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Collective behavior and pattern formation can arise even in seemingly simple sys-
tems. The present thesis provides an insight on the factors that lead to the emergence
of self-organization by examining one of the most basic models that demonstrate it,
coupled oscillators, and adding complexity to it step by step. Even though the model
is theoretical, the discovered trends and transitions explain the difference in the type
of synchronization found in equivalent real-world systems, such as metronomes on a
common platform versus pendulum clocks attached to a beam. Another model that is
studied is a system of economic agents trading wealth on an Erdős-Rényi graph. Per-
forming detailed studies and mapping the parameter space of these systems we uncovered
previously unnoticed trends and phase transitions, which can be applied to a variety of
real-world problems with similar mechanics.
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1 Introduction

1.1 The big picture and motivation of the research

The topic of spontaneous self-organization is a vast cross-disciplinary area of science
which encompasses a large number of research topics. Its applications range from pure
mathematics to particle physics or biology, from parallel computing to sociology and
psychology. Generally, any time when we are dealing with a system of multiple indepen-
dent agents or objects that are able to interact with each other, we are talking about
self organization.

Spontaneous or emergent self-organization has been known for hundreds of years,
mainly from observing simple mechanical systems, such as pendulum clocks. The biggest
challenge of studying such type of self-organization is the fact that most of the systems
composed of many agents are not analytically solvable and require enormous amounts
of computation. That is why this topic has become popular only after the invention of
parallel computing.

Today, this field is experiencing an explosion in its popularity in the scientific commu-
nity due to its complexity and due to the diversity of applications. Whether we want to
study the dynamics of a swarm of insects, motion of atoms in a molecule, or synchroniza-
tion of coupled metronomes, there are common patterns and phase transitions that arise
in an emergent manner from the mathematical and physical properties of these systems.
The goal of the present thesis is to observe these common patterns and transitions in
simple models and investigate which factors they are influenced by.

We start by examining the simplest model that displays spontaneous self-organization,
two coupled oscillators on a common substrate. From there on we gradually increase the
complexity of the system and take note of new emergent behaviors, while controlling for
various parameters and system types. While our findings are purely theoretical, they
can be applied to a variety of real-world problems that consist of interacting elements,
to find conditions for emergent self-organization, in order to achieve or to avoid such
behavior.

1.2 Approach and methodology

The primary instrument of our research is computer simulation. Every system we study
is modeled in Mathematica, due to many implemented functions, automatic paralleliza-
tion, and ease of visualization in this particular software. Equations are solved analyti-
cally wherever possible, but more complex non-linear equations are solved numerically.
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For systems that simulate a large number of interacting agents, we used the Monte-Carlo
and molecular dynamics method.

In order to keep our findings grounded on reality, we compare our simulation results
with experimental studies of equivalent systems obtained by other researchers in our
group, as well as other researchers from all over the world.

1.3 Outline of the thesis

”Self-organization: general aspects” is the first chapter after a general introduction, and
it includes a brief introduction to the topic of self-organization, bifurcation theory, chaos
theory, and pattern formation, necessary for understanding the context of the research
in the present thesis, as well as an overview of other significant works published in the
field.

The chapter ”Coupled mechanical oscillators” starts the main body of the thesis, where
we examine a system of two identical oscillators connected to a common platform. We
start from an ideal system, and approach reality by adding driving and damping. We
compare the obtained results with experimental findings of other research groups that
studied systems of metronomes or pendulum clocks.

The ”Multiple non-identical oscillators” chapter further expands on the system of
coupled oscillators. What if there are more than two of them on a common platform?
What if their natural frequencies vary? We take a look at the theoretical results, as well
as an experimental model of metronomes on a rotating platform and find several phase
transition points in the parameter space.

The ”Quantum coupled oscillators” chapter takes the oscillator system to the quantum
level. Oscillators and the platform are now quantum objects. Although we find that
they have a similar behavior to the classical ideal oscillators, there are several differences
caused by quantum effects.

The chapter ”Ruin game on networks” changes the subject from oscillators to a multi-
agent gambler’s ruin game, where multiple agents, connected by a graph, trade. It is
an example of a different type of self-organizing systems, but it also displays pattern
formation and phase transitions.
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2 Thesis content and main results

2.1 Coupled mechanical oscillators

Spontaneous synchronization was first observed by Christiaan Huygens [1] in 1673, which
gave a start to the studies of coupled oscillators. It is an example of a seemingly simple
system that can display complex nonlinear behavior. Huygens’ experiments have been
recently revisited and studied more thoroughly [2] [3], but some mysteries still remained:
for example, why do pendulum clocks synchronize only in anti-phase, while other similar
systems, like metronomes on a common platform, synchronize in-phase [4]?

Figure 2.1: The considered coupled oscillator system.

To answer this question we start with a generic model of two coupled oscillators
connected to a common platform (Fig. 2.1). The Lagrangian for this system is:

L =
1

2
Mẋ2

3 +
1

2
m(ẋ1 + ẋ3)2 +

1

2
m(ẋ2 + ẋ3)2 − 1

2
kx2

1 −
1

2
kx2

2, (2.1)

where the first term is the kinetic energy of the platform, the second and third terms
stands for the kinetic energy of the oscillators relative to the chosen inertial reference
frame, and the last two terms are the potential energies of the oscillators. This is a
linear system, so we can derive an exact solution to the motion of its parts depending
on their initial positions:

Mẍ3 = k(x1 + x2)

mẍ1 = −kx1 −mẍ3

mẍ2 = −kx2 −mẍ3

(2.2)

After solving these equations for the coordinates, we arrive at the expression for
Pearson correlation r depending on initial position a of one of the oscillators, while
fixing the other one (plotted in fig. 2.2):

6



r =
〈x1x2〉t − 〈x1〉t〈x2〉t√

〈x2
1〉t − 〈x1〉2t

√
〈x2

2〉t − 〈x2〉2t
=

2a

a2 + 1
(2.3)

Figure 2.2: Pearson correlation of the two oscillators coordinate as a function of the
initial position of one of the oscillators (x1(0) = 1, ẋ1(0) = 0, ẋ2(0) = 0 and
x2(0) = a, no friction and no driving).

As expected, this system only displays in-phase synchrony if it starts its motion in
synchrony, and anti-phase synchrony if it starts in anti-phase. This type of system
cannot display any self-organization, as it lacks an external flow of energy.

In order to make our model display spontaneous synchronization, we can add driving
to the oscillators, and friction to both of the oscillators’ and the platform’s motion. The
equations of motion then become:

Mẍ3 = k(x1 + x2) + C1(ẋ1 + ẋ2)− C0ẋ3 − F1 − F2

mẍ1 = −kx1 −mẍ3 − C1ẋ1 + F1

mẍ2 = −kx2 −mẍ3 − C1ẋ2 + F2

(2.4)

where C0 is the friction coefficient for the motion of the platform and C1 is the friction
coefficient of the masses on springs, F1 and F2 denote the driving forces applied to each
of the two masses m. They represent the pulse driving force, which only takes non-zero
values when the mass passes its resting position, and acts in the direction of motion of
the mass:

Fi = Pẋiδ(xi) (2.5)

With the introduction of these new parameters and nonlinearity to our original system,
it becomes significantly more complex and only solvable numerically. However, after
solving it, we notice that the correlation function no longer has a strong dependence
on initial positions of the oscillators, but instead demonstrates one of the following
behaviors, depending on parameters:

1. complete in-phase synchrony, independent of initial positions

2. complete anti-phase synchrony, independent of initial positions
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3. in-phase synchrony for all initial positions x2(0) > 0 and anti-phase synchrony for
all initial positions x2(0) < 0

4. stable periodic or quasiperiodic orbit that does not converge to synchrony or anti-
synchrony over time

The collective behavior of our initial system did not depend on the masses of the
oscillators or the platform, nor on spring constants. However, this time it does. If we fix
the masses m and take a look at the parameter space of M and k, we may notice an region
of anti-phase synchrony among an overwhelming area of no average synchrony (fig. 2.3),
which means there is a certain phase transition from non-synchrony to anti-synchrony
that has a linear border.

Figure 2.3: Averaged correlation, R, as a function of M and k. (C0 = C1 = 1).

Another part of the parameter space we can take a look at is the friction-driving one.
As driving force is compensated by the friction in the oscillators themselves, we can
fix one of those values and study only the other. By studying various combinations of
friction and mass values, we can see, that there is a very strong phase transition from
predominant anti-phase synchrony to mostly in-phase synchrony at C1 ≈ 9, independent
of any other parameters (fig. 2.4).

Figure 2.4: Averaged correlation, R, as a function of M and C1. (C0 = 1, k = 1).

This is the effect that could explain why metronomes always synchronize in-phase,
while pendulums only synchronize in anti-phase. Metronomes have higher friction co-
efficient in their mechanism than pendulums, thus the difference. This is consistent
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with other studies on this topic. For instance, Czolczynski, Perlikowski, Stefanski and
Kapitaniak, in revisiting Huygens’ experiments [3], note the prevalence of anti-phase
synchronization in case of identical or near identical pendulums. In another study on
identical Huygens pendulums done by Bennett, Schatz, Rockwood and Wiesenfeld [2],
the authors also find that these kind of oscillations tend to converge to anti-phase syn-
chrony. In contrast with this, a study by Boda, Neda, Tyukodi and Tunyagi [5] reports
only in-phase synchrony for their system of metronomes on a rotating platform.

2.2 Multiple non-identical oscillators

We can expand our model even further by introducing a variable number of oscilla-
tors, as well as accounting for the fact that in real-world scenarios the oscillators are
non-identical, and have a small variation in their natural frequencies. As the Pearson
coefficient is only applicable for calculating the correlation between two variables, and
anti-phase synchronization is meaningless when there are more than two parts in the
system, we will use the Kuramoto order parameter as a measure of synchrony.

Our goal now is to create a model that is close to the experimental setup of metronomes
located on a rotating platform and compare the computational results with the experi-
mental data obtained by Sz. Boda [5].

Figure 2.5: Experimental setup: metronomes are placed on the perimeter of a disc that
can rotate around a vertical axis. (Photograph by Sz. Boda)

As we are not aiming at exact replication of the metronome system, but rather to
modify the simple model of masses on springs we used previously, we can just add the
extra variables to it, and it should be equivalent to the metronomes. The equations of
motion then become:
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Mẍ0 =
N∑
i=1

kixi + C1

N∑
i=1

ẋ1 − C0ẋ0 −
N∑
i=1

Fi

mẍi = −kixi −mẍ0 − C1ẋi + Fi

(2.6)

Unlike in (2.2), this time the number of equations is greater than 2, and i ∈ [1, N ]
where N is the total number of oscillators. The variance in natural frequencies of
metronomes is accounted for by varying the spring constant k.

Our next step is to determine the values of parameters of our simplified system that
will correspond to the real system of metronomes on a platform. By comparing the
equations of motion of both systems, we arrive at the following values (see full thesis
text for details):

• m = 0.025kg

• 〈ki〉 ∈ [0.5, 5]kg/s2

• ∆k ≈ 0.1kg/s2

• M ∈ [0.5, 5]kg

• C1 = 0.0008kg m/s

• C0 = 0.0001kg m/s

• P = 0.0008kg m/s

We assume that there is a number of order-disorder phase transitions that become
sharper with increasing number of oscillators. One of these transitions takes place in the
M -k parameter space, as soon on fig. 2.6. Its presence is also confirmed by experimental
results[6] and the sole reason for its existence is the small difference in the metronomes’
frequencies (equivalent to the difference in spring constants in this case), as it does not
occur in the case of identical oscillators.

Another such transition takes place as a function of the platform’s friction coefficient
C0 (fig. 2.7). Increasing the friction coefficient C0 effectively reduces the amplitude
of the oscillations and weakens the coupling, thus lowering the level of synchronization.
Due to the difficulty of controlling precisely the friction coefficient for the platform, there
are no experimental studies to compare these findings to.

The presence of these transitions is also confirmed by Ulrichs, Mann, and Parlitz
[7], who have done a theoretical study on a similar system of metronomes placed on a
movable platform and discovered a sharp spike in the order parameter with the increased
coupling strength.
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Figure 2.6: The Kuramoto order parameter as a function of the mass of the platform
and spring-constants value. Results for different number of oscillators, N ,
as it is indicated in the figures. (C0 = 0.0001 kg m/s)

Figure 2.7: The Kuramoto order parameter as a function of the friction coefficient (C0) of
the platform and the number of oscillators on the common platform. (k = 5
kg/s2 and M = 1 kg.)

2.3 Coupled Quantum Mechanical Oscillators

Another fascinating modification of the coupled oscillators model is by shifting to a
quantum system, where both the masses and the platform are represented by quan-
tum oscillators and coupling is present. There have been several studies on quantum
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oscillators that dissipate heat[8][9], although the topic is relatively new.
The system we study in this chapter is equivalent to the model presented in fig. 2.1,

an ideal system without energy dissipation. The Hamiltonian of such system would be:

Ĥ = − h̄2

2m

∂2

∂x2
1

− h̄2

2m

∂2

∂x2
2

− h̄2

2M

∂2

∂x2
3

+
1

2
k(x1 − x3)2 +

1

2
k(x2 − x3)2 (2.7)

where x1 and x2 are the coordinates of the oscillators and x3 is the coordinate of the plat-
form. We assume that the platform is another quantum oscillator, and in the beginning
all three interacting masses start as independent quantum oscillators in their ground
states with mean coordinates 〈x1〉 = x01, 〈x2〉 = x02 and 〈x3〉 = x03, respectively. The
wave function of such system would be Ψ0(x1, x2, x3) = Ψ01(x1)Ψ02(x2)Ψ03(x3), where

Ψ01(x1) =

(√
mk

πh̄

) 1
4

exp

(√
mk(x1 − x01)2

2h̄

)

Ψ02(x2) =

(√
mk

πh̄

) 1
4

exp

(√
mk(x2 − x02)2

2h̄

)

Ψ03(x3) =

(√
Mk

πh̄

) 1
4

exp

(√
Mk(x3 − x03)2

2h̄

)
(2.8)

Our goal is to find the quasi classical trajectories of these oscillators, by calculating
the evolution of the wave function and deriving expectation values of coordinates as
functions of time:

〈xi(t)〉Ψ =

∫∫∫
Ψ∗(x1, x2, x3, t)xiΨ(x1, x2, x3, t) dx1 dx2 dx3

(2.9)

Then we can find the degree of synchronization via Pearson correlation, same as in
eq. 2.3, but with quantum mechanical averaging:

r′ =
〈〈x1x2(t)〉Ψ〉t − 〈X1〉t〈X2〉t√

〈〈x2
1(t)〉Ψ〉t − 〈X1〉2t

√
〈〈x2

2(t)〉Ψ〉t − 〈X2〉2t
, (2.10)

with:

〈x1x2(t)〉Ψ =

∫∫∫
Ψ∗(x1, x2, x3, t)x1x2Ψ(x1, x2, x3, t) dx1 dx2 dx3

〈x2
i (t)〉 =

∫∫∫
Ψ∗(x1, x2, x3, t)x

2
iΨ(x1, x2, x3, t) dx1 dx2 dx3

(2.11)

In order to do this, we solve the Schrödinger equation numerically on a 3-dimensional
grid to obtain eigenvalues and eigenvectors for the Hamiltonian 2.7, after which we can
calculate the time evolution of the system.
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The resulting trajectories of the oscillator coordinates x1 and x2 are similar to the
classical trajectories, minus the gradual decrease in amplitude due to the dispersion of
the wave function (fig. 2.9).

Figure 2.8: Evolution of the system’s wave function in the x1, x2 coordinate plane. The
line is the trajectory of the expectation value of the system’s coordinates.

Figure 2.9: Trajectories of the expectation values of x1 and x2 calculated with initial
positions x01 = 3 and x02 = 6. The decrease in amplitude is due to the
dispersion of the wave function.

The results for correlation, plotted on fig. 2.10, have a few significant differences from
the classical case: they depend on the ratio of masses of oscillators and the platform,
and they have a sharp transition around origin. It can be speculated that this is due to
the fact that in the quantum case the masses aren’t point objects, but rather dispersed
wave packets, the width of which relative to the oscillation amplitude depends on their
masses.
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Figure 2.10: Pearson correlation as a function of the initial position of one of the oscil-
lators. Results for the quantum mechanical system for different m values
and N = 40.

2.4 Ruin game on networks

Multiple coupled oscillators is only one example of the many types of systems that display
phase transitions and pattern formation. However, pattern formation in this system
mainly manifests through temporal patterns, which are defined by the trajectories of
the oscillators in time.

We now would like to take a look at another type of system, one that displays spatial
patterns. Consider a model of a bidirected random Erdős-Rényi (ER) graph G(N0, p),
defined by the number of nodes, N0, and the p probability of having a link between two
nodes, where every node is a player. Node degree and average node degree are denoted
by k and < k > respectively. Each player starts with equal wealth w0. The game takes
place on a discrete timeline, with equal time intervals as steps. At every step all directly
connected nodes on the graph “play” with each other - one player wins a unit of wealth,
the other one loses, with the winner and the loser chosen at random. If one of the chosen
connected players does not have enough wealth to play, there is no transaction done and
we proceed to the next step. The game goes on until there are no more trades possible, i.
e. none of the nodes that have non-zero wealth are connected. This model is illustrated
in fig. 2.11. Our goal is to predict the average game’s duration and the number of
nodes that retain wealth and their wealth distribution until the end as a function of the
system’s parameters.

There are two ways to predict the behavior of this system: thermodynamic - dealing
with statistics and probabilities, and dynamic, where we study the coarse-grained dy-
namics of every parameter in the system. Let us start with the thermodynamic, final
state approximation.

We assume a fully ergodic approach for the final state of the system, i. e. our main
hypothesis is that all allowed configurations are equally probable. This means that we
consider the system as micro-canonical. There are several things that limit the final,
acceptable configuration: first the remaining nodes cannot be first order neighbors, which
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Figure 2.11: The Erdős-Rényi random network (ER), generated with < k >= 4, at t0 the
beginning of the game, and after n time steps. Only nodes with wealth are
shown on the figure, while the size of the nodes indicates their accumulated
wealth.

means there is no direct link between them at the start of the game. Our hypothesis
leads to the fact that the average number of remaining nodes is roughly equal to the
ensemble averaged number of nodes that aren’t first order neighbors. We can calculate
the approximate average number of remaining nodes from sampling on all configurations
of nodes that are not connected with each other. The detailed calculations are described
in the thesis, but in the end we arrive at a value for the number of remaining nodes NR:

NR ≈ N0

1 + 〈k〉−2
〈k〉 ln

(
〈k〉
2
− 1
)

3
2
〈k〉 − 2

(2.12)

where N0 is the initial number of nodes and k is the degree of the graph, 〈k〉 = pN0.
The average wealth, 〈w〉 of the NR remaining nodes is then:

〈w〉 =
N0w0

NR

≈ N0w0

Np

= w0

3
2
〈k〉 − 2

1 + 〈k〉−2
〈k〉 ln

(
〈k〉
2
− 1
) (2.13)

We then assume that all distributions of the remaining wealth in the system are equally
probable, which leads us to exponential distribution for wealth in the final state:

ρ(w) ≈ αe−αw, (2.14)

with α = 1/〈w〉. By taking into account the fact that there must only be one node with
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maximum wealth in the final distribution, we can calculate the maximum wealth value:

wmax = w0
N0

NR

ln(NR) (2.15)

In order to obtain the expression for the expected duration of the game we need to de-
termine the most probable time for reaching this threshold, assuming a simple Brownian
motion approximation for the wealth with steps of one unit wealth.

By taking a look at first passage time of a random walk [10], we can estimate the
duration of the game as

τ ≈ 1

3
w2
max (2.16)

Taking into account our estimate for wmax we get

τ ≈ w2
0

3

[
N0

NR

ln(NR)

]2

(2.17)

leading to:

τ 1/2 ≈ w0√
3

3
2
〈k〉 − 2

1 + 〈k〉−2
〈k〉 ln

(
〈k〉
2
− 1
)
ln(N0) + ln

1 + 〈k〉−2
〈k〉 ln

(
〈k〉
2
− 1
)

3
2
〈k〉 − 2

 (2.18)

This results suggests that τ 1/2 scales linearly with the initial wealth (w0) and it has
a linear dependence as a function of the logarithm of the graphs size (lnN0). The
dependence as a function of the average connectivity of the graph is more complex.

Another approach is to study the coarse-grained dynamics of the system’s variables
by tracing their connections with each other and their evolution in time.

The most important characteristics of the system are the number of active nodes N(t)
(with non-zero wealth and connected to other non-zero nodes) and the number of active
connections Nc(t). We will also introduce the following variables: N0, which is the initial
number of nodes, Ni(t), the number of nodes that have wealth, but are isolated, and
Nn(t), nodes that do not have wealth (naturally: N(t) +Ni(t) +Nn(t) = N0).

Taking into consideration the connection between the number of active nodes and
active connections, we can write:

dNc

dt
= −c(t)dNn

dt
= c(t)

dN

dt
(2.19)

where c(t) = 2Nc(t)
N(t)

is the average number of active connections per node at time t.
As with the previous approach, we can treat each individual node’s wealth as a random
walk, and we assume that the time to run out of wealth is the most probable first passage
time [10]:

τ = w2(t)/3, (2.20)

This is the time in which the number of nodes without wealth increases by one unit.
The time unit was fixed in our model as Nc(0) = L trials on all the links of the G(N, p)
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ER, graph. The probability to hit an active connection, while selecting the Nc(0) links
is: Nc(t)/Nc(0). According to these, we can approximate the rate at which the number
of nodes without wealth increases:

dNn

dt
=

3

w2(t)

Nc(t)

Nc(0)
Nc(0) = Nc(t)

3

w2(t)
(2.21)

Since we neglected the isolated nodes in our approximation, the average wealth of the
active nodes is easily computable:

w(t) ≈ N0w0

N(t)
(2.22)

We have thus two coupled differential equations for describing the dynamics of the
system:

dNc

dt
=

2Nc(t)

N(t)

dN

dt

dN

dt
= −3N(t)2

N2
0w

2
0

Nc(t)

(2.23)

which leads to:

Nc(t) = L

[
9tL

N0w2
0

+ 1

]−2/3

= 〈k〉N0

[
9t〈k〉
w2

0

+ 1

]−2/3

(2.24)

This dynamic approach, although is valid at the beginning and middle of the game,
does not give us a good approximation of the duration of the game, as the error becomes
too big as time increases. So, in order to find the final state of the system, we will use the
results of the final state approximation and compare them with computer simulations.
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Figure 2.12: Simulation results for the average number of remaining nodes. (a) Results
as a function of the initial wealth of the nodes, w0 (〈k〉 = 15 and N0 = 200);
(b) Results as a function of the initial size of the graph, N0. The continuous
line indicates the Np value given by equation (2.12) and with dashed line we
indicate the best linear fit for the simulation results. (〈k〉 = 15, w0 = 4); (c)
Results as function of the average number of links per node, 〈k〉. The circles,
dotted line and continuous line indicate the simulation results obtained by
different approximations. (N0 = 200, w0 = 4); (d) Power-law fit for the
simulation results presented in figure (c) . Please note the logarithmic axes.
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Circles are simulation results, while the continuous line is an exponential
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Figure 2.14: Simulation results for the time-length of the ruin game. (a) Comparison
between the mean and most probable length of the game. (〈k〉 = 15 and
w0 = 4); (b) Square root for the games time-length as a function of the
nodes initial wealth w0 (circles) (〈k〉 = 15 and N0 = 500); (c) Square root
of game length as a function of the initial size of the graph, N0 (circles).
(〈k〉 = 15 and w0 = 4). Please notice the logarithmic axis for N0; (d) Square
root of the games length as a function of the mean degree of the nodes, 〈k〉.
(w0 = 4 and N0 = 200). For figures (b), (c) and (d) the continuous line
indicates our analytical approximation (2.18).

The validity of our assumptions and approximations can be verified by means of a
Monte Carlo simulation of the system. We generate an Erdős-Rényi graph and simulate
every time step of our ruin game, then average the results over up to 10000 trials. Figure
2.12 shows that the simulation results are very close to our analytical solutions for the
number of remaining nodes. The assumption of exponential distribution of wealth in
remaining nodes is confirmed by simulations as well (fig. 2.13). Figures 2.14 and 2.15
demonstrate the validity of the approximation for the game duration, as well as the fact
that most probable duration coincides with the average duration.
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Figure 2.15: Square root for the game length as a function of the number of nodes with
nonzero wealth in the final configuration. Circles are simulation results
both for τ and NR, while the continuous line is given by equation (2.17).
(N0 = 200, w0 = 4 and 〈k〉 ∈ [4, 50]).

2.5 Conclusions

We have studied several systems of varying complexity that display spontaneous self-
organization and found the conditions for phase transitions in all of them. In systems
of coupled oscillators we found temporal patterns that exist only in specific regions
of the parameter space, such as full synchronization, anti-phase synchronization and
quasi-periodic oscillations. In the ruin game, we found spatial patterns that manifest
themselves in specific numbers of nodes that retain wealth at the end, exponential dis-
tribution of wealth among them, independent of the particular graph’s topology.

These findings are general enough to be observed in equivalent systems of biological,
physical or electronic nature, and perhaps someday can help in understanding, predict-
ing, and modeling the behavior of real world self-organizing systems, like multi-cellular
organisms, neural networks, behaviors of animal colonies, and many others.
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3 Scientific contributions

Publications related to the thesis:

1. Néda, Z., Davidova, L., Újvári, S. and Istrate, G., 2017. Gambler’s ruin problem
on Erdős Rényi graphs. Physica A: Statistical Mechanics and its Applications,
468, pp.147-157.

I’ve programmed the computer simulations in the work and derived the equations
for the time-evolution approach to the system. I also contributed to editing and
writing the manuscript.

2. Davidova, L., Borbély, S. and Néda, Z., 2015. Collective Behavior of Coupled
Quantum Mechanical Oscillators. Studia Universitatis Babes-Bolyai, Physica,
60(1).

I came up with the idea to study this system and did all the work on programming
and analyzing the results.

3. Davidova, L., Boda, Sz. and Néda, Z., 2014. Order-disorder Transitions in a Min-
imal Model of Self-sustained Coupled Oscillators. Romanian Reports in Physics,
66(4), pp.1018-1028.

I’ve conducted a lot of computer simulations on the system of coupled oscillators
and discovered potentially new effects of synchronization as a function of the system
parameters.

4. Boda, S., Davidova, L. and Néda, Z., 2014. Order and disorder in coupled
metronome systems. The European Physical Journal Special Topics, 223(4), pp.649-
663.

I’ve contributed with suggestions that certain system parameters can have interest-
ing effects on the dynamics of the system and helped on computer simulations.

5. Davidova, L., Újvári, Sz. and Néda, Z., 2014. Sync or anti-sync – dynamical
pattern selection in coupled self-sustained oscillator systems. In Journal of Physics:
Conference Series (Vol. 510, No. 1, p. 012009). IOP Publishing.

All of the computer simulations in the work were done by me, as well as the analysis
of the results.

Conference participation:

1. 25th IUPAP Conference on Computational Physics (CCP2013) – Poster Presen-
tation
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2. 14th International Balkan Workshop on Applied Physics (IBWAP 2014) – Poster
Presentation

3. IV Summer School on Statistical Physics of Complex and Small Systems – Poster
Presentation
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