697302| 6.5/ | 16|11647965| 8.4| | 26(76336739 |11.2| | 36/313039 8
7|12836861| 4.7| | 17|52947587 | 4.9| | 27/57396177 3| | 37|19922115 | 4.2
8|24867469 | 4.2| | 1824982302 | 3.8| | 28|57399636 3| | 38/9924252 | 54
9(16082386| 8.1| | 19/49823443| 5.9/ | 29/57401396 3| | 39|11551321 3

10{12358742| 5.2| | 20|22216291 3| | 30|76322252| 9.8| | 40111957457 | 4.2

7.1.1. Geometry optimization
Molecular geometries have been optimized in the HyperChem program at semi-
empirical PM3 (Parameterized Model No. 3). The log data files with data collection

were extracted using the JSChem utility (Harsa et al., 2014).
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7.1.2. Building the hypermolecule

Based on each position of the atoms that form the hyper molecule (see Figure 7.1),
the binary vectors and corresponding mass fragments for each molecule in the set

were calculated.

28

29

41/

Figure 7.1. Hypermolecule formed by the overlap of forty ligands. 2D Graphic
representation and graph numbering (Pruteanu et al., 2016) in ChemBioDraw
(,ChemBioDraw 14.0 User Guide”, 2016).

7.1.3. Topological descriptors

Table 7.2. Topology indices calculated for 73-hydroxysteroid derivatives in Table 7.1

Mol.lAp|coN| Di | D3D | De | CjDi | CjDe | CFDi | CFDe

35| 35|2522|4138.48(7313|4573.5(1750.5| 5062| 1809
34| 34|2670|3980.77(6965| 4467(1923.5| 4918]|1966.5
33| 33[2369|3510.96(6451| 4047| 1665| 4487(1706.5
33| 33|2342|3522.35(6424|4019.5| 1638| 4460)|1679.5
33| 33|2342|3355.66(6424|4019.5| 1638| 4460|1679.5
33| 33[2369|3520.97(6451| 4047| 1665| 4487({1706.5
25| 25| 926|1354.38|3297|1729.5| 546.5| 1983| 572.5
24| 24] 802| 1163.2|2969|1504.5| 463 1739| 486.5
33| 33|2335|3350.73(6511| 4029({1648.5|4550.5| 1693
26| 26]1052|1868.14|3627]|1956.5| 632 2229| 660.5

OO0 INIOO|A(WIN|I—

-—
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Mol.lAp|coN| Di | D3D | De | CjDi | CjDe | CFDi | CFDe
11| 35| 35(2237(3659.41|8399[4455.5] 1302| 5281| 1361
12| 33| 33[2345(3436.73|6348] 3996[1647.5] 4362[1687.5
13| 33| 33[2342(3309.13|6424]4019.5] 1638| 4460[1679.5
14| 32| 32[2098[3117.36|5967|3657.5|1436.5] 4086]1476.5
15| 34| 34]2560[3759.51|6855/4349.5[1813.5] 4808]1856.5
16| 36| 36|2435|3417.31|8962(4849.5|1424.5| 5718| 1485
17| 24| 24| 796(1153.47|2949[1490.5] 461| 1732| 488
18| 27| 27[1149[1681.56]3971| 2130 715.5| 2485| 747.5
19| 23] 23] 699] 988.57|2662] 1310] 402| 1516] 4215
20| 25| 25| 887[1279.08[3279] 1655| 535.5| 1966| 562.5
21] 26| 26[1052[1530.66(36271956.5] 632 2229] 660.5
22| 36| 36[2436] 3497(|9036]4811.5|1459.5/5703.5|1521.5
23] 33| 33|2342[3355.666424]4019.5] 1638 4460[1679.5
24| 23] 23] 699 1023[2662] 1310] 402| 1516] 4215
25| 24| 24| 802[1158.41|2969]1504.5| 463| 1739] 486.5
26| 35| 35|2944[4219.49[7659]5068.5/2080.5] 5527| 2130
27| 25| 25| 887[1279.08[3279] 1655| 535.5| 1966| 562.5
28] 25| 25| 887[1279.08[3279] 1655| 535.5| 1966| 562.5
29| 25| 25| 887[1279.08[3279] 1655| 535.5] 1966| 562.5
30| 34| 36|2668|3785.72[7103| 4609|1864.5/5048.51911.5
31| 34| 34|2668[3828.26/7103| 4609|1864.5/5048.5/1911.5
32| 27| 27[1172] 1646[3967| 2178 728 2483 763
33[ 27| 27[1172[1654.23[3967(2177.5] 728|2482.5| 762.5
34| 24| 24| 802[1169.48[2969[1504.5] 463| 1739] 486.5
35| 24| 24| 732[1086.05|2660| 1437| 483.5[1707.5| 501.5
36| 32| 32[22763204.88[6075] 3832 1619 4173[1656.5
37| 24| 24| 802[1169.48/2969]1504.5] 463 1739| 4865
38[ 28] 30[1412[2008.12[4395] 2535 914 2829| 9445
39| 25| 25| 8871279.08]3279] 1655| 535.5| 1966| 562.5
40| 24| 24| 802[1169.48[2969[1504.5] 463 1739| 4865

7.1.4. Significant atom positions

Table 7.3. Statistically significant positions correlated with the mass of the fragments

Mol.| p17 | p18 | p26 | p28 | p33 |p34| p35 | p36 | p37 | p40 | p43 | p50
1 [12.011]12.011[12.011] O 0 0 0 0 ([(17.007] 0 |[12.011] O
2 [12.011]12.011]12.011]12.011] O 0 [17.007] O [17.007] O 0 0
3 [12.011/12.011]12.011]12.011] O 0 |17.007 O |17.007f O 0 0
4 [12.011]12.011]12.011] O 0 0 |17.007{ O |17.007f O 0 0
5 [12.011]12.011]12.011] 0 0 0 |17.007] O |17.007] O 0 0
6 [12.011/12.011]12.011]12.011] O 0 |17.007] O |17.007] O 0 0
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Mol.| p17 | p18 | p26 | p28 | p33 |p34| p35 | p36 | p37 | p40 | p43 | p50
7 [12.011/17.007] O 0 0 0 0 0 [17.007] O 0 0
8 [12.011/17.007] O 0 0 0 0 0 |17.007] O 0 0
9 |12.011]12.011]12.011| O 0 19 17.007] 0 [17.007] O 0 0
10 (12.011{12.011| O 0 0 0 0 0 |17.007] O 0 0
11 |12.011{12.011] O 0 0 0 0 0 [17.007] O [12.011] O
12 |12.011{12.011]12.011] O 0 0 0 0 [17.007] O 0 0
13 [12.011|12.011[12.011] O 0 0 |17.007{ O |17.007f O 0 0
14 [12.011]12.011]12.011] O 0 0 |17.007{ O |17.007f O 0 0
15 (12.011|12.011{12.011{12.011| O 0 |17.007] O |17.007] O 0 0
16 |12.011]12.011] O 0 0 0 0 0 [17.007, 0 (12011 O
17 |12.011] O 0 0 0 0 0 [17.007|17.007] O 0 0
18 [12.011]{12.011] O 0 [17.007| O 0 0 |17.007] O 0 0
19 [12.011] O 0 0 0 0 0 0 |17.007] O 0 0
20 [12.01117.007] O 0 [|17.007] O 0 0 [17.007] O 0 0
21 |12.011[12.011] O 0 0 0 0 0 |17.007] O 0 0
22 |12.011[12.011] O 0 0 0 |17.007] O 0 0 0 0
23 [12.011[12.011/12.011] O 0 0 [17.007] O [17.007] O 0 0
24 12.011| O 0 0 0 0 0 0 [17.007] O 0 0
25 [12.011[17.007| O 0 0 0 0 0 |17.007] O 0 0
26 |12.011(12.011{12.011] O 0 0 0 0 (17.007|12.011{12.011] O
27 [12.011[17.007] O 0 [17.007| O 0 0 |17.007] O 0 0
28 [12.011/17.007/12.011] 0 |17.007] O 0 0 [17.007] O 0 0
29 [12.011/17.007] O 0 |17.007| O 0 0 [17.007] O 0 0
30 [12.011/12.011]12.011] O 0 0 0 0 [17.007] O [12.011] O
31 [12.011/12.011{12.011] 0 0 0 0 0 ([17.007|12.011{12.011] O
32 [12.01112.011] 0 0 0 0 0 0 |17.007] O 0 [17.007
33 [12.011[12.011] O 0 0 0 0 0 [17.007] O 0 [17.007
34 |12.011[17.007| O 0 0 0 0 0 |17.007] O 0 0
35 0 0 0 0 0 0 |17.007|17.007|17.007 O 0 0
36 [12.011/12.011|12.011|{17.007| O 0 0 0 |17.007] O 0 0
37 [12.011[17.007| O 0 0 0 0 0 |17.007] O 0 0
38 [12.011(12.011] O 0 0 0 0 0 |17.007] O 0 0
39 [12.011/17.007] O 0 |17.007| O 0 0 |17.007] O 0 0
40 [12.011]17.007] 0 0 0 0 0 0 [17.007] O 0 0

The logP property was modeled using mass fragments as structural features of the
molecules in the chosen set. The model has been validated through "leave-one-out"

and "training vs. test" proceedings.
7.2. Results and discussions
7.2.1. Regression model based on significant atom positions

A significant regression model was obtained by which seven variables were identified

as significant positions (Eqg.1 is shown in Table 7.4).
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logP=36.2431+0.0180+C|Di-1.6780-AD-0.0353+Di+0.0228+CjDe-0.0605+p 18-
0.0542¢p33-0.0495+p35 (Eq.1)
R?=0.9610, R? 44 = 0.9525, Q*= 0.9413; s = 0.4808, n = 40

F-Statistica (p-value) = 113 (1.02:10%°) where,

R? = determination coefficient,

R? adj = determination coefficient adjusted,

Q? = determination coefficient in leave-one-out proceeding,
s = estimated standard error,

n = sample size; F-Statistica = Statistica Fisher,

p-value = the probability of obtaining a significant model.

Table 7.4. Significant positions and their regression coefficients

Variables Coefficients Standard error |t Stat (p-value)
Interception 36.2431 4.4755| 8.10 (3.01-10°)
CjDi 0.0180 0.0020/8.82 (4.41-10°)
AD -1.6780 0.2383]-7.04 (5.53:10°)
DI -0.0353 0.0060|-5.85 (1.69:10°)
CjDe 0.0228 0.0043| 5.35 (7.12:10°)
P18 -0.0605 0.0197/-3.07 (4.37-10)
P33 -0.0542 0.0157|-3.44 (1.63:10)
P35 -0.0495 0.0137]-3.61 (1.04:10)

CjDi = distance Cluj; AD = Adjacency;
Di = Distance; CjDe = Cluj detour;
P18 = Position 18; P33 = Position 33; P35 = Position 35

The model with the lowest number of predictors was chosen as the model with the
most explanatory power. This was achieved by successive and repeated application

of the step-by-step method for the set of descriptors in Tables 7.3 and 7.4.
7.2.2. Leave-one-out validation

For the validation of the model, a leave-one-out analysis was performed with a

determination coefficient in the leave-one-out analysis Q* = 0.9413 (see Eq.1).
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Standardized estimated logP value

R Sq Linear = 0.961

T I T I T T
200 400 6.00 .00 10.00 12.00

observed logP

Figure 7.2. The estimated model (the red line - the pattern obtained and the black
lines represent the confidence interval of 95%)

7.2.3. Training vs. test validation

The resulting model was also validated through the training vs. test on the set of 40

analyzed molecules (Table 7.1) for the set of descriptors.

The set of 40 molecules was divided into two sets, 24 molecules in the training set

and the remaining 16 molecules in the test set.

The following molecules were randomly chosen to be part of the training set:
57396177, 49823443, 16082386, 16758147, 22216291, 9922115, 70688976,
70682680, 22213946, 11647965, 57390981, 12358742, 313039, 76325907,
57401396, 76327928, 76322252, 16759984, 24982302, 52947587, 12760132,
76336739, 76310266 si 70697302.

The regression equation obtained with the training molecule set was used to predict

the logP values for the rest of the test set molecules:
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logPyain = 27.014 - 0.08755-p18 - 0.03625-p33 - 0.06206-p35 -1.2697-AD -
0.001154-DI + 0.006573-CjDi (Eq.2)

R%ain = 0.9337

Firain = 40 (pF<5-10®)

R%est = 0.873

Fiest = 9 (pr<2.6-10"%) unde,

R? = determination coefficient (for training and test sets),
p-value = the probability of obtaining a significant model.
7.4. Conclusions

= Validation of the model according to the leave-one-out procedure;

= At the same time it was confirmed that with the decrease of the number of

variables, the statistical significance of a model decreases.

» Based on the obtained model, it can be said that positions 18, 33 and 35
respectively are those whose statistical significance decreases (all these

positions having a negative effect on the value of the logP coefficients).

CHAPTER 8. UNDERSTANDING THE EFFECT OF ARSENATES TREATMENT
ON BREAST CANCER CELL LINES USING GENE EXPRESSION ANALYSIS

8.1. Materials and methods

In order to evaluate the effect of the arsenates (2 HNO3; + As;03 + 2 H,O — 2 H3AsO,4
+ N»O3) on three breast cancer cell lines (double-positive MCF-7, triple negative
Hs578T, negative triple MDA-MB-231) and a normal human mammary epithelial cell
HUMEC for control, were investigated the changes to transcriptomic level, in

particular, on modulation of apoptosis, autophagy and cell proliferation processes.
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8.1.3. Analisying microarray data

Untreated Arsenates 3 breast cancer cell lines:
..,‘..,.--" . / —— “\\\

MCF-7 double positive
\ (R \ Hs578 triple negative

~
| DNA _,RNA |, Protein ( RNA |_, Protein
' = o -

MDA-MB-231 triple negative

A / e | e 1 normal cell line:
:i, HUMEC
Microarray J [ Microarray

[ Gene expression] l Gene expression '

- - - [ GSEA
[ Differential expression J"~

FC + t-test (limma) percellline ||
/Robust regularized discriminant : A
: Different response
analysis I GO-BP —
1 double positive breast cancer .
and 1 nommal cell lines Predicting pathways/genes
. i involved in As response
2 triple negative breast cancer

\_ cell lines

Figure 8.1. The transcriptomic analysis algorithm using microarray data

Treated Untreated
samples samples

| 9fold change |

Figure 8.2. Fold change calculation
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For each of the samples, treated and untreated, the level of gene expression (log2

fold change) was calculated for each cell line resulting in a 9 fold change expression

on each cell line (Figure 8.2).

Table 8.1. Prediction based on different parameters in RDA analysis

Alpha Delta value
value | 0]/0.33|0.7| 11333 |1.667| 2|2.333|2.667| 3
0|2 20 1] 1 5 7118 18 18 | 18
0110 2110110 12 10 | 11 18 18 | 18
022 |0 0| 9|10 11 11110 11 18 | 18
033 0 0| 9]10 10 12 | 11 10 11 11
044 | 0 0| 9|19 10 1112 11 10 | 11
0.55 | 0 0| 2| 9 10 10 | 10 11 12 | 11
0.66 | 0 0| 0] 5 9 9110 10 10 | 11
0.77 | 0 0| 0] O 3 91 9 9 10 | 10
0.88 | 0 0| 0] O 0 0] 0 1 3| 7
099 0 0/ 0] 0 0 0] 0 0 0| O

In Table 8.1 we can find and observe all the data of the robust and calculated

matrices by highlighting those values considered. The chosen value in orange is the

size chosen in the RDA analysis.

8.2. Results and discussions

8.2.1. In vitro matrigel assay

The short-term in vitro matrigel culture test was performed in order to track the effects

of arsenates on the cellular organization (Figure 8.3).

It is shown that in all cell lines, arsenates modulate processes involved in cellular

elongation and reduce intercellular interactions and cellular cellular capacity. This
effect is highlighted in triple negative Hs578T and MDA-MB-231 breast cancer cells

(Figure 8.3).
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Control Arsenati

Hs578T

MDA-MB-231

MCF-7

Figure 8.3. Short-term in vitro test on matrigel culture. Microscopic view of untreated
cells (Control) vs. cells treated with arsenates.
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8.2.2. Effect of arsenates on the regulation of autophagy and apoptosis
Annexin-FITC Merged

Hs578T
Control
MDA-
MB-231
Control
MCF-7
Control

Figure 8.4.a. Evaluation of the apoptosis process by fluorescence microscopy (20X
magnitude) as a result of cell exposure to arsenacts (As - notation in the image) 50
nM.

As

As

A=
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MDC Merzed

Hs578T
Control
) - -
MDA-MB-231
Control

Figure 8.4.b. Evaluation of the autophagy process by fluorescence microscopy (20X
magnitude) as a result of cell exposure to arsenacts (As-notation in the image) 50 nM

MCF-7

Control

As
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8.2.3. Shape of the data based on Pearson correlation
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8.2.4. Principal component analysis
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Figure 8.7. Each cell line is distinguished from a distinct area within the gene
expression space, considering the three main components containing a variant of

22.9% (CP1), 16.7% (CP2), and 14.6% (CP3).

8.2.5. Gene set enrichment analysis

Table 8.2. Common enriched biological processes responding to arsenic in all four

cell lines (FDR <0.15)

FDR g-value

Name of biological process Hs578T/ MCE-7/

MDA-MB-231 | HUMEC
DNA replication dependent nucleosome |0 0
organization 0 0
Chromatin silencing at rDNA 8 8

Protein heterotetramerization 8 8'00018
o . 0 0
Chromatin silencing 0.00064 0

Negative regulation of hematopoietic 0 0.00027
progenitor cell differentiation 0.01886 0
Negative regulation of megakaryocyte 0 0
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FDR g-value

Name of biological process Hs578T/ MCF-7/
MDA-MB-231 | HUMEC
differentiation 0.00284 0
Negative regulation of gene expression | 0.00015
epigenetic 0.00083 0
Positive regulation of gene expression 0 0.01009
epigenetic 0.04965 0
: 0 0.03176
Beta catenin TCF complex assembly 0.00326 0
. . L 0 0.00748
Protein heterooligomerization 0.04438 0
o 0 0.00747
Telomere organization 0.04186 0
. , 0 0.12874
Gene silencing by RNA 0.01242 0.00026
. . . 0.00942 0.00363
Regulation of gene silencing 0.00100 0.02088
Enrichment plot: HALLMARK_APOPTOSIS Enri_chment plot: HALLMARK_MTORC1_SIGNALING
0O AT 1 A AR

Triple negative celllines  Double positive andnormal cell lines Triple negative celllines  Double positive andnormal cell lines

Enrichment plot: HALLMARK_G2M_CHECKPOINT

0.00
-0.05
)
i@ 0101
o -0.15
3 020
1z
£ -0.25 1
£ 030
=
2 .035
c
W -0.40
-0.45

: Legend

0.50
GSEAplot
Enrichment score
l,. { I Hits

Triple negative cell lines Double positive andnormal cell lines

Genes in the
centroid

Figure 8.8. Genes are perturbed differently in mTOR apoptosis and G2M checkpoint
signalling. (q <0.15) On the x axis centroid values representing where are the genes
more perturbed.
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Data centroid values are the comparative response between ftriple negative (red)

versus double negative and normal (blue) cell lines (Figure 8.8).
8.3. Conclusions

= As a global effect in the treatment of cancer cells with arsenacts, it has been

shown that by this the epigenetic regulation has been disturbed.

» Apoptosis and autophagy processes have been plagued in triple-negative breast
cancer cell lines (Hs578T and MDA-MB-231).

» Biological pathways involving DNA repair mechanisms, chromatin organization

and epigenetic regulation have been modulated to a high level by arsenates.

» Considering the dose of arsenates (560nM) to which the cells were subjected, and
the effects on the above-mentioned biological processes, it can be concluded that
the arsens may be assigned to an anti-tumor alternative treatment for those

tumors involving the disruption of the DNA repair process.

»= The resulting transcriptomic data provides an insight into the effect of arsenates
on processors and complex mechanisms involving inhibition or activation of tumor

processes.

CHAPTER 9. UNDERSTANDING THERAPEUTIC EFFECTS OF
LACTOBACILLUS ON INTESTINAL CELL LINES USING GENE EXPRESSION
ANALYSIS
9.1. Materials and methods

9.1.4. Extraction of total RNA

Total RNA, both from lactobacilli-treated IPEC-1 cells and from untreated IPEC-1
cells, was isolated using the QiagenRNeasy midi kit (QIAGEN GmbH) following the
supplier's recommended protocol Pistol et al., 2014). The quality and integrity of the
samples were checked using the Agilent 2100 bioassay analyzer and the Agilent RNA
6000 nano kit (Agilent Technologies). The RIN (integrity number) score was found
between 8-10. Purified RNA samples were stored at -80° C until use.
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9.1.6. Statistical analysis of microarray data

All the genomic sequences of the Sus Scrofa were extrapolated to their human
counterparts using Homology Based Annotation from the NCBI database
(www.ncbi.nlm.nih.gov) and BLAST (Braicu et al., 2016).

Ingenuity Pathway (IPA; http://www.ingenuity.com) analysis was performed.
9.1.7. Validation of gene expression data

Validation of gene expression data was performed by quantitative Real-time PCR
(RT-gPCR) analysis. The randomly selected four gene expression profiles (IL-18,
TLR6, TLR4, IL-10) (Table 9.1) were measured by RT-gPCR in all samples

considered according to the protocol shown in (Taranu et al., 2015).

Table 9.1. Validation of gene expression data considering the levels of expression of
four genes (IL-1B, TLR6, TLR4, IL-10) with geometric mean (Geomean) and Fold
change (FC) after Lactobacillus treatment (LB).

Pathways Genes | Geomean_Fold_LB | FC
TLR6 | 1.03 2.04
Inflammatory response
TLR4 | 1.46 2.75
[I-1b 1.45 273
Cytokinesis
IL10 1.8 3.48

9.2. Results and discussions
9.2.2. Functional classification of differentially expressed genes

The genes that were found to be differentially expressed after treatment were further
subjected to a cluster assay and ranked in eight functional categories and signaling
pathways as: signaling, cell signaling, proliferation, transcription factor, factors

growth, cytokines, interleukins, inflammatory response (Table 9.2).

Table 9.2. The up- (red) and down- (green) regulated genes involved in the eight

functional categories and signaling pathways
Pathways Up regulated | Down regulated | Total
Transcription factor | 597 60 657
Signaling 1735 76 1811
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Cellular signaling 132 5 137
Proliferation 632 60 692
Cytokines 224 10 234
Interleukins 186 14 200
Inflammatory 205 13 218
response

Growth factor 398 13 411

76 genes of 1811 were found to be down-regulated, significant gene suppression

being observed for RGS2 genes with an expression level of -6.67 and p-value = 0.017
and OR1L8 with an expression level of -5.26 and p -value = 0.259 (Table 9.3).

Table 9.3. List of up- and down-regulated genes involved in cell signaling in IPEC-1
porcine epithelial cells

Gene

ID Gene Genes description FC Expression
symbol
Signaling
GACCO01000361 | nf1 Neurofibromin 1 (NF1), transcript | 10.20 | Up
variant 1
AK349266 fuz Fuzzy homolog (Drosophila) 10.63 | Up
(FUZ)
Transcript variant 1 10.70 | Up
XM-001928433 | or2m3 | Olfactory receptor, family 2, 11.63 |Up
subfamily M, member 3 (OR2M3)
AK345382 entpd1 | Ectonucleoside triphosphate 1213 | Up
diphosphohydrolase 1
(ENTPD1),
Transcript variant 1 13.45 | Up
XM-003482962 | axin2 AXIN 2 (axis inhibition protein) 13.93 | Up
AB530146 rgs2 Regulator of G-protein signaling | -6.67 down
2, 24kda
XM-001925049 | or1I8 Olfactory receptor, family 1, -5.26 down
subfamily L,
Member 8 -4.17 down
NM-001001861 | cxcl2 Chemokine (C-X-C motif) ligand | -4.00 down
2
NM-214376 areg Amphiregulin -3.85 down
NM-214376 areg Amphiregulin -3.85 down
AY609724 tcf21 Transcription factor 21 -3.70 down
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A significant number (692 genes) of differentially expressed genes involved in cell
proliferation were observed, of which 632 were found to be over-expressed (of which
59 genes had an expression level of 4, e.g., NF1 with a 10.20 FC) and 60 sub-
expressed genes such as AREG with an expression level of -3.85 FC, IL1a with an
expression level of -3.33 FC (Table 9.4).

Table 9.4. List of up- and down-regulated genes involved in cell proliferation in IPEC-
1 swine epithelial cells

ID Gene S Genes description FC Expression
symbol
Proliferation
GACC01000361 | nf1 Neurofibromin 1 (NF1), transcript | 10.20 | Up
variant 1 10.70
13.45
XM-003482962 | axin2 AXIN 2 (axis inhibition protein) 13.93 | Up
NM-214376 areg Amphiregulin -3.85 down
-3.45
NM-214029 il1a Interleukin 1, alpha (IL1A) -3.33 down
AY610314 ube2v?2 | Ubiquitin-conjugating enzyme E2 | -3.33 down
variant 2

A group of genes (657) involved in transcription factors were found to be differentially
expressed, 597 being over-expressed (with an expression level of 12.21 and p-value
= 0.058 the TSHZ2, NF1 gene with a level of expression of 10.20 and p-value =
0.133, EMX1 with an expression level of 9.00 and p-value = 0.133) and 60 genes are
sub-expressed (e.g., the PKNOX2 gene with an expression level of -8.33 and p-value
= 0.015) (Table 9.5).

Table 9.5. List of up- and down-regulated genes involved in transcription factors in
IPEC-1 porcine epithelial cells

ID Gene CEE Genes description FC Expression
symbol
Transcription factors

XM-003125031 | emx1 EMX1 (empty spiracles 9.00 Up
homeobox 1)

GACCO01000361 | nf1 Neurofibromin 1 (NF1), transcript | 10.20 | Up
variant 1

AK347929 tshz2 TSHZ2 (teashirt zinc finger 12.21 Up
homeobox 2), transcript variant 1

XM-003361490 | pknox2 | PBX/knotted 1 homeobox 2 -8.33 down

64




ID Gene

Gene
symbol

Genes description

FC

Expression

AY609724

tef21

Ref|[Homo sapiens transcription
factor 21 (TCF21), transcript
variant 2

-3.70

down

Table 9.6. List of up- and down-regulated genes involved in Inflammatory response in

IPEC-1 porcine epithelial cells
ID Gene S Genes description FC Expression
symbol
Inflammatory response
XM-003131278 | prkca Protein kinaza C, alpha 5.13 Up
5.58
AK396677 pla2g7 | Phospholipase A2, group VII 5.82 Up
(platelet-activating factor
acetylhydrolase, plasma)
XM-001929161 | osm Oncostatin M 6.19 Up
XM-003130465 | il20 Interleukin 20 6.23 Up
AY669080 bmp2 Bone morphogenetic protein 2 6.87 Up
AK232615 serpina3 | Serpin peptidase inhibitor, clade | 9.85 Up
A (alpha-1 antiproteinase,
antitrypsin), member 3
AK345252 cxcl2 Chemokine (C-X-C motif) ligand | -6.25 | down
2
XM-003129107 | cxcl2 Chemokine (C-X-C motif) ligand | -6.25 | down
2
XM-003126166 | cxcl2 Chemokine (C-X-C motif) ligand | -6.25 | down
2
NM-001001861 | cxcl2 Chemokine (C-X-C motif) ligand | -4.00 down
2
AY577905 cxcl2 Chemokine (C-X-C motif) ligand | -3.45 | down
2
NM_ 214029 iMa Interleukin 1, alpha -3.33 down

9.2.3. Real-Time PCR validation

The microarray results were validated by qRT-PCR analysis for expression levels of
four genes (IL-1B, TLR6, TLR4, IL-10). Selected expression levels of the selected
genes showed a near degree of over-expression in both microarray analysis (IL-1
with 2.73 FC, TLR-6 with 2.04 FC, TLR-4 with 1.46 FC and IL-10 with 3.48 FC) and in
the case of qRT-PCR analysis (IL-1p with 2.32 FC, TLR-6 with 1.84 FC, TLR-4 with
1.74 FC and IL-10 with 3.77 FC) (Table 9.1). From both cases it can be concluded
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that a good correlation between the results has been obtained. The method has the

potential to eliminate the variability that could influence quantitatively the expression

levels of the genes.

9.2.4. Pathway analysis

Among the canonical pathways involved are Wnt / (B-catenin and the molecular

mechanism involved in cancer development (Table 9.7), cellular functions, cell growth

and proliferation, cell division, death (apoptosis) and cell survival (Table 9.8 and 9.9).

Table 9.7. Significantly expressed canonical pathways associated with treatment with

lactobacilli following IPA analysis

Name

LB treatment

The role of macrophages, fibroblasts and
endothelial cells in rheumatoid arthritis

The molecular mechanism of canc

Wnt/B-catenina

Pluripotent human embryonic stem cells

p-value Ratio

9.33E-21 56/309 (0.181)
4.29E-20 61/374 (0.163)
1.32E-18 39/169 (0.231)
1.33E-18 36/143 (0.252)

Table 9.8. Significantly expressed genes and associated cellular functions associated

with lactobacilli treatment following IPA analysis

Name

LB treatment

p-value Molecules

Cellular growth and proliferation
Cellular Development

Gene Expression

Cellular Movement

Cell death and Survival

2.79E-20 -1.53E-124 598
2.79-20 -1.13E-117 972
1.83E-33 -1.33E-117 439
3.35E-20  -2.04E-95 392
4.95E-20 -5.24E-86 478

Table 9.9. Significantly expressed gene involved in affections and biological functions
associated with lactobacilli treatment following IPA analysis

Name LB treatment
p-value Molecules
Cancer 241E-20 -1.11E-58 849

Organism Injury and Abnormalities

Gastrointestinal Diseases

2.41E-20 -1.11E-58 860
2.38E-20 -1.53E-42 761
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Name LB treatment

p-value Molecules
Developmental Disorder 343E-21 -5.85E-42 282
Inflammatory Response 500E-33 -2.08E-43 362

Table 9.10. Number of significantly expressed genes involved in functional networks
associated with lactobacilli treatment following IPA analysis

Retele functionale asociate Score
Cell Signaling Cell-to-Cell Signaling and 52
Interaction, Cell Cycle

Gene Expression, Cellular Development, 41
Digestive System Development and Function

Gene Expression, Skeletal and Muscular 37
Disorders, Skeletal and Muscular System
Development and Function

Cellular Movement, Hematological System 37
Development and Function, Immune
Trafficking

Gene Expression, Hematological System 37
Development and Function, Tissue
Morphology

9.4. Conclusions

The results obtained from the transcriptomic analysis indicate that the mixture of
the three lactobacilli strains (L. rhamnosus, L. plantarum and L. paracasei) of
concentration 1x108CFU /mL differentially modulates gene expression, having a
beneficial effect on functional epithelial barrier, on cell proliferation, inflammation
and immune response (cytokines, chemokines) in IPEC-1 intestinal epithelial

cells.

The predominant effect of probiotics tested was gene activation, the genes
involved in the signaling pathways being the most affected: 95% up- regulated.
Many of the expressed genes are involved in cellular pathways and important
biological functions. Compared to the control gene list (13950), 12678 over-
expressed genes and 1272 down- expressions were found implicated in the

predominant effect.
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Most of the modulated genes (1811) were associated with signaling pathways of
which 121 up-regulated genes with a cut off of 2 and a reference expression level
(FC) greater than 10. The lactobacilli mix had a significant effect on the pathway
Wnt/B-catenin signaling, for which the AXIN2 gene was found to be over-
expressed with a fold change of 13.93, a B-catenin negative regulator that plays

an important role in human cancer tumors.

The results obtained from the microarray analysis highlight the effects of the
lactobacilli mix on cell proliferation and transcription. The NF1 gene encoding the
neurofibromin protein, a tumor suppressor that prevents uncontrolled cell

proliferation, has an expression level greater than 10 FC.

Induction of genes such as SERPINA 3, IL-20, OSM, GM-CSF, as well as
suppression of CXCL-2 (MCP-1) and RGS2 genes and IL-18 proinflammatory
cytokine highlights the protective role of lactobacilli in the epidermal barrier

function inflammation and in activating the immune response.

CONCLUSIONS AND FUTURE PROSPECTS

It has been shown that a set of inorganic compounds (Chapter 5) tend to form
different equilibrium arrangements as a result of interaction with water molecules
and in the absence of other ions (at an infinite dilution) the arrangements may
have altered symmetry. At the same time, in solutions concentrated with 8 lithium
and 4 potassium atoms, the formed dodecaded arrangements proved to be
symmetrical and stable, whereas sodium dodecaders containing 6 atoms of

sodium exhibit instability and altered symmetry.

Regarding the similarity in classes of compounds with anti-inflammatory
properties (Chapter 6), it has been shown that a series of natural compounds in
the collected data set are similar to the structures of the drug compounds

administered in the treatment of inflammatory diseases. Also, on the basis of
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similarity, it has been shown that a natural compound and / or its derivatives can

be found in a variety of other related plant extracts based on phylogeny.

Following the behavior and arrangements of the organic molecules represented
by the set of steroidal derivatives (Chapter 7), it was found that following their
overlapping through the construction of the hypermolecule it was possible to
estimate a structure-property relationship considering the mass of the fragments
and the lipophilicity property . The relation between the structural characteristics
and the considered property was found to be of high statistical significance, as
shown by the validation of the model by the leave-one-out procedure, with a
coefficient of determination Q? = 0.9413 after leave-one-out procedure and R? =

0.961 in estimated model.

Following the treatment of arsenic cancer cells (Chapter 8), epigenetic regulation
was shown to be disturbed, and apoptosis and autophagy processes were
plagued in triple-negative breast cancer cell lines (Hs578T and MDA-MB-231)
implicitly affirming that arsenses act on complex processes and mechanisms that
have the effect of inhibiting tumor processes. Also, following the treatment, the
arsens have been shown to be involved in biological ways involving DNA repair
mechanisms, chromatin organization and epigenetic regulation, modifying them to

a high level.

The probiotic solution mix (Chapter 9), applied as a treatment for porcine
intestinal epithelial cells, differentiated gene expression by demonstrating
beneficial effects on functional epithelial barrier, cell proliferation, inflammation

and immune response.

Understanding the structural properties and characterizing the molecular (in water
and silico) behavior of both inorganic and organic compounds can lead to the
explicability of their biological activities in vitro. On the basis of similarity, it may
contribute to the selection and selection of the compounds to be tested in vitro for

therapeutic purposes, depending on the condition for which treatment is desired.
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