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Chapter 1

Preliminary results

1.1 Introduction

Complex analysis is a branch of mathematics that has various scientific and technical applica-
tions.

From the beginning of the XX-th century both real and complex analysis have gone through
major development due to natural internal progress or to satisfy the needs of different branches
of mathematics or even other sciences.

The basics of geometric theory of functions of one complex variable, with roots in the XIX-th
century or even earlier, were set by the work of P. Koebe (1907) and L. Bieberbach, whose famous
conjecture from 1916 was proved only in 1984 by Louis de Branges. The analytic functions of one
complex variable are the ideal model for geometric transformations of the plane.

One of the most important centers in the field of geometric theory of functions was in Cluj,
where G. Calugareanu obtained some important results in 1931, establishing the first necessary
and sufficient conditions of univalency expressed by coefficients.

One of the fields that aroused the interest of a large number of mathematicians all over the
world was that of the geometric theory of functions of one or several complex variables, a special
branch of complex analysis. In this field there are some very interesting problems to study as
those referring at differential subordinations, integral or differential operators for some classes
of functions, other properties of some classes of analytic, univalent or multivalent functions, some
of them with negative coefficients.

The school of complex analysis from Cluj, under the leadership of professor Petru T. Mocanu
contributed with some important results. Mocanu, together with S. S. Miller, introduced the
method of differential subordination also known as method of admissible function. Their method
was further developed by other mathematicians who demonstrated in a much simpler way some
classical results in this area, adding expansions, and even new results to the study of several
integral operators, conditions for starlikeness and convexity, preserving of some geometric and

analytic properties of several integral and differential operators. At this moment the theory of
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CHAPTER 1. PRELIMINARY RESULTS

differential subordinations is studied and successfully used by mathematicians all over the world,
from U.S.A to Germany, Poland, Turkey, India, China, Japan, Canada, Malaysia or Egypt.

Miller and Mocanu introduced also the notion of differential superordination, dual notion
of the differential subordination. The theory of subordination chains is one of the most modern
theories of complex analysis that give new research directions for some important problems
related to univalent functions.

Another recent research method is based on the use of some conditions of coefficients devel-
oped in power series of analytic functions (with positive and negative coefficients). Using this
method some well appreciated results were obtained, cited by mathematicians all over the world.
Nowadays the complex analysis is well represented in Cluj through the activity of scientists as G.
S. Salagean, G. Kohr or T. Bulboaca, as well as in other university centers of Romania.

The present doctoral thesis contains six chapters.

In Chapter 1 we present the historical background of the geometric function theory and we
give some basic notations and preliminary results.

Chapter 2 (Analytic functions with varying arguments) contains four subchapters. In this
chapter we study some properties of certain class of analytic functions with varying arguments
defined by Ruscheweyh and Salagean derivative and the combination of these derivatives.

Chapter 3 (Analytic functions) In this chapter we study coefficient bounds and Fekete-Szeg6
problem for new classes of analytic functions with varying arguments defined by Salagean
integro-differential operator.

In Chapter 4 (Differential subordinations and superordinations), which contains six sub-
chapters.

In the first subchapter we consider the 21" : of — of, PI"f(2) = (A -AN)D"f(2)+ AI"f (2)
linear operator, where 2" is the Salagean differential operator and I" is the Sadldgean integral
operator. We study several differential subordinations generated by 21" and we introduce a class
of holomorphic functions L (), and obtain some subordination results.

In the second subchapter we define the operator 9;1;” : o — of, given by .@ign f(z) =
A-a-BR'D"f(2)+aR" QL (2)+ D" QL f (2), for z € U, where %" is the Ruscheweyh derivative,
2" is the Salagean operator, QQ is a fractional differintegral operator introduced by S. Owa
and H. M. Srivastava, o = {f € #U): f(z2) =z +a9z® +a32® +...,zeU}, a,$=0,v>-1,neNg =
{0,1,2,3,...},—00o < A < 2. A certain subclass of analytic functions in the open unit disk, %;1;;1(5 ),
where 0 <6 < 1, is introduced using the new operator. We obtain some properties of the class
%2;”(6 ) and some differential subordinations using the operator 9;;”

In the third subchapter we use the ZI" operator defined in the first subchapter. We give
some results and applications for differential subordinations and superordinations for analytic
functions and we will determine some properties on admissible functions defined with the new
operator.

In the next part we present Loewner chains and their utility in obtaining new univalence
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1.1. INTRODUCTION

criteria.

In the fifth subchapter we study the properties of the image of some subclasses of starlike
functions, through the generalized Bernardi - Libera - Livingston integral operator. A new
subclass of functions with negative coefficients is introduced and we study some properties of
this class.

In the sixth subchapter we determine the radius of convexity of particular functions. The
obtained results will be used to deduce sharp estimations regarding functions which satisfy
a second order differential subordination. A lemma regarding starlikeness is deduced which
involves the notion of convolution. This lemma is used in order to obtain a sharp starlikeness
condition.

In Chapter 5 (Bi-univalent functions), which contains three subchapters, we define new
subclasses of bi-univalent functions for which we obtain estimates of coefficients a9, a3 and a4.
The results in this chapter are original and are presented in [79], [80] and [83].

In Chapter 6 (Harmonic functions), which contains four subchapters, we investigate several
classes of harmonic functions with varying argument of coefficients which are defined by means
of the principle of subordination between harmonic functions. Such properties as the coefficient
estimates, distortion theorems, convolution properties, radii of convexity, starlikeness and the
closure properties of these classes under the generalized Bernardi-Libera-Livingston integral
operator Z.(f), (c > —1) which is defined by Z.(f) = L.(h) + £L.(g) where

1] 1
L)) = = f " h(t)dt and Z.(g)z)= = f L g(t)dt
V4 V4
0 0
are investigated.

We also investigate some generalizations of classes of harmonic functions defined by Salagean
and Ruscheweyh derivative. By using the extreme points theory we obtain coefficients estimates
distortion theorems and integral mean inequalities in these classes of functions.

The bibliography contains 130 titles. The original results were published or were submitted
for publication in 26 articles 16 as single author and 10 in collaboration.

3 articles are published in Web of Science indexed journals.

The following articles contain the original results:

1. A. O. PALL-SZABO, Modified Hadamard product properties of certain class of analytic
functions with varying arguments defined by Ruscheweyh derivative, Miskolc Mathematical
Notes, 18 (2017), pp. 397-406.

2. A. 0. PALL-SZABO AND G. S. SALAGEAN, A unified class of harmonic functions with

varying argument of coefficients, accepted, Filomat.

3. 0. ENGEL AND A. PALL-SZABO, The radius of convexity of particular functions and

applications to the study of a second order differential inequality, Journal of Contemporary
Mathematical Analysis (Armenian Academy of Sciences), 52 (2017), pp. 118-127.
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CHAPTER 1. PRELIMINARY RESULTS

4. 0. ENGEL, P. KUPAN AND A. PALL-SZABO, About the radius of convexity of some analytic
functions, Creative Mathematics and Informatics, 24 (2015), pp. 157 — 163.

5. A. 0. PALL-SZABO, O. ENGEL, AND E. SZATMARI, Certain class of analytic functions
with varying arguments defined by the convolution of Sdldgean and Ruscheweyh derivative,
Acta Universitatis Apulensis, 51 (2017), pp. 61-74.

6. A. O. PALL-SZABO, Coefficient bounds and Fekete-Szegd problem for new classes of analytic

functions defined by Sdldgean integro-differential operator, submitted, (-).

7. A. O. PALL-SZABO, Coefficient estimates and Fekete-Szegd problem for new classes of

bi-univalent functions defined by Sdldgean integro-differential operator, submitted, (-).

8. A. O. PALL-SZABO, Coefficient estimates for some new classes of bi-Bazilevi¢ functions of

Ma-Minda type involving the Sdldgean integro-differential operator, submitted, (-).

9. A. O. PALL-SZABO, Differential subordinations and superordinations for analytic func-
tions defined by Sdldgean integro-differential operator, submitted, (-).

10. A. O. PALL-SZABO AND E. SZATMARI, Differential subordination results obtained by
using a new operator, General Mathematics, Vol. 25, No. 1-2 (2017), 119-131.

11. A. O. PALL-SZABO, Extensions of coefficient estimates for new classes of bi-univalent

functions defined by Sdldgean integro-differential operator, submitted, (-).

12. A. O. PALL-SZABO, Generalizations of starlike harmonic functions defined by Sdldgean

and Ruscheweyh derivative, submitted, (-).

13. A. O. PALL-SZABO, Modified Hadamard product properties of certain class of analytic
functions with varying arguments defined by the convolution of Ruscheweyh and Sdldgean

derivative, submitted, (-).

14. A. O. PALL-SZABO, On a class of univalent functions defined by Sdldgean integro-differential

operator, submitted, (-).

15. A. O. PALL-SZABO, AND O. ENGEL, Properties of certain class of analytic functions
with varying arguments defined by Ruscheweyh derivative, Acta Universitatis Sapientiae,
Mathematica, 7 (2015), pp. 278-286.

16. A. O. PALL-SZABO, Univalence criteria related with the generalised Scdldgean and Ruscheweyh

operator, submitted, (-).

17. A. O. PALL-SZABO, Integral properties of certain class of analytic functions with varying
arguments defined by Sdldgean derivative, Annals of Oradea University-Mathematics
Fascicola, 23 (2016), pp. 177 — 182.



1.2. DEFINITIONS AND NOTATIONS

18. A. O. PALL-SZABO, Certain class of analytic functions with varying arguments defined by
Sdaldgean and Ruscheweyh derivative, Mathematica (Cluj), 59 (82) (2017), pp. 80—88.

19. A. O. PALL-SZABO, Modified Hadamard product properties of certain class of analytic
functions with varying arguments defined by Sdldgean and Ruscheweyh derivative., Studia
Universitatis Babes-Bolyai, Mathematica, 62 (2017), pp. 465-472.

20. A. O. PALL-SZABO, Modified Hadamard product properties of certain class of analytic
functions with varying arguments defined by Sdldgean derivative, Automation, Computers,
Applied Mathematics (ACAM), Vol. 25 (2016), No. 1, pp. 85-91.

21. A. O. PALL-SZABO AND O. ENGEL, Certain class of analytic functions with varying
arguments defined by Sdldgean derivative, in Proceedings of the International Conference

on Theory and Applications of Mathematics and Informatics, Ictami, 2015, pp. 113-120.

22. 0. ENGEL AND A. PALL-SZABO, Preserving properties of the generalized Bernardi-Libera-
Livingston integral operator defined on some subclasses of starlike functions, Konuralp
Journal of Mathematics, 5 (2017), pp. 207-215.

23. A. 0. PALL-SZABO AND G. S. SALAGEAN, On the order of convolution consistence of the

harmonic functions with varying arguments, submitted, (-).

24. A. O.PALL-SZABO AND G. S. SALAGEAN, On a certain class of harmonic functions and

the generalized Bernardi-Libera-Livingston integral operator, submitted, (-).

25. A. O. PALL-SZABO, Where Are the Quadratic’s Complex Roots ?, Acta Didactica Napocen-
sia, Volume 8, Number 1, 2015, pp. 37—48.

26. A. O. PALL-SZABO, Visualizing roots of a cubic equation, The Electronic Journal of
Mathematics & Technology, Volume 11 (2017), nr. 1, Research Journal of Mathematics &
Technology, RIMT Vol. 6, Nr. 1, 2017, pp. 1-8.

1.2 Definitions and notations

Let R be the field of real numbers. Also let N={1,2,---} be the set of natural numbers, Ny = NuU {0}
while Z is the set of integers.

Let C be the complex plane, C* = C\ {0} and let C,, = C U{oo} be the extended complex plane.
Let U (zg,r)={z € C:|z—2z0| <r} be the open disk of radius r > 0, centered at zy € C.
The closure of U(zg,r) will be denoted by ﬁ(zo,r) ={zeC:|z—2z¢9|<r} and its boundary by
U (zg,r)={z€C:|z—2z¢l =r}. Let U(zg,r) = U (29,r) \ {z0}.
The disk U (0,r) is denoted by U, and the unit disk is denoted by U1 =U ={ze€C:|z|=r <1}.
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CHAPTER 1. PRELIMINARY RESULTS

Definition 1.1. [29] A complex-valued function f : G — C (G open set) of a complex variable is

differentiable at a point zg € G if it possesses the complex derivative at z¢:

Pl = lim LEZ1E0

—20 2—20

C.

Definition 1.2. A function is analytic if and only if its Taylor series expansion about z( converges

to the function in some neighborhood for every z( in its domain:

00 (k)
f)=) ar(z—z0)k, where aj, = f (ZO).
k=0 k!

Definition 1.3. A complex-valued function f : G — C (G open set) of a complex variable is called
a holomorphic function at z if it is differentiable at every point in some neighborhood of zg. Let
G < C be an open set. We denote by H (G) the set of holomorphic functions defined on G with

values in C. Holomorphic functions on the whole complex plane are called entire functions.

Let H(U) be the set of holomorphic functions in U.
ForaeCandneN, let

Hla,nl={feHU): f(z2)=a+a,z" +..}

and
Ay ={f e HU): f(2) =z +ans12" 1 +...}, with of = of}.

The Taylor series expansion of a function f € & is :

1.1) f(z):z+2akzk.
k=2

1.3 Univalent functions

Definition 1.4. [29] A single-valued function f € H(D) is said to be univalent (or schlicht) in a
domain D c C if f is injective (it never takes the same value twice). We denote by H,, (D) the class

of univalent functions in D.
Theorem 1.1. [43] If f € H, (D) then f'(z2) #0, Vz € D.

Corollary 1.1. [61],/40]
If D is a convex domain and f € H(D) such that Rf'(z) >0, for any z € D, then f € H,(D).

We denote by S = {f € o : f € H,(U)}. the class of univalent function in the unit disk U
normalized by the conditions £(0) = f'(0)—1=0.

Denote with S* the class of starlike functions in U:

!
(1.2) S*={f€.sz¢:§sz(Z)>0,zeU},S*cS.
f(2)
Denote with K the class of convex functions in U:
Zfl/(z) .
(1.3) K= fed:%f,( ) +1>0,zeU;, KcS"cS
z

6



1.4. DIFFERENTIAL AND INTEGRAL OPERATORS

Definition 1.5. Let ry be the radius of convergence of the function f. The radius of convexity of

the function f by the equality

zf"(2)
f'(2)

Definition 1.6. ([61], def. 3.5.1) Let f and g be analytic functions in U. We say that the

function f is subordinate to the function g, if there exists a function w, which is analytic in U

and w(0) = 0;|w(z)| < 1;z € U, such that f(z) = g(w(z)); Vz € U. We denote by < the subordination

relation. If g is univalent, then f < g if and only if f(0) = g(0) and f(U) < g(U).

(1.4) r?zsup{rE(O,rf)‘%(l+ )>o, VzeUr}.

1.4 Differential and integral operators

Definition 1.7. [106]
For f € o/, n € Ny, the Saliagean differential operator 2" is defined by 9" : of — o,

2°F(2) = f(2),
D) =z2f'(2),

2" f(2)=2(P"f (2)) ,2€U

o0
Remark 1.1. If f €./ and f(z) =2+ )_ ajz", then
k=2

(1.5) P f(2)=2+ Y k'apz*,zeU.
k=2

Definition 1.8. [106]
For f € o/ ,n € Ny, the Salagean integral operator I" is defined by

I°f(z) = f(2),

Ilf(z)=If(z):fozf(t)t_ldt,...

" @) =1(I"f(2),zeU

The I'! is the Alexander operator used for the first time in [7], the I” operator is called the

generalized Alexander operator.

o0
Remark 1.2. If f €./ and f(z) =2+ Y_ ajz", then
k=2

(1.6) I"f@)=z+Y “Eh
=

zeU, neNgand z(I"f(2)) =I"f(2).
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Remark 1.3. We have ™1™ f(z)=1"9"f(2)=f(2), fesf, z€U.
Definition 1.9. Let 1 =0, n € Ny. Denote by Z1" the operator given by 21" : of — of,
9I'f(2)=A-VDD"f )+ A"f(2),z€U.

Remark 14. If feof and f(z) =z + Z akzk, then
k=2

oS 1
(1.7 DI"f()=2+ Y. k”(l—/l)+itk—n apz®,zeU.
k=2

(e, 0) o0
Definition 1.10. Let f,g € HU), f(z2) =z + Z akzk, g2)=z+ Z bkzk. The convolution (or
k=2 k=2
Hadamard product) of the functions f and g is defined by

(1.8) (fxg)2)=2+ Y arbpz® = (g+ f)2).
k=2
The modified Hadamard product is
(1.9) (foglz)=2-) arbrz" =(g®f)2).
k=2

Definition 1.11. Ruscheweyh [102] defined the derivative Z" : of — of by

(1.10) RB'f(2)= (

%W*f(Z),(YE—l), fed,zelU.

In the particular case n € Ny

2" L ()™

(1.11) R"f(2) = '
n:

The symbol Z"f(z) (n € Ng) was called the n-th order Ruscheweyh derivative of f(z) by
Al-Amiri [2]. It is easy to see that
Af(2) = f(2),

R f(@2)=z2f'(2),...

n+1D)Z" f(z) =z (%”f(z)),+n9?”f(z),z eU.

(e.0)
Remark 1.5. If feof and f(z) =z + Z akzk, then
k=2

X (n+k-1! X T(k+n) k
1.12 nf(z) = MR = _r+n) 1
( ) X" f(z) Z+k§2 W=Dl apz Z+k:2F(n+1)F(k)akZ ,n>-1, zeU,
or
(1.13) $74 f(z):z+Z6(n,k)akz , where 6(n,k)= zeU,
k=2 n



1.4. DIFFERENTIAL AND INTEGRAL OPERATORS

Definition 1.12. [5] Let A = 0,n € Ny. Denote by #Z 2" the operator given by Z9" : of — o,
RDf(2)=(1-NR"f(2)+AD"f (2),2€U.

o0
Remark 1.6. If f € of and f(z) =2+ Y_ ajz", then

k=2
o ook (atk-1) " L
(1.14) RD f(z)—z+k;2{(1 A)—n!(k—l)! + Ak }akz ,zeU.

Definition 1.13. [4]
For f € o/,A =0 and n € Ny, the operator @Z is defined by @Z oA — oA,

P (2) = f(2),

D) =A-NFf @) +Azf'(2) = Daf(2),...

PP (2)=(A- V) DN (2)+ A2 (D7 (2) = Do (2 f(2)),2€U

Remark 1.7. If feof and f(z) =z + Z apz®, then
k=2

(1.15) DrfR) =2+ Y [1+(k-DA"ar2*, z€U.
k=2

Remark 1.8. For A =1 in the above definition we obtain the Sdldgean differential operator [106].

Definition 1.14. Let y,A = 0,n € Ng. Denote by #%," the operator given by Z%," : of — o,

R f(2)=(1-7)Z"f()+yD}f(2),z€U.

Remark 1.9. If feof and f(z) =z + Z apz”, then
k=2
(n+k-1)!

(1.16) RN f () =2+ ) {Y[l HE- DA+ (1) Ty

}akzk, zeU.
k=2

Definition 1.15. Let n € N. Denote by .¥%" the operator given by the Hadamard product
(convolution) of the Saldgean operator .” and the Ruscheweyh operator #", S %" : oA — A,

2
1-2z

y%”f(z)zy”( )*%”f(z),zeU.

oo
Remark 1.10. If f € o/ and f(z) =z + Y az2", then

k=2
n 3 X kM (n+k-1)! A
(1.17) SR f(z)—z+kz::2—n!(k_1)! apz®,zeU.

9



CHAPTER 1. PRELIMINARY RESULTS

Definition 1.16. The Bernardi integral operator L. : o/ — &/ is defined by
+1 [?

(118) Lof@)="2= [ punetar, e>-1
4 0

Definition 1.17. In [71] are defined the following operators:

the fractional integral operator D,* of order y, by

f(@)

(z—t)l-#

(1.19) D! f(z)= 1 f dt,zeU, feod, u>0,
T )

where the multiplicity of (z — £)*~! is removed by requiring log(z — t) to be real when z —¢ > 0, and

the fractional derivative operator D ;1 of order A, by

1 iZﬂdt 0<i<1
(1.20) DMf(z)={ [A-Ddz) -t~ neNy,fest,A=0,
;ang_nf(z), n<il<n+1

where the multiplicity of (z —#)~" is likewise understood.
Definition 1.18. In [72] is defined the fractional differintegral operator Qg o — o, by
(1.21) QM (2)=T@2- V"D f(2),2e U,~c0 < 1 <2,

where D § f(2) is the fractional integral of orderA, —oo < A <0, and a fractional derivative of order
A,0=<A<2.

The series expression of the operator QQ for the function f € of is given by

X TE2-ANI(k+2)
(1.22) Qi (2) =Z+}§1m0k+lzk+l,—00< A1<2zel.

Definition 1.19. In [110] is defined the fractional operator IDX’” tof — of for —co< A <2,v>
—1,n €Ny as a composition of fractional differintegral operator, the Salagean operator and the

Ruscheweyh operator:
(1.23) D" f(2) = R D" QL f(2).

The series expression of D" f(2) for f € o is given by

© (V + l)k
k=1 (2=

(1.24) DY f(z) =2+ (kB +1)" ap12",

—co<A<2,v>-1,neNy,z €U, where the symbol (y), denotes the usual Pochhammer symbol,
for y € C, defined by

1,k=0 I'(y+k _
()f)k={ = 94 ),)/EC\ZO.

Yy +1)..(y+k—-1),keN I'(y)

10



Chapter 2

Analytic functions with varying

arguments

Let f, g € o/ two analytic functions of the form:

(2.1) f(z)=z+ iakzk,
k=2

2.2) g2)=z+ i bkzk.
k=2

Definition 2.1. [111]A function f(z) of the form (2.1) is said to be in the class V(0;) if f € «f and
arg(ap)=0; Yk =2.If 36 € R such that 6, + (2 — 1)d = n(mod 2m),Vk = 2 then f(z) is said to be
in the class V(0;,6). The union of V(6;,0) taken over all possible sequences {6} and all possible

real numbers 6 is denoted by V.

2.1 Properties of certain class of analytic functions with
varying arguments defined by Ruscheweyh derivative

We recall the Ruscheweyh differential operator defined in (1.13).
Attiya and Aouf defined in [12] the class Q(n,A,A,B) this way:

Definition 2.2. [12][36] For 1 =0;-1<A<B<1;,0<B<1;neNylet Q(n,1,A,B) denote the
subclass of o« which contain functions f(z) of the form (2.1) such that

1+Az

— n ! n+1 I
(2.3) A-NZ"fR) + MZ""f(2) < 118"

Let VQ(n,1,A,B) denote the subclass of V consisting of functions f(z) € Q(n,1,A,B).

11



CHAPTER 2. ANALYTIC FUNCTIONS WITH VARYING ARGUMENTS

Theorem 2.1. [36]Let the function [ defined by (2.1) be in V. Then f e VQ(n,A,A,B), if and only

if
(2.4) T(f)= Zké(n,k)Ck(l +B)lap|<(B-A)n+1)
k=2
where
Cr=n+1+AMEk-1).
The extremal functions are
B-A 1 ;
fr2)=z+ ( N+ 1) ek vk >2.

kCr6(n,k)(1+B)
c+1 [? c—1 :
Let L.f(z) = —— f (@)t "dt,c > —1 be the well-known Bernardi operator.
4 0

Theorem 2.2. [87]If f e VQ(n,A,2a—-1,B) then L.f e VQ(n,A,20—1,B), where

B+1+2a(c+1) -
2(c+2)

B=pa)=

The result is sharp.

B+A(c+1)>A

Theorem 2.3. [87]If f e VQ(n,A,A,B) then L.f e VQ(n,A,A*,B), where A* = 5
C

The result is sharp.

Theorem 2.4. [87]If f e VQ(n,A,A,B) then L.f e VQ(n,A,A,B"),where

. AQ+B)(c+2)+(B—-A)(c+1)
B* = <B
1+B)(c+2)—-(B-A)(c+1)

The result is sharp.

The modified Hadamard product of two functions f and g of the form (2.1) and (2.2), and
which belong to V(0;,0) is defined by (see also [44, 104, 108])

(2.5) (foglz)=z-) apbpz’ =(g& f)2).
k=2
Theorem 2.5. [73]If f e VQ(n,A,A1,B),g € VQ(n,A,As,B) then f® g€ VQ(n,A,A*,B), where

_(B-ANB-Ag)n+1)

A* =
2C2(1+B)6(n,2)

The result is sharp.

Corollary 2.1. [73]If f,g € VQ(n,A,A,B) then f ® g € VQ(n,1,A*,B), where

_ (B —A2(n+1)
2C5(1+B)é(n,2)

A*=B
The result is sharp.

12



2.2. PROPERTIES OF CERTAIN CLASS OF ANALYTIC FUNCTIONS WITH VARYING
ARGUMENTS DEFINED BY SALAGEAN DERIVATIVE

Theorem 2.6. [73]If f e VQ(n,1,A,B1),g € VQ(n,A,A,B2) then
f®geVQn,AA,B*), where

~ (A+1D(n+1)(B1-A)By-A)
"~ 2096(n,2)(1+B1)(1+Bg)—(n+1)(B1—A)(By—A)’

*

The result is sharp.

Corollary 2.2. [73]If f,g € VQ(n,A,A,B) then f® g€ VQ(n,1,A,B*), where

A+1D(n+1)(B-A)?

B*=A+ .
2C96(n,2)(1+B)2 - (n+1)(B-A)>?

The result is sharp.

Theorem 2.7. [73] If f; e VQ(n,A,A;,B),j =1,s,s €{2,3,4,...} then

(n+ 1 [1(B-A))
1
®f2®...0fs € VQ(n,A,AS V* B), where AG™V*=B— / . The result
f19f28.. ol VR 251051 (1+ By 1 [6(n,2)1" !

is sharp.

Theorem 2.8. [73]If f; € VQ(n,1,A,B;),j=1,s,5€{2,3,4,...} then
f1®f2®...8 fs € VQ(n,A,A,BSV*) where
A+ D +1 L [[(B;-A)

1
Be D — A4 /

23—103—1 [5(n,2)]5‘1 H B;—A)—(n+ 1)s-1 H (B; —A)'

S S
J=1 J=1

The result is sharp.

2.2 Properties of certain class of analytic functions with
varying arguments defined by Salagean derivative

Definition 2.3. For 1 =0;-1<A<B<1;,0<B<1;neNylet S(n,A,A,B) denote the subclass of

& which contain functions f of the form (2.1) such that

1+Az
1+Bz’

(2.6) 1-A@"f(2)) + MD" f(2)) <

Attiya and Aouf defined in [12] the class %(n,A,A,B) with a condition like (2.4), but there
instead of the operator 2 they used the Ruscheweyh operator &, where

R f(2)=2z+ i (n+k_1)akzk.
k=2 n

Let VS(n,A,A,B) denote the subclass of V consisting of functions f(z) € S(n,1,A,B).

13



CHAPTER 2. ANALYTIC FUNCTIONS WITH VARYING ARGUMENTS

1-
Particular case 2.1. Let n =0,1=0,A=-1,B=1If f € VS(0,0,-1,1) then f'(z) < f
z
IfRe f'(z) >0 then f is univalent (Noshiro-Warschawski-Wolff theorem).
1-z

Particular case 2.2. Let n=0,A=1,A=-1,B=1If f € VS(0,1,-1,1) then (zf'(2)) < 7
z

z2f'(2)
f(z)

Aouf et al. previously studied this theorem in [10] :

IfRe (2f'(2)) >0 then Re (f'(z2)+zf"(2)) >0 © Re > 0= f is starlike.

Theorem 2.9. Let the function f defined by (2.1) be in V. Then f € VS(n,A,A,B), if and only if
o0
2.7) T(f)=Y k"*'Cr(1+B)lay|<B-A
k=2
where
Cr=1-1+Ak.
The extremal functions are:

B-A

278 bk yp o
EiC,(1+B)° 20T

f(z)=z+

Theorem 2.10. [91]If f e VS(n,A,2a—1,B) then L.f € VS(n,A,26—1,B), where

B+1+2a(c+1) -
2(c+2)

p=pa)=

The result is sharp.

B+A(c+1)>A

Theorem 2.11. [91]If f € VS(n,A,A,B)then L.f € VS(n,A,A*,B), where A* = —
c

The result is sharp.
Theorem 2.12. [91]If f e VS(n,A,A,B) then L.f €e VS(n,A,A,B*),where

. AQ+B)(c+2)+B-A)(c+1)
B" = <B
(1+B)(c+2)-(B-A)(c+1)

The result is sharp.

Theorem 2.13. [94]If f e VS(n,A,A1,B),g€ VS(n,A,Aq9,B) then f®geVS(n,A,A* B), where

_(B-ADB-Ay)
2n+1Cy(1+B)

A* =
The result is sharp.

Corollary 2.3. [94]If f,g € VS(n,A,A,B) then f®geVS(n,A,A* B), where

(B-A)?

A*=B-—— "
27+1Cy(1+B)

The result is sharp.

14



2.3. PROPERTIES OF CERTAIN CLASS OF ANALYTIC FUNCTIONS WITH VARYING
ARGUMENTS DEFINED BY SALAGEAN AND RUSCHEWEYH DERIVATIVE

Theorem 2.14. [94]If f e VS(n,A,A,B1),g€VS(n,A,A,Bs) then f®geVS(n,A1,A,B*), where

(B1-A)Ba-A)A+1)

B =A )
T 2C(1+B1)(1+By)—(B1-A)(Bs—A)

The result is sharp.

Corollary 2.4. [94]If f,g € VS(n,A,A,B) then f®geVS(n,A,A,B*), where

(B-AZ2A+1)
2C5(1+BY2—(B-A)?

B =A+
The result is sharp.

Theorem 2.15. [94] If f; € VS(n,A,A;,B),j=1,s,5€12,3,4,...} then
S
[1(B-4)
fixfos...xfs € VS(n,A,ASD* B) where A V* =B — = . The result is
(2n+1)*tes 1+ By !

sharp.

Theorem 2.16. [94]If f; € VS(n,A,A,B;),j=1,s,s €{2,3,4,...} then
fi®fo®...®fs € VS(n,A,A,BSV*) where

(A+1) [1(B,;-A)
j=1

B D - A4 - - .
25-1C571 T1(1+B;) - [1 (Bj—A)
j=1 j=1

The result is sharp.

2.3 Properties of certain class of analytic functions with
varying arguments defined by Salagean and Ruscheweyh
derivative

Definition 2.4. For 1>0;-1<A<B<1;0<B<1;neNlet L(n,1,A,B) denote the subclass of
& which contain functions f(z) of the form (2.1) such that

1+Az

(2.8) A=NZD\" @) + MBZ D f(2)) < .
1+Bz

Let VL(n,A,A,B) denote the subclass of V consisting of functions f(z) € L(n,A,A,B).

Theorem 2.17. [92] Let the function f(z) defined by (2.1) be in V. Then f(z) € VL(n,A,A,B), if
and only if

(2.9 T()= io“ka(1+B)|ak|sB—A
k=2

15



CHAPTER 2. ANALYTIC FUNCTIONS WITH VARYING ARGUMENTS

where
(n+k-1)

The extremal functions are:

R et VE = 2.
f@=z+ e qa+B)° 2 k=

Corollary 2.5. [92]Let the function f(z) defined by (2.1) be in the class VL(n,A,A,B). Then

The result (2.9) is sharp for the functions

B-A |
crp—— 2 bk yp s g
f@=zt 1 B 2

Theorem 2.18. [92]Let the function f(z) defined by (2.1) be in the class VL(n,A,A,B). Then

A 2|2
2C9(1+B)

B-
2
(2.10) 2] 2] Slf(z)|5|2|+—2c2(l+B) z

Corollary 2.6. [92]Let the function f(z) defined by (2.1) be in the class VL(n,A1,A,B). Then
B-

=14 — .
f(2)eU(0,r1), where ry " 2C,(1+B)

Theorem 2.19. [92]Let the function f(z) defined by (2.1) be in the class VL(n,A,A,B). Then

B-A , B-A
-z < <1l+——|z].
Ca(+B) lzl<|f'(2)) =1+ 2|

(2.11) C2(1+B)

The result is sharp.

Corollary 2.7. [92]Let the function f(z) defined by (2.1) be in the class VL(n,1,A,B). Then
B-A

'@ eU0,ry), where ry =1+ -~ 5.

Theorem 2.20. [92]Let the function f(z) defined by (2.1) be in the class VL(n,1,A,B), with
arg(ay) =0y, where 0, =n,Vk =2 . Define

fi(z)=z
and

-A

k
278 kvR=2zeU.
EC,(1+B). ~ THEE

fr(2)=2z

Then f(z)€ VL(n,A,A,B) if and only if f(z) can expressed by f(z) = Z Urf1(2), where yp =0 and
k=1

D =1

k=1

16



2.3. PROPERTIES OF CERTAIN CLASS OF ANALYTIC FUNCTIONS WITH VARYING
ARGUMENTS DEFINED BY SALAGEAN AND RUSCHEWEYH DERIVATIVE

If we combine the previous theorem with Silverman’s theorem 5 from [111] we get the

following corollary:

Corollary 2.8. The closed convex hull of VL(n, 1,A,B) is

¢l co VL(n,A,A,B) = {f Ifest, ) k"Ci(1+B)lagl SB—A}.
k=2

The extreme points of cl co VL(n,A,A,B) are

-A

E(cl co VL(n,A,A,B)) = {“ E"Ci(1+B)

&2, |f|=1,k22}.

Theorem 2.21. [92]If f € VL(n,A,A,B), then L.f € VL(n,A,A*,B), where

_B+A(c+1)
B c+2

A* >A.

The result is sharp.

Corollary 2.9. [92] If f € VL(n,A,2a —1,B) then L.f € VL(n,A,2p - 1,B), where

B+1+2a(c+1)>
2(c+2)

p=pla)=
The result is sharp.

Theorem 2.22. [92]If f € VL(n,A,A,B), then L.f € VL(n,A,A,B*),where

, A1+B)(c+2)+(B-A)(c+]1)
 (1+B)(c+2)-(B-A)(c+1)

The result is sharp.

Theorem 2.23. /93] If f € VL(n,A1,A1,B),g € VL(n,A,As,B) then f ® g € VL(n,A,A*,B), where
_(B-A1B-Ay)

A*=B
2C9(1+B)
The result is sharp.
- = \ (B-A)?
Corollary 2.10. [93]If f,ge VL(n,A,A,B) then fege VL(n,A,A*,B), where A™ = B—m.
2

The result is sharp.

Theorem 2.24. (93] If f € VL(n,A,A,B1),g € VL(n,A,A,Bs) then f ® g € VL(n,A,A,B*), where

(B1-A)B2-A)(A+1)

B*=A .
T 2C(1+B1)(1+B2)—(B1—A)(Bz - A)

The result is sharp.

Corollary 2.11. /93] If f,g € VL(n,A,A,B) then f ®geE VL(n,A,A,B*), where

(B-AZ2A+1)
2C5(1+BY2—(B-A)?

B*=A+
The result is sharp.
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Theorem 2.25. /93] If f; € VL(n,I,Aj,B), j=1m, me{2,3,4,..} then f1®f2®...9fn, €

MB-A)
j=1

gm-1cn-l(1+ Byt

VL(n,A,A™D* B) where A" V* =B — The result is sharp.
Theorem 2.26. [93]If f; € VL(n,1,A,B;),j =T,m,m €12,3,4,...} then
f1®f2®...® fm € VL(n,A,A,B™ V%) where

(A+1) f[l(Bj—A)

B D = A4 d

2’”_1051_1 ﬁl(l +Bj) - ﬁ (Bj—A).

J J=1

The result is sharp.

2.4 Properties of certain class of analytic functions with
varying arguments defined by the convolution of Salagean
and Ruscheweyh derivative

Definition 2.5. For 1 =0;-1<A<B<1;0<B<1;neNylet P(n,A,A,B) denote the subclass of
o which contain functions f(z) of the form (2.1) such that

(2.12) (1—)L)(&”%”f(z))’+/1(5”%’”+1f(z))’ < w
1+Bz

Let VP(n,A,A,B) denote the subclass of V consisting of functions f(z) € P(n,A1,A,B).

Theorem 2.27. [77] Let the function f(z) defined by (2.1) be in V. Then f(z) e VP(n,A,A,B), if
and only if

(2.13) T(f)=Y F"*'CrL(1+B)lay|<B-A,
k=2
where (nth—1)!
n+r—1)!
Ck—[n+1+ﬂ(k—1)(n+k+1)]m

The extremal functions are:
-A
+ —_—
E"+1C,L(1+B)
Corollary 2.12. [77]Let the function f(z) defined by (2.1) be in the class VP(n,A,A,B). Then
B-A
—_ \vA
E"t1CL (1+B)
The result (2.13) is sharp for the functions

fl2)==z ek vk >2.

lag| <

-A

b2 itk yp 9
10, (1+B)°

f(2)==z2

18



2.4. PROPERTIES OF CERTAIN CLASS OF ANALYTIC FUNCTIONS WITH VARYING
ARGUMENTS DEFINED BY THE CONVOLUTION OF SALAGEAN AND RUSCHEWEYH
DERIVATIVE

Theorem 2.28. [77] Let the function f(z) defined by (2.1) be in the class VP(n,A,A,B). Then

B-

2n*+1C9(1+B)

2.14 __B-4
(2.14) 2l 9" 1C,(1+B) -

1212 <1f(2)] < |z| +

The result is sharp.

Corollary 2.13. [77]Let the function f(z) defined by (2.1) be in the class VP(n,A,A,B). Then
B-A

f(2)€U(0,r1), where ri =1+ 2710, (1+B)’

Theorem 2.29. [77] Let the function f(z) defined by (2.1) be in the class VP(n,A,A,B). Then

B-A B-A

!
-—z| = <l+———|z|.
OTE A !

(2.15) 37Cy(11B)

The result is sharp.

Corollary 2.14. [77]Let the function f(z) defined by (2.1) be in the class VP(n,A,A,B). Then
B-A

'@ eU0,ry), where ry =1+ oommm .

Theorem 2.30. [77] Let the function f(z) defined by (2.1) be in the class VP(n,A,A,B), with
arg(ay) = 0y where 0y =n,Vk =2 . Define

fi(2) =z

and
__ B-A4
E"*t1CL(1+B)
Then f(z) e VP(n,A,A,B) if and only if f(z) can expressed by

f(2)= Z Urfr(2), where up =0 and Z ur =1
k=1 k=1

Corollary 2.15. [77] Let VP (n,A,A,B)=VP(n,1,A,B)nV(x,0). The extreme points of
VP,(n,A,A,B)are

fr(z)=z2 2k (k=2;2€U).

B-A

k
S — T W)
Fic,a+B)  kEREED)

f1(z)=z and fr(2)==z

If we combine theorem 2.30 with Silverman’s theorem 5 from [111] we get the following

corollary:

Corollary 2.16. [77] The closed convex hull of VP(n,A,A,B) is
o0
cl coVP(n,\,A,B)=:fIfest, Y k" 1C,(1+B)lay|<B-A¢.
k=2
The extreme points of ¢l co VP(n,A,A,B) are

-A

E(cl co VP(n,1,A,B)) = {Z T B IC,L(1+B)

&k El=1, k 22}.
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Theorem 2.31. [77]If f e VP(n,1,2a -1,B) then L.f e VP(n,1,26—-1,B), where

B+1+2a(c+1) -
2(c+2)

p=pla)=
The result is sharp.

Theorem 2.32. [77]If f e VP(n,A,A,B) then L.f € VP(n,A,A*,B), where

_B+A(c+1) S
B c+2

A* A.

The result is sharp.

Theorem 2.33. [77]If f e VP(n,A,A,B)then L.f e VP(n,A,A,B*),where

_A(1+B)(c+2)+(B-A)(c+1) -3
 (14B)(c+2)-(B-A)(c+1)

*

The result is sharp.

Theorem 2.34. [85]If f e VP(n,A,A1,B),g€e VP(n,A,Az,B) then f ® g€ VP(n,A,A*,B), where

_(B-A1B-Ay)

A*=B .
2"*+1C9(1+B)

The result is sharp.

Corollary 2.17. [85]If f,g € VP(n,A,A,B) then f ® g€ VP(n,A,A*,B), where

(B-A)?
A*¥=B— ————.

2n+1Cy (1 +B)
The result is sharp.

Theorem 2.35. [85]If f e VP(n,A,A,B1),g€e VP(n,A,A,By) then f® g€ VP(n,A,A,B*), where

(B1-A)Bz-A)(A+1)

B*=A .
T 9 IC,(1+ B1)(1+ B2)— (B1—A)(Bs - A)

The result is sharp.

Corollary 2.18. /85]If f,g € VP(n,A,A,B) then f ® g€ VP(n,A,A,B*), where

(B-AZ2(A+1)
2n+1C0y(1+B)2 - (B-A)%

B*=A+
The result is sharp.

Theorem 2.36. [85]If f; € VP(n,A,A;,B),j=1,s,5s€{2,3,4,...} then
fiefe®...®f; € VP(n,A,AS"D* B) where

S

[TB-A)
j=1

(s-D* _n _
A =B 2(n+1)(s—1)c§—1(1 +B)s—1 :

The result is sharp.
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ARGUMENTS DEFINED BY THE CONVOLUTION OF SALAGEAN AND RUSCHEWEYH
DERIVATIVE

Theorem 2.37. [85]If ;€ VP(n,A,A,B;),j=1,5,5€{2,3,4,...} then
f1®f2®...® fs € VP(n,A,A,BS V%) where

(A+1) [1(B;-A)
j=1

BED* A4 s S '
2(3—1)(n+1)(1§—1 [1(A+B;)- [1(B;-A)
j=1 j=1

The result is sharp.
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Chapter 3

Analytic functions

3.1 Coefficient bounds and Fekete-Szego problem for new
classes of analytic functions defined by Salagean

integro-differential operator

In the following definitions, new classes of analytic functions containing the new operator (1.7)

are introduced:

Definition 3.1. Let f € «/. Then f(2) is in the class S™ (u) if and only if

3.1) (Z(@I f(2)

0< 1 U.
IIf @) )>”’ pehee

Definition 3.2. Let f € o/. Then f(2) is in the class C" (u) if and only if

(3.2)

[2(21"f ()]
(2I"f (2))

)>p, O<su<lzeU.

Definition 3.3. [23] Let ¢(z)=1+B1z +Byz2+--- be an univalent starlike function with respect
to 1 which maps the unit disk U onto a region in the right half plane which is symmetric with
respect to the real axis, ¢(0) = 1 and ¢(0) > 0. The class S*(¢) consists of all functions f € of

satisfying the following subordination:

2(91'f (2))
(3.3) TR P(2),

and C(¢) be the class of functions f € & for which

[2(21"f ()]
—<

(3.4)
(21" (2))

p(2).
1+(1-2wz

Remark 3.1. If ¢,(2) = 1

then ™ (1) = S*(py) and €™ (1) = Clpy).
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Theorem 3.1. [78] Let the function f(z) defined by (2.1) be in . If
x 1

(3.5) Y (k-p) k”(l—/l)+/lk—n lagl <1-p,
k=2

then f(z)e #" (u) The result (3.5) is sharp.

Corollary 3.1. If (3.5) holds true, then
1-p

1
kn(l—ﬂ,)-f'/lk—n

(3.6) lag| < ,VE =2,

(ke —u)

Theorem 3.2. [78] Let the function f(z) defined by (2.1) be in . If

1
FT A=)+ A | lar < 1-p,

(3.7 Y (k-
k=2

then f(z)e €™ (,u) The result (3.7) is sharp.

Corollary 3.2. If (3.7) holds true, then

(3.8) lapl = ,VE =2.

1-p
N 1
(F—p) |k +1(1—)L)+AW

Theorem 3.3. [78] If (3.5) holds true, then

1- 1-
l2l- ——H 22 < | 21" f (2)| < 2] +—ER2, vzev,0=p<1.
2—-p 2—u
Theorem 3.4. [78] If (3.7) holds true, then

1-p
2(2-u)

Theorem 3.5. [78] If (3.5) holds true, then

1_
E a2,

1212 < |21"f (2)| < |2| +
z | fz| z 221

|z - VzeU,0<pu<1.

1- 1-—
21 - b lP<If@<lel+ Ll
—_ n — —_
(2-p) (2 (1= D+ A5k (2-p) 2" Q=D+ Az
VzeU,0<su<1.
Theorem 3.6. [78] If (3.7) holds true, then
1- 1—
121 - a — 2P <If @I <ll+ a 212,
— n — —_
2(2 M)[2 1-D+A5m 2(2-p) 2"A-D+ Ay,

VzeU,0=sp<l.
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3.1. COEFFICIENT BOUNDS AND FEKETE-SZEGO PROBLEM FOR NEW CLASSES OF
ANALYTIC FUNCTIONS DEFINED BY SALAGEAN INTEGRO-DIFFERENTIAL OPERATOR

Many authors obtained Fekete-Szeg6 inequalities for different classes of functions
(see [100],[231,[321,[109],[11]).
Next we determine the upper bound for |ag| for the classes #" (u) and €™ (u), that is sharp.

Also, we calculate the Fekete-Szeg6 |ag — {ag| functional for the above classes.

Lemma 3.1. [29] Let p € &P (the class 22 is a Carathéodory class of functions which are analytic

with positive real part in U) be of the form p(z) =1+ c1z +caz% +... then
2 2
c c
02—51 52—% and |cp|<2, VEeN.

Lemma 3.2. [56] If p(z) =1+ c1z +c9z® +...,2 € U is a function with positive real part in U and
¢ is a complex number, then

|cg —&c3| < 2max{1;12¢ - 11}.
The result is sharp for the function given by

2

p(2) = 1+z

1+z
1.2 and p(z) = e zeU.

Theorem 3.7. [78] Let 0 < u <1 and ¢ = ¢,. If f(2) given by (2.1) belongs to the class ™ (u),

then
By
lag| < 1
2"1-AN)+A1—
zn
and V¢EeC
|as—¢aj| <
3"(1-2 )Ll
B By B A-D+A
< max< 1, 3. 1 2- 1 -1
1 n n
4 3”(1—/1)+/13—n 2 (1—/1)+7L2—n 2 (1—/1)+7L2—n

The result is sharp.

Theorem 3.8. [78] Let 0 < u<1and ¢ = ¢,. If f(2) given by (2.1) belongs to the class €" (,u), then
B

lag| < 1
n+2
2 (1-—A)+31§;j§

and VéeC
|a3 —{a§| <

1
B B B 3 A-N+ A
< 1 max< 1, £T2_ ! 3
+1 1
413" (1—'A)+31§;ji

2.
2"+1(1—/1)+;LL 2”+1(1—A)+Ai
2n—1 2n—1

¢-1

The result is sharp.
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Chapter 4

Differential subordinations and

superordinations

Let v : C3 x U — C be a function and let % be univalent in U. If p is analytic in U and satisfies the

(second-order) differential subordination
(i) v (p(2),2p'(2),2%p" (2);2) < h(2), (z€U)

then p is called a solution of the differential subordination. The univalent function q is called a
dominant of the solution of the differential subordination, or more simply a dominant, if p < q for
all p satisfying (7).

A dominant q, which satisfies ¢ < g for all dominants q of () is said to be the best dominant of (7).
The best dominant is unique up to a rotation of U. In order to prove the original results we use
the following lemmas.

We denote by 2 the set of functions f that are analytic and injective on U \ E(f), where
E(f)= {(E@U:lin}f(z) :oo}
z—>

and f'({) #0 for { € OU \ E(f).
Let  : C? x U — C be a function and let & be univalent in U and ¢ € 2. In article [57] it is

studied the problem of determining conditions on admissible function ¥ such that
(4.1) ¥ (p(2),2p'(2),2°p" (2);2) < h(2), (z € U)

(second-order) differential -subordination, implies p(z) < ¢(2), Vp € #[a,n]. The univalent func-
tion q is called a dominant of the solution of the differential subordination, or more simply a
dominant, if p < g for all p satisfying (4.1).

A dominant ¢, which is the "smallest” function with this property and satisfies g < g for all
dominants g of (4.1) is said to be the best dominant of (4.1). The best dominant is unique up to a

rotation of U.
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CHAPTER 4. DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATIONS

Let ¢ : C3xU — C be a function and let 4 € # and q € #[a,n]. If p and o(p (z),zp’(z),z2p”(z);z)

are univalent in U and satisfy the (second-order) differential superordination
(4.2) h(2)<¢(p(2),2p'(2),2%p" (2);2), (2 €U)

then p is called a solution of the differential superordination. In [59] the authors studied the dual
problem of determining properties of functions p that satisfy the differential superordination (4.2).
The analytic function ¢ is called a subordinant of the solutions of the differential superordination,
or more simply a subordinant, if ¢ < p for all p satisfying (4.2). An univalent subordinant g that
satisfies g < g for all subordinants g of (4.2) is said to be the best subordinant of (4.2) and is the

“largest” function with this property. The best subordinant is unique up to a rotation of U.

Lemma 4.1. [41] (Hallenbeck and Ruscheweyh) Let h be a convex function with h(0) = a, and let
Y € C* be a complex number with Ry = 0. If p € #[a,n] and

p(2)+ %/zp'(z) <h(z), zeU

then
p(2)<q(2)<h(z),zeU
where
q(z) = Y fz r@)E™ e, zeU
nzy/n 0 ’ .

Lemma 4.2. [58] (Miller and Mocanu) Let q be a convex function in U and let
h(z)=q(z)+nazq'(z), zeU
where a > 0 and n is a positive integer. If
P(2)=q0)+ ppz" + pps12" 4+, zeU

is holomorphic in U and
p@)+azp'(z)<h(z), zeU
then
p(2)<q(2)

and this result is sharp.

Lemma 4.3. [24]Let q be an univalent function in U and y € C* such that

%{1 + zq"(z)} > max{O,—?Rl}.
q'(2) Y

If p is an analytic function in U, with p(0) = q(0) and
(4.3) p(2)+yzp'(2) < q(2) +yzq'(2),
then p(z) < q(z) and q is the best dominant of (4.3).
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4.1. ON A CLASS OF UNIVALENT FUNCTIONS DEFINED BY SALAGEAN
INTEGRO-DIFFERENTIAL OPERATOR

Lemma 4.4. [24]Let q be convex function in U, with q(a) =0 and y € C such that R y > 0. If
p € AHa,11Nn2 and p(z)+yzp'(z) is univalent in U, then

q(z)+ yzq'(z) <p(2)+ yzp'(z) = q(2) < p(2)
and q is the best subordinant.

S. S. Miller and P. T. Mocanu obtained special results related to differential subordinations in
[58] .

Lemma 4.5. [4] If p(z) is analytic in U,p(0) = 1 and R(p(2)) > %,z € U, then for any function F
analytic in U, the function p = F takes its values in the convex hull of F(U).

4.1 On a class of univalent functions defined by Salagean

integro-differential operator
We recall the Z1™ Salagean integro-differential operator defined in (1.7).
Theorem 4.1. [86] Let q be a convex function, q(0) =1 and let h be the function
h(z)=q(z)+2q9'(2),z€U.
If feol, A =0, n €N and satisfies the differential subordination
(4.4) [21"f ()] <h(2), zeU

then

M<q(2), ZEU
z

and this result is sharp.

Remark 4.1. If A = 0 we get Theorem 4 from Oros [70] and for A = 1 we get Theorem 4 from
Bdldeti [15].

Theorem 4.2. [86] Let q be a convex function, q(0) =1 and let h be the function
h(z)=q(2)+2q9'(2),z€U.

If f e, =0, n €N and satisfies the differential subordination

2P (2))
(45) (@In—f(z)) <h(Z), zeU
then pInis
n+ (2)
g]n—f(z) < q(Z), zeU

and this result is sharp.
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CHAPTER 4. DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATIONS

Theorem 4.3. [86] Let q be a convex function, q(0) =1 and let h be the function
h(z)=q(2)+2q'(2),z€U.

If feol, A =0, n €N and satisfies the differential subordination

(4.6) (21" @) + 2|1 @) - (" @) | < k), z€U

then
[21"f ()] <q(2), zeU

and this result is sharp.

Remark 4.2. If A = 0 we get Theorem 2 from Oros [70] and for A = 1 we get Theorem 2 from
Baldgeti [15].
Theorem 4.4. [86]Let h € #(U) such that h(0) =1 and

zh''(2) 1

R 1+W >—§, zeU.
If f € of satisfies the differential subordination
.7 (21" F @) +A| (1" f @) - (1" ) | < ht2), 2€U

then
[21"f ()] <q(2), zeU

1 z

where q is given by q(z) = — f h(t)dt. The function q is convex and is the best dominant.
Z2Jo

Remark 4.3. If A = 0 we get Theorem 3 from Oros [70].

Theorem 4.5. [86]Let h € /£ (U) such that h(0) =1 and

zh"(2) 1
R|1+ ) >—§, zeU.
If f € of satisfies the differential subordination
(4.8) [21"f ()] <h(z), zeU
then o
ﬂ <q(z), zeU
z

1 z
where q is given by q(z) = — f h(t)dt. The function q is convex and is the best dominant.
2 Jo

Remark 4.4. If A = 0 we get Theorem 5 from Oros [70] and for A = 1 we get Theorem 5 from
Badldeti [15].
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4.2. DIFFERENTIAL SUBORDINATION RESULTS OBTAINED BY USING A NEW OPERATOR

Definition 4.1. [69], [125], [15], [70]If 0< <1 and n €N, we let L7} (ﬁ) stand for the class of
functions f € of,,, which satisfy the inequality

R[21"f ()] > B, (zeU).
Remark 4.5. For n = 0 we obtain Rf'(z) > B.
Theorem 4.6. [86/The set L™ () is convex.

Theorem 4.7. [86]If 0 < <1 and m,n €N then we have

Ly (p) =Ly, 9),

z 4x—1

1 1
where §(B,m)=2p-1+2(1-p) -0 (E) and o (x) =f dt. The result is sharp.

o 1+¢

Remark 4.6. If A = 0 we get Theorem 1 from Oros [70] and for A = 1 we get Theorem 1 from
Baldeti [15].

Theorem 4.8. [86]Let q be a convex function in U with q(0) =1 and let

h(z)=q(z)+ 2q'(2),z €U,

c+2

where c is a complex number, with Re > —2.

If feL™(B) and F = I.(f), where

(4.9) F@ =1 = 25 [“ e, Re>-2,
4 0

then

(4.10) (21" f (2)]' <h(2), z€U,

implies

[21"F (2)]' <q(2), z€U,

and this result is sharp.

Remark 4.7. If A = 0 we get Theorem 2.2 from Tdut et al. [125].

4.2 Differential subordination results obtained by using a new

operator
Next we use the Definitions 1.17, 1.18, 1.19 from Chapter 1.
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CHAPTER 4. DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATIONS

Definition 4.2. Let —co <1 <2,v>—1,n€Npy,a, S =0. Denote by .@ign the operator given by
Av,n
2 o p col — o,

Doy F(2) = (1-a—- PR D" f(2)+ aR QL f(2) + p2" QL (2),

forzeU.

Remark 4.8. ZY2"f(z) is the composition of the Sdldgean operator and the Ruscheweyh deriva-
tive, QZVQQ“ f(2) is the composition of fractional differintegral operator and the Ruscheweyh deriva-
tive, and @”Q;l f(2) is the composition of fractional differintegral operator and the Sdldgean

operator.

Remark 4.9. If fe ot ,f(z)=z+ OZO ap+12%tL, then
k=1
4.11)
D" @)=+ Z ((1— )

(V+ l)k v+ l)k k (l)k

n+1
T IR AR TN

(k + 1)n+1)ak+12k+1,

for zeU.

Remark 4.10. @i’g’” f(2)=(1-a-PDy"f(2)+aD}f(2) + DS  f(2), for z € U, where D)™ is
defined in (1.23).

Remark 4.11. For a =0 and =0, we obtain 9&’;’”}”(2) =RVD" f(z), where z€ U.

For a =1 and B =0, we obtain .@f”g’nf(z) = %"Qé‘f(z), where ze U.

For a =0 and B =1, we obtain @g’lv’nf(z) =2"QMf(2), where z€ U,

For =0 and v = 0, we obtain 9*8 "f(2) = (1- @)D" f(2) + aQl f(2), where z € U.

For a =0 and n =0, we obtain 7, ﬁvof(z) 1- ,B)%"f(z)+,69;tf(z) where ze U.

For a+pB=1and A =0, we obtain .@f Vﬁnﬁf(z) =(A-PR"f(2)+ PD"f(z), where z€ U.

For a+p=1,1=0 and v = n, we obtain @1 ';;Lﬁf(z) =A-PR"f(2)+ 2" f(2),z € U. This
operator was introduced and studied in [6].

For a = f=n=0, we obtain @&g’of(z) =R"f(z), and for B=A=n =0, we obtain ngg’of(z) =
R f(2), where ze U.

For a=pf=v=0, we obtain .@&’é)’nf(z) =9"f(2), and for « = 1 =v =0, we obtain .@gﬁmf(z) =
D" f(2), where ze U.

For a =0and A =v =1, we obtain .@1; "F(z)= 2" f(2), where z € U.

For a=1and =v =0, we obtain Qﬁo Mf(z2) = Qﬁf(z) and for a =n =0 and B =1, we obtain

D f(2) = QM (2), where z € U.

For A =v =0, we obtain 900 MF2)=1-)2" f(2)+af(z), where z€ U.

For A=n=0, we obtain @Ozof(z) =(1-B)R"f(2)+ Bf(2), where z€ U.

For v=n =0, we obtain @’1 0Of(z) =(1-a-P)f(2)+(a+P)QLf(2), where ze U.

For A=0and v=1, we obtam @2)1 ") =1 -a-PB2 " f(2)+aD'f(2) + BD"f(2), where
zeU.
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4.2. DIFFERENTIAL SUBORDINATION RESULTS OBTAINED BY USING A NEW OPERATOR

For A =1 and v =0, we obtain @;zg’nf(z) =(1-a-P2"f(2)+aD f(2) + B2 f(2), where
zeU.

For A=v =1, we obtain 7, 5" (2) = 1~ )2"*}f(2) + a@*f (2), where z € U.

For A =v=n=0, we obtain _@2:2’0}”(2) =f(2), for a = B=v=n=0, we obtain @(ié)’of(z) =f(2),
for a =1 and A =v =0, we obtain @f,’g’nf(z) =f(2), and for =1 and A =n =0, we obtain
Io7°f @) =f(2), for ze U.

Definition 4.3. Let f € «f. We say that the function f is in the class %1 s "(5) where 0 <6 <
1L,a,=0,—-co<A<2,v>—1,n¢€N)y,if f satisfies the condition

(4.12) R(Z (@) >6,2¢€U.

Theorem 4.9. [82] Let f € R wf "(8) and g € K, where K denote the class of convex functions.
Then f* g€ %’gg"(a).

Theorem 4.10. /82] The set %2};”(6 ) is convex.
Theorem 4.11. [82] Let g be a convex function, g(0) =1 and let h be a function such that
h(z)=gz)+28'(2),z€U.

If f € of verifies the differential subordination

(4.13) (@i’g’” f2)) <h(z),z€U

then
D" (@)
— < g(2),zeU.

The result is sharp.

Theorem 4.12. [82] Let g be a convex function, g(0) =1 and let h be a function such that

h(z)=g(2)+2g8'(2),z€U.

If f € of verifies the differential subordination

R (ON
(4.14) (T) <h(z),zeU,
Do 1R
then
Qi’gﬂ’nf (2)
T < g(Z),Z elU.
@a:ﬁ, f(z)

The result is sharp.
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CHAPTER 4. DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATIONS

Theorem 4.13. [82] Let g be a convex function, g(0) =1 and let h be a function such that
h(z)=g(z)+28'(2),z€U.

If f € of verifies the differential subordination

L (ON
(4.15) (T) <h(z),zeU,
Do 1)
then A .
@a,g,n+ f(Z)
T <g(2),zeU.
@w:ﬁ’ f(@)

The result is sharp.

Theorem 4.14. [82] Let g be a convex function, g(0) =0 and let h be a function such that
h(z)=g(2)+28'(2),z€U.

If f € of verifies the differential subordination

(4.16) Dy @+ Ty F@+ a( @25 " @) - P15 " (@) <h(2),z €U,

then
D" f(2)<g@),z€U.

The result is sharp.

1+(26-1
Theorem 4.15. [82] Let h(z) = % be a convex function in U, where 0<d< 1. If f € o/
z

satisfies the differential subordination

(4.17) Dy @+ Ty F@+ (@5 " @) - D16 (@) <h(@),z €U,

then
Ty @) <g@),zel,

In(1
where g is given by g(z) =26 —1+2(1-9) n(+z)

, 2€U. The function g is convex and is the best

dominant.

Theorem 4.16. [82] Let g be a convex function, g(0) =1 and let h be a function such that
h(z)=g(z)+28'(2),z€U.

If f € of verifies the differential subordination

(4.18) %@Q;gm f@)+ 204(@29{[”0%” F@) - 213" @) <2,z €U,

then
(.@i’;’nf(z))' <g(2),zeU.

The result is sharp.
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4.3. DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATIONS FOR ANALYTIC
FUNCTIONS DEFINED BY SALAGEAN INTEGRO-DIFFERENTIAL OPERATOR

1+(26-1)z

Theorem 4.17. [82] Let h(z) = TV be a convex function in U, where 0<0< 1. If f e o/
z
satisfies the differential subordination
1 1
(4.19) ;_@j;g’“z f2)+ ;a(@2@£’g’" f@- 213" f2) <h(2),
then

(Qizg’nf(z))’ <g(2),zeU,

In(1+
where g is given by g(z) =26 —1+2(1-96) nd+2)
z

, 2€U. The function g is convex and is the best

dominant.

4.3 Differential subordinations and superordinations for
analytic functions defined by Salagean integro-differential

operator

Theorem 4.18. [81]Let q be an univalent function in U with q(0) =1, y € C* such that

1A
%{1+ 2q (2)} > max{O,—?Rl}.
q'(2) Y

If f e o/ and

DI (2) DI () [1-N) D" (2) + AIV 1 (2)]
—————+y4q1- +
I'f (z) (21" f (2)I

1-M)[2"2f (2)- 2" f (2)] <o) 720'2)
17 @) q(2) +v2q'(2),
(4.20)
then
@I'H'lf(z)
(421) @I”—f(z)<q(2)

and q is the best dominant of (4.20).
In the particular case 1 =0 and n = 0 we obtain:

Corollary 4.1. [81] Let q be an univalent function in U with q(0) =1, y € C* such that

"
8‘%{1+Zq (z)}zmax{o,—ﬂ?l}.

q'(2) %
If f eof and
2f'(2) 22" (2f'(2)) ,
(1+7) f(z) f(z) _( f(2) ) <) +yzq(z)
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CHAPTER 4. DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATIONS

then
2f'(z)

f(2)

<q(2)
and q is the best dominant.
In the particular case 1 =0 and n = 1, we obtain:

Corollary 4.2. [81] Let q be an univalent function in U with q(0) =1, y € C* such that

m{1+zq (Z))} zmax{O,—%l}.

q'(z Y
If f € o/ and
zf”(z) B Zf”(Z) 2 22]0///(2) .
1+(1+3y) ) +y[1 (1+ ) ) + %) <q(2)+7zq'(2)
then 12)
z2f"(z
1+ ) <q(2)

and q is the best dominant.

When A =1 we get the Cotirla’s result [27]:

We select in Theorem 4.18 a particular dominant q.

Corollary 4.3. [81] Let A,B,y€C,A # B such that |B|<1land R y>0. If for f € of

21" f @) | { _ I @[A-VIf @+ M @)

217f (2) (21 f (2))?
A-M[2™2%f (2)- 2" f (2)] } 144z (A-B)2

II"f (2) 1+Bz ' (1+B2)?’
then
DI f (2) - 1+Az
2I"1f(z) 1+Bz
1+Az . .
and q(z) = 1B, is the best dominant.

Theorem 4.19. /81] Let q be a convex function in U with q(0) =1 and y € C such that R® y > 0. If
fed,
.@I”+1f(z)

TG <X bune,

1@ | 2 @AV @+ M )]
DI f (2) (217 f (2))?
La-n (272 (2) - D" F (2)]
DIMf (2)
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FUNCTIONS DEFINED BY SALAGEAN INTEGRO-DIFFERENTIAL OPERATOR

is univalent in U and

ey 2@ | I @[A-D I @A )]
q Yzq DI f (2) [.@I”f(z)]2
A=W @) - 7" )]
DI f (2) ’

(4.22)

91n+1f(2)
DI1"f (2)

From the combination of Theorem 4.18 and Theorem 4.19 we get the following "sandwich-type

then q(z) < and q is the best subordinant .

theorem”.

Theorem 4.20. /81] Let q1 and q2 be convex functions in U with q1(0) = q2(0) =1, y € C such

that Ry>0.If fe o,
@I'Hlf(z)

TG SLune,

DI (2) DI () [(L- DD (2)+ A" (2)]
—— +y31- +
2I"f (2) [2Inf (2)
LA-V[22 @ -7"f ()]
91" f (z)

is univalent in U and

n+l n+l _ n+l -1
Q1(2)+yzq’1(z)<M+ {1_91 f@[A-V)P" () + M f(z)]+

2I"f (2) [2Inf (2)
La=h (272 f (2)- D" f ()] < or(2) 4 v2a(2)
.@Inf(Z) q2 Y q2 ’
(4.23)
I"1f (2) . . . .
then q1(z) < TG < qa(2), q1 is the best subordinant and q2(z) is the best dominant.

Theorem 4.21. [81] Let q be a convex function in U with q(0) =1, y € C* such that

§R{1+ Zq"(Z)} > max{O,—Wl}.
q'(2) Y

If f e/ and
2I'f @ 2(1—/1)9”+1f(z)+)tln‘1f(z)_

Y
[@I’”lf(z)]z [@I”+1f(z)]2

(1+7)z
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CHAPTER 4. DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATIONS

§ DI"f(2) [ -1 D" 2f (2)+ A" f(2)]

(4.24) -2
Y [91’”1]"(2)]3

<q(2)+72q9'(2),

then
D1"f (2)

“rmrep

q is the best dominant.
We consider n =0 and 1 =0.

Corollary 4.4. [81] Let q be univalent in U with q(0)=1, y € C* such that

"
§R{1+ ac (2)} zmax{O,—%%}.

q'(2)
If fe o and
1) 1 (2f(z)-f”(z))2 ,
1_ —
=) z[f'(2) o () [F(2)] <q(2)+yzq'(2)
then

f(2)

TSR

and q is the best dominant.

Corollary 4.5. [81] Let A,B,y € C,A # B such that |Bl|<1land R y>O0. If for f € of

DI'f (2) s Q- @)+ A 1f(2) ~

1+y)z Yz
( ) [91n+1f(2)]2 [_@I’”lf(z)]z

YZ@I”f(z)[(l—)L)@”+2f(z)+/11”f(z)] _1+4z (A-B)z

(4.25) -2 + )
[@I”+1f(z)]3 1+Bz Y(l +Bz)?
then
DI f (2) 1+Az
z 5 <
[@I’”lf(z)] 1+Bz
1+Az . .
and q(z) = 1B, is the best dominant.

Theorem 4.22. [81] Let q be a convex function in U with q(0) =1, y € C such that R y > 0. If

fed
DI"f (2)

z 2
[@In+1f(z)]
DIMf (2) A=) () + AT f(2)
z 5 trz 5 -
[@I’”lf(z)] [@I”J’lf(z)]
i DI (2) [(L-N) D2 f (2)+ A" f(2)]
[@I”Hf(z)]?’

e A[1,1In 2,

(1+7)
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4.4. UNIVALENCE CRITERIA RELATED WITH THE GENERALISED SALAGEAN AND
RUSCHEWEYH OPERATOR

is univalent in U and

DI'f (2) s Q- f (z)+ AT 1f(z)

q(zmzq(Z)<(1+Y)Z[91n+lf<z>]2 Y (2IM41f (2)]
(4.26) gy 7T (2)[a- A)@”+2f(z)+unf(z)]’
[2171f (2)]°
then )
q(z)<z%—f(z)2,
[(2171f (2)]

q is the best subordinant.
From Theorem 4.21 and Theorem 4.22 we get the following "sandwich-type theorem”.

Theorem 4.23. /81] Let q1 and q2 be convex functions in U with q1(0) = q2(0) =1, y € C such

that Ry>0.If f e of
DI f (2)

P
[@I”Jrlf(z)]z
DI™f (2) yz A-VZ" ' f @+ M f(2)
[@I’”lf( )]2 [9]’”1}“(2)]
_@I”f(z)[(l NP2 f (2)+ A f(2)]
[@I”Jrlf(z)]

e A[1,1In2,

(1+7)z

is univalent in U and

DI™f (2) vz A-N)D"f (2)+ AT lf(z)

q1(2)+y2q1(2) < (1+7y)z

[9[”+1f(z)]2 [@I’”lf(z)]
" 1-2 n+2 AIm
(4.27) —2yz 7rf @) VPV @)+ A @) < q2(2) +yzq4(2),
[91n+1f(2)]
then a1
q1(2) < z¢ <q2(2),

[9]’”1}"(2‘)]2

and q1 is the best subordinant and q2(z) is the best dominant.

4.4 Univalence criteria related with the generalised Salagean

and Ruscheweyh operator

We recall the # 2" Ruscheweyh and Silagean differential operator defined in (1.14).
In order to prove our main result we need the theory of Loewner chains.
Let U, ={z€C:lzl<r, re(0,1]}, I =[0,00) and p € & (the class & is a Carathéodory class of

24

functions which are analytic with positive real part in U) be of the form p(z) =1+c1z +coz
A function L(z,t) : U x I — C is said to be a Loewner chain if the following conditions are

satisfied:
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i) L(z,t)is analytic and univalent in U, V¢t €[
11) L(z,t)<L(z,8), V 0<t<s<oo.

Lemma 4.6. /99]
Let L(z,t)=a1(D)z +ag®)z% +---, a1(t)#0 be an analytic function
in Uy, Vtel. Suppose that:

i) L(z,t) is a locally absolutely continuous function in I and locally uniformly with respect to
U,.

i1) a1(t)is a complex valued continuous function on I such that
L(z,t)

a1(t)

tlim la1(#)| = co and { } is a normal family of functions in U,.
- tel

iii) There exists an analytic function p :U, x I — C satisfying Rp(z,t) >0, V(z,t)e U x I and

0L(z,t) :p(z,t)aL(Z’t)

4.98
(4.28) 2oz ot

, zeU,, tel.

Then, for each t € I, the function L(z,t) has an analytic and univalent extension to the whole unit

disk U, i.e L(z,t) is a Loewner chain.

The equation (4.28) is called the generalized Loewner differential equation.
If a1(t) = e’ then we say that L(z,t) is a standard Loewner chain.

We follow Nistor [68], and we generalise her results.
Theorem 4.24. [88] Let f € of and p an analytic function with p(0) = 1. If the inequalities

2 2f'(2) _,
pR)+1 ZI" @)+ (1-y)n(%+1f (2) - % f (2))

(4.29)

and

2 2f'(2) —1|122 +
pR+1 ZI" @)+ (1-y)n(%n+1f(2) - %" f(2)
n+2
+(1—Izl2)( e, TN -
RD" () + (1-7)n (2" f(2) - %" f(2))

(1-7y)[(n2+38n+1) %" 2f(2) - (2n% +3n + 1) Z" L f (2) + n2 %" (2)] " zp’(z)) -

R @)+ (L=y)n (2" f(2) - A" f (2)) p)+1

(4.30)
holds true for z € U, then the function f is univalent in U.

Remark 4.12. If y =1 we get Theorem 1 from Nistor [68] and for y = 0 we get Theorem 3 from the

same article.
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Setting n = 0 in Theorem 4.24 we obtain the following corollary due to Lewandowski [54] :

Corollary 4.6. [88] Let f € «f and p € P. If

z2f"(z) zp'(2)

1-p(2) N
f'(2) 1+p(2)

1+ p(2)

212+ (1-121%) )‘51, zeU,

then the function f is univalent in U.

For p =1 the following criterion reduces to a well-known criterion found by Becker [20] (see
also Duren et al. [31]).

Corollary 4.7. [88] Let f € . If

Zf”(Z)

1412
(1 |Z|) f’(Z)

<1, zeU,

then the function f is univalent in U.
For n =1, Theorem 4.24 results

Corollary 4.8. [88] Let f € «f and p an analytic function with p(0)= 1. If

‘ 2 . '@ —1’51
2@+ F@)r2f"@)
and
2 f'(2) ~ 9 e (22f”(z)+22f”’(z) zp’(z))’
‘(p(2)+1 @) +2f"2) 1)'2' M e v e | R

holds true for z € U then the function f is univalent in U.

For the Loewner chain

ple’2)+1 29" fet2)
2 RD" e tz)

(4.31) L(z,t):=f (e '2) + (e'z—e'2)
identically with the proof of Theorem 4.24, we get:

Theorem 4.25. [88] Let f € of and p an analytic function with p(0) = 1. If the inequalities

‘ 2 fe 22O
p(z)+1 RI" ()

(4.32) 1‘ <1

and

2f'(z)  RD"f(2) ) 9 o [ZD"2f(2) RDVTf(2)

. -1 1- — 1—
(p(z)+1 Pz e )(%@"“f(z) 77 Y
[((n+DRBD"f(2) (B[ (2) - B f(2) —nR D (2) (B f(2) - B f(2))] . 2p'(2) || _ 1

RD"f(2)-RD" 1 (2) p(2)+1)|~

(4.33)

holds true for z € U, then the function f is univalent in U.
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Remark 4.13. If y = 1 we get Theorem 2 from Nistor [68] and for y = 0 we get Theorem 4 from the

same article.
Setting n = 0 in Theorem 4.25 the result is:

Corollary 4.9. [88] Let f € of and p an analytic function with p(0)= 1. If

‘ 2 fl)
p@)+1 z

1’51

and

2 '@ N2 (g2 ( 2f"(2) 2f'(2) 2p'(2)
‘(p(z)ﬂ 2 1) S e C T S T S
holds true for z € U, then the function f is univalent in U.

‘ <

If we put p =1 in the corollary above we get the result of Kanas and Lecko [51].
: f(2) :
Setting p(z) = —— we obtain:
z

Corollary 4.10. /88] Let f € o/ with m@ >0. If
f) ) 2 (1 1.2 zf”(z)(f(z) )_zf’(z) ‘ f2) ‘
‘( 1]l +(1-121%) |1+ o | 2 +1 @ s|—-+1
holds true for z € U, then the function f is univalent in U.
For p(z) = () in Corollary 4.9, the result is:
f(2)
Corollary 4.11. [88] Let f € . If
fz) zf'(2) ‘ ‘ zf'(2)
2—— — -1=<1
T N N T
f(2) zf'(z) ) 9 9 2zf’(z)( z2f"(2) zf’(z))‘ ’ zf'(2)
2—— — -1 1- 1 — <
( : o YT M e e )Y e

holds true for z € U, then the function f is univalent in U.

4.5 Preserving properties of the generalized
Bernardi-Libera-Livingston integral operator defined on

some subclasses of starlike functions
Let T denote a subclass of ¢, consisting of functions f of the form

m .
(4.34) fl2)=z- Z a;z’,
Jj=2
where a; =0, j=2,3,... and z € U. A function f € T is called a function with negative coefficients.

For the class T', the followings are equivalent [112]:
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(0]
) ja;=1,
J=2
i) feTnS,
iii) feT*, where T*=TnNS*.

In [38] the authors introduced the following subclass of analytic functions

<\/?,Z€U}.
4

In the same paper the authors has shown that the class S** is a subclass of S* and this class

Zf”(Z)

1
' f'(z)

(4.35) S**={f€.sz¢:

has the property that the composition of two starlike functions from S** is in the class S* of
starlike functions.

In [37] the authors studied the following subclass of convex functions

5
<\/Z,z€U}.

In the same paper the authors has shown that the class S*** is a subclass of K, has determined

_ Zf"(Z)
f'(2)

(4.36) S***:{fed:'l

the order of starlikeness of the class S*** and have shown that if f,g € S*** then f o g is starlike
in U,,, where ro =sup{r > 0|g(U,) cU}.

Now we consider the generalized Bernardi-Libera-Livingston integral operator
1 r4
+
(4.37) F()=Lyf(2)= p—ftp_lf(t)dt,
2P
0

where f € &/ and p > —1. This operator was studied by Bernardi for p € {1,2,3,...} and for p =1 by
Libera.

We study the properties of the image of the classes S** and S*** by the generalized Bernardi-
Libera-Livingston integral operator L, f(z). The subclass S*** is defined also for functions with

negative coefficients and some other results are derived for this class.

Definition 4.4. [61] Let @ be the class of analytic functions q in U which has the property that

are analytic and injective on U\E(q), where
E(q)={CedU: lim(q(z) = o0},
2—»
and are such that q'({) # 0 for { € OU\E(q).

Lemma 4.7. [Miller-Mocanu] Let q € , with q(0) =a, and let p(z) =a+a,z" +... be analytic in
U with p(z) Za and n = 1. If p £ q, then there are two points zy = roet® e U, and {y € OU\E(q)

and a real number m € [n,o00) for which p(U,,) c q(U),
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1) p(z0)=q(o)

ii) zop'(20) =m0q' o)

ot o 200" (20) (COQ"(CO) )
R————+1=zmR|———+1].

W ey M g

The following result is a particular case of Lemma 4.7.

Lemma 4.8. [ Miller-Mocanu] Let p(z) =1+a,z" +... be analytic in U with p(z)Z1and n = 1.
Mz+1

If p(2) £q(z) =M Mz:z then there is a point zg € U, and (o € OU\E(q) and a real number

m € [n,00) for which p(U,,) c q(U), such that

1) p(z9) =q(lo), where (= ett

, M?-1

.o ! _ 0

it) zop'(z9) = me' Mm,
1) §Rz%p"(20) +2z0p'(29) < 0.

Theorem 4.26. /96] Let

z
1
F(z)=L,f(z)= 2"~ f P (dL.
2P
0
/5
Ifp= 1 and f € S**, then F € S**.

z
1
Theorem 4.27. [96] Let F(z) =L, f(z) = ‘% f tPLF()dt, p>—2. IF f € S*** then F € S***.
V4
0

In the followings we define the class S*** for functions with negative coefficients.

Definition 4.5. [96] The function f € T belongs to the class TS*** = S*** N T if
zf"(2) 5
1- <i/—-,z€eU.
' fa |~V

Below we give a coefficient delimitation theorem for the class T'S***.

Theorem 4.28. [96] The function f € T belongs to the class TS*** if and only if

® . V5 V5
(4.38) ;2](]—2+7)aj<7—1.

Next we prove that the class T'S*** is closed under convolution with convex functions.
o0 .
Theorem 4.29. [96] Let f € T be of the form (??) and ¢(z) =z — Z bz’ convex in U, where b; =0

j=2
for je{2,3,..}, If f € TS*** then f *p e TS***,

z
1
Theorem 4.30. [96] Let F(z) = L,f(z) = ‘% f tPLf(t)dt, p e (=1,01. If f € TS***, then
z
0
FeTS**
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THE STUDY OF A SECOND ORDER DIFFERENTIAL INEQUALITY

4.6 The radius of convexity of particular functions and
applications to the study of a second order differential

inequality

o0
Let the function f be defined by f(z) = )_ a,z".
n=0
Next we determine the radius of convexity of particular functions in order to determine

sharp bounds regarding functions which satisfy a differential inequality and we deduce a sharp
starlikeness condition. Papers concerning these problems are [16],[17] and [123].
In [61] the following problem is proposed (pg.243): if f(0) =a with i a > 0, and

(4.39) R(a+42f'(2)+22%f"(2)) >0, z€ U,

then Rf(z) >0, z € U. This implication is easy to prove using the theory of differential subordi-
nations presented in [58] and [61]. We will determine the best upper and lower bound of Rf(z)
provided that a = 1 and the condition (4.39) holds. The basic tool in the proofs will be the convexity
of a particular function.

Differential inequalities of type (4.39) are studied in [118] and [120], where the theory of extreme
points developed in [42] is used.

We define the classes of functions Ay and & by the equalities
Aog={f€HW)| f(0)=1} and Z={f€Ay| Ref(z)>0, zeU}.

Lemma 4.9. (/[42] p. 27 Herglotz).
The function f belongs to the class &2 if and only if there is a probability measure p on [0,27] such

that ) y
T1+ze t
= —d t .
f@= | Tordu)
Lemma 4.10. [75] If 6 € [—n, 7], then

' 1 2 1 (1+)(1-cosf
2(1_c°39)(/ t dt) sf A+ 00 —cos)
0 V1+t2—2tcosh 0 1+¢2—2tcosf

For V c A the dual set of V is defined by

Vd:{gerKf*g)(z);éO, for all feV and for all zeU}.

Lemma 4.11. [75] Let a be a real number with « €[0,1), and let the function ht be defined by

) Xn-a+iT , _ = n .
the power series hp(z) =z + Z ——2". The function f(z) =z + Z a,z" is starlike of order
s l1-a+iT gy}
a in U if and only if
h
@ * r(2) #0, for all zeU,and VT eR.
z
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Lemma 4.12. [75] For the dual set of the class 2 ={f € Aol Rf(2) >0, z € U} we have

LL={f € Aol Rf(2)> é zeUlc 24,

o0
Lemma 4.13. (/58], p.64)([61], p.236) Let K be the class of functions of the form f(z)=z+ Z anz”,
n=2
and satisfying the condition

Zf”(Z)

%(1+ )

) >0, VzeU.
2 z
If L denotes the operator of Libera defined by L(f)(z) = 2 f f(@®)dt, then
0
L(K)cK.

Lemma 4.14. [75] The following equalities hold

0o in6 1 p1 _ _ 1 01 _ .
Z e . :f f (1-x)y(cosO —xy) dxdy+if f (1-x)ysin6 dxdy,
1) 0 Jo 0 Jo

Zinn+ 1+x2y2 —2xycosf 1+x2y2 —2xycosO
0o in6 1 pr1 0— 1 p1 in@
y _° :f f xy(cos6 — xy) dxdy+if f men dxdy.
Zin+1)2 Jo Jo 1+x2y2—2xycos6 0o Jo 1+x2y2—2xycosO
2-1n4 .. ..
Lemma 4.15. [75] If a = ﬁ’ then the following inequalities hold:
3—-1n6

12

Lrl (1-xy)(1+cosB)
(l_a)fo fo (1—x)y(1 +xy)(1+x2y2—2xycos0)dxdy

1t (1—-xy)(1+cosh) -
"6 dxdy, 0elZ,l,
6‘/(; ‘/(; xy(1+xy)(1+x2y2_2xy(3080) xay [2 JT]

dxdy, 0 €[0,r].

flfl xysind dnd </1f1 xyv/2(1 + cos0)
xdy <
0 Jo 1+x2 Y=Jo Jo

y2 —2xycosf (1+xy)\/1+x2y2 —2xycosf

Lemma 4.16. [75] The following inequality holds

119 1 1- xy)(1 + cosd
ff Y dxdyf f Xy (1~ xy)1 +cos6) dxdy <
0o Jo 1—x2y2 0 Jo T (1+x2y2—2xycosO)(1+xy)

X cosnb X cosnf X cosnb
(4.40) f4(1‘“)(1+,§1m)[‘1‘“)'(“,;jn(m_nz)*,;(nh)f]’
0 €[0,n].

Theorem 4.31. [75] The functions ¥ and ¢ defined by the power series

V=)= 1+,;1 n(n+1)’ 9= 1+n;1 n(n+1)?

are convex in the unit disk U, the radius of convexity of Y and ¢ are ry, =rg, =1.
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4.6. THE RADIUS OF CONVEXITY OF PARTICULAR FUNCTIONS AND APPLICATIONS TO
THE STUDY OF A SECOND ORDER DIFFERENTIAL INEQUALITY

Corollary 4.12. [75] If f(0) =1 and if

(4.41) R(1+4zf(2)+22°f"(2)) >0, VzeU

then

(4.42) 2 T 1+ m <R(F@) <2+ 2" In(1-r), z€U,
r r

for every r €(0,1), and
(4.43) 2-In4 <R(f(2)) <2, VzeU.
The bounds are the best possible.

Other results regarding the radius of starlikeness and the radius of convexity of particular
functions can be found in [16], [19],[18],[17] and [123].

Remark 4.14. [75] The restriction a = 1 does not detract the generality. Indeed, if a = a + i with

a > 0, then condition (4.39) is equivalent to
4 2
R(1+—2zf'(2)+ —z2f"(z)) >0,VzeU
a a

and a similar calculation to the proof of Corollary 4.12 leads to

27 o) .
f(z):fo (‘H‘Z a z”e_””)d,u(t).

—inn+1)
Thus we get
2 - 1 n_—int
Rf(2) = omfo (1 +Y e )du(t),
and

al2- = In(1+)] <R(F@) <al2+ = In(1-7)], z€T,.
Corollary 4.13. [75] If f(0) =1 and (4.41) holds, then
(4.44) |f(2)| <2+ ? In(1-r), zeU(r)
for every r €(0,1), and
(4.45) |f(2)] <2, z€eU.
The bounds are the best possible.

4
Theorem 4.32. [75] If f(0) =1 and (4.41) holds, then the function F defined by F(z) :f f@®dt
0

2-In4
is starlike of order a = —nz =0.7756..., that is
3-In4-7%

zF'(2) 2—-1n4

> , zeU.
F@  3-In4-%

(4.46)

The result is sharp.
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Remark 4.15. As far as we know the result presented in Lemma 4.11 is a new form of starlikeness
condition which involves convolution. The idea of use integral representations of Fourier series in
order to deduce sharp inequalities which lead to sharp starlikeness results has been used many
times. Regarding these questions we mention the papers [119]-[121]. In [122] geometric properties
of a particular function are studied. We mention that [103] is a basic work in applications of

convolutions in geometric function theory.
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Chapter 5
Bi-univalent functions

The Koebe One-Quarter Theorem [30] ensures that the image of the unit disk under every f € S
univalent function contains a disk of radius i Thus every univalent function f has an inverse
71 which is defined by

[HfEy=2(2€U),

and
1
(5.1) F(F ) =w, |lwl<ro(f); ro(f)= 2l
where
(5.2) g(w)= f_1 w)=w - agw2 + (Za% - a3) w3 — (Sag —Bagas + a4) wht -

A function f € of is said to be bi-univalent in U if U c f(U) and if both f and f~! are univalent
inU.

Let X denotes the class of bi-univalent functions in U given by (1.1). Some examples of
functions in the class X are given in [130]. See also [55], [22] , [124], [39],[128], [129] , [8],
[91,[47].

Lemma 5.1. [99] If h € P then |cp| <2, Yk, where P is the family of all functions h analytic in U
for which Rh(z) >0, where h(z)=1+c1z+ coz? 4 for zeU.

In [56] Ma and Minda unified some subclasses of starlike and convex functions for which both

of the functions

zf'(2) zf"(2)
1
@ and 1+ )

is subordinate to a more general superordinate functions. To accomplish this, they used an

analytic function ®, with
RDO>0 ,P0)=1 and D'(0)>0,
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which maps the unit disk onto a starlike region with respect to 1 and symmetric with respect
to the real axis. A function f € of belongs to the class of Ma-Minda starlike respectively convex
functions if @) ()

<®(z) respectively 1+

1@ f'(2)
A function f is said to be bi-starlike respectively bi-convex of Ma-Minda type in U if both f

<®(z), zeU.

and f~! are Ma-Minda starlike respectively Ma-Minda convex in U.
We consider the ZI" operator defined in Definition 1.9.

5.1 Coefficient estimates and Fekete-Szego problem for new
classes of bi-univalent functions defined by Salagean
integro-differential operator

Definition 5.1. [115], [13], [79] For 0 < a <1, 0 < A <1 a function f(z) given by (1.1) is said to be

in the class ¢ (A) if the following conditions are satisfied:

5.3) wre| 2O @Y+ AT )" )| _an
' (1-2) 2I"f (2)+ A2 (DI f (2)) 2

and

5.4) | B @) + A (II"g )" || _ an
' (1-2) 2I"g (w)+ Aw (21" g (w)) 2

where z,w € U and the function g is given by (5.2).

Remark 5.1. If A =n =0 we have the well-known class of strongly bi-starlike functions of order «

and if A =1 and n = 0 we have the class of strongly bi-convex functions of order a.

Definition 5.2. [79] For 0<a < 1,0 <1 <1 a function f(z) given by (1.1) is said to be in the class
QQ(/T) if the following conditions are satisfied:

55 " 2(PI"f (2)) + A22(PI'f (2))" - p
' (1-2) 2I"f (2) + A2(2I"f (2))

and

5.6) R w(21"g W) + Aw? (21" g (w))" > B
' (1-1) 2I"g (W) + Aw (21" g (w))

where z,w € U and the function g is given by (5.2).
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5.1. COEFFICIENT ESTIMATES AND FEKETE-SZEGO PROBLEM FOR NEW CLASSES OF
BI-UNIVALENT FUNCTIONS DEFINED BY SALAGEAN INTEGRO-DIFFERENTIAL
OPERATOR

Definition 5.3. [79] Let h,. : U — C be analytic functions and
min{R(2),RIUEN>0, (zeU) h(0)=1(0)=1.

A function f(z) given by (1.1) is said to be in the class 9; ! if the following conditions are satisfied:

2(DIMf (2)) + A22(21f (2))"

5.7 £t 1 nu
6D (1—A)@I"f(2)+/12(91”f(2))'E “
and

n r,7,2 n "
5 w(2I"g (W) + Aw* (21" g (w)) 1)

(1-1) 2I"g(w) + Aw (21" g (w))

where z,w € U and the function g is given by (5.2).

Theorem 5.1. [79] Let 0<a <1, 0< A <1 and let f(z) given by (1.1) be in the class yg(I). Then

2
(5.9) lagl < ? ,

\/|4aF3 (1+21)+T2(1+ 1) —3a)|

4a?
(5.10) gl < —+ —
T3(1+24) T2(1+2)
and
2a(2a% +1) 10a(2a —1)
lagl < — — — — — 4
T, (1+31) 3[209Ts(1+1)(1+21)—504(1+31)]
8a® [3(1+24) T3 (1+1)°1%|
+ .
3Ty (1+1) (1+37) \/|4ar3(1+21)+r§(1+7t)2(1—3a)|
(5.11)

Theorem 5.2. [79] Let f of the form (1.1) be in the class @g (A). Then

« . a(1-8) 1
T3(1+21)° 4aT5(1+21)+T2(1+4)°(1-3a) | ~ 4T'3(1+24)
2
|as —¢ay| <
4a®(1-¢) a(1-¢) 1
4aT3(1+20)+T2(1+1)°(1-3) |* | 4als(1+21)+T2(1+4)°(1-3a) | 4T3(1+21)

Theorem 5.3. [79] Let 0< f<1, 0< A <1 and let f(z) given by (1.1) be in the class QQ(X). Then

2(1-p)

(5.12) g < _ 5
[2(1+27) T3 - 13 (14 3)’
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CHAPTER 5. BI-UNIVALENT FUNCTIONS

(5.13) gl ——F 4(1_[3)22
T3(1+24) TZ(1+2)
and
ag <200 10(1-p) s
Y78y (1+31) 34(1+81)[2Tal3 (1+ ) (1+27) — 54 (1+31)]
205 (1- ) (1+7) [3T5 (1+27) - 13 (1+7)° 2(1-p) ‘
' 3Ty (1+37) [20s (1+20) - T3 (1+ )] \[[2(1+22)T5-T3(1+1)?|
(5.14)

Theorem 5.4. [79] Let f of the form (1.1) be in the class QS(I). Then

[ay

4aT3(1+27)-2r%(1+1)°

1-p

. 1
I3(1+24)°

< =
T 4T5(1+21)

SAal

|a3 - Ea%| <
4(1-p)1-8)
4aTs(1+21)-2r2(1+1)°

1-¢
4aT5(1+21)-2r2(1+1)°

> 1 —
= ary(1+27)

ki

Theorem 5.5. [79] Let 0<a <1, 0< A <1 and let f(z) given by (1.1) be in the class Q?’g’l. Then

!/ 2 / 2‘ 1 I
5.15) 2y < min th O +12/(0)] J A7 (O)+ 17(0)]

2r3(1+2)° '\ 4[2rs(1+27) -3 (1+A)7|

IO +]'©0)? | o+ o)
orz(1+1)°  83(1+24)
|n"(O)] [4Ts (1+27) T3 (1+ 2)% | +[2(0)| T (1 + A)? }

lag| < min{

83 (1+27)[20s (1+21) -T2 (1+4)7|

(5.16)
and
la4| < min [0 + |i(0) 1 - > +
- 36 T4(1+31) 209l3(1+A)(1+21) -5y (1+31)
1 g 2
N |h’(0)|2 + |l/(0)|2 |h/(0)|2 + |l’(0)|2 |3F3 (1 +2/1) — Fg (1 + /1) |
r2(1+7)° 2 6Ty (1+31) ’
|R""(0)] +|1"(0)] 1 5 .\
36 T4(1+34) 20al3(1+A)(1+21) -5y (1+31)
= = 2
|h”(0)|+ |l”(0)| 12/(0)] + 117(0)| Ty (1+7L)‘3F3 (1+2/1)—F§ (1+/1) |
|20 (1+22) - 13 (1+ )7 | \| |20 (1+27) - T3 (1+ 1)7| 24T (1+34)

(5.17)
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5.2. EXTENSIONS OF COEFFICIENT ESTIMATES FOR NEW CLASSES OF BI-UNIVALENT
FUNCTIONS DEFINED BY SALAGEAN INTEGRO-DIFFERENTIAL OPERATOR

5.2 Extensions of coefficient estimates for new classes of
bi-univalent functions defined by Salagean
integro-differential operator

In the sequel, it is assumed that ¢,y are analytic functions with positive real part in the unit

disk U, satisfying ¢(0) = (0) =1, ¢'(0) > 0, v'(0) > 0 and ¢(U),y(U) are symmetric with respect

to the real axis (see [127]). Assume also that:

(5.18) P()=1+A1z+A22% +A3z® +---, (A1>0)
and
(5.19) W(z)=1+B1z+Boz? +B3z®+.-, (B1>0).

Definition 5.4. [83] A function f(z) given by (1.1) is said to be in the class #s(¢,y) if the

following conditions are satisfied:

(5.20) (21'f @) <92
and
(5.21) (21"g w)) <y (w)

where z,w € U and the function g is given by (5.2).

Definition 5.5. [83] For 0 < a, a function f(z) given by (1.1) is said to be in the class (@, v, a)

if the following conditions are satisfied:

(z(.@I”f(z))’)“ (1 N z(@l”f(z))”)l‘“ <o)

5.22
(5.22) I (2) GIF ()
and
w(2I"g (w)) ) ( w(@l”g(w»”)l“
2 _ 1+ ——
(5.23) ( IIg (w) T orgwy | YW

where z,w € U and the function g is given by (5.2).
Definition 5.6. [83] Let A,/ : U — C be analytic functions and
min{R (A~ (2)),RUI ()} >0, (zeU) h(0)=1(0)=1.
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CHAPTER 5. BI-UNIVALENT FUNCTIONS

A function f(z) given by (1.1) is said to be in the class Jfg (@) if the following conditions are
satisfied:

z(.@I"f(z))’)“ ( z(@l”f(z))”)l‘“
(5.24) (—@I”f(z) 1+ —(QI”f(z))’ ehU)
and

w(ZI"g ) \* (. w(@I"gw)"\'™*
(5:25) ( I1"gw) ) (“ (GI"gw)) ) €l)

where z,w € U and the function g is given by (5.2).

In particular, taking n =0,a =1 and n = 0, @ = 0 in Definition 5.6, we can obtain te subclasses

of bi-starlike of Ma-Minda type and bi-convex of Ma-Minda type functions.

Theorem 5.6. [83] Let f(z) given by (1.1) be in the class Ms(p,y). Then

(5.26) lagl 1 As+B A% |
. <.,|— +B{——

as 6T 2 +B1 B,

A1 1 B2A%
5.27 < —+—1249—-2A71—
( ) las] 3T5 ' 6ls 2 1 B%
and
B

(5.28) lag) < —2

Theorem 5.7. [83] Let f(z) given by (1.1) be in the class #(p,v,a). Then

|

A2

A2+B1+ 37 |B2 - Bl
1

(5.29) asl < ,
19212\ a2 50— 8|12+ 41— 2IT
As+B1+29By—By|
(5.30) gl L 22Dl
’ " |a2+5a-8|T2+4(3-2a|T3 4I3-2alT3
and
’ B3 —Aj 5 A3+ Bj
lagl < -= +
6T4(3a—4) 21574 (3a—4)— 2203 (4a2 +11a - 18)
A? 2 1 2(,.3 2
+ — I3 (40 +11a—18) - -T2 (a® + 21a +20a—48)]
6(2-a)’T2l4(3a—4) 3
(5.31)
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5.3. COEFFICIENT ESTIMATES FOR SOME NEW CLASSES OF BI-BAZILEVIC FUNCTIONS
OF MA-MINDA TYPE INVOLVING THE SALAGEAN INTEGRO-DIFFERENTIAL OPERATOR

Theorem 5.8. [83] Let f(z) given by (1.1) be in the class Jfg ’l(a). Then

|
(5.32) ay| <mind | OF + 11" OF 27 (0)] + 117 (0)]
' o 2r2@2-a)* '\ 2]|a2+5a-8|T2+8I3/3-2al

RO+ ") IO+
8T'3(3 - 2a) 2I2(2-a)
|n"(0)||a®+5a—8|T2+]|1"(0)]|(a®+5a—8)I'2+8I'5(3 - 2a)|

8T3|(3—2a)[(a?+5a—8)I'3+4T'3(3 - 20)]| }

b

lag| < min{

(5.33)
and
3
RO +|1'0)?)?
|a4|S;—min |n"(0)| + |a® +21a% +20a — 48| ') j' 2( ) ;
18T |3a — 4| 22-a
1 " %
|"(0)| + |a® +21a® + 20a - 48| T3 A7) + 1" 0)
2|a2+5a 8|3 +8313-2al
(5.34)

5.3 Coefficient estimates for some new classes of bi-Bazilevic¢
functions of Ma-Minda type involving the Salagean

integro-differential operator

Definition 5.7. Let h : U — C be a convex univalent function in U such that

h(0)=1 and R (h(z))>0, (zeU).
[e.e]
Suppose that A(z) =1+ Z Bp2*, (z€U).
k=1
Motivated by the work of Strivastava et al. (see [116]) we introduced new subclasses of
bi-univalent functions. A function f € X given by (1.1) is said to be in the class ///z” (B, A; k) if the

following conditions are satisfied:

. 1-1 n !
(5.35) e'f (z(@_]f(zz) <h(z)cosf+isinf
(21" f (201
and
. 1-1 n /
(5.36) oih (w (I8 W) _ 1 w)cos p+isinp,
[21"g )™
where
T~ . L
Be (—5; 5), A=20; z,weU andthe function g is given by (5.2).

55



CHAPTER 5. BI-UNIVALENT FUNCTIONS

Lemma 5.2. ([101], [30]) Let the function ¥Y(z) given by Y(z) = Z Bjz*, (z € U) be convex in
k=1

U. Suppose that the function h(z) = hpz" is holomorphic in U. If h(z) < ¥(2), (z€U) then
k=1
|hel <IB1l, (n€N).

Theorem 5.9. /80] Let the function f(z) given by (1.1) be in the class ///f(ﬂ,z;h). Then

(5.37) lagl < (| —= 2'?”‘“'055 , (A-1)r2+2r5#0
(A+2)|(A-1)T3+2I3|

2
(5.38) jas| < B1lc0sh [ 1Bilcosp
(A+2)T3 |(1+A)T
and
Ty (1-2)[(A-2)T2+6r 2|B |
4] < |By|cos p _z'(~ )[(~ )3 +6T5] _ |B1lcos 8 N
3Ty (A+2)[(A-1)T2+2l3] | (A+2)|(A-1)TZ+2l3]
—r 5 , (A-1)T2+2T'3#0
(3+A)T4 (A+3)]|2(A-1)Tols+50y]
and
(5.39) 2(A-1)Tal'3+5T4 #0.

Corollary 5.1. [80] Let the function f(z) given by (1.1) be in the class /3 (B,0;h). Then

B B B 2

o w |a3|s| 1|c08ﬁ+(| 1Icos,5), and
2r'3 — I'2 I3 Ty

_ 1Bilcosp [T2 —T2+3T3) [[Bilcosp L1 5

B ~T2+2T3) || -T2+2l3 Ty 202l3-504|’

3 Iy
Corollary 5.2. [80] Let the function f(z) given by (1.1) be in the class /3 (B,1;h). Then

B B B 2
g < | 1|cosﬁ’ |a3|S| 1|cosﬁ+(| 1|cos,6), and
3I'g 3I'g 2T

1
<|B —_—
lasl < | 1|COS,321_,4

lagl

|

Corollary 5.3. [80] Let the function f(z) given by (1.1) be in the class ///Q(,B,O;h). Then

1
lagl < +/IB1lcos g, lag| < IBllcosﬁ(lBllcosﬁ+ 5), and

2IB 4
0y < 21B1lcosh (\/IBllcosﬁ + g)-

3
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5.3. COEFFICIENT ESTIMATES FOR SOME NEW CLASSES OF BI-BAZILEVIC FUNCTIONS
OF MA-MINDA TYPE INVOLVING THE SALAGEAN INTEGRO-DIFFERENTIAL OPERATOR

Corollary 5.4. [80] Let the function f(z) given by (1.1) be in the class ///S(ﬁ, 1;h). Then

/B B B 2
gl < | 1I;OS,B’ |a3|sl 1|§08ﬁ+(l 1I;:OSﬁ)  and

< IBllcosﬁ'
2

laal
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Chapter 6
Harmonic functions

A continuous function f = u +iv is a complex-valued harmonic function in a complex domain G if
both u and v are real and harmonic in G. In any simply-connected domain D c G, we can write
[ =h+g, where h and g are analytic in D. We call & the analytic part and g the co-analytic part
of f. A necessary and sufficient condition for f to be locally univalent and orientation preserving
in D is that |A'(z)| > |g'(2)| in D (see [26]).

We denote with A# the family of continuous complex-valued functions that are harmonic in
the open unit disk U, with .6, the harmonic univalent functions and with /,, the harmonic
orientation preserving functions.

Let /£, op denote the family of functions
(6.1) f=h+g

which are harmonic, univalent and orientation preserving in the open unit disc U so that f
is normalized by f(0) = h(0) = f,(0)— 1 = 0. Thus, for f = h +g € H#, op, the functions » and g

analytic in U can be expressed in the following forms:

h(z)=z+ i amz™, 8(2)= i bm2™ (1b11<1),

m=2 m=1

and f(z) is then given by

(6.2) f)=z+ i amz™+ io: bnpz™ (Ib1l<1).
m=2

m=1

For functions f € ./, op given by (6.2) and F' € /5, ,,, given by
(e,0) o0
(6.3) Fz)=H(Z)+G(=)=z+ Z A,2" + Z B,,z™,
m=2 m=1
we denote the Hadamard product (or convolution) of f and F' by

(6.4) (f*F)z)=z+ i amAnz™ + io: bpBnz™ (zeU).

m=2 m=1
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CHAPTER 6. HARMONIC FUNCTIONS

Let V_z be the class of harmonic functions with varying arguments introduced by Jahangiri and
Silverman [46], consisting of functions f of the form (6.1) in /), ,, for which there exists a real

number ¢ such that
(6.5) NMm+(m—-1)¢é=nm(mod 21), O, +(m+1)E=0(mod 21), m =2,

where 1, =arg(a,) and 8, =arg(b,,).

In terms of the Hadamard product (or convolution), we choose F' as a fixed function in ./, ,,
such that (f * F')(2) exists for any f € /5, op, and for various choices of F' we get different linear
operators which have been studied in recent past.

In [65] it is defined and studied a subclass of #, ,, denoted by S 7(F;y), for 0 <y < 1, which

involves the convolution (6.4) and consist of functions of the form (6.1) satisfying the inequality:
0
(6.6) %0 (argl(f xF)2)]) >y

0<0 <27 and z = re'’. Equivalently

6. Re{zw(z)*mz»f-m})

h(z)«Hz)+g(z)*G(z)
where z € U. We also let 7(F';y) =S 7 (F;y)\ V. . Some of the function classes emerge from the
function class S »(F';y) defined above. Indeed, if we specialize the function F(z) we can obtain,
respectively, (see [65]) the class of functions defined using: the Wright’s generalized operator
on harmonic functions ([66],[126]), the Dzioc-Srivastava operator on harmonic functions ([3]),
the Carlson-Shaffer operator ([25]), the Ruscheweyh derivative operator on harmonic functions
([45],[641,[102]) , the Srivastava-Owa fractional derivative operator ([117]), the Salagean deriva-

tive operator for harmonic functions ([49], [106]).

Let

(6.8) f)=hz)+g(z)=z+ Y amz™+ ) bpa™.

m=2 m=2

A function f of the form (6.8) is said to be in Szf(a) if and only if (see [26], [34], [30])

6.9) %(arg f(rei")) >a, 0<0<21, |zl=r<L.

Similarly, a function f of the form (6.8) is said to be in S;f(a) if and only if

(6.10) %(arg%(f(reig))) >a, 0<0<2m, |zl=r<1.

We note that (see [48]) a harmonic function f € S;f(a) if and only if

Jaf(2)
R f()

>a, |z|=r<l,
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6.1. ON A CERTAIN CLASS OF HARMONIC FUNCTIONS AND THE GENERALIZED
BERNARDI-LIBERA-LIVINGSTON INTEGRAL OPERATOR

or

Jaf(2)-(1+a)f(z)
Jaf(2)+(1-a)f(z)

<1l,lz|=r<1,

where
Jwf(2)=2zh'(2)—zg'(2).

Definition 6.1. Let 8 < #. We define the radius of starlikeness and the radius of convexity of
the class 28:

R} (B):=inf(supf{re(0,1]:f is starlike of order a in U(r)}),
feXB

R (B):=inf (sup{re(0,1]1:f is convex of order a in U(r)}).
feRB

Definition 6.2. The generalized Bernardi-Libera-Livingston integral operator for harmonic
functions is Z.(f), (¢ > —1): which is defined by Z.(f) = ZL.(h) + £L.(g) where

Luh)2) = c:—l f £ 1h()dt and ZLu(g)(2)= c:—l f t1g()dt
0 0

(see [65]).

6.1 On a certain class of harmonic functions and the

generalized Bernardi-Libera-Livingston integral operator

In the following we suppose that F'(z) is of the form
— oo —
(6.11) F(z)=H@)+G(@)=z+Zz+ ) Cp (2" +2™),
m=2
where C,, = 0(m = 2).

In [65] the following characterization theorem is proved

— 1-
Theorem 6.1. Let f = h + g be given by (6.2) with restrictions (6.5) and 0 < b; < ITY,O =y<1
Y
Then f € Vz(F;v) if and only if the inequality

X (m—y m+y 1+y
6.12 bnl|Crp<1——b
( ) mZ:2 l_Y laml+ 1—]/| ml|Cm 1_Y 1
holds true.
Theorem 6.2. [65] Set Ay = — ' and pim = —~—Y_ Then for by fixed, 0 < by < ~—¥
(m_Y)Cm (m+7/)cm 1+Y

the extreme points for Vz(F;y), 0<y<1are
{z + Apxz™ +b_1z} U {z +bi1z+ umxzm}

1+
wherem22andx=1—1 Y

—b1.
-Y
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CHAPTER 6. HARMONIC FUNCTIONS

The closure properties of the class 7 (F';y) under the generalized Bernardi-Libera-Livingston

integral operator Z.(f), (c > —1):

Theorem 6.3. [98] Let f € Vo (F;y). Then Lc(f) € Va(F;6 (}/)) where

(2+}/)(c+2)(1—b1)—2(0+ 1)[(1—}/) —(1+)/)bl]
5(y)=
(2+7)(c+2)A+b)+(c+D)[(1-y)-(1+7)b1]
The result is sharp.

6.2 On the order of convolution consistence of the harmonic

functions with varying arguments

Let us consider the integral operator (for the analytic case see [21], [14], [106])
IS f €Va(F,y) = Va(F,y),s € R, such that
o0

(6.13) Ff)=9F%|z+ Z amz™+ Z bpzm|=2z+ Z —szm+ — 2"
m=2 m=1 m=21M m=1mM
Definition 6.3. The modified Hadamard product or ®-convolution of two functions f1 and f2 in

V4 of the form

o0 o0 o0 o0
(6.14) fix)=z+ Z a1mz™ + Z b1mz™ and fo(z) =z + Z agmz™ + Z ba,mz™

m=2 m=1 m=2 m=1

is the function (f ® g) defined as

(fi®f)2)=2— ) aimaosmz™+ ) bimbamz™.

m=2 m=1

We note that (f ® g) also belongs to 7.

Definition 6.4. ([21], [107]) Let &,% and Z be subsets of 7 (F;y). We say that the three
(X ,%,Z) is Sg-closed under the convolution if there exists a number Sg(%,%,Z) such that

(6.15) Se(%, ¥, Z)=min{seR: I(fog)e ZVNf e X VgeW}

The number Sg(X,%,Z) is called the order of ®-convolution consistence of the three
(X, % ,%F)

U. Bednarz and J. Sokol in [21] obtained the order of convolution consistence concerning
certain classes of univalent functions (starlike, convex, uniform-starlike or uniform-convex
functions) and in [107] it is obtained the order of ®-convolution consistence for certain classes
of analytic functions with negative coefficients. In this paper we obtain similar results, but
concerning the class 7 (F';y) and for ®-convolution.

Let denote by WJlf(F ;7) the subset of 7(F';y) consisting of functions of the form (6.2) which
satisfy |la, | <1,|b,|<1,Vm = 2.
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6.3. AUNIFIED CLASS OF HARMONIC FUNCTIONS WITH VARYING ARGUMENT OF
COEFFICIENTS

Theorem 6.4. [97] Let f1,f2 be two functions in let,(F;y) of the form (6.1); then (f1 ® f2)also
belongs to V‘]lf(F 3Y)-

1—
Remark 6.1. [97] Let the function F = Fp,,,(mq = 2) be of the form (6.11) with C,,, = —Y; then

mo =Yy
if
(6.16) A@=f@)=2- o
Co
1=y

mo-—Yy

then the condition (6.12) for f1 becomes (|a1,m0| + |b1,m0 |) Cm, =1 and similar for fo and

this shows that f1, fe belong to VJ;(F,,LO;)/). For the function (f1 ® f2) we have

mo—Yy
1-y

mo—y 1 (1-y)?
(sl lezm |+ osmbaml) m = 52T o (S oy =1
and this imply that also (f1® f2) € lef(FmO;)/). This shows that the result in Theorem 6.4 is sharp
when F =Fp, ,(mg =2).

Corollary 6.1. [97] The order of ®-convolution consistence for the classes V}f(Fmo;y) is
(6.17) So (Vi Frmos 1),V ipFrmgs 1), Vap(F g3 1)) = 0

Theorem 6.5. [97] Let f € lef)(F;)fl), fo € VJ:;(F;}/Q) be two functions of the form (6.1) then
(f1® f2) belongs to V(yltfy(F;y*), where

. (2+r1)(2+y2)A-b11ba ) -2[(1-y1) (1-v2)— (1 +y1) (1 +7y2)b11ba1] .
T T ) @) At braba D + [(1-y1) (L-y2) — (L+71) (L+72) bribar] 4

1-b11b21— (l + 51,152,1) (]/1 + 7’2) >0

or v = (2-71)(2-72) A -b11bo ) —2[(1—vy1) (1 —y2) — (L +7y1) (1 +72)b1,1b2,1] if
Y (2-711)(2=7y2) A+ b11b21)— [(1—71) (L—y2) - (L +71) (L +72) b1,1b21]

1-b11b21—(1+b1,1b21)(y1+72) <O.

6.3 A unified class of harmonic functions with varying

argument of coefficients
Let £, A and B be real parameters such that
k=0,0<B=<land —-1<A<B.

Also let ¢, ¢ € #. Motivated by J.Dziok [35] ,we denote by # (¢,p;A,B;k), 0 <B <1 the class
of functions f € # such that
((p*f)(z)?f(),z€U\{0}
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CHAPTER 6. HARMONIC FUNCTIONS

and
(p*f)(2) ‘((b*f)(z) ‘ 1-AB| B-A
(6.18) ‘((p*f)(z) k ((p*f)(z) B2 <1_B2 (zeU).
If B=1, then we have
(6.19) m((‘/’*f)(Z))—k’(‘P*f)(z)—1’>1+A (zel).
(@*f)@ (p*f)(2) 2

Let us define
WY z0 (0, 0;A,B;k) := Wae (¢, 0;A,B;k) N Ve

We assume that ¢ and ¢ are the functions of the following forms:

o0 oo o0 o0
(6.20) p)=z+ Z cmz™ + Z dmz™ and ¢p(z)=z+ Z emz™+ Z fmz™
m=2 m=1 m=2 m=1
where
(6.21) O<cp<e, and 0=d, <fnm.

Theorem 6.6. [74] Let 0<B<1, -1<A<Band (p*f)(2)#0,2€ U\{0}. If

(6.22) Y (lamlam+ 16y Bm)<B-A

m=2

then f € W (P, 9;A,B; k) where
am=(k+1)(1+B)ey+[(B-A)—(E+1)(1+B)lcnm,
Bm=Fk+1)A+B)frn+[(B-A)—(k+1)(1+B)ldp.

Theorem 6.7. [74] Let f be a function of the form (6.2) satisfying the argument property (6.5).
Then f € WV 7 (¢p,p;A,B;k) if and only if condition (6.22) holds true.

Corollary 6.2. [74] If a function [ of the form (6.2) belongs to the class WV ((/),(p;A,B;k), then

B-A B-A
b |b7‘)'1,|S ﬂ ’ (m€{2a3a"~})

Am m

(6.23) lan|<

where a, and B, are defined by (6.22). The result is sharp and the extremal functions are

B-A .
(6.24) fl,m =z — —el(l_m)ézm’
Am
and
B-A . .
(6.25) fom=2+ ﬁ—e““’"’“z’”, me{2,3,-}.
m
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Theorem 6.8. [74] Let f be a function in the class W'V (¢),<p;A,B ;k) then

(1+1b1)r— B-4 r?<|f(2)l <
W B+ DA +B)eg—co)+(B-A)cy =

B-A >
(k+1)(1+B)(ez—ca)+(B-A)cs

(6.26) <(A+1b1)r+
where ag < &y, P2 < PBm (M eN\{1}).

Theorem 6.9. [74] Let 0 < a <1 and ap and B be defined by (6.22). Then

R;(W”//Jf(¢,(p;A,B;k))—znf(B imin{ An_ P })m

m=>2 m—a m+a

Theorem 6.10. [74] Let 0 < a < 1 and ap and By, be defined by (6.22). Then

1

RS (7/7/”(¢,¢;A,B;k))—mf(3 Amin{ Am ’ Bm })ml

m=2 mm—-a) m(m+a)

Theorem 6.11. [74] If f,F € WV 7 (¢,0;A,B;k) and lam|,1bm!|,|Am|,|Bpl €[0,1] then f «F e
WY e (b, 0;A,B;k).

Theorem 6.12. [74] Let f € W'V s (p,p;A,B;k). Then L)WV 7 (p,p;A*,B;k)
where A* =min{A],A}} > A,
B-A)Ek+1)A+B)(c+1)(em—cm)
B-AY(m-Decp+Ek+1DA+B)(c+m)(em—cm)
B-A)k+1)A+B)(c+1D(frm—dm)
B-A)Ym-1)d,+(k+1)A+B)(c+m)(fm —dm)’
Theorem 6.13. [74] Let f € W'V s (p,p;A,B;k). Then L)WV 7 (¢, p;A,B*;k) where
B* =min{B],B;} <B,

Al=B-

A} =B-

(B-A)k+1)(1+A)(c+1(em—cm)
(B-A)m -1y +(k+1)(en—cn)(1+B)(c+m)—(c+1)(B-A)
N B-A)k+1)A+A)(c+D(fm—dm)
(B-A)(m—1dm +(k+1)(fm —dm)(1+B)(c+m)—(c+1)(B-A)]

Bi=A+

By=A

6.4 Generalizations of starlike harmonic functions defined by

Salagean and Ruscheweyh derivative

We denote with .Z" the operator defined in Definition 1.12.
We consider the linear operator £, : # — 7 defined for a function
f=h+geHby L% f:=2L7 h+(-1)"2" g. For a function f € # of the form (6.1), we have

L@ =2+Y [ynk,n, M)+ (1-7) plk,n)] apz® +(=1" Y [yn(k,n, )+ (1-7) u(k,n)] 042",z €U,
k=2 k=2

(n+k-1)

where n(k,n,A)=[1+(k-1)A)" and u(k,n)= A=
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Definition 6.5. For —-B<A<B<1land neNletS "-(A,B) denote the class of functions f € #
such that

L) - L0 f (2)

(6.27)
BZLI f(2) - AL f(2)

<1l (zel).

Remark 6.2. Dziok et al. studied the case y =0 in [33] while the case y =1 and A =1 was studied
in [34].

Note that the classes §f’7£(A,B) for the analytic case, i.e. g =0, were introduced by Janowski
[50]. Jahangiri [47], [48] and Silverman [113] studied the classes S;Lo(a) = gg?(Za -1,1) and
ng(a) = §(1]f(2a —1,1) for the harmonic case.

Theorem 6.14. [84] A function f € A of the form (6.1) belongs to the class §;%(A,B) if

(6.28) Y (aklakl+Brlbrl) <B-A,
k=2

where
ar=0(A,B,n,y,A,k)+0(1,1,n,y,A,k),

By = 6(A,B,n,y,7t,k) +6(1,1,n,)/,/1,k),
B-A)n+Bk-A
n+1

B+A)n+Bk+A
n+1 '

o(A,B,n,y,,k)=yn(k,n,)[(k—1)AB+B—-Al+(1-y)uk,n)

b

6(A,B,n,y, A k) =yn(k,n,)[(k—1)AB+B+Al+(1—y)u(k,n)

Theorem 6.15. [84]If f € §;€(A,B) then f € A,.

Let .4 denote the class of functions f = A + g € A of the form (see [113])
(6.29) f@)=2z=Y laplz® +(-D" Y 16,125,
k=2 k=2

and let denote by §%W(A,B) the class A nng(A,B).

Theorem 6.16. [84] Let f = h + g be defined by (6.29). Then f € §§€W(A,B) if and only if the
condition (6.28) holds true.

Definition 6.6. We say that a class & is convex if nf +(1-n)g € & for all f and g in & and
0 <n < 1. The closed convex hull of &, denoted by co%, is the intersection of all closed convex

subsets of # (with respect to the topology of locally uniform convergence) that contain %.

Definition 6.7. Let & be a convex set. A function f € & c A is called an extreme point of & if
f =nf1+Q-n)fs implies f1 = fo = f for all f1 and f2 in & and 0 <7 < 1. We shall use the notation
EZ to denote the set of all extreme points of &. It is clear that E&# < &.
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Lemma 6.1. [33], [34] Let & be a non-empty compact convex subclass of the class A and

Z : H — R be a real-valued, continuous, and convex functional on &. Then

max{j(f):feg;}=max{j(f):f€E9}

If # is a complete metric space, we can use Montel’s theorem [63].

Lemma 6.2. [33], [34] A class & < F is compact if and only if & is closed and locally uniformly
bounded.

Theorem 6.17. [84] The class g%W(A,B) is a convex and compact subset of F.

Theorem 6.18. [84] The set of extreme points of the class S Yoy (A,B)is
ES", (A,B)={h:keN}U{gr:k€(2,3,..}}

B-A
hi=z, hp2)=2z- zk,
ar
B-A
(6.30) grz)=z+(-1)" ¢ (zeU,ke{2,3,..})
k

If the class & = {f} € & : k € N} is locally uniformly bounded, then its closed convex hull is

COF = { Y nefr: Y mr=1np=0(k€ N)}-
k=1 k=1
Corollary 6.3. [84] Let hj,, gy, be defined by (6.30), then
§%W(A,B) = { Z (nkhk +5kgk) : Z (T]k +5k) =1,01=0,np,0,=20(k € N)}
k=1 k=1

For each fixed value of 2 € N,z € U, the following real-valued functionals are continuous and

convex on J£:

() =1arl, 7 () =1bel, £ (D) = If @, ()= | Lo, @) (f € 7),

The real-valued functional

1 r2n oy 1y
f(f)z(%f |Frei®)| d@) (fe#,y=1,0<r<1)
0

is continuous on . For y = 1 it is also convex on # (Minkowski’s inequality).

Corollary 6.4. [84] Let f €S’ "o y(A,B) be a function of the form (6.29). Then

B-A B-A
, bl =

lagl =< (k=2,3,..)

ar
where ay, By, are defined by (6.28). The result is sharp. The extremal functions are hy,gp, of the
form (6.30).
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Theorem 6.19. [84] Let [ € g}fﬂ(A,B) and |z| =r <1. Then

r2< If(2)l<r+ _Ar2

a2 a2

po oA AD Q=N D s ) gn oy <y

B-A)[yAL+1)"+(1-y)(n+1)]

a2 a2

The result is sharp. The extremal functions are hg of the form (6.30).

Corollary 6.5. [84]If f € §;£W(A,B) then U (r)c f (U(r)) where

B-A
a2

r=1-

and
Ur)y={zeC:lzl<r=<1}.

Corollary 6.6. [84] Let 0<r <1and ¢ = 1. If f € 8%, ,(A,B) then

1 2 € 1 2m . £

5 ). f(relg)| des%fo |h2(re19)(‘d9,
! 2”.,%’3 (re®)| do < 1f2n,,§fkh( i9)£d9(§—12 )
%0 Jffre ‘ =on Jo aohalre ‘ =1,2,...).

Theorem 6.20. [84] Let 0 < a <1 and ap and B be defined by (6.28). Then

1
* (Qn _ . 1-a . ap :Bk })kl
Ra(S”W(A’B))‘lk’;’;(B—Amm{k—a’km

Similarly, we get:

Theorem 6.21. [84] Let 0 < a <1 and ap and Bj be defined by (6.28). Then

o _o(l-a o a B })
R, (SJ‘K/V(A’B)) = Lkrg; (B_Amln{k(k—a)’k(k+a) .

Theorem 6.22. [84] Let f € S (A,B). Then Z(f)€ S",(A,B).
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