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Chapter 1

Introduction

The geometric function theory is an apart branch of the complex analysis which stud-

ies the geometric properties of analytic functions. The foundations of this theory can

be traced back to the beginning of the 20th century with the appearance of the papers

written by P. Koebe [52], T. H. Gronwall [44], J. W. Alexander [7] and L. Bieberbach

[22]. In 1916 L. Bieberbach [22] enounced the famous conjecture, which bears his

name and which has led to the development of these theories. The most important

research methods was the parametric method of K. Löwner [55], the variational meth-

ods introduced by M. Schiffer [86] and G. M. Goluzin [41], the integral representation

method introduced by G. Herglotz [47], the duality principle for convolutions, devel-

oped by S. Ruscheweyh [80], the differential subordination method, developed by S.S.

Miller and P.T. Mocanu. In 1984 the Bieberbach conjecture was finally proved by

Louis de Branges [26], using the Löwner’s parametric method.

In the geometric theory of analytic functions, univalent functions plays an impor-

tant role. It is well-known that a holomorphic function it’s said to be univalent in a

domain D, if any of its values are taken once in D.

The most important romanian contributor to the development of this theory is

P. T. Mocanu, who created together with S. S. Miller a new study method, the

differential subordination method [58]. This method has an important role in the

more simpler demonstration of some classical results and also in obtaining much new

results. This method is presented detailed in Chapter 4 of the present thesis.

In the last decade the theory of univalent functions had a fast development and

new research directions have emerged. In the papers [78], [82], [4], [48], [3] there

was introduced the Ruscheweyh differential operator, the Sălăgean differential oper-

ator, the Hadamard product of the extended generalized Sălăgean operator and the

extended Ruscheweyh operator, the q-differential operator and the Al-Oboudi differ-

ential operator. In [82] and [64] there was introduced the Sălăgean integral operator
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and the Noor integral operator. Using this differential and integral operators many

classes of analytic functions were generalized and new classes were also introduced.

An other new direction in the geometric function theory is the determination of

the radius of starlikeness, convexity and uniform convexity for some special functions.

For example in [18] Á. Baricz, P. A. Kupán and R. Szász have determined the radius

of starlikeness of the normalized Bessel functions of the first kind for three different

kinds of normalization. In [17] Á. Baricz and R. Szász have determined the radius of

convexity for three kinds of normalized Bessel functions of the first kind. In [27] E.

Deniz and R. Szász have determined the radius of uniform convexity for three kinds

of normalized Bessel functions of the first kind.

This thesis contains eight chapters and a bibliography with 103 titles. The aim of

the thesis is to investigate the geometric properties of some newly introduced analytic

classes of functions and of some special functions also. In the followings each chapter

is summarized, highlighting the author contributions to the thesis.

In Chapter 1 there is presented the historical background of the geometric func-

tion theory.

Chapter 2 is dedicated to basic notations and preliminary results from geometric

function theory. The chapter contains three sections. In the first section there is

presented some basic concepts from the univalent function theory. For example there

are presented the H[a, n], An and S classes, where a ∈ C and n ∈ N∗. There

is also defined the class of functions with negative coefficients and the Hadamard

product of two analytic function. Further we recall five types of differential operators,

introduced by Ruscheweyh, Sălăgean, Alb Lupaş, Al-Oboudi and Jackson. After

that we present two type of integral operator, introduced by Sălăgean and Noor.

Then by the convolution of the Sălăgean and Noor integral operators, we define the

Noor-Sălăgean integral operator. The following section deals with the subordination

principle. Some properties of the subordination relation is also recalled.

Finally, the aim of the last section is to present some special classes of analytic

functions and to recall some analytic characterizations for these, with the addition of

the author results. Two new classes of analytic functions there are also introduced.

In [32] and [31] for example there is proved that, these classes, namely S∗∗ and S∗∗∗,

has the property that the composition of each two functions from S∗∗ and S∗∗∗ is

starlike, in a disk where the composition is defined. The class S∗∗∗ for functions with

negative coefficients is also defined, followed by the coefficient delimitation theorem

for this class. This section also contains a new starlike condition, given in Lemma
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2.3.1.1, a sharp version of a strongly starlikeness condition, given in Theorem 2.3.2.2

and some consequences of these results can we also found in this sections.

In Chapter 3 there are given some new classes of analytic functions with vary-

ing arguments defined by the Ruscheweyh and by the convolution of the Sălăgean

and Ruscheweyh differential operators. There are derived some new results for these

classes of analytic functions. The properties of the image of these new classes of ana-

lytic functions through the generalized Bernardi-Libera-Livingston integral operator

are also studied.

The Chapter 4 focuses on the differential subordination technique. The first

two sections of this chapters deal with the theory of this method, introduced by

P. T. Mocanu and S. S. Miller, followed by the third section, which presents some

applications for the differential subordination method. In this section, using the

differential subordination method, for example there is shown that S∗∗ ⊂ S∗ and

S∗∗∗ ⊂ K, where S∗ and K denotes the classes of starlike and convex functions.

Besides, for example there is proved also that if f, g ∈ S∗, then f ◦ g is starlike in

U(r0), where r0 = sup{r ∈ (0, 1] | g(U(r)) ⊂ U}.
In Chapter 5 using the q-difference operator, the Noor-Sălăgean and the Sălăgean

integral operators there are introduced the UCCq(γ), CNS(α) and Q1(m,λ,A,B)

classes. Some geometric properties of these classes are also investigated. The author

original contribution in this chapter can be found in the papers [33], [34] and [37].

Chapter 6 is devoted to the presentation of some sufficient conditions regarding

to the Mittag-Leffler function. The first section deals with the presentation of the

Mittag-Leffler and the generalized Mittag-Leffler function. After that, in the second

section there is given some sufficient conditions, so that the generalized Mittag-Leffler

function to be in the classes S∗, K, Sp, UCV , k−Sp(γ), k−UCV(γ), k−Sp(λ, γ) and

k − UCV(λ, γ), where k ≥ 0 and γ, λ ∈ [0, 1).

Chapter 7 is splitted in three sections and there are given some results in con-

nection with integral operators. For example, in Theorem 7.1.1 we give an γ order

starlikeness condition for the F (z) =

z∫
0

f(t)dt integral operator, where z ∈ U. In the

next two sections we investigate the properties of the images of the classes UCCq(g, γ),

CNS(α), S∗∗, S∗∗∗ and TS∗∗∗ trough the Bernardi integral operator and the gener-

alized Bernardi-Libera-Livingston integral operator. Theorem 7.2.1, Theorem 7.2.2,

Theorem 7.3.1, Theorem 7.3.2 and Theorem 7.3.3 justify the preserving properties

of the Bernardi and the generalized Bernardi-Libera-Livingston integral operators,

defined on these classes of functions.
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Chapter 8 treats some radius problems for two orthogonal polynomials. In the

first section we recall the generalized Laguerre polynomials and some well-known

properties of this. Then in the following section we determine the radius of starlike-

ness and convexity of order β and the radius of uniform convexity of the normalized

Laguerre polynomials, where 0 ≤ β < 1. Finally, in Example 8.2.1 there is calculated

the radius of convexity for the second order Laguerre polynomials. The third section

presents the Legendre polynomials. Some related results there are also recalled, fol-

lowed by the last section, in which there are determined the radius of starlikeness of

order β, the radius of convexity of order β and the radius of uniform convexity of

the normalized Legendre polynomials of odd degree, where 0 ≤ β < 1. The results

presented in this section can we found in [24].

The original results presented in the thesis, are contained in the following papers:

1. O. Engel, Á.O. Páll-Szabó, P.A. Kupán, About the radius of convexity of some

analytic functions, Creat. Math. and Inf., 24(2), 155–161, 2015.

2. O. Engel, R. Szász, On a subclass of convex functions, Stud. Univ. Babeş-

Bolyai Math., 59(2), 137–146, 2016.

3. O. Engel, On the composition of two starlike functions, Acta Univ. Apulensis,

48, 47–53, 2016.

4. O. Engel, On a class of analytic functions defined by the Sălăgean integral

operator, An. Univ. Oradea fasc. Mat., 24(2), 9–14, 2017.

5. O. Engel, C. Naicu, About a generalized class of close-to-convex functions

defined by the q-difference operator, Scient. Bull. of the ”Petru Maior” Univ.

of Târgu Mureş, 13(1), 30–34, 2016.

6. O. Engel, Y.L. Chung, About a class of analytic functions defined by Noor-

Sălăgean integral operator, J. Math. and Appl., 39, 59–67, 2016.

7. O. Engel, Á.O. Páll-Szabó, The radius of convexity of particular functions

and applications to the study of a second order differential subordination, J.

Contemp. Math. Anal., 52(3), 111–120, 2017.

8. Á.O. Páll-Szabó, O. Engel, E. Szatmári, Certain class of analytic functions

with varying arguments defined by the convolution of Sălăgean and Ruscheweyh

derivative, Acta Univ. Apulensis, 51, 61–74, 2017.
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9. Á.O. Páll-Szabó, O. Engel, Properties of certain class of analytic functions with

varying arguments defined by Ruscheweyh derivative, Acta Univ. Sapientiae,

7(2), 278–286, 2015.

10. O. Engel, A.R. Juma, The sharp version of a strongly starlikeness condition,

Acta Univ. Sapientiae, accepted paper.

11. O. Engel, G. Murugusundaramoorthy, R. Szász, The radius of starlikeness,

convexity and uniform convexity of the normalized Laguerre polynomials, sub-

mitted paper.

12. O. Engel, Y.L. Chung, Certain properties of the generalized Mittag-Leffler

function, submitted paper.

13. O. Engel, Á.O. Páll-Szabó, Preserving properties of the generalized Bernardi-

Libera-Livingston integral operator defined on some subclasses of starlike func-

tions, Konuralp J. Math., 5(2), 207–215, 2017.

14. S. Bulut, O. Engel, The radius of starlikeness, convexity and uniform convexity

of the Legendre polynomials of odd degree, submitted paper.

A part of the original results, proved in the thesis, were presented at the following

international conferences:

1. 5th International Conference on Mathematics and Informatics, September 2-4,

2015, Târgu-Mureş.

2. International Conference on Theory and Applications of Mathematics and In-

formatics (ICTAMI 2015), September 17-20, 2015, Alba Iulia.

3. International Conference On Sciences, May 13-14, 2016, Oradea.

4. The 15th International Conference On Applied Mathematics and Computer

Science, July 5-7, 2016, Cluj-Napoca.

5. 6th Internation Conference on Mathematics and informatics, September 7-9,

2017, Târgu-Mureş.
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Chapter 2

Univalent functions in the complex
plane

2.1 Basic notations and definitions

Let U(r) = {z ∈ C : |z| < r} be a disk in the complex plane C, centered at zero and

we note by

U = U(1) = {z ∈ C : |z| < 1}

the open unit disk.

Let denote by H(U(r)) the set of all holomorphic functions in a domain U(r).

For n ∈ N∗ and a ∈ C we consider the following classes

H[a, n] = {f ∈ H(U) : f(z) = a+ anz
n + an+1z

n+1 + ...}

and

An = {f ∈ H(U) : f(z) = z + an+1z
n+1 + an+2z

n+2 + ...}.

We remark that A = A1.

Univalent functions plays an important role in the geometric function theory. A

holomorphic function on an open subset of the complex plane is called univalent if it

is injective. Let us denote by

S = {f ∈ A : f is univalent in U}

the class of univalent functions.

In [91] is introduced the class T ⊂ S, which contains functions of the form

f(z) = z −
∞∑
n=2

anz
n, an ≥ 0, z ∈ U. (2.1)
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A function f ∈ T is called a function with negative coefficients.

Let f, g ∈ A where

f(z) = z +
∞∑
n=2

anz
n (2.2)

and

g(z) = z +
∞∑
n=2

bnz
n. (2.3)

The convolution or the Hadamard product of f and g is given by

(f ∗ g)(z) = z +
∞∑
n=2

anbnz
n.

In [78] Ruscheweyh defined the derivative Dγ : A → A by

Dγf(z) =
z

(1− z)γ+1
∗ f(z),

where γ > −1. In the particular case m ∈ N0 = {0, 1, 2, ...}

Dmf(z) =
z(zm−1f(z))(m)

m!
. (2.4)

It is easily seen that

D0f(z) = f(z),

D1f(z) = zf ′(z)

and

Dmf(z) = z +
∞∑
n=2

δ(m,n)anz
n,

where δ(m,n) = Cm
m+n−1.

In [82] Sălăgean defined the Dm differential operator. For m positive integer the

Dm : A → A operator is given by

D0f(z) = f(z),

D1f(z) = Df(z) = zf ′(z)

and
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Dmf(z) = D(Dm−1f(z)).

It is easily seen that for f ∈ A and of the form (2.2)

Dmf(z) = z +
∞∑
n=2

nmanz
n.

Let m ∈ N0. Denote by DDm the operator given by the Hadamard product

(convolution) of the Sălăgean operator Dm and the Ruscheweyh operator Dm,

DDm : A → A
DDmf(z) = Dm

(
z

1− z

)
∗Dmf(z), z ∈ U.

If f ∈ A, f(z) = z +
∞∑
n=2

anz
n, then

DDmf(z) = z +
∞∑
n=2

Cm
m+n−1n

manz
n. (2.5)

For a function f ∈ A, λ ≥ 0 and m ∈ N∪{0}, the Al-Oboudi differential operator

Dm
λ is defined by [3]

D0f(z) = f(z),

D1
λf(z) = (1− λ)f(z) + λzf ′(z) = Dλf(z),

Dm
λ f(z) = Dλ(D

m−1
λ f(z)), z ∈ U.

If f has the form (2.2) then we have

Dm
λ f(z) = z +

∞∑
n=2

[1 + (n− 1)λ]manz
n.

For λ = 1 the Dm
λ differential operator reduces to the Sălăgean differential operator.

For f ∈ A and 0 < q < 1, the q-derivative of the function f is defined by

Dqf(z) =
f(qz)− f(z)

(q − 1)z
, (2.6)

where z 6= 0 and Dqf(0) = f ′(0).

From (2.6) we can deduce that

Dqf(z) = 1 +
∞∑
n=2

1− qn

1− q
anz

n−1,

where z 6= 0.

For f ∈ H(U), f(0) = 0 and n ∈ N0 = N ∪ {0}, the InS Sălăgean integral operator

is defined as follows [82]:
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(i) I0
Sf(z) = f(z),

(ii) I1
Sf(z) = If(z) =

z∫
0

f(t)t−1dt,

(iii) InSf(z) = IS(In−1
S f(z)).

If f has the form (2.1), then

InSf(z) = z −
∞∑
j=2

aj
jn
zj, (2.7)

where n ∈ N0.

In [64] Noor defined an integral operator InN : A → A as follows

InNf(z) =
n+ 1

zn

z∫
0

tn−1InN(f(t))dt, (2.8)

where n ∈ N0.

We remark that if f has the form (2.1), then

InNf(z) = z −
∞∑
j=2

aj
C(n, j)

zj, (2.9)

where C(n, j) =
(n+ j − 1)!

n!(j − 1)!
.

If f(z) = z−
∞∑
j=2

ajz
j, aj ≥ 0, using the Noor and Sălăgean integral operators, we

define a new operator as follows [34]:

InNSf(z) = InNf(z) ∗ InSf(z) = z −
∞∑
j=2

a2
j

jnC(n, j)
zj, (2.10)

where C(n, j) =
(n+ j − 1)!

n!(j − 1)!
and n ∈ N0.

2.2 Subordination. The Carathéodory class

Definition 2.2.1. [58][61] Let f and g be analytic functions in U. We say that func-

tion f is subordinate to the function g, if there exist a function w, which is analytic

in U and for which w(0) = 0, |w(z)| < 1 for z ∈ U, such that f(z) = g[w(z)], for all

z ∈ U.

We denote by ≺ the subordination relation.
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The subordination relation has the following properties [61]. For f, g ∈ H(U) we

have:

1) If f ≺ g, then f(0) = g(0) and f(U) ⊆ g(U).

2) If f ≺ g, then f(U(r)) ⊆ g(U(r)), r < 1. Equality holds if and only if f(z) =

g(λz), |λ| = 1.

3) If f ≺ g, then max{|f(z)| : |z| ≤ r} ≤ {max |g(z)| : |z| ≤ r}, r < 1. Equality

holds if and only if f(z) = g(λz), |λ| = 1.

4) If f ≺ g, then |f ′(0)| ≤ |g′(0)|. Equality holds if and only if f(z) = g(λz),

|λ| = 1.

5) If g is univalent, f(0) = g(0) and f(U) ⊂ g(U), then f ≺ g.

The Carathéodory class of functions:

P =

{
p ∈ H(U) : p(z) ≺ 1 + z

1− z

}
.

Theorem 2.2.1. (Carathéodory)[61] If p(z) = 1 + p1z + p2z
2 + ... + pnz

n + ...

belongs to the class P, then |pn| ≤ 2, where n ≥ 1. Equality holds for the function

p(z) =
1 + λz

1− λz
, |λ| = 1.

2.3 Special classes of univalent functions

2.3.1 Starlike functions

Definition 2.3.1.1. [58, 61] Let f ∈ H(U) and f(0) = 0. We say that f is starlike

in U with respect to the origin, if the function f is univalent in U and f(U) is a

starlike domain with respect to origin.

The class of starlike functions is denoted by S∗.

The analytic characterization of starlike functions is given in the following theorem.

Theorem 2.3.1.1. [58, 61] Let f ∈ A. The function f is starlike if and only if

<zf
′(z)

f(z)
> 0, z ∈ U.

Definition 2.3.1.2. [58, 61] Let 0 ≤ γ < 1. We say that f ∈ A is starlike of order

γ, if and only if

<zf
′(z)

f(z)
> γ, z ∈ U.
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The class of starlike functions of order γ is denoted by S∗(γ).

Theorem 2.3.1.2. [87] For f ∈ T the followings are equivalent:

(i)
∞∑
j=2

jaj ≤ 1,

(ii) f ∈ T ∩ S,

(iii) f ∈ T ∗, where T ∗ = T ∩ S∗.

Lemma 2.3.1.1. [38] Let γ ∈ [0, 1), T ∈ R and let the function hT be defined by the

power series

hT (z) = z +
∞∑
n=2

n− γ + iT

1− γ + iT
zn.

The function f(z) = z +
∞∑
n=2

anz
n is starlike of order γ in U if and only if

f(z)

z
∗ hT (z)

z
6= 0, for all z ∈ U and for all T ∈ R.

Proof. Since <zf
′(z)

f(z)

∣∣∣
z=0

= 1 > γ > 0, it follows that the condition

<zf
′(z)

f(z)
> γ, z ∈ U

is equivalent to

zf ′(z)

f(z)
− γ 6= −iT, for all z ∈ U and T ∈ R.

This can be rewritten as

1 +
∞∑
n=2

annz
n−1 − (γ − iT )

(
1 +

∞∑
n=2

anz
n−1

)
6= 0,

and finally we get

1 +
∞∑
n=2

an
n− γ + iT

1− γ + iT
zn−1 6= 0, for all z ∈ U and T ∈ R.

This condition is equivalent to

f(z)

z
∗ hT (z)

z
6= 0, for all z ∈ U, and for all T ∈ R.
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2.3.2 Strongly starlike functions

Definition 2.3.2.1. Let 0 ≤ γ < 1. We say that f ∈ A is strongly starlike of order

γ if and only if ∣∣∣∣arg
zf ′(z)

f(z)

∣∣∣∣ < γ
π

2
, z ∈ U.

The class of strongly starlike functions of order γ we denote by SS∗(γ).

In [88] H. Silverman studied the class Gb of functions where

Gb =

f ∈ A :

∣∣∣∣∣∣∣∣
1 +

zf ′′(z)

f ′(z)

zf ′(z)

f(z)

− 1

∣∣∣∣∣∣∣∣ < b, z ∈ U

 ,

for some positive b.

Theorem 2.3.2.1. [66] If the function f belongs to the class Gb(β) with

b(β) =
β√

(1− β)1−β(1 + β)1+β
,

where 0 < β ≤ 1, then f ∈ SS∗(β).

To prove the next results, we need the following lemma.

Lemma 2.3.2.1. [36] If f ∈ A, b ∈ [0, 1) and p(z) =
zf ′(z)

f(z)
, then the inequality∣∣∣∣zp′(z)

p2(z)

∣∣∣∣ < b, z ∈ U, (2.11)

implies that

p(z) ≺ 1

1− bz
.

The result is sharp.

In the following theorem is given the sharp version of Theorem 2.3.2.1.

Theorem 2.3.2.2. [36] If α ∈ (0, 1] and f ∈ Gb(α), where b(α) = sin
(
α
π

2

)
, then

f ∈ SS∗(α). The result is sharp.

Putting α = 1 in Theorem 2.3.2.2, we get the following starlikeness condition.

Corollary 2.3.2.1. [36] If f ∈ A and∣∣∣∣∣∣∣∣
1 +

zf ′′(z)

f ′(z)

zf ′(z)

f(z)

− 1

∣∣∣∣∣∣∣∣ < 1, z ∈ U,

then f ∈ S∗.
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For α =
1

2
, we get the the following condition.

Corollary 2.3.2.2. [36] If f ∈ A and∣∣∣∣∣∣∣∣
1 +

zf ′′(z)

f ′(z)

zf ′(z)

f(z)

− 1

∣∣∣∣∣∣∣∣ <
√

2

2
, z ∈ U,

then f ∈ SS∗
(

1

2

)
.

2.3.3 Janowski starlike functions

The class of Janowski starlike functions is defined in [49] and is denoted by S∗(A,B).

Let −1 ≤ B < A ≤ 1. The class S∗(A,B) is defined by the equality

S∗(A,B) =

{
f ∈ A :

zf ′(z)

f(z)
≺ 1 + Az

1 +Bz
, z ∈ U

}
.

Theorem 2.3.3.1. [93] Assume that −1 ≤ B < A ≤ 1 and b(1 + |A|)2 ≤ |A−B|. If

f ∈ Gb, then f ∈ S∗(A,B).

Theorem 2.3.3.2. [36] If f ∈ Gb and b(1+A−B+ |B|) < A−B, then f ∈ S∗(A,B).

If 0 ≤ B < A ≤1, then we get the following corollary.

Corollary 2.3.3.1. [36] Let 0 ≤ B < A ≤ 1 and b ∈ (0,+∞) such that b(1 + A) ≤
1 +B. If f ∈ Gb, then f ∈ S∗(A,B).

2.3.4 The S∗∗ class

Definition 2.3.4.1. [32] Let f ∈ A. We say that f ∈ S∗∗ if and only if∣∣∣∣1 +
zf ′′(z)

f ′(z)

∣∣∣∣ <
√

5

4
, z ∈ U.

The class S∗∗ is not empty. It is easily seen that if f(z) = z − z2

100
, then∣∣∣∣1 +

zf ′′(z)

f ′(z)

∣∣∣∣ =

∣∣∣∣100− 4z

100− 2z

∣∣∣∣ ≤ 104

98
<

√
5

4
, z ∈ U

and consequently f ∈ S∗∗.

Remark 2.3.4.1. [32] The class S∗∗ has the property that, the composition of each

two functions from S∗∗ is starlike on a disk where the composition is defined.
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2.3.5 The S∗∗∗ class

Definition 2.3.5.1. [31] Let f ∈ A. We say that f ∈ S∗∗∗ if and only if∣∣∣∣1− zf ′′(z)

f ′(z)

∣∣∣∣ <
√

5

4
, z ∈ U.

Remark 2.3.5.1. [31] The class S∗∗∗ has the property that, the composition of each

two functions from S∗∗∗ is starlike on a disk where the composition is defined.

In the followings we define the class S∗∗∗ for functions with negative coefficients.

Definition 2.3.5.2. [40] The function f ∈ T belongs to the class TS∗∗∗ = S∗∗∗∩T if∣∣∣∣∣1− zf ′′(z)

f ′(z)

∣∣∣∣∣ <
√

5

4
, z ∈ U.

Below is given a coefficient delimitation theorem for the class TS∗∗∗.

Theorem 2.3.5.1. [40] The function f ∈ T belongs to the class TS∗∗∗ if and only if

∞∑
j=2

j

(
j − 2 +

√
5

2

)
aj <

√
5

2
− 1. (2.12)

2.3.6 Parabolic starlike functions

In [76] Rønning defined the class of parabolic starlike functions by the following way:

Sp = {F ∈ S∗|F (z) = zf ′(z), f ∈ UCV}.

Definition 2.3.6.1. [9] The class Sp of parabolic starlike functions consists of func-

tions f ∈ A satisfying

<zf
′(z)

f(z)
>

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ , z ∈ U.
For −1 < γ ≤ 1 and k ≥ 0 a function f ∈ A is said to be in the class of k-parabolic

starlike functions of order γ, denoted by k − Sp(γ) if

<
(
zf ′(z)

f(z)
− γ
)
> k

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ , z ∈ U.
In [62] the authors generalized the class of k-parabolic starlike functions, of order

γ, for 0 ≤ γ < 1.

For 0 ≤ λ < 1, 0 ≤ γ < 1 and k ≥ 0 the function f ∈ A belongs to the class

k − Sp(λ, γ) if

<
{

zf ′(z)

(1− λ)f(z) + λzf ′(z)
− γ
}
> k

∣∣∣∣ zf ′(z)

(1− λ)f(z) + λzf ′(z)
− 1

∣∣∣∣ , z ∈ U. (2.13)

It is easily seen that, k − Sp(0, γ) = k − Sp(γ), k − Sp(0, 0) = k − Sp, where

0 ≤ γ < 1.
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2.3.7 Convex functions

Definition 2.3.7.1. [58, 61] A function f ∈ H(U) is convex in U, if the function f

is univalent in U and f(U) is a convex domain.

The class of convex functions is denoted by K.

The analytic characterization of convex functions is given in the below theorem.

Theorem 2.3.7.1. [58, 61] Let f ∈ A. Then the function f is convex if and only if

<
(
zf ′′(z)

f ′(z)
+ 1

)
> 0, z ∈ U.

Definition 2.3.7.2. [58, 61] Let 0 ≤ γ < 1. We say that f ∈ A is convex of order γ

if and only if

<
(
zf ′′(z)

f ′(z)
+ 1

)
> γ, z ∈ U.

The class of convex functions of order γ is denoted by K(γ).

2.3.8 Alpha convex functions

The class of alpha convex functions was introduced by P. T. Mocanu in 1969, to

create a relation between starlikeness and convexity.

Definition 2.3.8.1. [58, 61] Let f ∈ A and α a real number. Then the function f

is α convex if and only if

<J(α, f ; z) > 0,

where

J(α, f ; z) = (1− α)
zf ′(z)

f(z)
+ α

(
zf ′′(z)

f ′(z)
+ 1

)
.

We denote by Mα the class of alpha convex functions.

2.3.9 Close-to-convex functions

Theorem 2.3.9.1. [58, 61] The function f ∈ A is close-to-convex in U, if there exist

a starlike function g ∈ S∗ for which

<zf
′(z)

g(z)
> 0, z ∈ U.

The class of close-to-convex functions is denoted by C.
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2.3.10 Uniformly convex functions

In [42] Goodman defined the class of uniformly convex functions, denoted by UCV as

follows:

Definition 2.3.10.1. [42] A function f ∈ A is said to be uniformly convex in U if

f ∈ K and has the property that for every circular arc γ contained in U, with center

ζ, also in U, the arc f(γ) is convex.

Due to the analytic criterion for f ∈ UCV , given by Rønning [76]:

A function f ∈ A is uniformly convex in U if and only if

<
(

1 +
zf ′′(z)

f ′(z)

)
>

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ , z ∈ U. (2.14)

The class of k-uniformly convex functions was introduced by Kanas and Wis-

niowska [51], as a generalization of the uniform convexity. The class of k-uniformly

convex functions are denoted by k − UCV .

For −1 < γ ≤ 1 and k ≥ 0, a function f ∈ A is said to be in the class of k - uniformly

convex functions of order γ if

<
(

1 +
zf ′′(z)

f ′(z)
− γ
)
> k

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ , z ∈ U.
In [62] the authors generalized the class of k-uniformly convex functions, of order

γ, for 0 ≤ γ < 1.

For 0 ≤ λ < 1, 0 ≤ γ < 1 and k ≥ 0, the function f ∈ A belongs to the class

k − UCV(λ, γ) if

<
{
f ′(z) + zf ′′(z)

f ′(z) + λzf ′′(z)
− γ
}
> k

∣∣∣∣ f ′(z) + zf ′′(z)

f ′(z) + λzf ′(z)
− 1

∣∣∣∣ , z ∈ U. (2.15)

It is easily seen that, k − UCV(0, γ) = k − UCV(γ) and k − UCV(0, 0) = k − UCV ,

where 0 ≤ γ < 1.
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Chapter 3

New results on analytic functions
with varying arguments

3.1 Preliminary results

The following preliminary definitions and theorems are required for proving the main

results.

In [12] Attiya and Aouf, using the Ruscheweyh operator (2.4), had defined the

class Q(m,λ,A,B) by this way:

Definition 3.1.1. [12] For λ > 1;−1 ≤ A < B ≤ 1; 0 < B ≤ 1;m ∈ N0 let

Q(m,λ,A,B) denote the subclass of A which contain functions f(z) of the form (2.2)

such that

(1− λ)(Dmf(z))′ + λ(Dm+1f(z))′ ≺ 1 + Az

1 +Bz
. (3.1)

Definition 3.1.2. [72] For λ ≥ 0;−1 ≤ A < B ≤ 1; 0 < B ≤ 1;m ∈ N0 let

P (m,λ,A,B) denote the subclass of A which contain functions f(z) of the form (2.2)

such that

(1− λ)(DDmf(z))′ + λ(DDm+1f(z))′ ≺ 1 + Az

1 +Bz
. (3.2)

In 1981 H. Silverman has introduced the class of analytic functions with varying

arguments.

Definition 3.1.3. [89] A function f of the form (2.2) is said to be in the class V (θn)

if f ∈ A and arg(an) = θn, for all n ≥ 2. If further more there exist a real number δ

such that θn + (n − 1)δ ≡ π(mod 2π) for all n ≥ 2, then f is said to be in the class

V (θn, δ). The union of V (θn, δ) taken over all possible sequences {θn} and all possible

real numbers δ is denoted by V .
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Let V Q(m,λ,A,B) denote the subclass of V consisting of functions f ∈ Q(m,λ,A,B).

Let V P (m,λ,A,B) denote the subclass of V consisting of functions f ∈ P (m,λ,A,B).

Theorem 3.1.1. [29]Let the function f defined by (2.2) be in V. Then f ∈ V Q(m,λ,A,B),

if and only if

T (f) =
∞∑
n=2

nδ(m,n)Cn (1 +B) |an| ≤ (B − A)(m+ 1) (3.3)

where

δ(m,n) =

(
m+ n− 1

m

)
and Cn = m+ 1 + λ(n− 1).

The extremal functions are

fn(z) = z +
(B − A)(m+ 1)

nCnδ(m,n) (1 +B)
eiθnzn, (n ≥ 2).

Let I(z) = Lcf(z) =
c+ 1

zc

∫ z

0

f(t)tc−1dt, c > −1 be the generalized Bernardi-

Libera-Livingston integral operator.

Now we are able to enounce our main results.

3.2 Analytic functions with varying arguments de-

fined by the Ruscheweyh derivative

Let f, g ∈ A be two analytic functions of the forms (2.2) and (2.3). In this section

there are studied the properties of the image of a class of analytic functions with

varying arguments defined by the Ruscheweyh derivative (2.4) through the generalized

Bernardi-Libera-Livingston operator.

Theorem 3.2.1. [70] If f ∈ V Q(m,λ, 2α − 1, B), then Lcf ∈ V Q(m,λ, 2β − 1, B),

where

β = β(α) =
B + 1 + 2α(c+ 1)

2(c+ 2)
≥ α.

The result is sharp.

Theorem 3.2.2. [70] If f ∈ V Q(m,λ,A,B), then Lcf ∈ V Q(m,λ,A∗, B), where

A∗ =
B + A(c+ 1)

c+ 2
> A.

The result is sharp.

Theorem 3.2.3. [70] If f ∈ V Q(m,λ,A,B), then Lcf ∈ V Q(m,λ,A,B∗), where

B∗ =
A (1 +B) (c+ 2) + (B − A) (c+ 1)

(1 +B) (c+ 2)− (B − A) (c+ 1)
< B.

The result is sharp.
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3.3 Analytic functions with varying arguments de-

fined by the convolution of the Sălăgean and

Ruscheweyh derivative

In this section there are given some results for certain new class of analytic functions

with varying arguments, defined by the convolution of the Sălăgean and Ruscheweyh

derivative (2.5) and there are studied the properties of the image of this classes

through the generalized Bernardi-Libera-Livingston integral operator.

3.3.1 Coefficient estimates

Theorem 3.3.1.1. [72] Let the function f defined by (2.2) be in V. Then

f ∈ V P (m,λ,A,B), if and only if

T (f) =
∞∑
n=2

nm+1Cn (1 +B) |an| ≤ B − A, (3.4)

where

Cn = [m+ 1 + λ (n− 1) (m+ n+ 1)]
(m+ n− 1)!

(m+ 1)! (n− 1)!
.

The extremal functions are:

f(z) = z +
B − A

nm+1Cn (1 +B)
eiθnzn, (n ≥ 2).

Corollary 3.3.1.1. [72] Let the function f defined by (2.2) be in the class V P (m,λ,A,B).

Then

|an| ≤
B − A

nm+1Cn (1 +B)
, (n ≥ 2).

The condition (3.4) is sharp for the functions

f(z) = z +
B − A

nm+1Cn (1 +B)
eiθnzn, (n ≥ 2).

3.3.2 Distortion theorems

Theorem 3.3.2.1. [72] Let the function f defined by (2.2) be in the class V P (m,λ,A,B).

Then

|z| − B − A
2m+1C2 (1 +B)

|z|2 ≤ |f(z)| ≤ |z|+ B − A
2m+1C2 (1 +B)

|z|2 . (3.5)

The result is sharp.
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Corollary 3.3.2.1. [72]Let the function f defined by (2.2) be in the class V P (m,λ,A,B).

Then f ∈ U(0, r1), where r1 = 1 +
B − A

2m+1C2 (1 +B)
.

Theorem 3.3.2.2. [72] Let the function f defined by (2.2) be in the class V P (m,λ,A,B).

Then

1− B − A
2mC2 (1 +B)

|z| ≤ |f ′(z)| ≤ 1 +
B − A

2mC2 (1 +B)
|z| . (3.6)

The result is sharp.

Corollary 3.3.2.2. [72] Let the function f defined by (2.2) be in the class V P (m,λ,A,B).

Then f ′ ∈ U(0, r2), where r2 = 1 +
B − A

2mC2 (1 +B)
.

3.3.3 Extreme points

Theorem 3.3.3.1. [72] Let the function f defined by (2.2) be in the class V P (m,λ,A,B),

with arg(an) = θn where θn ≡ π,∀n ≥ 2 . Define

f1(z) = z

and

fn(z) = z − B − A
nm+1Cn (1 +B)

zn, (n ≥ 2; z ∈ U).

Then f ∈ V P (m,λ,A,B) if and only if f can expressed by

f(z) =
∞∑
n=1

µnfn(z), where µn ≥ 0 and
∞∑
n=1

µn = 1.

If we combine Theorem 3.3.3.1 with Silverman’s theorem from [89], we get the

following corollary:

Corollary 3.3.3.1. The closed convex hull of V P (m,λ,A,B) is

cl co V P (m,λ,A,B) =

{
f |f ∈ A,

∞∑
n=2

nm+1Cn(1 +B)|an| ≤ B − A

}
.

The extreme points of cl co V P (m,λ,A,B) are

E(cl co V P (m,λ,A,B)) =

{
z +

B − A
nm+1Cn(1 +B)

ξzn, |ξ| = 1, n ≥ 2

}
.
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Theorem 3.3.3.2. [72] Let

I(z) = Lcf(z) =
c+ 1

zc

∫ z

0

f(t)tc−1dt, c > −1.

If f ∈ V P (m,λ, 2α− 1, B), then I ∈ V P (m,λ, 2β − 1, B), where

β = β(α) =
B + 1 + 2α(c+ 1)

2(c+ 2)
≥ α.

The result is sharp.

Theorem 3.3.3.3. [72] If f ∈ V P (m,λ,A,B), then I ∈ V P (m,λ,A∗, B), where

A∗ =
B + A(c+ 1)

c+ 2
> A.

The result is sharp.

Theorem 3.3.3.4. [72] If f ∈ V P (m,λ,A,B), then I ∈ V P (m,λ,A,B∗), where

B∗ =
A(1 +B)(c+ 2) + (B − A)(c+ 1)

(1 +B)(c+ 2)− (B − A)(c+ 1)
< B.

The result is sharp.
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Chapter 4

The differential subordination
method

4.1 Basic definitions

Let Ω,∆ ⊂ C, p ∈ H(U) with p(0) = a, a ∈ C and let ψ : C3 × U → C. With the

differential subordination method there are studied problems of the form:

{ψ(p(z), zp′(z), z2p′′(z); z) : z ∈ U} ⊂ Ω⇒ p(U) ⊂ ∆. (4.1)

Definition 4.1.1. [59] Let ψ : C2 × U → C, p ∈ H[a, n] and h univalent in U. The

differential subordination of the form

ψ(p(z), zp′(z)) ≺ h(z)

is called a first-order differential subordination.

Definition 4.1.2. [61] Let ψ : C3 × U → C, p ∈ H[a, n] and h univalent in U. The

differential subordination of the form

ψ(p(z), zp′(z), z2p′′(z)) ≺ h(z) (4.2)

is called a second-order differential subordination and p is called an (a, n) - solution

of the differential subordination.

A particular differential subordination is the Briot-Bouquet differential subordi-

nation.

Definition 4.1.3. [58, 61] Let h be a univalent function in U, with h(0) = a, and let

p ∈ H[a, n] satisfy

p(z) +
zp′(z)

βp(z) + γ
≺ h(z), (4.3)

where β, γ ∈ C and β 6= 0. This first-order differential subordination is called the

Briot-Bouquet differential subordination.
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4.2 Basic lemmas

Definition 4.2.1. [61] Let Q be the class of analytic functions q in U which has the

property that are analytic and injective on U\E(q), where

E(q) = {ζ ∈ ∂U : lim
z−→ζ

q(z) =∞},

and are such that q′(ζ) 6= 0 for ζ ∈ ∂U\E(q).

Lemma 4.2.1. (S.S. Miller, P. T. Mocanu)[60, 61] Let q ∈ Q, with q(0) = a,

and let p(z) = a+ anz
n + . . . be analytic in U with p(z) 6≡ a and n ≥ 1. If p 6≺ q, then

there are two points z0 = r0e
iθ0 ∈ U and ζ0 ∈ ∂U\E(q), and a number m ≥ n ≥ 1,

for which p(Ur0) ⊂ q(U) and

(i) p(z0) = q(ζ0)

(ii) z0p
′(z0) = mζ0q

′(ζ0)

(iii) <z0p
′′(z0)

p′(z0)
+ 1 ≥ m<

[
ζ0q
′′(ζ0)

q′(ζ0)
+ 1

]
.

The following two lemmas are particular cases of Lemma 4.2.1. In the first case

q(U) is a disk and in the second case q(U) is a half-plane.

Lemma 4.2.2. [58, 61] Let p ∈ H[a, n], with p(z) 6≡ a and n ≥ 1. If z0 ∈ U and

|p(z0)| = max{|p(z)| : |z| ≤ |z0|},

then

(i)
z0p
′(z0)

p(z0)
≥ n

|p(z0)− a|2

|p(z0)|2 − |a|2
and

(ii) <z0p
′′(z0)

p′(z0)
+ 1 ≥ n

|p(z0)− a|2

|p(z0)|2 − |a|2
.

Lemma 4.2.3. [58, 61] Let p ∈ H[a, n], with p(z) 6≡ a and n ≥ 1. If z0 ∈ U, and

< p(z0) = min{< p(z) : |z| ≤ |z0|},

then

(i) z0p
′(z0) ≤ −n

2

|p(z0)− a|2

<[a− p(z0)]
and

(ii) <[z2
0p
′′(z0)] + z0p

′(z0) ≤ 0.

Lemma 4.2.4. [58](Hallenbeck and Ruscheweyh) Let h be a convex function with

h(0) ≡ a and let γ ∈ C∗ be a complex number with < γ ≥ 0. If p ∈ H[U] with

p(0) = a and

p(z) +
1

γ
zp′(z) ≺ h(z)
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then

p(z) ≺ g(z) ≺ h(z)

where

g(z) =
γ

nz
γ
n

z∫
0

h(t)t
γ
n
−1dt.

The function g is convex and is the best dominant.

Lemma 4.2.5. [59](Miller and Mocanu) Let g be a convex function in U and let

h(z) = g(z) + nαzg′(z),

where α > 0 and n is a positive integer. If p(z) = g(0) + pnz
n + ... is holomorphic in

U and

p(z) + αzp′(z) ≺ h(z),

then

p(z) ≺ g(z)

and the result is sharp.

4.3 Applications

The differential subordination method plays an important role in the study of func-

tions which are differentiable in complex sense. Using this method the geometric

properties of holomorphic functions can be established in a more simply way.

Theorem 4.3.1. [32] We have S∗∗ ⊂ S∗.

Theorem 4.3.2. [32] If f ∈ S∗∗, then

∣∣∣∣arg
zf ′(z)

f(z)

∣∣∣∣ < π

4
, z ∈ U.

Theorem 4.3.3. [32] If f ∈ S∗∗, then |arg f ′(z)| < π

4
, z ∈ U.

Using Theorem 4.3.2 and Theorem 4.3.3, now we are able to prove the following

result for composition of functions.

Theorem 4.3.4. [32] If f, g ∈ S∗∗ and r0 = sup{r ∈ (0, 1]
∣∣g(U(r)

)
⊂ U}, then f ◦ g

is starlike in U(r0).

Theorem 4.3.5. [31] If f ∈ A and∣∣∣∣1− zf ′′(z)

f ′(z)

∣∣∣∣ < √7, z ∈ U,

then it follows that f ∈ S∗.
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Remark 4.3.1. [31] The result of Theorem 4.3.5 shows that the inclusion S∗∗∗ ⊂ S∗

holds.

Using the differential subordination method we can easily proof that the class S∗∗∗

is a subclass of convex functions.

Theorem 4.3.6. [31] We have S∗∗∗ ⊂ K.

Theorem 4.3.7. [31] If f ∈ S∗∗∗, then

∣∣∣∣arg
zf ′(z)

f(z)

∣∣∣∣ < π

4
, z ∈ U.

Theorem 4.3.8. [31] If f ∈ S∗∗∗, then |arg f ′(z)| < π

4
, z ∈ U.

Next is proved the result regarding the composition of functions.

Theorem 4.3.9. [31] If f, g ∈ S∗∗∗ and r0 = sup{r ∈ (0, 1]
∣∣f (U(r)) ⊂ U}, then f ◦ g

will be starlike in U(r0).
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Chapter 5

New classes of analytic functions
defined by some differential and
integral operators

5.1 The class UCCq(γ)

In this section are given some generalizations of the class of close-to-convex functions,

in the case of functions with negative coefficients, using the q-difference operator,

defined by (2.6).

Definition 5.1.1. [33] A function f ∈ T is said to be in the generalized class of

close-to-convex functions of order γ, denoted by UCCq(γ), if

<zDqf(z)

g(z)
≥ γ,

where 0 ≤ γ < 1 and g ∈ T ∗.

Remark 5.1.1. [33] If γ = 0, then UCCq(0) = UCCq.

Definition 5.1.2. [33] A function f ∈ T is said to be in the generalized class of

close-to-convex functions of order γ, relative to a fixed function g ∈ T ∗, denoted by

UCCq(g, γ), if

<zDqf(z)

g(z)
≥ γ,

where 0 ≤ γ < 1.

Theorem 5.1.1. [33] Let f(z) = z −
∞∑
j=2

ajz
j, g(z) = z −

∞∑
j=2

bjz
j, g ∈ T ∗, where

aj, bj ≥ 0, j ∈ {2, 3, ..} and γ ∈ [0, 1).
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If f ∈ UCCq(g, γ), then

∞∑
j=2

(
1− qj

1− q
aj − γbj

)
< 1− γ. (5.1)

If
∞∑
j=2

[
1− qj

1− q
aj + (2− γ)bj

]
< 1− γ, (5.2)

then f ∈ UCCq(g, γ).

In the particular case when

1− qj

1− q
aj ≥ bj, j ∈ {2, 3, ..},

then (5.1) is necessary and sufficient condition for f to belong UCCq(g, γ).

Theorem 5.1.2. [33] Let f(z) = z −
∞∑
j=2

ajz
j, aj ≥ 0, j ∈ {2, 3, ...} and 0 ≤ γ < 1.

If f ∈ UCCq(γ), then there exist g ∈ T ∗, g(z) = z −
∞∑
j=2

bjz
j, such that

∞∑
j=2

(
1− qj

1− q
aj − γbj

)
< 1− γ. (5.3)

If
∞∑
j=2

1− qj

1− q
aj < 1− γ, (5.4)

then f ∈ UCCq(γ).

In the particular case when

1− qj

1− q
aj ≥ bj, j ∈ {2, 3, ...}

the inequality (5.3) implies that f ∈ UCCq(γ).

Remark 5.1.2. [33] When f2(z) = z− z2

1 + q
∈ UCCq(g2, γ), where g2(z) = z− z

2

2
∈

T ∗ we have

<zDqf2(z)

g2(z)
= < z(1− z)

z
(
1− z

2

) = 2<1− z
2− z

> 0.

But
∞∑
j=2

1− qj

1− q
aj + (2− γ)bj = 1 +

2− γ
2

= 2− γ

2
≮ 1.

This show that (5.2) is only a sufficient condition.
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In [79] the authors proved that the convolution of a starlike and a convex function

is starlike, we can give the following theorem.

Theorem 5.1.3. [33] Let f(z) = z −
∞∑
j=2

ajz
j, g(z) = z −

∞∑
j=2

bjz
j and let φ(z) =

z −
∞∑
j=2

cjz
j ∈ T ∗, where aj, bj, cj ≥ 0, j ∈ {2, 3, ..}. If f ∈ UCCq(g, γ), where

1− qj

1− q
aj ≥ bj for j ∈ {2, 3, ..}, then f ∗ φ ∈ UCCq(g, γ).

5.2 The class CNS(α)

In this section, using the Noor-Sălăgean integral operator (2.10) is defined the CNS(α)

class and is studying some properties of this class.

Definition 5.2.1. [34] A function f ∈ T belongs to the class CNS(α), if

<z[InNSf(z)]′

InNSf(z)
> α, (5.5)

where α ∈ [0, 1) and z ∈ U.

For α = 0 we obtain the following definition.

Definition 5.2.2. A function f ∈ T belongs to the class CNS, if

<z[InNSf(z)]′

InNSf(z)
> 0, (5.6)

where z ∈ U.

Theorem 5.2.1. [34] Let f(z) = z −
∞∑
j=2

ajz
j. Then f ∈ CNS(α), if and only if

∞∑
j=2

a2
j

jn−1C(n, j)

[
1− α

j

]
< 1− α. (5.7)

If α = 0 then we obtain the following result.

Corollary 5.2.1. Let f(z) = z −
∞∑
j=2

ajz
j. Then f ∈ CNS, if and only if

∞∑
j=2

a2
j

jn−1C(n, j)
< 1. (5.8)
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Let ENS(α) be a subclass of CNS(α). The class is defined as follows [34]:

ENS(α) =

{
f ∈ T :

∣∣∣∣z[InNSf(z)]′

InNSf(z)
− 1

∣∣∣∣ < 1− 2α and α ∈
(

0,
1

2

)}
. (5.9)

Theorem 5.2.2. [34] Let f ∈ T . If f ∈ ENS(α), then <I
n
NSf(z)

z
> 0.

5.3 The class Q1(m,λ,A,B)

In [12] Attiya and Aouf defined the class Q(m,λ,A,B) as follows:

(1− λ)(Dmf(z))′ + λ(Dm+1f(z))′ ≺ 1 + Az

1 +Bz
, (5.10)

where λ ≥ 0,−1 ≤ A < B ≤ 1, m ∈ N0 and z ∈ U.

In this section we define a similar class to Q(m,λ,A,B), by the convex combi-

nation of the Sălăgean integral operator Imf(z), for λ ∈ [0, 1] and we study some

properties of this class, in the case when A = −1 and B = 1.

Definition 5.3.1. [37] A function f ∈ A of the form (2.2) belongs to the class

Q1(m,λ,A,B) if

(1− λ)[Imf(z)]′ + λ[Im+1f(z)]′ ≺ 1 + Az

1 +Bz
, (5.11)

where λ ≥ 0,−1 ≤ A < B ≤ 1, m ∈ N0 and z ∈ U.

A particular case of the Definition 5.3.1 is the following:

Definition 5.3.2. [37] A function f ∈ A of the form (2.2) belongs to the class

Q1(m,λ,−1, 1) if

<(1− λ)[Imf(z)]′ + λ[Im+1f(z)]′ > 0, (5.12)

where λ ∈ [0, 1], m ∈ N0 and z ∈ U.

Remark 5.3.1. [37] If we note p(z) = [Im+1f(z)]′, then (5.12) is equivalent to

<[p(z) + (1− λ)zp′(z)] > 0, (5.13)

where 0 ≤ λ ≤ 1 and z ∈ U.

Theorem 5.3.1. [37] Let f ∈ A be with real coefficients and of the form (2.2). If

f ∈ Q1(m,λ,−1, 1) then

∞∑
j=2

[j(1− λ) + λ]j−maj > −1, (5.14)

where m ∈ N0 and λ ∈ [0, 1].
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In [20] C. M. Bălăeţi defined the class Im(α) for analytic functions which satisfy

the inequality:

<[Imf(z)]′ > α,

where α ∈ [0, 1).

Remark 5.3.2. [37] If we put λ = 0 in Definition 5.3.2 we obtain the class Im(0),

defined in [20].

Putting λ = 0 in Theorem 5.3.1 we obtain the following corollary.

Corollary 5.3.1. [37] Let f ∈ A be with real coefficients and of the form (2.2). If

f ∈ Im(0) then
∞∑
j=2

j1−maj > −1, (5.15)

where m ∈ N0.

In the following theorem we proved an inclusion result for the classes Im+1(0) and

Q1(m,λ,−1, 1).

Theorem 5.3.2. [37] Let f ∈ A be of the form (2.2). If f ∈ Q1(m,λ,−1, 1), then

f ∈ Im+1(0).

Theorem 5.3.3. [37] Let f ∈ A be of the form (2.2). If f ∈ Q1(m,λ,−1, 1), then

<I
m+1f(z)

z
> 0.

In (5.13) if we substitute p(z) by any other analytic function, we obtain the

following results.

Theorem 5.3.4. [37] Let u be a convex function, such that u(0) = 1 and

h(z) = u(z) + (1− λ)zu′(z), z ∈ U.

If f ∈ A verifies the differential subordination

[Imf(z)]′ ≺ h(z), (5.16)

then

[Im+1f(z)]′ ≺ u(z),

and the result is sharp.
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Theorem 5.3.5. [37] Let u be a function, such that u(0) = 1 and

h(z) = u(z) + (1− λ)zu′(z), z ∈ U

is convex. If f ∈ A verifies the differential subordination

[Imf(z)]′ ≺ h(z), (5.17)

then
Imf(z)

z
≺ u(z),

where

u(z) =
1− λ
z1−λ

z∫
0

h(t)t−λdt, z ∈ U

and the result is sharp.
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Chapter 6

Some new properties of the
generalized Mittag-Leffler function

6.1 The generalized Mittag-Leffler function

The function of the form

Eα(z) =
∞∑
n=0

zn

Γ(αn+ 1)
,

where <(α) > 0 and z ∈ C, was introduced by Mittag-Leffler in 1903 and is called

the Mittag-Leffler function.

The generalized Mittag-Leffer function has the form

Eα,β(z) =
∞∑
n=0

zn

Γ(αn+ β)
, (6.1)

where z, α, β ∈ C and <(α) > 0 was studied by Wiman [103].

Because the generalized Mittag-Leffler function Eα,β does not belong to the family

A, it is natural to consider the following normalization:

Eα,β(z) =
zEα,β(z)

Eα,β(0)
= z +

Γ(β)

Γ(α + β)
z2 +

Γ(β)

Γ(2α + β)
z3 + ...,

which is equivalent to

Eα,β(z) = z +
∞∑
n=2

Γ(β)

Γ[α(n− 1) + β]
zn.
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6.2 Sufficient includeness conditions for the gener-

alized Mittag-Leffler function in several special

analytic classes

In this section we find sufficient conditions so that, the generalized Mittag-Leffler

function Eα,β to be in the classes S∗, K, Sp, UCV , k−Sp(γ), k−UCV(γ), respectively

in k − Sp(λ, γ) and k − UCV(λ, γ).

Theorem 6.2.1. [39] Let α, β > 0, k ≥ 0 and 0 < γ ≤ 1. If

∞∑
n=2

(n− 1)(k + 1) + 1− γ
Γ[α(n− 1) + β]

≤ 1− γ
Γ(β)

, (6.2)

then Eα,β ∈ k − Sp(γ).

Theorem 6.2.2. [39] Let α, β > 0, k ≥ 0 and 0 < γ ≤ 1. If

∞∑
n=2

n
(n− 1)(k + 1) + 1− γ

Γ[α(n− 1) + β]
≤ 1− γ

Γ(β)
, (6.3)

then Eα,β ∈ k − UCV(γ).

For k = 1 and γ = 0 we obtain the following characterization properties for the

classes Sp and UCV .

Corollary 6.2.1. [39] Let α, β > 0. If

∞∑
n=2

2n− 1

Γ[α(n− 1) + β]
≤ 1

Γ(β)
,

then Eα,β ∈ Sp.

Corollary 6.2.2. [39] Let α, β > 0. If

∞∑
n=2

n(2n− 1)

Γ[α(n− 1) + β]
≤ 1

Γ(β)
, (6.4)

then Eα,β ∈ UCV.

Theorem 6.2.3. [39] Let α, β > 0, k ≥ 0 and 0 < γ ≤ 1. If

∞∑
n=2

n− 1

Γ[α(n− 1) + β]
≤ 1− γ

Γ(β)[1− λγ + k(1− λ)]
, (6.5)

where 0 ≤ λ < 1 then Eα,β ∈ k − Sp(λ, γ).
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Putting k = λ = γ = 0 in the above theorem we obtain the analytic criteria for

the class S∗.

Corollary 6.2.3. [39] Let α, β > 0. If

∞∑
n=2

n− 1

Γ[α(n− 1) + β]
≤ 1

Γ(β)
, (6.6)

then Eα,β ∈ S∗.

We give a similary theorem for the class k − UCV(λ, γ), without proof.

Theorem 6.2.4. [39] Let α, β > 0, k ≥ 0 and 0 < γ ≤ 1. If

∞∑
n=2

n
(n− 1)[1− λγ + k(1− λ)] + 1− γ

Γ[α(n− 1) + β]
≤ 1− γ

Γ(β)
, (6.7)

where 0 ≤ λ < 1, then Eα,β ∈ k − UCV(λ, γ).

Putting k = λ = γ = 0 in the Theorem 6.2.4 we obtain the anlytic criteria for the

class K.

Corollary 6.2.4. [39] Let α, β > 0. If

∞∑
n=2

n2

Γ[α(n− 1) + β]
≤ 1

Γ(β)
,

then Eα,β ∈ K.
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Chapter 7

Integral operators

In mathematics, those integral mappings which preservs the geometric properties of

the domain in which are defined, has a great importance. We begin this chapter with

presenting some well known integral operators in the specialty literature.

In 1915 J.W. Alexander has introduced the following integral operator [7]:

I : A → A,

A(f)(z) =

z∫
0

f(t)

t
dt.

In [7] is showed that the operator A maps S∗ onto K.

In [54] R.J. Libera has defined the

L : A → A,

L(f)(z) =
2

z

z∫
0

f(t)dt

integral operator. It is known that this operator maps S∗ onto S∗. In 1969 Bernardi

has introduced the following operator [21]

F : A → A,

F (f)(z) = Icf(z) =
1 + c

zc

z∫
0

f(t)tc−1dt, where c = 1, 2, ...,

as an extension of the previous result. Is also known, that this operator maps S∗ onto

S∗ if c = 1, 2, ... .
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In many years, numerous generalizations of these operators have been studied.

For example let us recall the generalized Bernardi - Libera - Livingston integral op-

erator

I(z) = Lcf(z) =
c+ 1

zc

z∫
0

tc−1f(t)dt, (7.1)

where f ∈ A and c > −1. This operator was studied by Bernardi for c ∈ {1, 2, 3, ...}
and for c = 1 by Libera.

7.1 The γ order starlikeness of an integral operator

Lemma 7.1.1. [38] For the dual set of the class P = {f ∈ A0| <f(z) > 0, z ∈ U}
we have

{f ∈ A0| <f(z) >
1

2
, z ∈ U} ⊂ Pd.

Lemma 7.1.2. [38] For θ ∈ [0, 2π], the following equalities holds:

∞∑
n=1

einθ

n(n+ 1)2
=

∫ 1

0

∫ 1

0

(1− x)y(cos θ − xy)

1 + x2y2 − 2xy cos θ
dxdy+i

∫ 1

0

∫ 1

0

(1− x)y sin θ

1 + x2y2 − 2xy cos θ
dxdy

and
∞∑
n=1

einθ

(n+ 1)2
=

∫ 1

0

∫ 1

0

xy(cos θ − xy)

1 + x2y2 − 2xy cos θ
dxdy+ i

∫ 1

0

∫ 1

0

xy sin θ

1 + x2y2 − 2xy cos θ
dxdy.

Lemma 7.1.3. [38]If γ =
2− ln 4

3− ln 6− π2

12

, then the inequalities

(1− γ)

∫ 1

0

∫ 1

0

(1− x)y
(1− xy)(1 + cos θ)

(1 + xy)(1 + x2y2 − 2xy cos θ)
dxdy ≥

1

6

∫ 1

0

∫ 1

0

xy
(1− xy)(1 + cos θ)

(1 + xy)(1 + x2y2 − 2xy cos θ)
dxdy, θ ∈

[π
2
, π
]

and∫ 1

0

∫ 1

0

xy sin θ

1 + x2y2 − 2xy cos θ
dxdy ≤

∫ 1

0

∫ 1

0

xy
√

2(1 + cos θ)

(1 + xy)
√

1 + x2y2 − 2xy cos θ
dxdy, θ ∈ [0, π]

holds.

Lemma 7.1.4. [38] For θ ∈ [0, π], the following inequality holds:∫ 1

0

∫ 1

0

2xy

1− x2y2
dxdy

∫ 1

0

∫ 1

0

xy
(1− xy)(1 + cos θ)

(1 + x2y2 − 2xy cos θ)(1 + xy)
dxdy ≤

4(1− γ)

(
1 +

∞∑
n=1

cosnθ

n(n+ 1)2

)[
(1− α) ·

(
1 +

∞∑
n=1

cosnθ

n(n+ 1)2

)
+
∞∑
n=1

cosnθ

(n+ 1)2

]
.
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Theorem 7.1.1. [38] If f(0) = 1 and

<
(
1 + 4zf ′(z) + 2z2f ′′(z)

)
> 0, z ∈ U (7.2)

then the function F defined by F (z) =

∫ z

0

f(t)dt is starlike of order γ =
2− ln 4

3− ln 4− π2

12

=

0.7756 . . . , that is

<zF
′(z)

F (z)
>

2− ln 4

3− ln 4− π2

12

, z ∈ U. (7.3)

The result is sharp.

7.2 Preserving properties of the Bernardi integral

operator defined on the UCCq(g, γ) and CNS(α)

classes

Theorem 7.2.1. [33] Let f(z) = z −
∞∑
j=2

ajz
j, g(z) = z −

∞∑
j=2

bjz
j ∈ T ∗ and

F (z) = Icf(z) =
c+ 1

zc

z∫
0

f(t)tc−1dt, c ∈ N∗.

If f ∈ UCCq(g, γ), where
1− qj

1− q
aj ≤ bj for j ∈ {2, 3, ..}, then F ∈ UCCq(g, γ).

Theorem 7.2.2. [34] Let

F (z) = Icf(z) =
c+ 1

zc

z∫
0

f(t)tc−1dt, c ∈ N∗.

If f ∈ CNS(α), then F = Ic(f) ∈ CNS(β), where

β = β(α, 2) = 1− (1− α)(c+ 1)2

(c+ 2)2(2− α)− (c+ 1)2(1− α)
(7.4)

and β > α, α ∈ [0, 1).

7.3 Preserving properties of the generalized Bernardi-

Libera-Livingston integral operator defined on

the classes S∗∗ and S∗∗∗

In this section we study the properties of the image of some subclasses of starlike

functions, trough the generalized Bernardi-Libera-Livingston integral operator.
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Theorem 7.3.1. [40] Let

I(z) = Lcf(z) =
c+ 1

zc

z∫
0

tc−1f(t)dt.

If c ≥
√

5

4
and f ∈ S∗∗, then I ∈ S∗∗.

Theorem 7.3.2. [40] Let

I(z) = Lcf(z) =
c+ 1

zc

z∫
0

tc−1f(t)dt, c > −2.

If f ∈ S∗∗∗, then I ∈ S∗∗∗.

Theorem 7.3.3. [40] Let

I(z) = Lcf(z) =
c+ 1

zc

z∫
0

tc−1f(t)dt, c ∈ (−1, 0].

If f ∈ TS∗∗∗, then I ∈ TS∗∗∗.
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Chapter 8

Radius problems of starlikeness,
convexity and uniform convexity of
orthogonal polynomials

The real numbers

r∗(f) = sup

{
r > 0

∣∣∣<(zf ′(z)

f(z)

)
> 0, for all z ∈ U(r)

}
and

r∗β(f) = sup

{
r > 0

∣∣∣<(zf ′(z)

f(z)

)
> β, for all z ∈ U(r)

}
are called the radius of starlikeness respectively the radius of starlikeness of order β

of the function f . We note that r∗(f) is the largest radius such that, f(U(r∗(f))) is

a starlike domain with respect to 0.

Similarly, let

rc(f) = sup

{
r > 0

∣∣∣<(1 +
zf ′′(z)

f ′(z)

)
> 0, for all z ∈ U(r)

}
be the radius of convexity of the function f and the radius of convexity of order β, is

rcβ = sup

{
r > 0

∣∣∣<(1 +
zf ′′(z)

f ′(z)

)
> β, for all z ∈ U(r)

}
.

The radius of uniform convexity of the function f is given by

ruc(f) = sup

{
r > 0

∣∣∣<(1 +
zf ′′(z)

f ′(z)

)
>

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ , for all z ∈ U(r)

}
.
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8.1 The generalized Laguerre polynomials

Let us consider the generalized Laguerre polynomials, that satisfy a second order

linear differential equation

xy′′ + (λ+ 1− x)y′ + ny = 0,

for arbitrary real λ and n ∈ Z+ which is often called the Laguerre equation.

The Rodrigues formula of the Laguerre polynomials is

Lλn(z) =
1

n!
z−λez

dn

dzn
(zλ+ne−z), (8.1)

where n ∈ Z+. The formula (8.6) and the Rolle theorem implies that every root of

Lλn(z) = 0 is real and positive, provided that λ+ 1 > 0.

Let zi, i ∈ {1, 2, ..., n} be the roots, where 0 < z1 < z2 < ... < zn and let us

consider the following normalized form of the Lλn polynomial:

Lλn+1(z) = z
Lλn(z)

Lλn(0)
= z + a1z

2 + ...+ anz
n+1.

The product representation of the polynomial Lλn+1 is

Lλn+1(z) = anz(z − z1)(z − z2)...(z − zn). (8.2)

8.2 The radius of starlikeness, convexity and uni-

form convexity of the normalized Laguerre poly-

nomials

Before we determine the radius of starlikeness, convexity and uniform convexity of

the normalized Laguerre polynomials we need the following result.

Lemma 8.2.1. [35] If |z| ≤ r < β, then we have

< z

β − z
≤ r

β − r
, (8.3)

∣∣∣∣ z

β − z

∣∣∣∣ ≤ r

β − r
, (8.4)∣∣∣∣ z

(β − z)2

∣∣∣∣ ≤ r

(β − r)2
. (8.5)
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Theorem 8.2.1. [35] Let 0 ≤ β < 1, then the radius of starlikeness of order β of the

normalized Laguerre polynomial Lλn+1 is r∗β(Lλn+1) = r0, where r0 denotes the smallest

positive root of the equation r(Lλn+1)′(r)− β(Lλn+1(r)) = 0.

Theorem 8.2.2. [35] Let 0 ≤ β < 1, then the radius of convexity of order β of the

normalized Laguerre polynomial Lλn+1 is rcβ(Lλn+1) = r1, where r1 denotes the smallest

positive root of the equation r(Lλn+1)′′(r)− (β − 1)(Lλn+1)′(r) = 0.

Theorem 8.2.3. [35] The radius of uniform convexity of the normalized Laguerre

polynomial is ruc(Lλn+1) = r2, where r2 denotes the smallest positive root of the equa-

tion

1 + 2
r(Lλn+1)′′(r)

(Lλn+1)′(r)
= 0.

In the following theorem we will determine the largest disk, centered in the origin,

which is mapped on a convex domain by the Lλn polynomial.

Theorem 8.2.4. [35] Let r3 be the smallest positive root of the equation

1 +
r(Lλn)′′(r)

(Lλn)′(r)
= 0.

Then U(r3) is the largest disk which is mapped by Lλn on a convex domain, where

r3 = rc(Lλn) is the radius of convexity of the polynomial Lλn.

It is easily seen that the image Lλn
(
U(rc(Lλn))

)
is symmetric with respect to the axis

OX and the boundary of Lλn
(
U(rc(Lλn))

)
intersects this axis at the points Lλn(rc(Lλn))

and Lλn(−rc(Lλn)). Thus we have the following corollary.

Corollary 8.2.1. [35] The following inequality holds

Lλn
(
rc(Lλn)

)
≥ Lλn

(
r
)
≥ <

(
Lλn(reiθ)

)
≥ Lλn

(
− r
)
≥ Lλn

(
− rc(Lλn)

)
,

for every r ∈ (0, rc(Lλn)), z ∈ U(r) and θ ∈ [0, 2π]. The number rc(Lλn) is the biggest

positive real number with this property.

Example 8.2.1. [35] The radius of convexity of the Laguerre polynomial Lλ2 , defined

by the equality

Lλ2(z) =
z2

2
− (λ+ 2)z +

(λ+ 2)(λ+ 1)

2
,

is the smallest positive root of the equation

r[Lλ2(r)]′′ + [Lλ2(r)]′ = 0.

Because [Lλ2(r)]′ = r − λ − 2 and [Lλ2(r)]′′ = 1, then we get r =
λ+ 2

2
, which is the

radius of convexity of the Laguerre polynomial Lλ2 , where λ > −2.
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8.3 The Legendre polynomials

The Legendre polynomials are solutions of the Legendre differential equation:

d

dz

[
(1− z2)

d

dz
Pn(z)

]
+ n(n+ 1)Pn(z) = 0,

for n ∈ Z+.

The Rodrigues formula of the Legendre polynomials is

Pn(z) =
1

2nn!

dn

dzn
[(z2 − 1)n], (8.6)

where n ∈ Z+. Bonnet’s recursion formula for Legendre polynomials are:

(n+ 1)Pn+1(z)− (2n+ 1)zPn(z) + nPn−1(z) = 0.

Legendre polynomials are symmetric or antisymmetric, that is

Pn(−z) = (−1)nPn(z).

Let us consider the following normalized form of the Legendre polynomial of odd

degree P2n−1:

P2n−1(z) =
P2n−1(z)

P ′2n−1(0)
= z + a2z

2 + ...+ a2n−1z
2n−1.

The roots of P2n−1(z) = 0 are 0 = z0 < z1 < ... < zn−1 and −z1,−z2, ...,−zn−1.

The product representation of the polynomial P2n−1(z) is

P2n−1(z) = a2n−1z(z2 − z2
1)(z2 − z2

2)...(z2 − z2
n−1). (8.7)

8.4 The radius of starlikeness, convexity and uni-

form convexity of the normalized Legendre poly-

nomials of odd degree

Theorem 8.4.1. [24] The radius of starlikeness of order β of the normalized Legendre

polynomials P2n−1 of odd degree is r∗β(P2n−1) = r0, where r0 denotes the smallest

positive root of the equation r(P2n−1)′(r)− β(P2n−1(r)) = 0, where 0 ≤ β < 1.

Theorem 8.4.2. [24] The radius of convexity of order β of the normalized Legendre

polynomial of odd degree P2n−1 is rcβ(P2n−1) = r1, where r1 denotes the smallest

positive root of the equation r(P2n−1)′′(r)− (β − 1)(P2n−1)′(r) = 0, where 0 ≤ β < 1.

42



Theorem 8.4.3. [24] The radius of uniform convexity of the normalized Legendre

polynomial of odd degree is ruc(P2n−1) = r2, where r2 denotes the smallest positive

root of the equation

1 + 2
r(P2n−1)′′(r)

(P2n−1)′(r)
= 0.

In the following theorem we will determine the largest disk, centered in the origin,

which is mapped on a convex domain by the P2n−1 polynomial.

Theorem 8.4.4. [24] Let r3 be the smallest positive root of the equation

1 +
r(P2n−1)′′(r)

(P2n−1)′(r)
= 0.

Then U(r3) is the largest disk, which is mapped by P2n−1 on a convex domain, where

r3 = rc(P2n−1) is the radius of convexity of the polynomial P2n−1.

It is easily seen that the image P2n−1

(
U(rc(P2n−1))

)
is symmetric with respect

to the axis OX and the boundary of P2n−1

(
U(rc(P2n−1))

)
intersects this axis at the

points P2n−1(rc(P2n−1)) and P2n−1(−rc(P2n−1)). Thus we have the following corollary.

Corollary 8.4.1. [24] The following inequality holds

P2n−1

(
rc(P2n−1)

)
≥ P2n−1

(
r
)
≥ <

(
P2n−1(reiθ)

)
≥ P2n−1

(
− r
)
≥ P2n−1

(
− rc(P2n−1)

)
,

for every r ∈ (0, rc(P2n−1)), z ∈ U(r) and θ ∈ [0, 2π]. The number rc(P2n−1) is the

biggest positive real number with this property.
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