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Ch. 1

General Introduction

This thesis contains the results I have obtained in the topic of approximation
of functions of real and complex variable.

Approximation Theory is a part of Mathematical Analysis, having its
roots in the 19th century. It deals, in essence, with the approximation of
some complicated elements of a space (most of the time functions), with
simpler elements (most of the time algebraic polynomials, trigonometric
polynomials, spline functions, so on). Moreover, quantitative characteriza-
tions of this approximation are obtained, most of the time in terms of the
so-called moduli of continuity (smoothness).

From historical point of view, in the case of approximation of functions
of real variable, probably that the first result was obtained by the German
mathematician K. Weierstrass in 1895, who proved the following result.

Theorem A. If f : [a,b] — R is continuous on |a, b], then there exists a
sequence of algebraic polynomials with real coefficients, P, (r) = apx™" +
At U, 1T+, such that lim, o P, (z) = f(z), uniformly with respect
to x € [a,b)].

A constructive proof of the above result was obtained by the Russian
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mathematician S.N. Bernstein in 1912, who proved that the sequence of alge-
braic polynomials (called in our days ”Bernstein polynomials”), B, (f)(z) =
Sreo (D)a"(1 — 2)"7* f)k/n), converges uniformly to the continuous func-
tion f.

The first quantitative result in the Weierstrass’ and Bernstein’s result
was obtained by the Romanian mathematician Tiberiu Popoviciu in 1942,

who proved

B(f)(&) — f(@)] < Swr(f1/v/) Vo € 0,1],m €N,

where wy(f;0) = sup{|f(z) — f(y)|;x,y € [0,1],|x —y| < 0} denotes the
modulus of continuity of f.

In the case of approximation of continuous and 27 periodic functions, the
first constructive result was obtained by the Hungarian mathematician L.
Fejér in 1900, who proved that if f : R — R is a continuous and 27 periodic
function on R, denoting S, (f)(x) = Y p_, ax cos(kx) + by sin(kz), were ay

and by, are the Fourier coefficients of f, then T),(f)(z) = 22U )(x)J;'JjS n(f)(z)

represents a sequence of trigonometric polynomials converging uniformly to
fonR.

The first quantitative and constructive result in approximation by trigono-
metric polynomials was obtained by the American mathematician D. Jack-
son in the doctoral thesis in 1911, who proved that if f : R — R is contin-
uous and 27 periodic, then a sequence of trigonometric polynomials can be

constructed, J,(f)(x), n € N, with the property that
| Jn(f)(z) = f(z)] < Cwa(f;1/n), Vo € R,n €N,

where wq(f;0) = sup{|f(z + h) — 2f(x) + f(x — h)[;0 < h < §,z € R}

represents the second order modulus of smoothness of f.



An important direction in approximation of functions is represented by
the theory of approximation by positive and linear operators, having its
roots between 1950 and 1970, by the classical results of Tiberiu Popoviciu,
Bohman, Korovkin, Shisha-Mond and others. In essence, these results state
(see Korovkin’s results) that in order that a sequence of positive and linear
operators, (L, (f))nen, be uniformly convergent on [a,b] to a continuous
function f, is that L,(ex) — ek, for £ = 0,1 and 2, where ey(x) = 1,
e1(z) = si eg(x) = 2%

In the case of complex approximation, the roots of this theory can be
found, for the approximation of continuous functions by polynomials or en-
tire functions in the Miintz-Szész Carleman’s papers, while for approxima-
tion of analytic functions of a complex variable by polynomials or rational
functions, can be mentioned the results obtained by Runge, Walsh, Faber,
Mergelyan, Arakelyan and Dzyadyk.

This thesis is structured in four chapters.

In the present Chapter 1, we make a general introduction in Approxi-
mation Theory and we shortly describe the thesis.

In Chapter 2 titled ” Approximation by nonlinear integral operators”,
the basic idea is the replacement of the classical integral in the expressions
of some integral linear operators, by more general integrals (which are not
linear) and to study the approximation properties of the new obtained op-
erators.

The chapter has two sections.

Thus, in the first section, titled ” Approximation by Durrmeyer-Choquet
operators”, in the expression of the classical Bernstein-Durrmeyer opera-
tors, the Lebesgue integral is replaced by the nonlinear Choquet integral

with respect to a monotone and submodular set function. We show that
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the new obtained nonlinear operators remain uniformly convergent to the

approximated function.

In the second section, in the classical Feller’s scheme of generation of lin-
ear and positive operators with good approximation properties, we replace
the classical (linear) integral with respect to the Lebesgue measure, with
the nonlinear possibilistic integral. In this way, we generate new (nonlinear)
operators with good approximation properties, including the so-called max-
product operators studied in a long series of papers by B. Bede, L. Coroianu
and S.G. Gal (which culminates with the research monograph [10] published
at Springer).

In the same section, we study the quantitative approximation properties

of the convolution possibilistic operators obtained by the Feller’s scheme.

In Chapter 3 titled 7 Arbitrary order by Szasz and Baskakov operators”,
starting from a sequence A, > 0, n € N, converging to zero as fast we want
(that is, arbitrary fast), we construct sequences of Baskakov, g-Baskakov,
Szasz-Stancu and Baskakov-Stancu operators, converging to the approxi-
mated function f : [0,00) — R with the order of convergence wi(f;v/An)
(in fact, arbitrary good, because A, can be chosen to converge to zero,
arbitrarily rapid).

For this reason, the results in this chapter can be considered of definitive
type (that is, the best possible). In the same time, the results obtained have
also a strong unifying character, in the sense that one can recapture from
them all the results previously obtained by other authors, for various choices
of the nodes \,,.

In Chapter 4 titled ” Complex Szasz and Baskakov operators”, we apply
the ideas in Chapter 3 to the case of aproximation of analytic functions of

complex variable, by complex Szédsz, Szdsz-Kantorovich and Baskakov.



In the first section of the chapter, starting again from a sequence \,, > 0,
n € N, converging to zero as fat we want (arbitrarily rapid), we construct
sequences of Szasz, Szasz-Kantorovich and Baskakov operators attached to
an analytic function of exponential growth in a compact disk centered at
origin, which approximate f with the order O(\,) and for which quantitative
Voronovskaja type results with the order O(\2) are obtained.

In the second section of the chapter, we consider the same problem as
in the previous section, for the so-called complex Baskakov-Faber opera-
tors, attached through the Faber polynomials to an analytic function of

exponential growth in a compact set of C (not necessarily a disk).

The results presented in this thesis were obtained by the author in collab-
oration with professor dr. Sorin Gal, Nazim Mahmodov, Lucian Coroianu,
Sorin Trifa, or as a single author, in 6 papers, published by the following
journals :

1) Gal, Sorin G.; Opris, Bogdan D., Approzimation with an arbitrary
order by modified Baskakov type operators. Appl. Math. Comput., 265
(2015), 329-332 (Impact Factor ISI (IF)on 2015 : 1.345, Relative Score of
Influence (RST) on 2016 : 0.733)

2) Gal, Sorin G.; Oprig, Bogdan D., Uniform and pointwise con-
vergence of Bernstein-Durrmeyer operators with respect to monotone and
submodular set functions. J. Math. Anal. Appl. 424 (2015), no. 2,
1374-1379 (IF on 2015 : 1.014, RSI on 2016 : 1.125)

3) Gal, Sorin G.; Opris, Bogdan D., Approzimation of analytic func-
tions with an arbitrary order by generalized Baskakov-Faber operators in
compact sets. Complex Anal. Oper. Theory 10 (2016), no. 2, 369-377
(IF on 2015 : 0.663, RSI on 2016 : 0.724)

4) Coroianu, Lucian ; Gal, Sorin G. ; Oprig, Bogdan D.; Trifa, Sorin,
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Feller’s scheme in approrimation by nonlinear possibilistic integral opera-
tors, Numer. Funct. Anal. and Optim., 38 (2017), No. 3, 327-343 (IF
on 2015 : 0.649, RSI on 2016 : 0.540).

5) Gal, Sorin G.; Mahmudov, Nazim I.; Opris, Bogdan D., Approz-
imation with an arbitrary order of Szdsz, Szdsz-Kantorovich and Baskakov
complex operators in compact disks. Azerb. J. Math. 6 (2016), no. 2,
3-12 (indexed in Mathematical Reviews and Zentralblatt fiir Mathematik)

6) Opris, Bogdan, D., Approzimation with an arbitrary order by gen-
eralized Szasz-Stancu and Baskakov-Stancu type operators, Anal. Univ.
Oradea, fasc. math., XXIV (2017), No. 1, 75-81 (B+ journal, indexed
in Mathematical Reviews and Zentralblatt fiir Mathematik).

The original results obtained in the thesis are the following :

Chapter 2. Section 2.1 : Lemma 2.1.2, Theorem 2.1.3, Theorem 2.1.4
; The results were published in the paper [44];

Section 2.2 : Theorem 2.2.2, Lemma 2.2.3, Theorem 2.2.4, Theorem
2.2.5, Corollary 2.2.6, Theorem 2.2.7, Corollary 2.2.8, Theorem 2.2.9, Corol-
lary 2.2.9 ; The results were published in the paper [21] ;

Chapter 3. Section 3.1 : Lemma 3.1.1, Corollary 3.1.2, Theorem 3.1.3,
Corollary 3.1.4, Lemma 3.1.5, Theorem 3.1.6, Corollary 3.1.7, Corollary
3.1.8 ; The results were published in the paper [43];

Section 3.2 : Lemma 3.2.1, Theorem 3.2.2 and Corollary 3.2.3 ; The
results were published in the paper [59];

Section 3.3 : Lemma 3.3.1, Theorem 3.3.2, Corollary 3.3.3 ; The results
were published in the paper [59];

Chapter 4. Section 4.1 : Theorem 4.1.1, Theorem 4.1.2, Theorem 4.1.3
; The results were published in the paper [46];

Section 4.2 : Definition 4.2.1, Lemma 4.2.2, Lemma 4.2.3, Theorem
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4.2.4. The results were published by the paper [45].

Key words : monotone and submodular set function, Choquet inte-
gral, Bernstein-Durrmeyer operator, uniform convergence, pointwise con-
vergence ; theory of possibility, Feller’s scheme, Chebyshev type inequality,
nonlinear possibilistic integral, possibilistic Picard operators, possibilistic
Gauss-Weierstrass operators, possibilistic Poisson-Cauchy operators, max-
product (possibilistic) Bernstein kind operators ; generalized Baskakov op-
erator of real variable, linear and positive operators, modulus of continuity,
order of approximation, g-calculus ; generalized Szasz, Szasz-Kantorovich
and Baskakov complex operators, Voronovskaja-type results ; compact sets,
Faber polynomials, generalized Baskakov-Faber operator.

I want to express my deep gratitude to professor dr. Sorin Gal for his

constant support in the elaboration of this thesis.
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Ch. 2

Approximation by nonlinear

integral operators

In this chapter we deal with the study of the approximation properties of the
integral operators, in the case when the classical linear integral is replaced
with the nonlinear Choquet integral and the nonlinear possibilistic integral.
The chapter consists in two sections : in the first section we deal with the
Durrmeyer-Choquet operators and in the second section we deal with the

possibilistic operators.

2.1 Approximation by Durrmeyer-Choquet

operators

In this section we study the Bernstein-Durmeyer type operator of d-variables,

M,

., i which the integrals written in terms of a Borel type measure 4 (in-

cluding therefore the Lebesgue measure too) defined on the d-dimensional

simplex, are replaced by Choquet integrals with respect to u supposed to

1
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be only monotone and submodular. The new operator is nonlinear and gen-
eralizes the linear Bernstein-Durrmeyer. For this operator which could be
called of Durrmeyer-Choque type, we prove the uniform and pointwise con-
vergence to f(z). As a consequence, the results obtained generalize those

in the recent papers [11] and [12].

2.1.1 Introduction

Let the standard simplex in R?
S ={(21,...,00);0 < 2,02y < 1,0 <y + ..+ g < 1},

Inspired by the paper [13], in the recent papers [11], [12] and [52], uni-
form, pointwise and LP convergence (respectively) of M, ,(f)(x) to f(x)
(as n — o00) were obtained, where M, ,(f)(z) denotes the linear, mixed
Bernstein-Durrmeyer operator of d-variables, with respect to a bounded
Borel measure p : S¢ — R, defined by (supposing that f is u-integrable
on S%)

M, . (f)(z)
= Jsa F()Ba(t)dp(t) ) ) = cla, ) - x), x d n
~ 5= T BalOdu() Ba(x): ;ﬂ (@, 1) - Ba(2), 7 € % n € N.

(2.1)
In the above formula (2.1), we used the notations a = (g, a, ..., ), with
a; >0forall j=0,..,n,|o=a)+a;+ ..+ o, =n and

n!

By(r) =

(1—xy —zg— ... —wg)™ -2 - 2y
apl - aq! !

= n - Py(x).

apl - aq! - ap!

We will prove that the results in [11] and [12] on pointwise and uniform

convergence, remain valid in the more general setting when g is only a



2.1. APPROXIMATION BY DURRMEYER-CHOQUET OPERATORS3

monotone, bounded and submodular set function on S¢ and the integrals

appearing in formula (2.1), represent Choquet integrals with respect to p.

2.1.2 Preliminaries

In this subsection, by Definition 2.1.1 and the Remarks after this definition,
we present known concepts and results useful in the next subsections.
Definition 2.1.1. Consider that €2 is a nonempty set, C is a o-algebra
of subsets in © and (€2,C) i a measurable space.
(i) (see, e.g., [63], p. 63) The set function u : C — [0, +oc] will be
called a monotone set function (or capacity) if u(@) = 0 and A, B € C, with
A C B, implies pu(A) < u(B). If

w A JB) + w(A(B) < u(A) + u(B), for all A,B € C,

then p is called submodular. Then, p will be called normalized, if ©(2) =1

(ii) (see [16], or [63], p- 233) Let p : C — R4 be a normalized, monotone
set function. The function f : 2 — R is called C-measurable if for any Borel
subset B C R, it holds f~(B) € C.

If f:Q — R is C-measurable, then for any A € C, the Choquet integral
will be defined by the formula

+oo 0

©) [ rau= [ wmn N5+ [ W) A) = s,
where Fg(f) = {w € Q; f(w) > B}. If (C) [, fdp exists in R, then f is
called Choquet integrable on A. We observe that if f > 0 on A, then the
term integral ffoo in the above formula becomes equal to zero.

When p is the Lebesgue measure (i.e. countably additive), then the
Choquet integral (C) [, fdu reduces to the Lebesgue integral.
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In the lines of the following remarks, we list without proofs some known
properties which will be used in the next subsections.

Remarks. Let i : C — [0, 400] be a monotone set function. Then, the
following properties hold :

(i) (C) [, is positively homogeneous, i.e. for a > 0 we have (C) [, afdpu =
a-(C) [, fdu (for f > 0 see, e.g., [63], Theorem 11.2, (5), p. 228 and for f
of arbitrary sign, see, e.g., [23], p. 64, Proposition 5.1, (ii)).

(ii) In the general case for fand g, we have (C) [,(f+g)du # (C) [, fdu+
) J 4 9dp. If piis submodular too, then the Choquet integral is sublinear,
that is

©) [ r+a)in=(©) [ san+© [ gan
for all f, g of arbitrary sign and lower bounded (see, e.g., [23], p. 75, Theo-
rem 6.3).

Then, for all ¢ € R and f of arbitrary sign we have

©) / (f +¢)dp = () / fdu+ - p(A),

(see, e.g., [63], pp. 232-233, or [23], p. 65).

(iii) If f < g on A then (C) [, fdu < (C) [, gdu (see, e.g., [63], p. 228,
Theorem 11.2, (3) for f,g > 0 and p. 232 for f, g of arbitrary sign).

(iv) Let f > 0. By the definition of the Choquet integral, it is immediate
that if A C B then

©) [ sdn =) [ san
A B
and if, in addition, p is finitely subadditive, then

© [ = [ sau+ic) [ rau

(v) By the definition of the Choquet integral, it is immediate that

©) / - dpu(t) = p(A).
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(vi) Simple concrete examples of monotone and submodular set functions
1, can be obtained from a probability measure M on a o-algebra on (2
(ie. M(0) =0, M(2) =1 and M is countably additive), by the formula
w(A) = v(M(A)), where v : [0,1] — [0,1] is an increasing and concave
function, with v(0) = 0, v(1) = 1 (see, e.g., [23], pp. 16-17, Example 2.1).
Note that in fact if M is only finitely additive, then u(A) = y(M(A)) still
is submodular.

Recall here that a set function p : P(Q) — [0,1] (P(2) denotes the
family of all subset of ) is called a possibility measure on the non-empty
set €, if it satisfies the axioms pu(0) = 0, u(Q2) = 1 and pu(U,c; Ai) =
sup{u(4;);i € I} for all A; € Q, and any I, family of indices.

Concerning this concept, it is known that any possibility measure p is
monotone and submodular. Indeed, we observe that the monotonicity and

the submodularity are immediate from the axioms (respectively)

w(AJ B) = max{u(A), u(B)}, p(A()B) < min{u(A), u(B)}.

It is also known that any given possibility distribution (on €2), that is a
function A : Q — [0, 1], such that sup{A(s); s € Q} = 1, induces a possibility
measure p, : P(2) — [0, 1], given by the formula u, (A) = sup{A(s);s € A},
forall A C Q, A# 0, uy(0) = 0 (for the definition and the properties of the
measures of possibility, see, e.g., [27], Chapter 1).

2.1.3 Main Results

Let Bga be the sigma algebra of all Borel measurable subsets in P(S?) and
i Bga — [0, +00) be a normalized, monotone and submodular set function

on Bsd.
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We say that p is strictly positive if u(A N S9) > 0, for every open set
A C R™ with AN S?#£0.

Also, by definition, the support of p, denoted by supp(u), is the set of
all x € S% with the property that for every open neighborhood N, € Bga of
x, we have pu(N,) > 0.

Denote by C, (5%) the space of all positive-valued continuous functions
on S% and by L (S ) the space of all real-valued Bga-measurable functions
f, such that there exists a set E C S¢ (depending on f) with u(E) = 0 and
f is bounded on S\ E.

Denote

My u(f)(@) = clo,p) - Ba(z), x € S%, n €N,

lal=n

where applying Remark 2.2, (i), we easily get

f5d du( ) _ (O [ga f() Pa(t)dpult)
fsd w(t) (O) [ga Pa(t)dp(t)

It is worth noting here that we did not loose any generality by the

clo, p) =

normalization condition on the set valued function p and that the condition
supp(p) \ S # 0, guarantees that (C') [, Ba ) > 0, for all B,.
For the proof of the main results, we need the followmg auxiliary result.
Lemma 2.1.2. (Gal-Opris [44]) Let us suppose that p is a normalized,

monotone and submodular set function. If we define T, : C'y(S?) — R, by
T.(f) = (C) Sdf(t)Pa(t)du(t),f € Cy(8Y),neN, |a] =n,
then for all f,g € C(S%), we have

T(0) = Tula)| < Tollf =5l) = (©) [ 11 = 9(0) - Po(t)d(0)
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The first main result is an analogous result to Theorem 1 in [11] and
refers to uniform approximation.

Theorem 2.1.3. (Gal-Oprig [44]) Let u be a normalized, monotone,
submodular and strictly positive set function on Bga, such that supp(u) \

0S4 £ (). For every f € C(S%) we have

Jim [1Mou(f) = Fllese =0,

where || F||¢(se) = max{|F(z)|;z € $%}.

The second main result is an analogue result to Theorem 1 in [12] and
refers to pointwise convergence. In this sense, analysing the reasonings
in the proof of Theorem 1 in [12] and using the same properties of the
Choquet integral as in the proof of the above Theorem 2.1.3, we easily get
the following.

Theorem 2.1.4. (Gal-Oprig [44]) Let u be a normalized, monotone,
submodular set function on Bga, such that supp(u)\0S® # 0. If f € Lz"(Sd)
and f(x) > 0, for all x € S¢, then at any point x € supp(p) where f is

continuous, we have

T M, ()(2) = f(2)] =0.

Remarks. 1) According to the previous Remark, (vi), an example of
submodular set function u satisfying all the requirements in the statements
of Theorems 2.1.3 and 2.1.4, can simply be defined by u(A) = /v(A),
where v is a Borel probability measure as in [11] and [12]. Also, it is worth
noting that due to the nonlinearity of the Choquet integral (see Remark
(ii)), unlike the case in [11], [12], the Bernstein-Durrmeyer operator in the

present paper is nonlinear.
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2) The positivity of function f in Theorems 2.1.3 and 2.1.4 is necessary
because of the positive homogeneity of the Choquet integral applied in the
proof. However, if f is of arbitrary sign on S9, then it is immediate that
the statements of Theorems 2.1.3 and 2.1.4 can be restated for the slightly

modified Bernstein-Durrmeyer operator defined by

My () = My (f —m)(x) +m,

where m € R is a lower bound for f, that is f(z) > m, for all x € S<.

2.2 Approximation by possibilistic integral

operators

By analogy with the Feller’s general probabilistic scheme used in the con-
struction of many classical convergent sequences of linear operators, in this
paper we consider a Feller-kind scheme based on the possibilistic integral,
for the construction of convergent sequences of nonlinear operators. As par-
ticular cases, in the discrete case, all the so-called max-product Bernstein
type operators and their qualitative convergence properties are recovered.
In addition, discrete non-discrete nonlinear possibilistic convergent opera-
tors of Picard type, Gauss-Weierstrass type and Poisson-Cauchy type are

considered.

2.2.1 Introduction

In the very recent paper [32], the so-called max-product operators of Bern-
stein, of Favard-Szasz-Mirakjan kind, of Baskakov kind, of Bleimann-Butzer-

Hahn kind and of Meyer-Kénig-Zeller kind (whose quantitative approxima-
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tion properties were intensively studied in many previously published pa-
pers, see, e.g., [8], [9], [17]-[20] and the References in [32]), were naturally
interpreted as possibilistic expectations of particular discrete fuzzy variables
having various possibilistic distributions. By using the Bernstein’s idea in
[14], (see also the more accessible paper [51]), but based on a Chebyshev-
type inequality in possibility theory, these interpretations allowed to obtain
for them qualitative convergence results.

It is worth mentioning here that possibility theory is a well-established
mathematical theory dealing with certain types of uncertainties and is con-
sidered as an alternative to probability theory (see, e.g., [27], [22]) .

The main aim of this section is to present the well-known Feller’s prob-
abilistic scheme in approximation, in the setting of possibility theory. In
particular, this scheme will allow not just another natural approach of the
max-product operators, but also to introduce and study many other possi-
bilistic approximation operators too.

Firstly, let us recall that a classical scheme in constructing linear and
positive approximation operators, is the Feller’s probabilistic scheme (see
[29], Chapter 7, or more detailed, [3], Section 5.2, pp. 283-319). Described
shortly, it consists in attaching to a continuous and bounded function f :

R — R, approximation operators of the form

La(f)() = /Q fo Z(n,x)dP = /R FAPn,

where P is a probability on the measurable space (§2,C), Z : NxI — My(Q),
with I a subinterval of R, M3(2) represents the space of all random vari-
ables whose square is integrable on €2 with respect to the probability P and
Py (n 2y denotes the distribution of the random variable Z(n, ) with respect

to P defined by Py, . (B) = P(Z '(n,z)(B)), for al B-Borel measurable
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subset of R. Then, denoting by F(Z(n,z)) and Var(Z(n,z)) the expectance
and the variance of the random variable Z(n, x), respectively, and suppos-
ing that lim, . F(Z(n,z)) = z, lim,_o Var(Z(n,z)) = 0, uniformly on
I, it is proved that for all f as above, L,(f) converges to f uniformly on

each compact subinterval of I.

In addition, if for the random variable Z(n,z), its probability density

function A, , is known, then for any f we can write

/R AP — / £(0) - Mo (8)dP(1),

formula which is useful in the concrete construction of the approximation

operators L, (f)(z).

In the very recent paper [33], the Feller’'s scheme was generalized to
the case when the above classical integral is replaced with the nonlinear

Choquet integral with respect to a monotone and subadditive set function.

By analogy with the above considerations, in the next subsection we
consider a Feller kind scheme based on the possibilistic integral, for the
construction of convergent sequences of nonlinear operators. In particular,
in the discrete case, all the so-called max-product Bernstein type operators
and their qualitative convergence are reobtained through this scheme. In
Section 3, new discrete nonperiodic nonlinear possibilistic convergent op-
erators of Picard type, Gauss-Weierstrass type and Poisson-Cauchy type
suggested by Feller’s scheme are considered. At the end, for future studies
we consider discrete periodic(trigonometric) nonlinear possibilistic opera-

tors of de la Vallée-Poussin type, of Fejér type and of Jackson type.
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2.2.2 Feller’s scheme in terms of possibilistic integral

Firstly we summarize some known concepts for the discrete or non-discrete
fuzzy variables in possibility theory, which will be useful in the next section.
As it is easily seen, in fact they are the corresponding concepts for those
in probability theory, like random variable, probability distribution, mean
value, probability, so on. For details, see, e.g., [27] or [22].

Definition 2.2.1. Let Q2 be a non-empty, discrete (i.e. at most count-
able) or non-discrete set.

(i) A fuzzy variable X is an application X : @ — R. If Q is a discrete
set, then X is called discrete fuzzy variable. If € is finite then X is called
a finite fuzzy variable. If ) is not discrete, then X is called non-discrete
fuzzy variable.

(ii) A possibility distribution (on ), is a function A :  — [0, 1], such
that sup{\(s);s € Q} = 1.

(iii) The possibility expectation of a fuzzy variable X (on ), with the
possibility distribution A is defined by M, (X) = sup,cq X (s)A(s). The
possibility variance of X is Vi, (X) = sup{(X(s) — Msu,y(X))?A(s); s € Q}.

(iv) If © is a non-empty set, then a possibility measure is a mapping P :
P(Q2) — [0, 1], satisfying the axioms P(0)) =0, P(Q) =1 and P({J,.; 4;) =
sup{P(A;);i € I} for all A; € Q, and any I, an at most countable family

el

of indices (if 2 is finite then obviously / must be finite too). Note that if
A, B C Q, satisfy A C B, then by the last property it easily follows that
P(A) < P(B) and that P(A|JB) < P(A) + P(B).

It is well-known (see, e.g., [27]) that any possibility distribution A on
2, induces a possibility measure Py : P(2) — [0, 1], given by the formula
P\(A) = sup{\(s); s € A}, for all A C Q.

For each fuzzy (possibilistic) variable X : Q@ — R, we can define its
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distribution measure with respect to a possibility measure P induced by a

possibility distribution A, by the formula
Px :B—R,, Px(B)=P(X '(B))=P({weQX(w) € B}), BeB,

where R, = [0, +00) and B is the class of all Borel measurable subsets in R.
It is clear that Py is a possibility measure on B, induced by the possibility
distribution defined by

Ny iR — [0, 1], M (1) = sup{A(w);w € X 1)}, if X1(¢) £ 0,
Ne(®) =0, if X71(t) = 0.

(v) (see, e.g., [22]) The possibilistic integral of f : Q@ — R, on A C ,
with respect to the possibilistic measure P, induced by the possibilistic

distribution A, is defined by

(Pos) /A f()dP\(t) = sup{f(t) - \(t);t € A}.

It is clear that this definition is a particular case of the possibilistic integral
with respect to a semi-norm ¢, introduced in [22], by taking there t(z,y) =
x-y. Also, denoting Ay : Q — [0, 1], Ay(x) = 1, for all z € Q, it is immediate

that we can write

(Pos) / F(0)dPy (1) = sup{f(1): £ € A,

(Pos) [ £0aP(0) = (Pos) [ f0)- AP,
and dPy(t) = A(t) - dPy, ().
It is also worth noting that the above definition of the concept of possi-
bilistic integral has a good sense only for positive-valued functions, because,

for example, if we denote R_ = (—o00,0], then for any f : Q — R_ with
f(wo) = 0 for a certain wy € A C Q, we get (Pos) [, f(t)dP\(t) = 0.
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In what follows, we also need in the frame of the possibility theory, a
simple analogue of the Chebyshev’s inequality in probability theory.

Theorem 2.2.2. (see [32]) Let Q2 be a discrete or non-discrete non-
empty set, A : Q@ — [0,1] and consider X : Q — R be with the possibility
distribution \. Then, for any r > 0, we have

Viup(X)

r2

Pa({s € 51X (s) = Maup(X)| 2 7}) <

Y

where Py is the possibilistic measure induced by .

This result was proved by Theorem 2.2 in [32] for €2 discrete set, but
analysing its proof it is obvious that it remains valid in the non-discrete
case t0o.

In the particular case when X : @ — R, in terms of the possibility

integral, the above Chebyshev inequality can be written as
Py({s € QX (s) — (Pos) / X(OdP(®)] = 1))
Q

- (Pos) [o(X — (Pos) fQX(t)dP,\(t))zdP,\.

= T2

In what follows, by analogy with the Feller’'s random scheme in prob-
ability theory which produces nice linear and positive approximation op-
erators, we will consider a similar approximation scheme, but which will
produce nonlinear approximation operators constructed with the aid of the
possibilistic integral.

For that purpose, let us denote by Var®(Q2) the class of all bounded
X : Q2 — R and by Vart () the class of all bounded X : Q — R. Also, for
I C R areal interval (bounded or unbounded), let us consider the mapping
Z defined on N x I — Y where Y = Var®(Q) or Y = Var® (Q2), depending

on the context.
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Notice that if for any (n,z) € Nx I we have Z(n, x) € Var’ (), then for
the concepts of possibility expectation and possibility variance of Z(n,x)
(defined at the above Definition 2.1, (iii)) we can write the integral formulas

Mgupy(Z(n,x)) = (Pos) /Q Z(n,x)(t)dPx(t) == an g, (2.2)

Voup(Z(n, x)) = (Pos) /Q(Z(n,x)(t) — U p)?dPA(t) =05 . (2.3)

Now, according to the Feller’s scheme, to f : R — R, let us attach a

sequence of operators by the formula

Ln(f)(x) = (Pos)/Rf(t)dPZ(n’x)(t), neN, zel, (2.4)

where Py, . is defined as in Definition 2.1, (iv), i.e. with respect to the
possibility measure Py induced by the possibility distribution A.

Firstly, for the operators given by (2.4) the following representation
holds.

Lemma 2.2.3. (Coroianu-Gal-Opris-Trifa [21]) With the above nota-
tions, if Z : N x I — Var®(Q) and, in addition, f: R — R, is bounded on
R, then the formula

Ln(f)(z) = (POS)/RJC(t)dPZ(n,x)(t) = (Pos) /Q foZ(n,x)dPy, x € I (2.5)

holds and both integrals are finite.
If f I — Ry is bounded on I, where I C R is a subinterval and
P\({w € Q; Z(n,x)(w) € I}) =0, then we have

L(£)(@) = (Pos) [ (0P (®) = (Pos) [ 10 Zn,a)aP

Remark. Explicitly, formula (2.5) can be written as

Ln(f)(x) = sup{f(t) - Ag(n,0)(£);t € R} = sup{f[Z(n, x)(t)] - A(t); 1 € Q},
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where A7, . (t)is defined with respect to A as in Definition 2.2.1, (iv).

Since the next main result will involve the quantity o, , given by formula
(2.2), it will be necessarily to suppose that Z(n,z) € Vart (Q2).

The following Feller-type result holds.

Theorem 2.2.4. (Coroianu-Gal-Oprig-Trifa [21]) Let I C R be a subin-
terval, Z(n,z) € Vart (Q) for all (n,z) € N x I and let us suppose that
f R — Ry is uniformly continuous and bounded on R. With the nota-
tions in the formulas (2.2), (2.3) and in the statement of Lemma 2.3, if
lim, 400 pp =  and lim,,_, 4 afw = 0, uniformly with respect to x € I,
then lim,, o L,(f)(x) = f(x), uniformly with respect to x € I.

Remarks. 1) Analyzing the proof of Theorem 2.2.4, it easily follows
that without any change in its proof, the construction of the operators
L, (f)(z) can be slightly generalized by considering that not just Z depends
on n and z, but also that A (and consequently P, too) may depend on n

and z. More exactly, we can consider L, (f)(x) of the more general form

L.(f)(x) := (Pos) /]R F()dPz(na(t) = (Pos) /Q foZ(n,x)dPy,,, €1,

where Py, , : P(Q) — [0,1], (n,x) € NxI, is a family of possibility measures
induced by the families of distributions A, ,, (n,z) € N x I. This remark is
useful in producing several concrete examples of such operators.

Also, let us note here that if we suppose that P\({w € Q; Z(n,z)(w) &
I} = 0, then the operators L, can be attached to continuous, bounded
functions defined on a subinterval I C R, f : I — Ry, by extending f to
a function continuous and bounded, f*: R — R, and taking into account

the obvious relationship

(Pos)/f*dPZ(nvx) = (POS)/fdpz(n,x).
R I
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2) If f: I — R is not necessarily positive, but bounded, then evidently
that there exists a constant ¢ > 0 such that f(x)+ ¢ >0, for all z € I and

in this case, for n € N, we can attach to f the approximation operators
Ln(f)(x)
= (Pos) /(f(t) + €)dPyn)(t) — ¢ = (Pos) /(f +c¢)oZ(n,x)dPy,, —c.
I Q

3) As particular cases of operators for which qualitative approximation
properties can be derived by the Feller’s scheme in Theorem 2.2.4, are all
the so-called max-product Bernstein-type operators. Thus, for example,
if we take Q = {0,1,...,n}, I = [0,1], Z(n,z)(k) = £, f :[0,1] = Ry,
(k) = 20— with poi(z) = ([)a*(1— 2)"* and /7y pn () =

j=0Pn.j(@)’
-----

inition of the possibility integral, we get

V pus(@)f ()
Lo(f)(x) = (Pos) / foZn)dP,, = =0 ,
 poi(@)

which are exactly the max-product Bernstein operators BS'"(f)(z). The
qualitative approximation properties of BfZM)( f)(z) can follow now from
Theorem 2.2.4.

Analogously, if, for example, we take the countable Q = {0,1,...,k, ..., }
and Py, , the possibility measure induced by the possibility distribution

Spk(T)
Mz(k) = o—"—, 2 € [0,+00), k € N {0},
ViZo Snk(2) U
with s, ,(z) = (n:!)k and \/ o Snk(®) = maxg—jo1,. k.1 {Snk(2)}, then the

formula in Lemma 2.3 gives the max-product Favard-Szasz-Mirakjan oper-

ators.
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In a similar way, from Theorem 2.2.4 can be obtained qualitative ap-
proximation properties for the other max-product operators, like those of
Baskakov kind, of Bleimann-Butzer-Hahn kind and of Meyer-Konig-Zeller
kind.

It is worth nothing that by using other (direct) methods, quantitative
estimates in approximation by max-product type operators were obtained
by the first two authors in a long series of papers (see, e.g., [8], [9], [17]-[20]

and their References).

2.2.3 Approximation by convolution possibilistic op-

erators

In this subsection, by using the above possibilistic Feller’s scheme, we in-
troduce and study possibilistic variants of the classical linear convolution
operators of Picard, Gauss-Weierstrass and Poisson-Cauchy, formally given

by the formulas

PN =5 [ S0t Wi = Y2 [ et

) =" [ 1

o e
respectively, where n € N and x € R.

Denoting 2 = {0,1,...,k,...,} and Z(n,x) as in the previous Remark 3
and defining A, . (k)

e—nlz—k/n|
- vziioo e—nle—k/n|>

by the formula in Lemma 2.3

La(f)() = (Pos) / foZ(nz)dP,,.,

we obtain the following discrete possibilistic (max-product !) Picard oper-

ators oo " okl
P(M)(f)(x): k:—oof( /n)e

+o0 —nlr—k/n
PG lz—k/n|
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. e—n(z—k/n)? n2(z—k/n
Similarly, for A, (k) = == e and A (k) = gk e

we obtain the following discrete possibilistic (max-product !) operators,

WéM)(f)(a:) _ k;, Oioo(k/n) —n(z—k/n)?

E—m - of Gauss-Weierstrass kind,
o © n(z—k/n

F(k/n) - e
QM (f)(x) = k__oiof ") e k/n) - of Poisson-Cauchy kind.

k=—00 n2(z— k/n) +1

Let us denote by BUC, (R), the space of all uniformly continuous, bounded
and with positive values functions. The convergence of these operators can
be proved by using Theorem 2.2.4. However, we can obtain quantitative
estimates too, by direct proofs, as follows.
Theorem 2.2.5. (Coroianu-Gal-Oprig-Trifa [21]) For all f € BUC,(R)
we have
POO(f)(a) — f(@)] < 2-wi(f51/n)e.

(M)

We also can consider truncations of the operator P, ’. In this sense, we

can state the following.

Corollary 2.2.6. (Coroianu-Gal-Opris-Trifa [21]) Let (m(n))nen be a

mn) _

—— = +00 and

sequence of natural numbers with the property that lim,,

for f € BUC,(R) let us define

+m(n) *”|x7k/n|

k=—m(n) (k/n)
T (f)(a) = T R———
szm(n)

Then, TT(LM>(f) converges uniformly (as n — oo) to f, on any compact
subinterval of the form [—A, A], A > 0.

In what follows, similar results we present for the other possibilistic oper-
ators, W™ (f)(z), QM (f)(z) and their corresponding truncated operators

given by

” k/n) —n(z—k/n)?
Sn (f)(2) = ) o—n(o—h/n)?

k=—m(n)
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and +m(n) B S
m(n 1
k=—m(n) f(k/n) " n2(z—k/n)2+1
UM (f)(x) = () i '
k=—m(n) n2(z—k/n)2+1

Theorem 2.2.7. (Coroianu-Gal-Oprig-Trifa [21]) For all f € BUCL(R)

we have

(WM (f) (@) — f(2)] < 2-wi(f;1/vn)z.

Corollary 2.2.8. (Coroianu-Gal-Oprig-Trifa [21]) Let (m(n))nen be

a sequence of natural numbers with the property that lim, . =

= +00.
Then, for any f € BUC,(R), ST(LM)(f) converges uniformly (as n — o0)
to f, on any compact subinterval of the form [—A, A], A > 0 (ST(LM)(f) is
defined just above the statement of Theorem 2.2.7).

Theorem 2.2.9. (Coroianu-Gal-Oprig-Trifa [21]) For all f € BUCL(R)

we have
QM (f) (@) = f(@)] < 2-wi(f;1/ (2n))e.

Corollary 2.2.10.  (Coroianu-Gal-Opris-Trifa [21]) Let (m(n))n,en be

m(n)

Then, for any f € BUCL(R), éM)(f) converges uniformly (as n — o0)
to f, on any compact subinterval of the form [—A, A], A >0 (Uqg,M)(f) is
defined just above the statement of Theorem 2.2.7).

a sequence of natural numbers with the property that lim,, ..

= +00.

Remarks. 1) We note that in [28] Favard introduced the discrete version

of the above Gauss-Weierstrass singular integral by the formula

+oo
D) = o=+ 3 flk/n)- et e Nr e R
k=—oc0

and proved that if f : R — R is continuous on R, of the exponential growth
|f(t)] < Me*” for all t € R (here M, A > 0), then F,(f)(z) converges to

f(z) pointwise for each € R and uniformly on any compact subinterval
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of R. Other approximation properties of F,(f)(z), especially in various
weighted spaces, were studied in many papers, see, e.g., [1] and the Refer-
ences therein.

Exactly as it was proved for other max-product operators studied in
previous papers (see, e.g., [17]-[20]), with respect to its linear counterpart
F(f)(x), for the max-product operators Wi (f)(z) can be proved that in
some subclasses of functions f, have better global approximation properties
and that present much stronger localization results. More precisely, they
represent locally much better (probably best possible) the approximated
function, in the sense that if f and g coincides on a strict subinterval I C R,
then for any subinterval I strictly included in I, W,SM)( f) and Wi (9)
coincide in [ for sufficiently large n.

2) By using the above possibilistic Feller’s scheme, we can introduce for
study possibilistic variants of the classical linear convolution trigonometric
operators of de la Vallée-Poussin, Fejér and Jackson, formally defined by

the formulas
_ Ey( _
Vil =5 / f(&)kn(x — t)dt, =5 / f(&)bp(x —t)dt

= %/W f@)en(z —t)dt

respectively, where f is 2m-periodic,

(n!)? o 1 (sin(nt/2)\’
k(1) = 2 cos(t/2)", by(t) = — [ =)
(t) (o) (2cos(t/2)) (t)=- Sn(t/2)
d 1) = 3 sin(nt/2) 4
an Cn< ) T 2n(2n2+1) ( sin(t/2) > :
More precisely, denoting 2 = {—n,...,—1,0,1,...,n} and Z, ,(k) = %’T,
for f: [-m, 7] = Rand A, .(k) = Vﬁfk (“2 ](ZT/ZW/”), by the formula in Lemma

2.2.3 and by the definition of the possibility integral, we get the possibilistic
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de la Vallée-Poussin operators

n krm/n)k,(x — kn/n
V(S () = (Pos) / foZnz)db,. = Vk_v% k/<) —(kw/m -

Similarly, we can obtain the possibilistic operators of Fejér type

o1 — Vieo f(km/n)ba(w — kr/n)
Vi, bu(z — km/n)

) — \/szn flkm/n)c,(x — km/n)
\/Z:_n cn(x — km/n) ’

The study of the approximation properties of these operators will be made

elsewhere.
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Ch. 3

Approximation with an
arbitrary order by Szasz and
Baskakov operators of real

variable

Given an arbitrary sequence A\, > 0, n € N, with the property that
lim,,_, A, = 0 as fast we want, in this chapter we introduce modified /generalized
Baskakov operators in such a way that on each compact subinterval in

[0, 4+00) the order of uniform approximation is wy(f;v/An).

The idea of construction of these generalized operators is simple : in

their classical formulas, we replace everywhere n with )\i

For example, starting from the classical formula for the Szasz operators

St () = e3Py,
k=0 '

23
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by replacing n by ﬁ we get the generalized Szasz operator

o) k
Su(Fi) @) =S () £,

A
k=0 n

while starting from the classical formula for the Baskakov operator

Vi = ey (M (1ix)j'f ()

S0 G () o ()
:(1+$)—"§%-n(n+1)-...-(n+j—1)<1f_x)j-f(%>7

by replacing n by ﬁ we get the modified /generalized Baskakov operator

Va(fs An) ()

00 J
:(1—1—33)_1“”2%-)%1(1+)\in)-...-<j—1—l—)\in>-(1f_x> F M.

3.1 Generalized Baskakov operators on R,

Given an arbitrary sequence A\, > 0, n € N, with the property that
lim, . A, = 0 as fast we want, in this section we introduce generalized
Baskakov operators in such a way that on each compact subinterval in
[0, +00) the order of uniform approximation is wi(f;vA,). These modi-
fied operators can uniformly approximate a Lipschitz 1 function, on each
compact subinterval of [0, 00) with the arbitrary good order of approxima-
tion /.. Also, similar considerations are made for modified /generalized

gn-Baskakov operators, with 0 < ¢, < 1, lim, o ¢, = 1.
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3.1.1 Introduction

Let (\,), be a sequence of real positive numbers with the properties that
lim,, oo A, = 0.

In [15] Cetin and Ispir introduced a remarkable generalization of the
Szasz-Mirakjan type operators attached to analytic functions f of exponen-

tial growth in a compact disk,

o0

S = Y w () ).

k=0
which approximate f in any compact disk |z| < r, r < R, with the approx-
imation order \,,.

Involving in their construction the Faber polynomials too, these oper-
ators and their order of approximation were extended in Gal [36] in order
to approximate analytic functions in compact subsets (continuums) of the
complex plane. The great advantage of all these constructions is that the
sequence \,, n € N, can evidently be chosen to converge to zero with an
arbitrary small order. Note that in fact, all the above mentioned results

were obtained for ), written in the unnecessary more complicated form,

A = 2.

The first main aim of this section is to introduce and study the linear

and positive modified /generalized Baskakov-type operators, defined by

(VoW (A )
Lo(fi A () = S EVT Qi) gy (3.1)

]
=0 J:

for functions f : [0,b) — R (here b can be +00 too) such that the above
series converges (e.g. if f is bounded or uniformly continuous on [0,b)),
where the sequence of analytic functions ¢,, : [0,b) — R, n € N, satisfy
the hypothesis : (i) ¢(M\n;0) = 1; (ii) (=1)7U)(\,;2) > 0, for all n,j € N,
z € [0,b].
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It is worth noting that for the particular case \, = % and under the

additional hypothesis

(iii) there exists a sequence m(n), n € N with lim,, (= 1such that
gpﬁzk)()\n; x) = —ngoglk_l)()\n;a:), for all z € [0,b), n € N, k € N, the operators
in (3.1) were introduced and investigated in Baskakov [7].

Choosing ¢(\,;x) = (1 +x)~/** in (3.1), because of the formula

D (A\p; ) = (-1)]%1 (1 + Ain) - (j —1+ A—ln) (14 z)I7Y(3.2)

we immediately get the modified/generalized Baskakov-type operators de-

fined by
Va(fs An)(2)

:(1+$)1/Ani%.%n(1+%n) -...~(j—1+%n)-(1ix>jf(jkn),
(3.3)

x > 0, where by convention ﬁ (1 + /\ln) e (j -1+ ﬁ) =1for j=0.

For these operators V,,(f; An)(x) in (3.3), in the next Subsection we prove
that on each compact subinterval in [0, 400), the order of uniform approxi-
mation obtained is w1 (f; v/\,), and consequently uniformly approximate a
Lipschitz 1 function, on each compact subinterval of [0, 00) with an arbi-
trary good order of approximation v/\,. In other words, from the point of
view of approximation theory, between all kinds of Baskakov-type operators
in literature, these modified/generalized Baskakov operators represent the
best possible construction. In the same time, the results obtained have also
a strong unifying character, in the sense that one can recapture from them
all the results previously obtained by other authors, for various choices of
the nodes \,. It is also remarked that by modifying a Baskakov-type oper-

ator introduced in Lopez-Moreno [53], similar considerations can be made
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for the operator defined by

%0 G (s )+ (—)d
Lur (i) = S F ) P ) e
" (3.4)

Then, in the next Subsection we make similar considerations for modi-

fied /generalized g-Baskakov-type operators, 0 < ¢ < 1.

3.1.2 Main results

Firstly, we need the following two auxiliary results.

Lemma 3.1.1. (Gal-Opris [43]) Let A, > 0, n € N, be with lim,_,. A\, =

(i) If Lp(f;\n)(x) given by (3.1) is well-defined, then we can write

Lo(f; M) (z) = Z M) - (=17 - @D N3 0) - [0, Apy ooy GA; f] - 2 € [0, 0],

J

where [0, \y, ..., jAn; f] is the divided difference of f on the knots 0, A, ..., j\,.
(ii) Denoting ex(x) = x*, we have L,(eg; \y)(z) = 1, Lu(e; \y)(2) =
—2 A0 (An; 0),

Ln(eg; An) () = ()‘n>2 ) [37290//0‘113 0) — 29" (An; 0)].

Remark. In the case when A\, = <, the formula in Lemma 3.1.1, (i)
was obtained by Lupas [54].

Corollary 3.1.2. (Gal-Opris [43]) (i) If (1 + X\,) ... 1+ (G — DA\,) =1
for j =0 (by convention), then for V,(f;A\n)(x) given by (3.3), we have

Vo (f; M) (2) = Z (T4+X) e (T4 G = DA - [0, Aps ons JAn: flad 2 > 0.

J
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(1) Vi(eo; Ap) () = 1, Viu(er; M) () = z, Vi(eo; M) (2) = 224\, 2 (1+1)

Vil(- — 2)%: M) (2) = Az (1 4 ).

Since V,,(f; A\n), n € N, are positive and linear operators, we can state the
following result.

Theorem 3.1.3. (Gal-Opris [43]) Let f : [0,00) — R be uniformly con-
tinuous on [0,00). Denote wy(f;0) = sup{|f(z) — f(y)|; |z —y| <4, 2,y €
[0,00)}. For all x € [0,00), n € N we have

Valfi M)(@) = @) <21 (i VA0 Vel 4 7))

As an immediate consequence of Theorem 3.1.3 we get the following.
Corollary 3.1.4. (Gal-Opris [43]) If there exists L > 0 such that | f(z)—
fW)| < Llz —y|, for all z,y € [0,00), then

Valfi An) (@) = f(@)] < 2L7/(1+ 2) - v/ Anyn € N,z > 0.

Remarks. 1) If 2 belong to a compact subinterval of [0,400), then evi-
dently that we get uniform convergence in that subinterval.

2) The optimality of the estimates in Theorem 3.1.3 and Corollary 3.1.4
consists in the fact that given an arbitrary sequence of strictly positive
numbers (7,,)n, with lim, .7, = 0 and a compact subinterval [0, b], we
can find a sequence \,, satisfying 2w (f; v, - /2(1 +2)) < v, for all
n €N, z € [0,0] in the case of Theorem 3.1.3 and 2Lv/X,, - \/z(1 + ) < 7,
for all n € N, 2 € [0,0] in the case of Corollary 3.1.4.

3) If f is uniformly continuous on [0,+00) then it is well known that
its growth on [0, +00) is linear, i.e. there exist a, f > 0 such that |f(z)| <
ax + B, for all € [0, +00) (see e.g. [25], p. 48, Probleme 4, or [26]). This
implies that in this case V,(f; A\,)(z) is well-defined for all = € [0, 00).
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4) In the paper [53], the Baskakov-type approximation operators of the

form

L)) = S-S (l) o) () (%) rneN

7!

were studied, obtaining for example if ¢, (x) = (1 + )™, quantitative es-
timates of the order Q(f;n~"/2) + £, where Q(f;4) is a suitable weighted
modulus of continuity. By following the lines of proofs in [53], choosing
©(Mn;z) = (1 4 2)7* in the modified/generalized Baskakov-type op-
erator L, .(f;A\,)(x) given by formula (3.4), the order of approximation
Q (f; \/)\_n) + C\, is obtained, where ), can be chosen to converge to 0 as

fast we want.

3.1.3 The case of ¢-Baskakov operators, 0 < g < 1

Firstly, we need the following concepts in quantum calculus (see e.g. [50],

pp. 7-13).
1—q“
1—q °

For n € NU{0}, we get [n], =14+q+..+¢" ', neN,][0], =1 Theg

For 0 < ¢, ¢ # 1, and a € R, de ¢ analogue of a is defined by [a], =

factorial is defined by [n],! = [1],-[2],; ... [n], and the g-binomial coefficient
is given by (Z)q = m, k=0,1,..n.

Note that for ¢ = 1 we get [n], = n and as a consequence, [n],! = n! and
(D), = (-

The g¢-derivative of a function f : R — R is defined by D,(f)(x) =
%,x # 0, Dy(f)(0) = lim,0D,(f)(z), and the g-derivatives of
higher order are given recursively by Dp(f) = f, Di(f) = Do(Dy(f)),
n € N.

Everywhere in what follows, we consider 0 < ¢ < 1.



30CH. 3. ARBITRARY ORDER BY SZASZ AND BASKAKOV OPERATORS

Various kinds of ¢-Baskakov operators were studied in the e.g. the papers
[2], [60], [4]-[6], [49], [30].

Following the previous ideas and suggested by the ¢-Baskakov operators
introduced and studied in [60] and [2], we introduce here a modified g-
Baskakov operator, as follows.

Let A\, > 0, n € N be with lim,,_, ﬁ = +4o0. It is clear that with-
out any lost of generality, we may suppose that ﬁ > 1, n € N. For
©(An;+) 2 [0,00) = R, n € N, a sequence of analytic functions satisfying
the hypothesis (i) p(A,;0) = 1; (ii) (=1)7pD(\,;2) > 0, for all n,j € N,
x € [0,00), let us introduce the g-Baskakov operator given by

[e.9]

attached to functions for which 7T}, ,(f; A\,)(x) is well-defined.

Note that for 1/\, = n we recapture the g-Baskakov operators in [60],
2].

Following exactly the lines in the proof of Lemma 1 in [60] and also using
relationships (21) and(22) in [2], we immediately get the following.

Lemma 3.1.5. (Gal-Opris [43]) Let A, > 0, ﬁ > 1, n € N be with
lim,, o0 ﬁ =+o00. Foralln e N;x >0 and 0 < ¢ < 1, we have :

(i) Tog(e0 M)(@) = 15 Tauglens A)(@) = —2 - Dy(p(Aui D)(0) - k-

(i) Toalex M) = 2 - D2(p(his )(0) - i — - Dylp(Mi ))(0)

1.
(1/An]3"
(iii) T4 ((- — 2)% \) (x) = A, g2 + By gz, where

Ang =1+ Dg((A;))(0) +2- Dg(p(An; ))(0) -

1
q-[1/ ]2
and
Dq(p(/\n; 0)

Bug=—
! [/ A3



3.1. GENERALIZED BASKAKOV OPERATORS ON R, 31

Denoting by Cg(R,) the space of all bounded continuous real-valued func-
tions on [0, c0) and following exactly the lines in the proof of Theorem 2 in
2], we can state the following.

Theorem 3.1.6. (Gal-Opris [43]) Let A\, > 0, ﬁ > 1, n € N be with
lim,, o0 ﬁ = 400 and let (gn)nen be a sequence such that 0 < q, < 1 for all
n € N and lim,, o ¢, = 1. Then, for f € Cp(Ry) uniformly continuous,

the qn-operators given by (3.5) satisfy

[T (f5 20) () = ()] < (14 v/max{z,22}) - wi(f;1/Crg,),n € Nyw > 0,
where Cy, 4, = |Angi| + Brgns (Angn)ns (Bng,)n are given in Lemma 3.1.5,
(iii) and wn(f;6) = sup{| f(z) — (»)}; 2,y € [0,00), [z — | < 6}.
As consequences of Theorem 3.1.6, we get the following two corollaries.
Corollary 3.1.7. (Gal-Opris [43]) Let A\, > 0, ﬁ > 1, n € N be with
lim,, o0 ﬁ = +00 and (qn)nen be a sequence such that 0 < g, < 1 for all

n € N and lim,, o0 ¢, = 1. Then, for f € Cp(Ry) uniformly continuous,

the q,-operators given by

LA+ 1y, e [ A+ — 14
[,
U2 2’ f ([j]% R ) : (3.6)

I+z)) "\ [/ A,
for allmn € N,x > 0, satisfy the estimate

Corollary 3.1.8. (Gal-Oprig [43]) Let A\, > 0, ﬁ > 1, n € N be with

Taa(f2)(@) = 7 i)mn > [1/An]g,

lim,, oo ﬁ = 400 and (q,)nen be a sequence such that 0 < g, < 1 for all
n € N and lim,,_,o. g, = 1. Then, for f € Cg(Ry) uniformly continuous,

the qn-operators given by

Snga (3 An)(2)
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_ s A e iy (a1
]Z:; T Eq, (—=[1/ g4 x) f(qz—l [1/%]%), (3.7)

for alln € Nyx > 0, satisfy the estimate

S )0) 1) < (14 i) i ).

Remark. The order of approximation for the ¢,-Baskakov-type opera-
tors in Corollary 3.1.7 and for the ¢,-Szasz-Mirakjan operators in Corollary
3.4 is O(1/4/[1/Au]4,)- On the other hand, for ¢, = 1, for all n € N, the
order of approximation is O(1/1/1/\,) = O(v/A,) (see Theorem 3.1.3 in
the case of Baskakov-type operators).

However, for 0 < ¢, < 1 for all n € N, it is easy to see that /), <
\/%7%, because [1/\,]q, < 2/\,.

Indeed, denoting with [a], the integer part of a, we have 1/X, < [1/A,].+
1, which by 0 < ¢, < 1 implies qu/A"]*H < q,l/)‘”, leading to [1/A\,],, <
[/ An]e + 14, <[/ M) +1 < 2/A,.

On the other hand, by [24], Lemma 3.4, n < C’[n],,, for all n € N (with
(" > 0 independent of n), if and only if there exists a constant ¢ > 0 and

no € N (independent of n) such that ¢ > ¢, for all n > ng. Therefore, in

this case, we obtain
A € [/ +1 < CT A+ 1,
< C'2[1/ Anlilg, < 2C7[[1/ An]ilg, < 2C7[1/ Anl,-

In conclusion, if in Corollaries 3.1.7 and 3.1.8 ¢, is chosen to satisfy ¢ > c,
forall n > ng, 0 < ¢, < 1, n € N, and lim,,_,, ¢, = 1, then the approx-
imation orders for the corresponding ¢,-Baskakov and ¢,-Szasz-Mirakjan
operators are w ( I \/)\_n), which can be chosen to converge to 0 as fast we

want.
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3.2 Generalized Szasz-Stancu operators on
0, +00)

Let 0 <, and A\, > 0, n € N be with lim,,_,,, A\, = 0.
In this section we obtain estimates in approximation by the generalized

Szasz-Stancu by the formula

2.k (] + o
L) =3 S ( a ;Aj) 220,
It is clear that L%a’ﬁ)(f; An) is a positive linear operator on [0, +00), for
any n € N.
Firstly, we need the following auxiliary result.
Lemma 3.2.1. (Opris [59]) Let 0 < o, and A\, > 0, n € N be with
lim,, 00 Ay = 0. Denote ex(x) = 2%, k =0,1,2,...,. Foralln € N andz >0

we have :
(1) L,(f"ﬁ)(eo;)\n)(x) ; LY /3)(617)\ )(z) = % ,
(ii) L) (e9: M) (z) = ’”fﬁiEf”x = [ﬁizgr +ahe
(iii) LD (- = 2)% M) () = A, - 2t

Denote by Cg(R.) the space of all bounded continuous real-valued func-
tions on [0, 00). We can state the following.

Theorem 3.2.2. (Opris [59]) Let 0 < o, and A\, > 0, n € N be
with lim, o A\, = 0, as fast we want. Then, for f € Cg(Ry) uniformly

continuous, the following estimate holds

LD (f:da)(@) = F@)] < 200 (fivAa -V Aula = 2B ) 2 20,

where wy(f;6) = sup{|f(z) — f(y)|;x,y € [0,00), |z —y| < 0} denotes the

modulus of continuity of f.
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As an immediate consequence of Theorem 3.2.2, we get the following
corollary.

Corollary 3.2.3. (Opris [59]) Under the hypothesis of Theorem 3.2.2,
if, in addition, there exists L > 0 such that |f(z) — f(y)| < Lz — vy, for all
x,y € [0,00) (f is Lipschitz function), then

LD (f3 ) () = f(@)] < 203/ N - /e —2B) +@,n € Ny > 0,

Remarks. 1) If x belong to a compact subinterval of [0,400), then
evidently that we get uniform convergence in that subinterval.

2) Since the sequence A, can be chosen to converge to zero as fast as
we want, the results in Theorem 3.2.2 Corollary 3.2.3 are of definitive type,

that is are the best possible (cannot be improved).

3.3 Generalized Baskakov-Stancu operators
on [0, +00)

Let 0 < a, 8 and A\, > 0, n € N be with lim,,_,,, A\, = 0.
In this section we obtain estimates for the generalized Baskakov-Stancu

operators given by the formula

K9 (f: ) (@)

=1 1 1 1 ’ AnlJ
_ (1+x)—1/An;ﬁ_>\_n.(1+)\_n)-..,-(j—l—l—)\—n)-(lix)jf( 1:{;}\?)

At An(0r + )
L+ A7 14+ M5

_§ja+xm-“«1+o—1»n{ ;4x%xzo

Evidently, K& s positive linear operator on [0, 4+00), for any n € N.
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Firstly, we need the following auxiliary result.
Lemma 3.3.1. (Opris [59]) Let 0 < o, 8 and A\, > 0, n € N be with
lim,, oo ﬁ = +o00. For alln € N and x > 0 we have :

(Z) Kr(laaﬁ) (60; )\n)(.ilf) =1 E Kr(zayﬁ) (61; )\n)(x) — z+dpa .

T+ nfB 7

) B) _ @+l na@tl) _ [aaga]? | Aea(atl) |
(i) KA (e ) () = o2egloidgenl)  [ag |y Romteiy
a,f . An(a—zB)24x(1+x

(iii) KO (- = 2)% Aa) () = A, - 2nlemaf e |

Denote by Cg(R ) the space of all bounded continuous real-valued func-
tions on [0, 00). We can state the following.

Theorem 3.3.2. (Opris [59]) Let 0 < a,f and A\, > 0, n € N be
with lim, oo A\, = 0, as fast we want. Then, for f € Cg(Ry) uniformly

continuous, the following estimate holds

KD M) @)= F @) < 201 (1530 VAl 2B+ a(l+2)) >0,

where wi(f;6) = sup{|f(z) — f(y)|;z,y € [0,00),|x —y| < &} denotes the
modulus of continuity of f.

Remark. For « = § = 0 we recapture the estimate for V,(f;\,)
obtained in Corollary 2.1, (ii) in [43] (see also the previous Section 3.1).

As an immediate consequence of Theorem 3.3.2, we get the following
corollary.

Corollary 3.3.3. (Opris [59]) Under the hypothesis of Theorem 3.3.2,
if, in addition, there exists L > 0 such that |f(x) — f(y)| < L|z — vy, for all
x,y € [0,00) (f is Lipschitz function), then

KD (3 0) (@)= F(@)] < 2L/ Aaev/ Ml — 2B+ a1+ 2),n € Ny 2.0

Remarks. 1) If z belong to a compact subinterval of [0,400), then

evidently that we get uniform convergence in that subinterval.
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2) Since the sequence A, can be chosen to converge to zero as fast as
we want, the results in Theorem 3.3.2 Corollary 3.3.3 are of definitive type,

that is are the best possible (cannot be improved).



Ch. 4

Approximation with an
arbitrary order by Szasz and
Baskakov kind operators of

complex variable

In this chapter we consider the ideas in the previous chapter, but applied
now to the case of approximation of analytic functions by complex Szasz and
Baskakov type operators, in compact sets in C. Two cases are studied : (i)
approximation in compact disks with center at origin ; (ii) approximation
in arbitrary compacts by using the Faber polynomials attached to these

compact sets.

4.1 Arbitrary order in compact disks

By using a sequence A\, > 0, n € N with the property that A, — 0 as fast

we want, in this section we obtain the approximation order O(J,,) for some

37
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generalized /modified Szdsz, Szasz-Kantorovich, and Baskakov complex op-
erators attached to entire functions or to analytic functions of exponential

growth in compact disks and without to involve the values on [0, +00).

4.1.1 Introduction

In [15], with the notations there for two sequences a, and b,, n € N, and
denoting here A\, = Z—Z, the authors introduced the generalized complex

Szasz operator by

Su(fih)(z) = e 50 E L pj), (@)

where A\, > 0, A, — 0.

For this operator, attached to functions f : Dg | J[R, +00) — C of expo-
nential growth in D | J[R, +00), analytic in the disk Dy = {z € C; |z| < R},
R > 1 and continuous on [0, +00), the exact order of approximation O(\,)
is obtained in [15]. Also, in the same paper a Voronovskaja-type result with

an upper estimate of order O(\2) is proved.

The first goal of the present section is to extend the results in [15] to
the case of entire functions and then, to a kind od Szasz operator which
does not involve the values of f on [0,+00). Also, a complex operator of
Szasz-Kantorovich type is introduced, for which similar results are proved,

essentially improving the order of approximation O(1/n) obtained in [58].

The second goal is to introduce generalized /modified complex Baskakov
type operators, for which similar results with those obtained for the Szasz

operators are proved.
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4.1.2 Szasz and Szasz-Kantorovich operators

In the case of complex Szasz operator, we can prove the following result.

Theorem 4.1.1. (Gal-Opris [46]) Let A, > 0, n € N be with \,, — 0
as fast we want. Let f :Dr — C, 1 < R < 400, i.e. f(2) =Y peycr2”,
for all z € Dg. Suppose that there exist M >0 and A € (1/R,1), with the
property |c| < MAk—f, for all k = 0,1, ..., (which implies |f(2)| < MeA for
all z € D). Consider 1 <r < %.

(i) If R = +o0, (1/R=0), i.e. f isan entire function, then S,(f; \,)(z)
is entire function, we have Sy (f;A\n)(2) = D g CrSnler; An)(2) for all z €
C, n € N and for all |z| < r the following estimates hold :

|Sn(fa )‘n)(z) - f(Z>| S C’F,M7A : >\m

pir - Crma

Ans
(ri—r

1S (i M) (2) = FP(2)] <

A

Snlfi An)(2) = f(2) = Z2f"(2)] < My(f)(2) - A < C(f) A

||S7(Lp)(fa /\n) - f(p)Hr ~ )\na

the last equivalence holding if f is not a polynomial of degree < p € N and
the constants in the equivalence depend on f, r, p.

Above, Crpa = 3230k + 1)(rA)f < oo, pe N, 1 <r <r <4,
M(f)(2) = P55 T2 (k + D(rA) < oo, Gi(f) = 24 - 53, (k +
1AMt and ||l = max{|f(2);]2] < }.

(i) If R < +o0, then the complex approzimation operator

o0

S;,(f’ /\n)(z> = Z cr - Snler; /\n)(z>v z € Dy,

k=0
is well-defined and Si(f; \,)(2) satisfies all the estimates from the point (i),

foralllgr<%<R.
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In what follows, we can define the generalized/modified complex Szasz-
Kantorovich type operator by the formula

(U+DAn
Ko(f: A)(2) = e~/ Z z/)\ 1 / i F(w)do
Jj=0 n

n

_—z/)\ Z/)\ f t+]
S

Denoting F'(z fo t)dt, simple calculation leads to the formula (under

the hypothesm that the series S, (F’; A\,)(z) is uniformly convergent)

Ko(f; M) (2) = S;(F; An)(2). (4.2)

We can prove the following results.

Theorem 4.1.2. (Gal-Opris [46]) Let A, > 0, n € N be with \,, — 0
as fast we want. Let f:Dp — C, 1 < R < 400, i.e. f(z) = po,crzt,
for all z € Dg. Suppose that there exist M >0 and A € (1/R,1), with the
T S forall k =0,1, ..., (which implies |f(z)| < Me? for
all z € Dg). Also, consider 1 <r < 1/A.

(i) If R = +o0, (1/R=0), i.e. fisan entire function, then, K, (f;\,)(z2)
is entire function, we have K,(f;A)(2) = D peg culnler; \n)(2) for all
2z € C, n €N and for all |z| < r the following estimates hold :

property |ci| < M4r

An

Kn(f; M)(2) = f(2) = S (2) + 2" ()| < CL() -

ISP (f3 An) = F@l ~ A,

the last equivalence holding if f is not a polynomial of degree < p and the
constants in the equivalence depend on f, r, p.

Above p € N|J{0}, C/(f) < oo is a constant independent of n and z
and || fll» = max{[f(2)[; [2] <7}
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(i) If R < +o00, then the complex approzimation operator
KX(f;\n) ch wler; An)(2), 2 € D,

is well-defined and KX (f; \y)(2) satisfies all the estimates from the point
(i), for all1 <r < %+ <R.

Remarks. 1) In conclusion, the results in the complex case in Theorems
4.1.1 and 4.1.2, are of definitive type, in the sense that they exhibit operators
which can approximate the functions with an arbitrary chosen order.

2) The first estimate in the statement of Theorem 4.1.1, (i), was ex-
tended (with a different constant, of course) in [36] to the approximation

by generalized Szasz-Faber type operators in compact sets in C.

4.1.3 Generalized Baskakov operators

For x real and > 0, the original formula of the classical now Baskakov

operator is given by (see [7])

Z,(P@) = 1 +x>"kio (" (1) s

and many approximation results of this operators were published.

According to [54], Theorem 2, under the same hypothesis on f that
Zn(f)(x) is well defined and denoting by [0,1/n, ..., j/n; f] the divided dif-
ference of f on the knots 0, ..., j/n, for x > 0 we can write Z,(f)(x) =
W, (f)(x), z > 0, where

W (f)(x) = i <1 + %) (1 + ‘7;—1> [0,1/n,....j/n; fla’ x>0,

J=0

(4.3)
(here for j =0 and j =1 we take (1+1/n)-...- (1+(j —1)/n) =1).
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For A, N\, 0, arbitrary, by formula (1) in the paper [43] (particularizing
there o, (A\n; 1) = (1 +2)7Y*), Z,(f)(x) can be generalized to

Zn(f; An) ()

[e.e]

- 1 1 1 _ 1 z \ .
:(1—|—$) 1/An.j;0ﬁ.)\_n(1+>\—n>-...-<]—1+)\—n)-(1+x> f(])\n)7

x>0, Wherebyconventlon—<1—|— ) .-(j—l—l—ﬁ)zlforj:().

For this generalization, in [43] the order of approximation w;(f; /A, -
x(1 + z)) was obtained.
Accordingly, W,,(f)(z) given by (4.3), can be generalized to

=Y () o (L+ (= DA - [0, Ay oo, s fla? 2 > 0,
7=0

where by convention, (1+ A,)... (14 (j —1)\,) =1 for j = 0.

It is clear that Z,(f; A\n)(x) = Wi, (f; An)(x) for all x > 0, but as it was
remarked in [34], p. 124, in the particular case A, = +, if || < 1 is not
positive then W,,(f; \,)(z) and Z,,(f; \)(z) do not necessarily coincide and
because of this reason in Section 1.8 of the book [34], pp. 124-138, they were
studied separately, under different hypothesis on f and z € C.

In what follows we study the approximation properties of the complex
generalized Baskakov type operators W, (f; A,,)(z) attached to analytic func-
tions satisfying some exponential-type growth condition.

In this sense, we can state the following.

Theorem 4.1.3. (Gal-Opris [46]) Let 0 < A, < 3, n € N be with A, — 0
as fast we want. Let f:Dp — C, 1 < R < 400, i.e. f(z) =Y po, ki,
for all z € Dg. Suppose that there exist M > 0 and A € (1/R, 1), with the
property |ci| < MAk—f, for all k = 0,1, ..., (which implies |f(2)| < MeA? for
all z € D). Consider 1 <r < %.
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(i) If R =400, (1/R=0), i.e. f is an entire function, then for |z| <r
W (f; An)(2) is analytic, we have Wy, (f; An)(2) = D i cWaler; M) (2) and
the following estimates hold :

|Wn(f; /\n)(z) - f(Z)| S C17’,M,A : )\na

plry - Cr A

: >\n7
(ry—r

(WP (f; An)(2) — FP(2)] <

WalFi M) (2) = 1(2) = 222 17(2)| < ML) - 2,

||W75p)(f’ )‘n) - f(p)Hr ~ )\na

the last equivalence holding if f is not a polynomial of degree < p € N and
the constants in the equivalence depend on f, r, p.

Above, Cpapa = 6M Y 22 (k+ 1)(k—1)(rA)* < oo, pe N, 1 <r <
r < g Mi(f) = 16M - 352 5(k — D(k = 2)(rA)* < oo and ||f]l, =
max{|f(z)[;|z[ <r}.

(i) If R < +o0, then the complex approzimation operator
W>(f; An) ch w(ex; A)(2), 2 € Dy,

is well-defined and W(f; \,)(2) satisfies all the estimates from the point
(i), for all1 <r < % <R.

Remark. Due to the results in the real case in [43] and to those in
the complex case in Theorem 4.1.3, we can say that they seem to be of
definitive type, in the sense that exhibit Baskakov type operators which can

approximate the functions with an arbitrary chosen order.
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4.2 Arbitrary order by Baskakov-Faber op-

erators

By using a sequence A\, > 0, n € N with the property that \, — 0 as
fast we want, in this paper we obtain the approximation order O(\,) for
a generalized Baskakov-Faber type operator attached to analytic functions
of exponential growth in a continuum G C C. Several concrete examples
of continuums G are given for which this operator can explicitly be con-
structed.

In this way, the results obtained in the previous section for compact
disks, are generalized to the case when the disk is replaced by a compact

set in C.

4.2.1 Introduction

According to the considerations in Subsection 4.1.1, denoting

Wo(f)(z) = i (1 + %) e (1 + ‘%) [0,1/n, ..., 5/n; £,

Jj=0

for analytic functions satisfying some exponential-type growth condition,
quantitative estimates of order O (1) in approximation by W, (f)(z) in
compact disks with center at origin were obtained in [34], Section 1.9, pp.
124-138. For f(z) = > po,ax2", all the quantitative results are based on
the formula W,,(f)(z) = Y pey ak - Wa(eg)(2), with e,(z) = 2*, i.e. by using
(4.3) too,

Wo(f)(2) = gak z; (1 + %) e (1 + ‘%) [0,1/n, ..., j/n;ex] 2.

(4.4)
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Also, it is worth noting that similar quantitative estimates in approximation
by other complex operators can be found in, e.g., the books [34], [35], [48]
and in the papers [15], [37], [38]-[47], [55]-[57].

By using a sequence of real positive numbers, (A, )nen, with the proper-
ties that A, — 0 as fast we want, suggested by the formula (4.4) too, the aim
of this note is to generalize the approximation by the operators W,,(f)(z), to
the approximation by the so-called by us generalized Baskakov-Faber type
operators attached to analytic functions of some exponential growth in a
continuum in C, obtaining the approximation order O (A,,).

Since A\, — 0, obviously that without to loose the generality, everywhere

in the paper we may suppose that 0 < A\, < %, for all n € N.

4.2.2 Preliminaries

Firstly, we briefly recall some basic concepts on Faber polynomials and
Faber expansions.

For G C C a compact set such that C\ G is connected, let A(G) be the
Banach space of all functions that are continuous on GG and analytic in the
interior of G, endowed with the norm || f||¢ = sup{|f(2)|; 2 € G}. Denoting
D, = {z € C;|z| < r}, according to the Riemann Mapping Theorem,
there exists a unique conformal mapping ¥ of C \ D; onto C \ G such that

U(c0) = oo and ¥'(oc0) > 0. Then, to G one may attach the polynomial

' (w)

of exact degree n, F,(z), called Faber polynomial, defined by Tw) -2

S InlE e G w| > 1.

n=0 wn+l 9

If f € A(G) then

1 f(¥(u)) R i\ ,—int
an(f) = — /u|:1 ———du = Py /_7r f(W(e™))e "™ dt,n € NU{0}

271 untl

are called the Faber coefficients of f and )~ a,(f)F,(z) is called the
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Faber expansion (series) attached to f on G. It is worth noting that the
Faber series represent a natural generalization of the Taylor series, when
the unit disk is replaced by an arbitrary simply connected domain bounded
by a ”nice” curve.

Detailed properties of Faber polynomials and Faber expansions can be
found in e.g. [31], [62].

Let G be a connected compact subset in C (that is a continuum) and
suppose that f is analytic on G, that is there exists R > 1 such that
[ is analytic in Gg, given by f(2) = > oy ax(f)Fr(2), 2 € Ggr. Recall
here that G denotes the interior of the closed level curve I'p given by
I'r = {V(w);|w| = R} (and that G C G, for all 1 <r < R).

Suggested by the formula (4.4), we can introduce the following.

Definition 4.2.1. (Gal-Oprig [45]) The generalized Baskakov-Faber
type operators attached to G and f is defined by

o0

k=0
ie.,
Wi An, G 2)
00 k
=Y ar() Y (LA (T4 (= DA [0, A, ooy A0 4] Fy(2), (4.5)
k= =0
where for j = 0 and j = 1, by convention (1 4+ \,)-...- (1 4+ (j — 1D)A,) = 1.

Remark. For \, = 1/n, n € Nand G = Dy, since Fj(z) = 27, the above

0

generalized Baskakov-Faber type operators reduce to the classical complex

Baskakov operators, introduced and studied in [34], Section 1.9.

4.2.3 Main results

For the proof of the main result, we need two lemmas, as follows.
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Lemma 4.2.2. (Gal-Opris [45]) Let 0 < X, < 5 < 1, n € N, be with
An — 0. For all k,n € N with k < [1/\,] (here [a] denotes the integer part

of a) we have the inequality

N
—_

Bon = (14 M) o (14 (G = DA - [0, Ay ooy iAns €8] < A - (K + 3L,

J

I
o

Here, by convention, for j =0 and j = 1 we take (1+X,)-...-(1+(j—1)\,) =
1.

Also, we can prove the following.

Lemma 4.2.3. (Gal-Opris [45]) Let 0 < \,, < 1, n € N, be with A, — 0.
For all k> 0 and n € N, we have

Grin =3 (14 A) - (14 (G = DAR) - [0, Ay ey GAs €] < (K + 1)L,

B

=0
The main result is the following.

Theorem 4.2.4. (Gal-Opris [45]) Let f be analytic on the continuum
G, that is there exists R > 1 such that [ is analytic in Gg, given by f(z) =
Yoreoak(f)Ek(2), 2 € Gg. Also, suppose that there exist M > 0 and A €
(%,1), with |ag(f)] < MAk—;C, for all k = 0,1, ..., (which implies |f(z)| <
C(r)Me? forall z € G., 1 <r < R).

Let 1 <r< % be arbitrary fixed. Then, there exist an index ng € N and
a constant O(r, f) > 0 depending on r and f only, such that for all z € G,

and n > ng we have

|Wn<f7 )‘m G; Z) - f(2)| S C<T7 f) : /\n

Remarks. 1) Theorem 4.2.4 generalizes Theorem 1.9.1, p. 126 in [34],

in two senses : firstly, it is extended from compact disks with center at
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origin to compact sets and secondly, the order of approximation O (%) is
essentially improved to the order O (),), with A, — 0 as fast we want.

2) Tt is clear that Theorem 4.2.4 holds under the more general hypothesis
lap(f)] < Pn(k) - Ak—f, for all k > 0, where P, is an algebraic polynomial of
degree m with P, (k) > 0 for all £ > 0.

3) There are many concrete examples for G when the conformal mapping
U and the Faber polynomials associated to G, and consequently when the
Baskakov-Faber type operators too, can explicitly be written (see, e.g., [35],
pp. 81-83, or [36]), as follows : G = [—1,1], G is the continuum bounded
by the m-cusped hypocycloid, G is the regular m-star (m = 2,3, ...,), G is
the m-leafed symmetric lemniscate, m = 2,3, ...,, G is a semidisk, or G is a

circular lune.
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