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Ch. 1

General Introduction

This thesis contains the results I have obtained in the topic of approximation

of functions of real and complex variable.

Approximation Theory is a part of Mathematical Analysis, having its

roots in the 19th century. It deals, in essence, with the approximation of

some complicated elements of a space (most of the time functions), with

simpler elements (most of the time algebraic polynomials, trigonometric

polynomials, spline functions, so on). Moreover, quantitative characteriza-

tions of this approximation are obtained, most of the time in terms of the

so-called moduli of continuity (smoothness).

From historical point of view, in the case of approximation of functions

of real variable, probably that the first result was obtained by the German

mathematician K. Weierstrass in 1895, who proved the following result.

Theorem A. If f : [a, b]→ R is continuous on [a, b], then there exists a

sequence of algebraic polynomials with real coefficients, Pmn(x) = a0x
mn +

.+ amn−1x+ amn, such that limn→∞ Pmn(x) = f(x), uniformly with respect

to x ∈ [a, b].

A constructive proof of the above result was obtained by the Russian
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6 CH. 1. GENERAL INTRODUCTION

mathematician S.N. Bernstein in 1912, who proved that the sequence of alge-

braic polynomials (called in our days ”Bernstein polynomials”), Bn(f)(x) =∑n
k=0

(
n
k

)
xk(1 − x)n−kf)k/n), converges uniformly to the continuous func-

tion f .

The first quantitative result in the Weierstrass’ and Bernstein’s result

was obtained by the Romanian mathematician Tiberiu Popoviciu in 1942,

who proved

|Bn(f)(x)− f(x)| ≤ 3

2
ω1(f ; 1/

√
n),∀x ∈ [0, 1], n ∈ N,

where ω1(f ; δ) = sup{|f(x) − f(y)|;x, y ∈ [0, 1], |x − y| ≤ δ} denotes the

modulus of continuity of f .

In the case of approximation of continuous and 2π periodic functions, the

first constructive result was obtained by the Hungarian mathematician L.

Fejér in 1900, who proved that if f : R→ R is a continuous and 2π periodic

function on R, denoting Sn(f)(x) =
∑n

k=0 ak cos(kx) + bk sin(kx), were ak

and bk are the Fourier coefficients of f , then Tn(f)(x) = S0(f)(x)+...+Sn(f)(x)
n+1

represents a sequence of trigonometric polynomials converging uniformly to

f on R.

The first quantitative and constructive result in approximation by trigono-

metric polynomials was obtained by the American mathematician D. Jack-

son in the doctoral thesis in 1911, who proved that if f : R→ R is contin-

uous and 2π periodic, then a sequence of trigonometric polynomials can be

constructed, Jn(f)(x), n ∈ N, with the property that

|Jn(f)(x)− f(x)| ≤ Cω2(f ; 1/n),∀x ∈ R, n ∈ N,

where ω2(f ; δ) = sup{|f(x + h) − 2f(x) + f(x − h)|; 0 ≤ h ≤ δ, x ∈ R}

represents the second order modulus of smoothness of f .
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An important direction in approximation of functions is represented by

the theory of approximation by positive and linear operators, having its

roots between 1950 and 1970, by the classical results of Tiberiu Popoviciu,

Bohman, Korovkin, Shisha-Mond and others. In essence, these results state

(see Korovkin’s results) that in order that a sequence of positive and linear

operators, (Ln(f))n∈N, be uniformly convergent on [a, b] to a continuous

function f , is that Ln(ek) → ek, for k = 0, 1 and 2, where e0(x) = 1,

e1(x) = x şi e2(x) = x2.

In the case of complex approximation, the roots of this theory can be

found, for the approximation of continuous functions by polynomials or en-

tire functions in the Müntz-Szász Carleman’s papers, while for approxima-

tion of analytic functions of a complex variable by polynomials or rational

functions, can be mentioned the results obtained by Runge, Walsh, Faber,

Mergelyan, Arakelyan and Dzyadyk.

This thesis is structured in four chapters.

In the present Chapter 1, we make a general introduction in Approxi-

mation Theory and we shortly describe the thesis.

In Chapter 2 titled ”Approximation by nonlinear integral operators”,

the basic idea is the replacement of the classical integral in the expressions

of some integral linear operators, by more general integrals (which are not

linear) and to study the approximation properties of the new obtained op-

erators.

The chapter has two sections.

Thus, in the first section, titled ”Approximation by Durrmeyer-Choquet

operators”, in the expression of the classical Bernstein-Durrmeyer opera-

tors, the Lebesgue integral is replaced by the nonlinear Choquet integral

with respect to a monotone and submodular set function. We show that
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the new obtained nonlinear operators remain uniformly convergent to the

approximated function.

In the second section, in the classical Feller’s scheme of generation of lin-

ear and positive operators with good approximation properties, we replace

the classical (linear) integral with respect to the Lebesgue measure, with

the nonlinear possibilistic integral. In this way, we generate new (nonlinear)

operators with good approximation properties, including the so-called max-

product operators studied in a long series of papers by B. Bede, L. Coroianu

and S.G. Gal (which culminates with the research monograph [10] published

at Springer).

In the same section, we study the quantitative approximation properties

of the convolution possibilistic operators obtained by the Feller’s scheme.

In Chapter 3 titled ”Arbitrary order by Szász and Baskakov operators”,

starting from a sequence λn > 0, n ∈ N, converging to zero as fast we want

(that is, arbitrary fast), we construct sequences of Baskakov, q-Baskakov,

Szász-Stancu and Baskakov-Stancu operators, converging to the approxi-

mated function f : [0,∞) → R with the order of convergence ω1(f ;
√
λn)

(in fact, arbitrary good, because λn can be chosen to converge to zero,

arbitrarily rapid).

For this reason, the results in this chapter can be considered of definitive

type (that is, the best possible). In the same time, the results obtained have

also a strong unifying character, in the sense that one can recapture from

them all the results previously obtained by other authors, for various choices

of the nodes λn.

In Chapter 4 titled ”Complex Szász and Baskakov operators”, we apply

the ideas in Chapter 3 to the case of aproximation of analytic functions of

complex variable, by complex Szász, Szász-Kantorovich and Baskakov.
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In the first section of the chapter, starting again from a sequence λn > 0,

n ∈ N, converging to zero as fat we want (arbitrarily rapid), we construct

sequences of Szász, Szász-Kantorovich and Baskakov operators attached to

an analytic function of exponential growth in a compact disk centered at

origin, which approximate f with the orderO(λn) and for which quantitative

Voronovskaja type results with the order O(λ2
n) are obtained.

In the second section of the chapter, we consider the same problem as

in the previous section, for the so-called complex Baskakov-Faber opera-

tors, attached through the Faber polynomials to an analytic function of

exponential growth in a compact set of C (not necessarily a disk).

The results presented in this thesis were obtained by the author in collab-

oration with professor dr. Sorin Gal, Nazim Mahmodov, Lucian Coroianu,

Sorin Trifa, or as a single author, in 6 papers, published by the following

journals :

1) Gal, Sorin G.; Opriş, Bogdan D., Approximation with an arbitrary

order by modified Baskakov type operators. Appl. Math. Comput., 265

(2015), 329-332 (Impact Factor ISI (IF)on 2015 : 1.345, Relative Score of

Influence (RSI) on 2016 : 0.733)

2) Gal, Sorin G.; Opriş, Bogdan D., Uniform and pointwise con-

vergence of Bernstein-Durrmeyer operators with respect to monotone and

submodular set functions. J. Math. Anal. Appl. 424 (2015), no. 2,

1374-1379 (IF on 2015 : 1.014, RSI on 2016 : 1.125)

3) Gal, Sorin G.; Opriş, Bogdan D., Approximation of analytic func-

tions with an arbitrary order by generalized Baskakov-Faber operators in

compact sets. Complex Anal. Oper. Theory 10 (2016), no. 2, 369-377

(IF on 2015 : 0.663, RSI on 2016 : 0.724)

4) Coroianu, Lucian ; Gal, Sorin G. ; Opriş, Bogdan D.; Trifa, Sorin,
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Feller’s scheme in approximation by nonlinear possibilistic integral opera-

tors, Numer. Funct. Anal. and Optim., 38 (2017), No. 3, 327-343 (IF

on 2015 : 0.649, RSI on 2016 : 0.540).

5) Gal, Sorin G.; Mahmudov, Nazim I.; Opriş, Bogdan D., Approx-

imation with an arbitrary order of Szász, Szász-Kantorovich and Baskakov

complex operators in compact disks. Azerb. J. Math. 6 (2016), no. 2,

3-12 (indexed in Mathematical Reviews and Zentralblatt für Mathematik)

6) Opriş, Bogdan, D., Approximation with an arbitrary order by gen-

eralized Szász-Stancu and Baskakov-Stancu type operators, Anal. Univ.

Oradea, fasc. math., XXIV (2017), No. 1, 75-81 (B+ journal, indexed

in Mathematical Reviews and Zentralblatt für Mathematik).

The original results obtained in the thesis are the following :

Chapter 2. Section 2.1 : Lemma 2.1.2, Theorem 2.1.3, Theorem 2.1.4

; The results were published in the paper [44];

Section 2.2 : Theorem 2.2.2, Lemma 2.2.3, Theorem 2.2.4, Theorem

2.2.5, Corollary 2.2.6, Theorem 2.2.7, Corollary 2.2.8, Theorem 2.2.9, Corol-

lary 2.2.9 ; The results were published in the paper [21] ;

Chapter 3. Section 3.1 : Lemma 3.1.1, Corollary 3.1.2, Theorem 3.1.3,

Corollary 3.1.4, Lemma 3.1.5, Theorem 3.1.6, Corollary 3.1.7, Corollary

3.1.8 ; The results were published in the paper [43];

Section 3.2 : Lemma 3.2.1, Theorem 3.2.2 and Corollary 3.2.3 ; The

results were published in the paper [59];

Section 3.3 : Lemma 3.3.1, Theorem 3.3.2, Corollary 3.3.3 ; The results

were published in the paper [59];

Chapter 4. Section 4.1 : Theorem 4.1.1, Theorem 4.1.2, Theorem 4.1.3

; The results were published in the paper [46];

Section 4.2 : Definition 4.2.1, Lemma 4.2.2, Lemma 4.2.3, Theorem
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4.2.4. The results were published by the paper [45].

Key words : monotone and submodular set function, Choquet inte-

gral, Bernstein-Durrmeyer operator, uniform convergence, pointwise con-

vergence ; theory of possibility, Feller’s scheme, Chebyshev type inequality,

nonlinear possibilistic integral, possibilistic Picard operators, possibilistic

Gauss-Weierstrass operators, possibilistic Poisson-Cauchy operators, max-

product (possibilistic) Bernstein kind operators ; generalized Baskakov op-

erator of real variable, linear and positive operators, modulus of continuity,

order of approximation, q-calculus ; generalized Szász, Szász-Kantorovich

and Baskakov complex operators, Voronovskaja-type results ; compact sets,

Faber polynomials, generalized Baskakov-Faber operator.

I want to express my deep gratitude to professor dr. Sorin Gal for his

constant support in the elaboration of this thesis.
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Ch. 2

Approximation by nonlinear

integral operators

In this chapter we deal with the study of the approximation properties of the

integral operators, in the case when the classical linear integral is replaced

with the nonlinear Choquet integral and the nonlinear possibilistic integral.

The chapter consists in two sections : in the first section we deal with the

Durrmeyer-Choquet operators and in the second section we deal with the

possibilistic operators.

2.1 Approximation by Durrmeyer-Choquet

operators

In this section we study the Bernstein-Durmeyer type operator of d-variables,

Mn,µ, in which the integrals written in terms of a Borel type measure µ (in-

cluding therefore the Lebesgue measure too) defined on the d-dimensional

simplex, are replaced by Choquet integrals with respect to µ supposed to

1
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be only monotone and submodular. The new operator is nonlinear and gen-

eralizes the linear Bernstein-Durrmeyer. For this operator which could be

called of Durrmeyer-Choque type, we prove the uniform and pointwise con-

vergence to f(x). As a consequence, the results obtained generalize those

in the recent papers [11] and [12].

2.1.1 Introduction

Let the standard simplex in Rd

Sd = {(x1, ..., xd); 0 ≤ x1, ..., xd ≤ 1, 0 ≤ x1 + ...+ xd ≤ 1}.

Inspired by the paper [13], in the recent papers [11], [12] and [52], uni-

form, pointwise and Lp convergence (respectively) of Mn,µ(f)(x) to f(x)

(as n → ∞) were obtained, where Mn,µ(f)(x) denotes the linear, mixed

Bernstein-Durrmeyer operator of d-variables, with respect to a bounded

Borel measure µ : Sd → R+, defined by (supposing that f is µ-integrable

on Sd)

Mn,µ(f)(x)

=
∑
|α|=n

∫
Sd f(t)Bα(t)dµ(t)∫
Sd Bα(t)dµ(t)

·Bα(x) :=
∑
|α|=n

c(α, µ) ·Bα(x), x ∈ Sd, n ∈ N.

(2.1)

In the above formula (2.1), we used the notations α = (α0, α1, ..., αn), with

αj ≥ 0 for all j = 0, ..., n, |α| = α0 + α1 + ...+ αn = n and

Bα(x) =
n!

α0! · α1! · ... · αn!
(1− x1 − x2 − ...− xd)α0 · xα1

1 · ... · x
αd
d

:=
n!

α0! · α1! · ... · αn!
· Pα(x).

We will prove that the results in [11] and [12] on pointwise and uniform

convergence, remain valid in the more general setting when µ is only a
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monotone, bounded and submodular set function on Sd and the integrals

appearing in formula (2.1), represent Choquet integrals with respect to µ.

2.1.2 Preliminaries

In this subsection, by Definition 2.1.1 and the Remarks after this definition,

we present known concepts and results useful in the next subsections.

Definition 2.1.1. Consider that Ω is a nonempty set, C is a σ-algebra

of subsets in Ω and (Ω, C) i a measurable space.

(i) (see, e.g., [63], p. 63) The set function µ : C → [0,+∞] will be

called a monotone set function (or capacity) if µ(∅) = 0 and A,B ∈ C, with

A ⊂ B, implies µ(A) ≤ µ(B). If

µ(A
⋃

B) + µ(A
⋂

B) ≤ µ(A) + µ(B), for all A,B ∈ C,

then µ is called submodular. Then, µ will be called normalized, if µ(Ω) = 1

(ii) (see [16], or [63], p. 233) Let µ : C → R+ be a normalized, monotone

set function. The function f : Ω→ R is called C-measurable if for any Borel

subset B ⊂ R, it holds f−1(B) ∈ C.

If f : Ω→ R is C-measurable, then for any A ∈ C, the Choquet integral

will be defined by the formula

(C)

∫
A

fdµ =

∫ +∞

0

µ(Fβ(f)
⋂

A)dβ +

∫ 0

−∞
[µ(Fβ(f)

⋂
A)− µ(A)]dβ,

where Fβ(f) = {ω ∈ Ω; f(ω) ≥ β}. If (C)
∫
A
fdµ exists in R, then f is

called Choquet integrable on A. We observe that if f ≥ 0 on A, then the

term integral
∫ 0

−∞ in the above formula becomes equal to zero.

When µ is the Lebesgue measure (i.e. countably additive), then the

Choquet integral (C)
∫
A
fdµ reduces to the Lebesgue integral.
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In the lines of the following remarks, we list without proofs some known

properties which will be used in the next subsections.

Remarks. Let µ : C → [0,+∞] be a monotone set function. Then, the

following properties hold :

(i) (C)
∫
A

is positively homogeneous, i.e. for a ≥ 0 we have (C)
∫
A
afdµ =

a · (C)
∫
A
fdµ (for f ≥ 0 see, e.g., [63], Theorem 11.2, (5), p. 228 and for f

of arbitrary sign, see, e.g., [23], p. 64, Proposition 5.1, (ii)).

(ii) In the general case for fand g, we have (C)
∫
A

(f+g)dµ 6= (C)
∫
A
fdµ+

(C)
∫
A
gdµ. If µ is submodular too, then the Choquet integral is sublinear,

that is

(C)

∫
A

(f + g)dµ ≤ (C)

∫
A

fdµ+ (C)

∫
A

gdµ,

for all f, g of arbitrary sign and lower bounded (see, e.g., [23], p. 75, Theo-

rem 6.3).

Then, for all c ∈ R and f of arbitrary sign we have

(C)

∫
A

(f + c)dµ = (C)

∫
A

fdµ+ c · µ(A),

(see, e.g., [63], pp. 232-233, or [23], p. 65).

(iii) If f ≤ g on A then (C)
∫
A
fdµ ≤ (C)

∫
A
gdµ (see, e.g., [63], p. 228,

Theorem 11.2, (3) for f, g ≥ 0 and p. 232 for f, g of arbitrary sign).

(iv) Let f ≥ 0. By the definition of the Choquet integral, it is immediate

that if A ⊂ B then

(C)

∫
A

fdµ ≤ (C)

∫
B

fdµ

and if, in addition, µ is finitely subadditive, then

(C)

∫
A
⋃
B

fdµ ≤ (C)

∫
A

fdµ+ (C)

∫
B

fdµ.

(v) By the definition of the Choquet integral, it is immediate that

(C)

∫
A

1 · dµ(t) = µ(A).
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(vi) Simple concrete examples of monotone and submodular set functions

µ, can be obtained from a probability measure M on a σ-algebra on Ω

(i.e. M(∅) = 0, M(Ω) = 1 and M is countably additive), by the formula

µ(A) = γ(M(A)), where γ : [0, 1] → [0, 1] is an increasing and concave

function, with γ(0) = 0, γ(1) = 1 (see, e.g., [23], pp. 16-17, Example 2.1).

Note that in fact if M is only finitely additive, then µ(A) = γ(M(A)) still

is submodular.

Recall here that a set function µ : P(Ω) → [0, 1] (P(Ω) denotes the

family of all subset of Ω) is called a possibility measure on the non-empty

set Ω, if it satisfies the axioms µ(∅) = 0, µ(Ω) = 1 and µ(
⋃
i∈I Ai) =

sup{µ(Ai); i ∈ I} for all Ai ∈ Ω, and any I, family of indices.

Concerning this concept, it is known that any possibility measure µ is

monotone and submodular. Indeed, we observe that the monotonicity and

the submodularity are immediate from the axioms (respectively)

µ(A
⋃

B) = max{µ(A), µ(B)}, µ(A
⋂

B) ≤ min{µ(A), µ(B)}.

It is also known that any given possibility distribution (on Ω), that is a

function λ : Ω→ [0, 1], such that sup{λ(s); s ∈ Ω} = 1, induces a possibility

measure µλ : P(Ω)→ [0, 1], given by the formula µλ(A) = sup{λ(s); s ∈ A},

for all A ⊂ Ω, A 6= ∅, µλ(∅) = 0 (for the definition and the properties of the

measures of possibility, see, e.g., [27], Chapter 1).

2.1.3 Main Results

Let BSd be the sigma algebra of all Borel measurable subsets in P(Sd) and

µ : BSd → [0,+∞) be a normalized, monotone and submodular set function

on BSd .
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We say that µ is strictly positive if µ(A ∩ Sd) > 0, for every open set

A ⊂ Rn with A ∩ Sd 6= ∅.

Also, by definition, the support of µ, denoted by supp(µ), is the set of

all x ∈ Sd with the property that for every open neighborhood Nx ∈ BSd of

x, we have µ(Nx) > 0.

Denote by C+(Sd) the space of all positive-valued continuous functions

on Sd and by L∞µ (Sd) the space of all real-valued BSd-measurable functions

f , such that there exists a set E ⊂ Sd (depending on f) with µ(E) = 0 and

f is bounded on Sd \ E.

Denote

Mn,µ(f)(x) =
∑
|α|=n

c(α, µ) ·Bα(x), x ∈ Sd, n ∈ N,

where applying Remark 2.2, (i), we easily get

c(α, µ) =
(C)

∫
Sd f(t)Bα(t)dµ(t)

(C)
∫
Sd Bα(t)dµ(t)

=
(C)

∫
Sd f(t)Pα(t)dµ(t)

(C)
∫
Sd Pα(t)dµ(t)

.

It is worth noting here that we did not loose any generality by the

normalization condition on the set valued function µ and that the condition

supp(µ) \ ∂Sd 6= ∅, guarantees that (C)
∫
Sd Bα(t)dµ(t) > 0, for all Bα.

For the proof of the main results, we need the following auxiliary result.

Lemma 2.1.2. (Gal-Opriş [44]) Let us suppose that µ is a normalized,

monotone and submodular set function. If we define Tn : C+(Sd)→ R+ by

Tn(f) = (C)

∫
Sd

f(t)Pα(t)dµ(t), f ∈ C+(Sd), n ∈ N, |α| = n,

then for all f, g ∈ C+(Sd), we have

|Tn(f)− Tn(g)| ≤ Tn(|f − g|) = (C)

∫
Sd

|f(t)− g(t)| · Pα(t)dµ(t).
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The first main result is an analogous result to Theorem 1 in [11] and

refers to uniform approximation.

Theorem 2.1.3. (Gal-Opriş [44]) Let µ be a normalized, monotone,

submodular and strictly positive set function on BSd, such that supp(µ) \

∂Sd 6= ∅. For every f ∈ C+(Sd) we have

lim
n→∞

‖Mn,µ(f)− f‖C(Sd) = 0,

where ‖F‖C(Sd) = max{|F (x)|;x ∈ Sd}.

The second main result is an analogue result to Theorem 1 in [12] and

refers to pointwise convergence. In this sense, analysing the reasonings

in the proof of Theorem 1 in [12] and using the same properties of the

Choquet integral as in the proof of the above Theorem 2.1.3, we easily get

the following.

Theorem 2.1.4. (Gal-Opriş [44]) Let µ be a normalized, monotone,

submodular set function on BSd, such that supp(µ)\∂Sd 6= ∅. If f ∈ L∞µ (Sd)

and f(x) ≥ 0, for all x ∈ Sd, then at any point x ∈ supp(µ) where f is

continuous, we have

lim
n→∞

|Mn,µ(f)(x)− f(x)| = 0.

Remarks. 1) According to the previous Remark, (vi), an example of

submodular set function µ satisfying all the requirements in the statements

of Theorems 2.1.3 and 2.1.4, can simply be defined by µ(A) =
√
ν(A),

where ν is a Borel probability measure as in [11] and [12]. Also, it is worth

noting that due to the nonlinearity of the Choquet integral (see Remark

(ii)), unlike the case in [11], [12], the Bernstein-Durrmeyer operator in the

present paper is nonlinear.
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2) The positivity of function f in Theorems 2.1.3 and 2.1.4 is necessary

because of the positive homogeneity of the Choquet integral applied in the

proof. However, if f is of arbitrary sign on Sd, then it is immediate that

the statements of Theorems 2.1.3 and 2.1.4 can be restated for the slightly

modified Bernstein-Durrmeyer operator defined by

M∗
n,µ(f)(x) = Mn,µ(f −m)(x) +m,

where m ∈ R is a lower bound for f , that is f(x) ≥ m, for all x ∈ Sd.

2.2 Approximation by possibilistic integral

operators

By analogy with the Feller’s general probabilistic scheme used in the con-

struction of many classical convergent sequences of linear operators, in this

paper we consider a Feller-kind scheme based on the possibilistic integral,

for the construction of convergent sequences of nonlinear operators. As par-

ticular cases, in the discrete case, all the so-called max-product Bernstein

type operators and their qualitative convergence properties are recovered.

In addition, discrete non-discrete nonlinear possibilistic convergent opera-

tors of Picard type, Gauss-Weierstrass type and Poisson-Cauchy type are

considered.

2.2.1 Introduction

In the very recent paper [32], the so-called max-product operators of Bern-

stein, of Favard-Szász-Mirakjan kind, of Baskakov kind, of Bleimann-Butzer-

Hahn kind and of Meyer-König-Zeller kind (whose quantitative approxima-
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tion properties were intensively studied in many previously published pa-

pers, see, e.g., [8], [9], [17]-[20] and the References in [32]), were naturally

interpreted as possibilistic expectations of particular discrete fuzzy variables

having various possibilistic distributions. By using the Bernstein’s idea in

[14], (see also the more accessible paper [51]), but based on a Chebyshev-

type inequality in possibility theory, these interpretations allowed to obtain

for them qualitative convergence results.

It is worth mentioning here that possibility theory is a well-established

mathematical theory dealing with certain types of uncertainties and is con-

sidered as an alternative to probability theory (see, e.g., [27], [22]) .

The main aim of this section is to present the well-known Feller’s prob-

abilistic scheme in approximation, in the setting of possibility theory. In

particular, this scheme will allow not just another natural approach of the

max-product operators, but also to introduce and study many other possi-

bilistic approximation operators too.

Firstly, let us recall that a classical scheme in constructing linear and

positive approximation operators, is the Feller’s probabilistic scheme (see

[29], Chapter 7, or more detailed, [3], Section 5.2, pp. 283-319). Described

shortly, it consists in attaching to a continuous and bounded function f :

R→ R, approximation operators of the form

Ln(f)(x) =

∫
Ω

f ◦ Z(n, x)dP =

∫
R
fdPZ(n,x),

where P is a probability on the measurable space (Ω, C), Z : N×I →M2(Ω),

with I a subinterval of R, M2(Ω) represents the space of all random vari-

ables whose square is integrable on Ω with respect to the probability P and

PZ(n,x) denotes the distribution of the random variable Z(n, x) with respect

to P defined by PZ(n,x)(B) = P (Z−1(n, x)(B)), for al B-Borel measurable
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subset of R. Then, denoting by E(Z(n, x)) and V ar(Z(n, x)) the expectance

and the variance of the random variable Z(n, x), respectively, and suppos-

ing that limn→∞E(Z(n, x)) = x, limn→∞ V ar(Z(n, x)) = 0, uniformly on

I, it is proved that for all f as above, Ln(f) converges to f uniformly on

each compact subinterval of I.

In addition, if for the random variable Z(n, x), its probability density

function λn,x is known, then for any f we can write

∫
R
fdPZ(n,x) =

∫
R
f(t) · λn,x(t)dP (t),

formula which is useful in the concrete construction of the approximation

operators Ln(f)(x).

In the very recent paper [33], the Feller’s scheme was generalized to

the case when the above classical integral is replaced with the nonlinear

Choquet integral with respect to a monotone and subadditive set function.

By analogy with the above considerations, in the next subsection we

consider a Feller kind scheme based on the possibilistic integral, for the

construction of convergent sequences of nonlinear operators. In particular,

in the discrete case, all the so-called max-product Bernstein type operators

and their qualitative convergence are reobtained through this scheme. In

Section 3, new discrete nonperiodic nonlinear possibilistic convergent op-

erators of Picard type, Gauss-Weierstrass type and Poisson-Cauchy type

suggested by Feller’s scheme are considered. At the end, for future studies

we consider discrete periodic(trigonometric) nonlinear possibilistic opera-

tors of de la Vallée-Poussin type, of Fejér type and of Jackson type.
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2.2.2 Feller’s scheme in terms of possibilistic integral

Firstly we summarize some known concepts for the discrete or non-discrete

fuzzy variables in possibility theory, which will be useful in the next section.

As it is easily seen, in fact they are the corresponding concepts for those

in probability theory, like random variable, probability distribution, mean

value, probability, so on. For details, see, e.g., [27] or [22].

Definition 2.2.1. Let Ω be a non-empty, discrete (i.e. at most count-

able) or non-discrete set.

(i) A fuzzy variable X is an application X : Ω → R. If Ω is a discrete

set, then X is called discrete fuzzy variable. If Ω is finite then X is called

a finite fuzzy variable. If Ω is not discrete, then X is called non-discrete

fuzzy variable.

(ii) A possibility distribution (on Ω), is a function λ : Ω → [0, 1], such

that sup{λ(s); s ∈ Ω} = 1.

(iii) The possibility expectation of a fuzzy variable X (on Ω), with the

possibility distribution λ is defined by Msup(X) = sups∈Ω X(s)λ(s). The

possibility variance of X is Vsup(X) = sup{(X(s)−Msup(X))2λ(s); s ∈ Ω}.

(iv) If Ω is a non-empty set, then a possibility measure is a mapping P :

P(Ω)→ [0, 1], satisfying the axioms P (∅) = 0, P (Ω) = 1 and P (
⋃
i∈I Ai) =

sup{P (Ai); i ∈ I} for all Ai ∈ Ω, and any I, an at most countable family

of indices (if Ω is finite then obviously I must be finite too). Note that if

A,B ⊂ Ω, satisfy A ⊂ B, then by the last property it easily follows that

P (A) ≤ P (B) and that P (A
⋃
B) ≤ P (A) + P (B).

It is well-known (see, e.g., [27]) that any possibility distribution λ on

Ω, induces a possibility measure Pλ : P(Ω) → [0, 1], given by the formula

Pλ(A) = sup{λ(s); s ∈ A}, for all A ⊂ Ω.

For each fuzzy (possibilistic) variable X : Ω → R, we can define its
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distribution measure with respect to a possibility measure P induced by a

possibility distribution λ, by the formula

PX : B → R+, PX(B) = P (X−1(B)) = P ({ω ∈ Ω;X(ω) ∈ B}), B ∈ B,

where R+ = [0,+∞) and B is the class of all Borel measurable subsets in R.

It is clear that PX is a possibility measure on B, induced by the possibility

distribution defined by

λ∗X : R→ [0, 1], λ∗X(t) = sup{λ(ω);ω ∈ X−1(t)}, if X−1(t) 6= ∅,

λ∗X(t) = 0, if X−1(t) = ∅.

(v) (see, e.g., [22]) The possibilistic integral of f : Ω → R+ on A ⊂ Ω,

with respect to the possibilistic measure Pλ induced by the possibilistic

distribution λ, is defined by

(Pos)

∫
A

f(t)dPλ(t) = sup{f(t) · λ(t); t ∈ A}.

It is clear that this definition is a particular case of the possibilistic integral

with respect to a semi-norm t, introduced in [22], by taking there t(x, y) =

x·y. Also, denoting Λ1 : Ω→ [0, 1], Λ1(x) = 1, for all x ∈ Ω, it is immediate

that we can write

(Pos)

∫
A

f(t)dPΛ1(t) = sup{f(t); t ∈ A},

(Pos)

∫
A

f(t)dPλ(t) = (Pos)

∫
A

f(t) · λ(t)dPΛ1

and dPλ(t) = λ(t) · dPΛ1(t).

It is also worth noting that the above definition of the concept of possi-

bilistic integral has a good sense only for positive-valued functions, because,

for example, if we denote R− = (−∞, 0], then for any f : Ω → R− with

f(ω0) = 0 for a certain ω0 ∈ A ⊂ Ω, we get (Pos)
∫
A
f(t)dPλ(t) = 0.
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In what follows, we also need in the frame of the possibility theory, a

simple analogue of the Chebyshev’s inequality in probability theory.

Theorem 2.2.2. (see [32]) Let Ω be a discrete or non-discrete non-

empty set, λ : Ω → [0, 1] and consider X : Ω → R be with the possibility

distribution λ. Then, for any r > 0, we have

Pλ({s ∈ Ω; |X(s)−Msup(X)| ≥ r}) ≤ Vsup(X)

r2
,

where Pλ is the possibilistic measure induced by λ.

This result was proved by Theorem 2.2 in [32] for Ω discrete set, but

analysing its proof it is obvious that it remains valid in the non-discrete

case too.

In the particular case when X : Ω → R+, in terms of the possibility

integral, the above Chebyshev inequality can be written as

Pλ({s ∈ Ω; |X(s)− (Pos)

∫
Ω

X(t)dPλ(t)| ≥ r})

≤
(Pos)

∫
Ω

(X − (Pos)
∫

Ω
X(t)dPλ(t))

2dPλ

r2
.

In what follows, by analogy with the Feller’s random scheme in prob-

ability theory which produces nice linear and positive approximation op-

erators, we will consider a similar approximation scheme, but which will

produce nonlinear approximation operators constructed with the aid of the

possibilistic integral.

For that purpose, let us denote by V arb(Ω) the class of all bounded

X : Ω→ R and by V arb+(Ω) the class of all bounded X : Ω→ R+. Also, for

I ⊂ R a real interval (bounded or unbounded), let us consider the mapping

Z defined on N× I → Y where Y = V arb(Ω) or Y = V arb+(Ω), depending

on the context.
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Notice that if for any (n, x) ∈ N×I we have Z(n, x) ∈ V arb+(Ω), then for

the concepts of possibility expectation and possibility variance of Z(n, x)

(defined at the above Definition 2.1, (iii)) we can write the integral formulas

Msup(Z(n, x)) = (Pos)

∫
Ω

Z(n, x)(t)dPλ(t) := αn,x, (2.2)

Vsup(Z(n, x)) = (Pos)

∫
Ω

(Z(n, x)(t)− αn,x)2dPλ(t) := σ2
n,x. (2.3)

Now, according to the Feller’s scheme, to f : R → R+ let us attach a

sequence of operators by the formula

Ln(f)(x) := (Pos)

∫
R
f(t)dPZ(n,x)(t), n ∈ N, x ∈ I, (2.4)

where PZ(n,x) is defined as in Definition 2.1, (iv), i.e. with respect to the

possibility measure Pλ induced by the possibility distribution λ.

Firstly, for the operators given by (2.4) the following representation

holds.

Lemma 2.2.3. (Coroianu-Gal-Opriş-Trifa [21]) With the above nota-

tions, if Z : N× I → V arb(Ω) and, in addition, f : R→ R+ is bounded on

R, then the formula

Ln(f)(x) = (Pos)

∫
R
f(t)dPZ(n,x)(t) = (Pos)

∫
Ω

f◦Z(n, x)dPλ, x ∈ I (2.5)

holds and both integrals are finite.

If f : I → R+ is bounded on I, where I ⊂ R is a subinterval and

Pλ({ω ∈ Ω;Z(n, x)(ω) 6∈ I}) = 0, then we have

Ln(f)(x) = (Pos)

∫
I
f(t)dPZ(n,x)(t) = (Pos)

∫
Ω

f ◦ Z(n, x)dPλ.

Remark. Explicitly, formula (2.5) can be written as

Ln(f)(x) = sup{f(t) · λ∗Z(n,x)(t); t ∈ R} = sup{f [Z(n, x)(t)] · λ(t); t ∈ Ω},
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where λ∗Z(n,x)(t)is defined with respect to λ as in Definition 2.2.1, (iv).

Since the next main result will involve the quantity αn,x given by formula

(2.2), it will be necessarily to suppose that Z(n, x) ∈ V arb+(Ω).

The following Feller-type result holds.

Theorem 2.2.4. (Coroianu-Gal-Opriş-Trifa [21]) Let I ⊂ R be a subin-

terval, Z(n, x) ∈ V arb+(Ω) for all (n, x) ∈ N × I and let us suppose that

f : R → R+ is uniformly continuous and bounded on R. With the nota-

tions in the formulas (2.2), (2.3) and in the statement of Lemma 2.3, if

limn→+∞ αn,x = x and limn→+∞ σ
2
n,x = 0, uniformly with respect to x ∈ I,

then limn→∞ Ln(f)(x) = f(x), uniformly with respect to x ∈ I.

Remarks. 1) Analyzing the proof of Theorem 2.2.4, it easily follows

that without any change in its proof, the construction of the operators

Ln(f)(x) can be slightly generalized by considering that not just Z depends

on n and x, but also that λ (and consequently Pλ too) may depend on n

and x. More exactly, we can consider Ln(f)(x) of the more general form

Ln(f)(x) := (Pos)

∫
R
f(t)dPZ(n,x)(t) = (Pos)

∫
Ω

f ◦ Z(n, x)dPλn,x , x ∈ I,

where Pλn,x : P(Ω)→ [0, 1], (n, x) ∈ N×I, is a family of possibility measures

induced by the families of distributions λn,x, (n, x) ∈ N× I. This remark is

useful in producing several concrete examples of such operators.

Also, let us note here that if we suppose that Pλ({ω ∈ Ω;Z(n, x)(ω) 6∈

I} = 0, then the operators Ln can be attached to continuous, bounded

functions defined on a subinterval I ⊂ R, f : I → R+, by extending f to

a function continuous and bounded, f ∗ : R → R+ and taking into account

the obvious relationship

(Pos)

∫
R
f ∗dPZ(n,x) = (Pos)

∫
I

fdPZ(n,x).
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2) If f : I → R is not necessarily positive, but bounded, then evidently

that there exists a constant c > 0 such that f(x) + c ≥ 0, for all x ∈ I and

in this case, for n ∈ N, we can attach to f the approximation operators

Ln(f)(x)

= (Pos)

∫
I
(f(t) + c)dPZ(n,x)(t)− c = (Pos)

∫
Ω

(f + c) ◦ Z(n, x)dPλn,x − c.

3) As particular cases of operators for which qualitative approximation

properties can be derived by the Feller’s scheme in Theorem 2.2.4, are all

the so-called max-product Bernstein-type operators. Thus, for example,

if we take Ω = {0, 1, ..., n}, I = [0, 1], Z(n, x)(k) = k
n
, f : [0, 1] → R+,

λn,x(k) =
pn,k(x)∨n

j=0 pn,j(x)
, with pn,k(x) =

(
n
k

)
xk(1 − x)n−k and

∨n
j=0 pn,j(x) =

maxj={0,...,n}{pn,j(x)}, then by the formula in Lemma 2.2.3 and by the def-

inition of the possibility integral, we get

Ln(f)(x) = (Pos)

∫
Ω

f ◦ Z(n, x)dPλn,x =

n∨
k=0

pn,k(x)f
(
k
n

)
n∨
k=0

pn,k(x)
,

which are exactly the max-product Bernstein operators B
(M)
n (f)(x). The

qualitative approximation properties of B
(M)
n (f)(x) can follow now from

Theorem 2.2.4.

Analogously, if, for example, we take the countable Ω = {0, 1, ..., k, ..., }

and Pλn,x the possibility measure induced by the possibility distribution

λn,x(k) =
sn,k(x)∨∞
k=0 sn,k(x)

, x ∈ [0,+∞), k ∈ N
⋃
{0},

with sn,k(x) = (nx)k

k!
and

∨∞
k=0 sn,k(x) = maxk={0,1,...,k,...,}{sn,k(x)}, then the

formula in Lemma 2.3 gives the max-product Favard-Szász-Mirakjan oper-

ators.
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In a similar way, from Theorem 2.2.4 can be obtained qualitative ap-

proximation properties for the other max-product operators, like those of

Baskakov kind, of Bleimann-Butzer-Hahn kind and of Meyer-König-Zeller

kind.

It is worth nothing that by using other (direct) methods, quantitative

estimates in approximation by max-product type operators were obtained

by the first two authors in a long series of papers (see, e.g., [8], [9], [17]-[20]

and their References).

2.2.3 Approximation by convolution possibilistic op-

erators

In this subsection, by using the above possibilistic Feller’s scheme, we in-

troduce and study possibilistic variants of the classical linear convolution

operators of Picard, Gauss-Weierstrass and Poisson-Cauchy, formally given

by the formulas

Pn(f)(x) =
n

2

∫
R
f(t)e−n|x−t|dt, Wn(f)(x) =

√
n√
π

∫
R
f(t)e−n|t−x|

2

dt,

Qn(f)(x) =
n

π

∫
R

f(t)

n2(t− x)2 + 1
,

respectively, where n ∈ N and x ∈ R.

Denoting Ω = {0, 1, ..., k, ..., } and Z(n, x) as in the previous Remark 3

and defining λn,x(k) = e−n|x−k/n|∨∞
k=−∞ e−n|x−k/n| , by the formula in Lemma 2.3

Ln(f)(x) = (Pos)

∫
Ω

f ◦ Z(n, x)dPλn,x ,

we obtain the following discrete possibilistic (max-product !) Picard oper-

ators

P (M)
n (f)(x) =

∨+∞
k=−∞ f(k/n) · e−n|x−k/n|∨+∞

k=−∞ e
−n|x−k/n|

.
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Similarly, for λn,x(k) = e−n(x−k/n)2∨∞
k=−∞ e−n(x−k/n)2

and λn,x(k) = 1/(n2(x−k/n)2+1)∨∞
k=0 1/(n2(x−k/n)2+1)

we obtain the following discrete possibilistic (max-product !) operators,

W (M)
n (f)(x) =

∨+∞
k=−∞ f(k/n) · e−n(x−k/n)2∨+∞

k=−∞ e
−n(x−k/n)2

, - of Gauss-Weierstrass kind,

Q(M)
n (f)(x) =

∨+∞
k=−∞ f(k/n) · 1

n2(x−k/n)2+1∨+∞
k=−∞

1
n2(x−k/n)2+1

, - of Poisson-Cauchy kind.

Let us denote by BUC+(R), the space of all uniformly continuous, bounded

and with positive values functions. The convergence of these operators can

be proved by using Theorem 2.2.4. However, we can obtain quantitative

estimates too, by direct proofs, as follows.

Theorem 2.2.5. (Coroianu-Gal-Opriş-Trifa [21]) For all f ∈ BUC+(R)

we have

|P (M)
n (f)(x)− f(x)| ≤ 2 · ω1(f ; 1/n)R.

We also can consider truncations of the operator P
(M)
n . In this sense, we

can state the following.

Corollary 2.2.6. (Coroianu-Gal-Opriş-Trifa [21]) Let (m(n))n∈N be a

sequence of natural numbers with the property that limn→∞
m(n)
n

= +∞ and

for f ∈ BUC+(R) let us define

T (M)
n (f)(x) =

∨+m(n)
k=−m(n) f(k/n) · e−n|x−k/n|∨+m(n)

k=−m(n) e
−n|x−k/n|

.

Then, T
(M)
n (f) converges uniformly (as n → ∞) to f , on any compact

subinterval of the form [−A,A], A > 0.

In what follows, similar results we present for the other possibilistic oper-

ators, W
(M)
n (f)(x), Q

(M)
n (f)(x) and their corresponding truncated operators

given by

S(M)
n (f)(x) =

∨+m(n)
k=−m(n) f(k/n) · e−n(x−k/n)2∨+m(n)

k=−m(n) e
−n(x−k/n)2
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and

U (M)
n (f)(x) =

∨+m(n)
k=−m(n) f(k/n) · 1

n2(x−k/n)2+1∨+m(n)
k=−m(n)

1
n2(x−k/n)2+1

.

Theorem 2.2.7. (Coroianu-Gal-Opriş-Trifa [21]) For all f ∈ BUC+(R)

we have

|W (M)
n (f)(x)− f(x)| ≤ 2 · ω1(f ; 1/

√
n)R.

Corollary 2.2.8. (Coroianu-Gal-Opriş-Trifa [21]) Let (m(n))n∈N be

a sequence of natural numbers with the property that limn→∞
m(n)
n

= +∞.

Then, for any f ∈ BUC+(R), S
(M)
n (f) converges uniformly (as n → ∞)

to f , on any compact subinterval of the form [−A,A], A > 0 (S
(M)
n (f) is

defined just above the statement of Theorem 2.2.7).

Theorem 2.2.9. (Coroianu-Gal-Opriş-Trifa [21]) For all f ∈ BUC+(R)

we have

|Q(M)
n (f)(x)− f(x)| ≤ 2 · ω1(f ; 1/ (2n))R.

Corollary 2.2.10. (Coroianu-Gal-Opriş-Trifa [21]) Let (m(n))n∈N be

a sequence of natural numbers with the property that limn→∞
m(n)
n

= +∞.

Then, for any f ∈ BUC+(R), U
(M)
n (f) converges uniformly (as n → ∞)

to f , on any compact subinterval of the form [−A,A], A > 0 (U
(M)
n (f) is

defined just above the statement of Theorem 2.2.7).

Remarks. 1) We note that in [28] Favard introduced the discrete version

of the above Gauss-Weierstrass singular integral by the formula

Fn(f)(x) =
1√
πn
·

+∞∑
k=−∞

f(k/n) · e−n(x−k/n)2 , n ∈ N, x ∈ R

and proved that if f : R→ R is continuous on R, of the exponential growth

|f(t)| ≤ MeAt
2

for all t ∈ R (here M,A > 0), then Fn(f)(x) converges to

f(x) pointwise for each x ∈ R and uniformly on any compact subinterval
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of R. Other approximation properties of Fn(f)(x), especially in various

weighted spaces, were studied in many papers, see, e.g., [1] and the Refer-

ences therein.

Exactly as it was proved for other max-product operators studied in

previous papers (see, e.g., [17]-[20]), with respect to its linear counterpart

Fn(f)(x), for the max-product operators W
(M)
n (f)(x) can be proved that in

some subclasses of functions f , have better global approximation properties

and that present much stronger localization results. More precisely, they

represent locally much better (probably best possible) the approximated

function, in the sense that if f and g coincides on a strict subinterval I ⊂ R,

then for any subinterval I0 strictly included in I, W
(M)
n (f) and W

(M)
n (g)

coincide in I0 for sufficiently large n.

2) By using the above possibilistic Feller’s scheme, we can introduce for

study possibilistic variants of the classical linear convolution trigonometric

operators of de la Vallée-Poussin, Fejér and Jackson, formally defined by

the formulas

Vn(f)(x) =
1

2π

∫ π

−π
f(t)kn(x− t)dt, Fn(f)(x) =

1

2π

∫ π

−π
f(t)bn(x− t)dt,

Jn(f)(x) =
1

π

∫ π

−π
f(t)cn(x− t)dt,

respectively, where f is 2π-periodic,

kn(t) =
(n!)2

(2n)!
(2 cos(t/2))2n , bn(t) =

1

n

(
sin(nt/2)

sin(t/2)

)2

and cn(t) = 3
2n(2n2+1)

(
sin(nt/2)
sin(t/2)

)4

.

More precisely, denoting Ω = {−n, ...,−1, 0, 1, ..., n} and Zn,x(k) = kπ
n

,

for f : [−π, π]→ R and λn,x(k) = kn(x−kπ/n)∨n
k=−n kn(x−kπ/n)

, by the formula in Lemma

2.2.3 and by the definition of the possibility integral, we get the possibilistic
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de la Vallée-Poussin operators

V (M)
n (f)(x) = (Pos)

∫
Ω

f ◦ Z(n, x)dPλn,x =

∨n
k=−n f(kπ/n)kn(x− kπ/n)∨n

k=−n kn(x− kπ/n)
.

Similarly, we can obtain the possibilistic operators of Fejér type

F (M)
n (f)(x) =

∨n
k=−n f(kπ/n)bn(x− kπ/n)∨n

k=−n bn(x− kπ/n)

and of Jackson type

J (M)
n (f)(x) =

∨n
k=−n f(kπ/n)cn(x− kπ/n)∨n

k=−n cn(x− kπ/n)
.

The study of the approximation properties of these operators will be made

elsewhere.
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Ch. 3

Approximation with an

arbitrary order by Szász and

Baskakov operators of real

variable

Given an arbitrary sequence λn > 0, n ∈ N, with the property that

limn→∞ λn = 0 as fast we want, in this chapter we introduce modified/generalized

Baskakov operators in such a way that on each compact subinterval in

[0,+∞) the order of uniform approximation is ω1(f ;
√
λn).

The idea of construction of these generalized operators is simple : in

their classical formulas, we replace everywhere n with 1
λn

.

For example, starting from the classical formula for the Szász operators

Sn(f)(x) = e−nx
∞∑
k=0

(nx)k

k!
f(k/n),

23
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by replacing n by 1
λn

we get the generalized Szász operator

Sn(f ;λn)(x) = e−x/λn
∞∑
k=0

1

k!

(
x

λn

)k
· f (kλn) ,

while starting from the classical formula for the Baskakov operator

Vn(f)(x) = (1 + x)−n
∞∑
j=0

(
n+ j − 1

j

)(
x

1 + x

)j
· f
(
j

n

)

= (1 + x)−n
∞∑
j=0

(n+ j − 1)!

(n− 1)!j!

(
x

1 + x

)j
· f
(
j

n

)

= (1 + x)−n
∞∑
j=0

1

j!
· n(n+ 1) · ... · (n+ j − 1)

(
x

1 + x

)j
· f
(
j

n

)
,

by replacing n by 1
λn

we get the modified/generalized Baskakov operator

Vn(f ;λn)(x)

= (1 + x)−1/λn

∞∑
j=0

1

j!
· 1

λn

(
1 +

1

λn

)
· ... ·

(
j − 1 +

1

λn

)
·
(

x

1 + x

)j
f (jλn) .

3.1 Generalized Baskakov operators on R+

Given an arbitrary sequence λn > 0, n ∈ N, with the property that

limn→∞ λn = 0 as fast we want, in this section we introduce generalized

Baskakov operators in such a way that on each compact subinterval in

[0,+∞) the order of uniform approximation is ω1(f ;
√
λn). These modi-

fied operators can uniformly approximate a Lipschitz 1 function, on each

compact subinterval of [0,∞) with the arbitrary good order of approxima-

tion
√
λn. Also, similar considerations are made for modified/generalized

qn-Baskakov operators, with 0 < qn < 1, limn→∞ qn = 1.
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3.1.1 Introduction

Let (λn)n be a sequence of real positive numbers with the properties that

limn→∞ λn = 0.

In [15] Cetin and Ispir introduced a remarkable generalization of the

Szász-Mirakjan type operators attached to analytic functions f of exponen-

tial growth in a compact disk,

Sn(f ;λn)(z) = e−z/λn
∞∑
k=0

1

k!

(
z

λn

)k
· f (kλn) ,

which approximate f in any compact disk |z| ≤ r, r < R, with the approx-

imation order λn.

Involving in their construction the Faber polynomials too, these oper-

ators and their order of approximation were extended in Gal [36] in order

to approximate analytic functions in compact subsets (continuums) of the

complex plane. The great advantage of all these constructions is that the

sequence λn, n ∈ N, can evidently be chosen to converge to zero with an

arbitrary small order. Note that in fact, all the above mentioned results

were obtained for λn written in the unnecessary more complicated form,

λn = βn

αn
.

The first main aim of this section is to introduce and study the linear

and positive modified/generalized Baskakov-type operators, defined by

Ln(f ;λn)(x) =
∞∑
j=0

(−1)jϕ(j)(λn;x)xj

j!
f (jλn) , (3.1)

for functions f : [0, b) → R (here b can be +∞ too) such that the above

series converges (e.g. if f is bounded or uniformly continuous on [0, b)),

where the sequence of analytic functions ϕn : [0, b) → R, n ∈ N, satisfy

the hypothesis : (i) ϕ(λn; 0) = 1; (ii) (−1)jϕ(j)(λn;x) ≥ 0, for all n, j ∈ N,

x ∈ [0, b].
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It is worth noting that for the particular case λn = 1
n

and under the

additional hypothesis

(iii) there exists a sequence m(n), n ∈ N with limn→∞
n

m(n)
= 1 such that

ϕ
(k)
n (λn;x) = −nϕ(k−1)

n (λn;x), for all x ∈ [0, b), n ∈ N, k ∈ N, the operators

in (3.1) were introduced and investigated in Baskakov [7].

Choosing ϕ(λn;x) = (1 + x)−1/λn in (3.1), because of the formula

ϕ(j)(λn;x) = (−1)j
1

λn

(
1 +

1

λn

)
· ... ·

(
j − 1 +

1

λn

)
· (1 + x)−j−1/λn , (3.2)

we immediately get the modified/generalized Baskakov-type operators de-

fined by

Vn(f ;λn)(x)

= (1 + x)−1/λn

∞∑
j=0

1

j!
· 1

λn

(
1 +

1

λn

)
· ... ·

(
j − 1 +

1

λn

)
·
(

x

1 + x

)j
f (jλn) ,

(3.3)

x ≥ 0, where by convention 1
λn

(
1 + 1

λn

)
· ... ·

(
j − 1 + 1

λn

)
= 1 for j = 0.

For these operators Vn(f ;λn)(x) in (3.3), in the next Subsection we prove

that on each compact subinterval in [0,+∞), the order of uniform approxi-

mation obtained is ω1(f ;
√
λn), and consequently uniformly approximate a

Lipschitz 1 function, on each compact subinterval of [0,∞) with an arbi-

trary good order of approximation
√
λn. In other words, from the point of

view of approximation theory, between all kinds of Baskakov-type operators

in literature, these modified/generalized Baskakov operators represent the

best possible construction. In the same time, the results obtained have also

a strong unifying character, in the sense that one can recapture from them

all the results previously obtained by other authors, for various choices of

the nodes λn. It is also remarked that by modifying a Baskakov-type oper-

ator introduced in Lopez-Moreno [53], similar considerations can be made
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for the operator defined by

Ln,r(f ;λn)(x) =
∞∑
j=0

(−1)rf (jλn) · ϕ
(j+r)(λn;x) · (−x)j

j!
· (λn)r , r, n ∈ N.

(3.4)

Then, in the next Subsection we make similar considerations for modi-

fied/generalized q-Baskakov-type operators, 0 < q < 1.

3.1.2 Main results

Firstly, we need the following two auxiliary results.

Lemma 3.1.1. (Gal-Opriş [43]) Let λn > 0, n ∈ N, be with limn→∞ λn =

0.

(i) If Ln(f ;λn)(x) given by (3.1) is well-defined, then we can write

Ln(f ;λn)(x) =
∞∑
j=0

(λn)j · (−1)j · ϕ(j)(λn; 0) · [0, λn, ..., jλn; f ] · xj, x ∈ [0, b],

where [0, λn, ..., jλn; f ] is the divided difference of f on the knots 0, λn, ..., jλn.

(ii) Denoting ek(x) = xk, we have Ln(e0;λn)(x) = 1, Ln(e1;λn)(x) =

−xλnϕ′(λn; 0),

Ln(e2;λn)(x) = (λn)2 · [x2ϕ′′(λn; 0)− xϕ′(λn; 0)].

Remark. In the case when λn = 1
n
, the formula in Lemma 3.1.1, (i)

was obtained by Lupas [54].

Corollary 3.1.2. (Gal-Opriş [43]) (i) If (1 + λn) ... (1 + (j − 1)λn) = 1

for j = 0 (by convention), then for Vn(f ;λn)(x) given by (3.3), we have

Vn(f ;λn)(x) =
∞∑
j=0

(1 + λn) ... (1 + (j − 1)λn) · [0, λn, ..., jλn; f ]xj, x ≥ 0.
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(ii) Vn(e0;λn)(x) = 1, Vn(e1;λn)(x) = x, Vn(e2;λn)(x) = x2+λn·x(1+x)

;

Vn((· − x)2;λn)(x) = λnx(1 + x).

Since Vn(f ;λn), n ∈ N, are positive and linear operators, we can state the

following result.

Theorem 3.1.3. (Gal-Opriş [43]) Let f : [0,∞)→ R be uniformly con-

tinuous on [0,∞). Denote ω1(f ; δ) = sup{|f(x)− f(y)|; |x− y| ≤ δ, x, y ∈

[0,∞)}. For all x ∈ [0,∞), n ∈ N we have

|Vn(f ;λn)(x)− f(x)| ≤ 2 · ω1

(
f ;
√
λn ·

√
x(1 + x)

)
.

As an immediate consequence of Theorem 3.1.3 we get the following.

Corollary 3.1.4. (Gal-Opriş [43]) If there exists L > 0 such that |f(x)−

f(y)| ≤ L|x− y|, for all x, y ∈ [0,∞), then

|Vn(f ;λn)(x)− f(x)| ≤ 2L
√
x(1 + x) ·

√
λn, n ∈ N, x ≥ 0.

Remarks. 1) If x belong to a compact subinterval of [0,+∞), then evi-

dently that we get uniform convergence in that subinterval.

2) The optimality of the estimates in Theorem 3.1.3 and Corollary 3.1.4

consists in the fact that given an arbitrary sequence of strictly positive

numbers (γn)n, with limn→∞ γn = 0 and a compact subinterval [0, b], we

can find a sequence λn, satisfying 2ω1(f ;
√
λn ·

√
x(1 + x)) ≤ γn for all

n ∈ N, x ∈ [0, b] in the case of Theorem 3.1.3 and 2L
√
λn ·

√
x(1 + x) ≤ γn

for all n ∈ N, x ∈ [0, b] in the case of Corollary 3.1.4.

3) If f is uniformly continuous on [0,+∞) then it is well known that

its growth on [0,+∞) is linear, i.e. there exist α, β > 0 such that |f(x)| ≤

αx+ β, for all x ∈ [0,+∞) (see e.g. [25], p. 48, Problème 4, or [26]). This

implies that in this case Vn(f ;λn)(x) is well-defined for all x ∈ [0,∞).
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4) In the paper [53], the Baskakov-type approximation operators of the

form

Ln,r(f)(x) =
∞∑
j=0

(−1)rf

(
j

n

)
· ϕ

(j+r)
n (x) · (−x)j

j!
·
(

1

n

)r
, r, n ∈ N

were studied, obtaining for example if ϕn(x) = (1 + x)−n, quantitative es-

timates of the order Ω(f ;n−1/2) + C
n

, where Ω(f ; δ) is a suitable weighted

modulus of continuity. By following the lines of proofs in [53], choosing

ϕ(λn;x) = (1 + x)−1/λn in the modified/generalized Baskakov-type op-

erator Ln,r(f ;λn)(x) given by formula (3.4), the order of approximation

Ω
(
f ;
√
λn
)

+ Cλn is obtained, where λn can be chosen to converge to 0 as

fast we want.

3.1.3 The case of q-Baskakov operators, 0 < q < 1

Firstly, we need the following concepts in quantum calculus (see e.g. [50],

pp. 7-13).

For 0 < q, q 6= 1, and a ∈ R, de q analogue of a is defined by [a]q = 1−qa
1−q .

For n ∈ N ∪ {0}, we get [n]q = 1 + q + ... + qn−1, n ∈ N, [0]q = 1. The q-

factorial is defined by [n]q! = [1]q · [2]q · ... · [n]q and the q-binomial coefficient

is given by
(
n
k

)
q

= [n]q !

[k]q !·[n−k]q !
, k = 0, 1, ...n.

Note that for q = 1 we get [n]q = n and as a consequence, [n]q! = n! and(
n
k

)
q

=
(
n
k

)
.

The q-derivative of a function f : R → R is defined by Dq(f)(x) =

f(x)−f(qx)
x(1−q) , x 6= 0, Dq(f)(0) = limx→0Dq(f)(x), and the q-derivatives of

higher order are given recursively by D0
q(f) = f , Dn

q (f) = Dq(D
n−1
q (f)),

n ∈ N.

Everywhere in what follows, we consider 0 < q < 1.



30CH. 3. ARBITRARY ORDER BY SZÁSZ AND BASKAKOV OPERATORS

Various kinds of q-Baskakov operators were studied in the e.g. the papers

[2], [60], [4]–[6], [49], [30].

Following the previous ideas and suggested by the q-Baskakov operators

introduced and studied in [60] and [2], we introduce here a modified q-

Baskakov operator, as follows.

Let λn > 0, n ∈ N be with limn→∞
1
λn

= +∞. It is clear that with-

out any lost of generality, we may suppose that 1
λn
≥ 1, n ∈ N. For

ϕ(λn; ·) : [0,∞) → R, n ∈ N, a sequence of analytic functions satisfying

the hypothesis (i) ϕ(λn; 0) = 1; (ii) (−1)jϕ(j)(λn;x) ≥ 0, for all n, j ∈ N,

x ∈ [0,∞), let us introduce the q-Baskakov operator given by

Tn,q(f ;λn)(x) =
∞∑
j=0

(−x)j

[j]q!
· q(k(k−1)/2Dk

qϕ(λn;x)f

(
[j]q
qk−1

· 1

[1/λn]q

)
, (3.5)

attached to functions for which Tn,q(f ;λn)(x) is well-defined.

Note that for 1/λn = n we recapture the q-Baskakov operators in [60],

[2].

Following exactly the lines in the proof of Lemma 1 in [60] and also using

relationships (21) and(22) in [2], we immediately get the following.

Lemma 3.1.5. (Gal-Opriş [43]) Let λn > 0, 1
λn
≥ 1, n ∈ N be with

limn→∞
1
λn

= +∞. For all n ∈ N, x ≥ 0 and 0 < q < 1, we have :

(i) Tn,q(e0;λn)(x) = 1 ; Tn,q(e1;λn)(x) = −x ·Dq(ϕ(λn; ·))(0) · 1
[1/λn]q

;

(ii) Tn,q(e2;λn)(x) = x2 ·D2
q(ϕ(λn; ·))(0) · 1

q·[1/λn]2q
− x ·Dq(ϕ(λn; ·))(0) ·

1
[1/λn]2q

;

(iii) Tn,q((· − x)2;λn)(x) = An,qx
2 +Bn,qx, where

An,q = 1 +D2
q(ϕ(λn; ·))(0) · 1

q · [1/λn]2q
+ 2 ·Dq(ϕ(λn; ·))(0) · 1

[1/λn]q

and

Bn,q = −Dqϕ(λn; 0)

[1/λn]2q
.
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Denoting by CB(R+) the space of all bounded continuous real-valued func-

tions on [0,∞) and following exactly the lines in the proof of Theorem 2 in

[2], we can state the following.

Theorem 3.1.6. (Gal-Opriş [43]) Let λn > 0, 1
λn
≥ 1, n ∈ N be with

limn→∞
1
λn

= +∞ and let (qn)n∈N be a sequence such that 0 < qn < 1 for all

n ∈ N and limn→∞ qn = 1. Then, for f ∈ CB(R+) uniformly continuous,

the qn-operators given by (3.5) satisfy

|Tn,qn(f ;λn)(x)− f(x)| ≤ (1 +
√

max{x, x2}) · ω1(f ;
√
Cn,qn), n ∈ N, x ≥ 0,

where Cn,qn = |An,qn| + Bn,qn, (An,qn)n, (Bn,qn)n are given in Lemma 3.1.5,

(iii) and ω1(f ; δ) = sup{|f(x)− f(y)|;x, y ∈ [0,∞), |x− y| ≤ δ}.

As consequences of Theorem 3.1.6, we get the following two corollaries.

Corollary 3.1.7. (Gal-Opriş [43]) Let λn > 0, 1
λn
≥ 1, n ∈ N be with

limn→∞
1
λn

= +∞ and (qn)n∈N be a sequence such that 0 < qn < 1 for all

n ∈ N and limn→∞ qn = 1. Then, for f ∈ CB(R+) uniformly continuous,

the qn-operators given by

Tn,qn(f ;λn)(x) =
1

(1 + x)1/λn
·
∞∑
j=0

[1/λn]qn · [1/λn + 1]qn · ... · [1/λn + j − 1]qn
[j]qn !

·qj(j−1)/2 · xj

(1 + x)j
· f
(

[j]qn
qj−1
n

· 1

[1/λn]qn

)
, (3.6)

for all n ∈ N, x ≥ 0, satisfy the estimate

|Tn,qn(f ;λn)(x)−f(x)| ≤ (1+
√

max{x, x2})·ω1

(
f ;

√
1 + qn
qn

· 1√
[1/λn]qn

)
.

Corollary 3.1.8. (Gal-Opriş [43]) Let λn > 0, 1
λn
≥ 1, n ∈ N be with

limn→∞
1
λn

= +∞ and (qn)n∈N be a sequence such that 0 < qn < 1 for all

n ∈ N and limn→∞ qn = 1. Then, for f ∈ CB(R+) uniformly continuous,

the qn-operators given by

Sn,qn(f ;λn)(x)
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=
∞∑
j=0

([1/λn]qnx)j

[j]qn !
· qj(j−1)
n ·Eqn(−[1/λn]qnq

j
nx) · f

(
[j]qn
qj−1
n

· 1

[1/λn]qn

)
, (3.7)

for all n ∈ N, x ≥ 0, satisfy the estimate

|Sn,qn(f ;λn)(x)− f(x)| ≤ (1 +
√

max{x, x2}) · ω1

(
f ;

1√
[1/λn]qn

)
.

Remark. The order of approximation for the qn-Baskakov-type opera-

tors in Corollary 3.1.7 and for the qn-Szász-Mirakjan operators in Corollary

3.4 is O(1/
√

[1/λn]qn). On the other hand, for qn = 1, for all n ∈ N, the

order of approximation is O(1/
√

1/λn) = O(
√
λn) (see Theorem 3.1.3 in

the case of Baskakov-type operators).

However, for 0 < qn < 1 for all n ∈ N, it is easy to see that
√
λn ≤

√
2√

[1/λn]qn
, because [1/λn]qn ≤ 2/λn.

Indeed, denoting with [a]∗ the integer part of a, we have 1/λn ≤ [1/λn]∗+

1, which by 0 < qn < 1 implies q
[1/λn]∗+1
n ≤ q

1/λn
n , leading to [1/λn]qn ≤

[[1/λn]∗ + 1]qn ≤ [1/λn]∗ + 1 ≤ 2/λn.

On the other hand, by [24], Lemma 3.4, n ≤ C ′[n]qn , for all n ∈ N (with

C ′ > 0 independent of n), if and only if there exists a constant c > 0 and

n0 ∈ N (independent of n) such that qnn ≥ c, for all n ≥ n0. Therefore, in

this case, we obtain

1/λn ≤ [1/λn]∗ + 1 ≤ C ′[[1/λn]∗ + 1]qn

≤ C ′[2[1/λn]∗]qn ≤ 2C ′[[1/λn]∗]qn ≤ 2C ′[1/λn]qn .

In conclusion, if in Corollaries 3.1.7 and 3.1.8 qn is chosen to satisfy qnn ≥ c,

for all n ≥ n0, 0 < qn < 1, n ∈ N, and limn→∞ qn = 1, then the approx-

imation orders for the corresponding qn-Baskakov and qn-Szász-Mirakjan

operators are ω1

(
f ;
√
λn
)
, which can be chosen to converge to 0 as fast we

want.
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3.2 Generalized Szász-Stancu operators on

[0,+∞)

Let 0 ≤ α, β and λn > 0, n ∈ N be with limn→∞ λn = 0.

In this section we obtain estimates in approximation by the generalized

Szász-Stancu by the formula

L(α,β)
n (f ;λn)(x) = e−x/λn

∞∑
k=0

xk

λknk!
· f
(
λn(j + α)

1 + βλn

)
, x ≥ 0.

It is clear that L
(α,β)
n (f ;λn) is a positive linear operator on [0,+∞), for

any n ∈ N.

Firstly, we need the following auxiliary result.

Lemma 3.2.1. (Opriş [59]) Let 0 ≤ α, β and λn > 0, n ∈ N be with

limn→∞ λn = 0. Denote ek(x) = xk, k = 0, 1, 2, ...,. For all n ∈ N and x ≥ 0

we have :

(i) L
(α,β)
n (e0;λn)(x) = 1 ; L

(α,β)
n (e1;λn)(x) = x+λnα

1+λnβ
;

(ii) L
(α,β)
n (e2;λn)(x) = (x+λnα)2+λnx

(1+λnβ)2
=
[
x+λnα
1+λnβ

]2

+ λnx
(1+λnβ)2

;

(iii) L
(α,β)
n ((· − x)2;λn)(x) = λn · λn(α−xβ)2+x

(1+λnβ)2
.

Denote by CB(R+) the space of all bounded continuous real-valued func-

tions on [0,∞). We can state the following.

Theorem 3.2.2. (Opriş [59]) Let 0 ≤ α, β and λn > 0, n ∈ N be

with limn→∞ λn = 0, as fast we want. Then, for f ∈ CB(R+) uniformly

continuous, the following estimate holds

|L(α,β)
n (f ;λn)(x)− f(x)| ≤ 2ω1

(
f ;
√
λn ·

√
λn(α− xβ)2 + x

)
, x ≥ 0,

where ω1(f ; δ) = sup{|f(x) − f(y)|;x, y ∈ [0,∞), |x − y| ≤ δ} denotes the

modulus of continuity of f .
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As an immediate consequence of Theorem 3.2.2, we get the following

corollary.

Corollary 3.2.3. (Opriş [59]) Under the hypothesis of Theorem 3.2.2,

if, in addition, there exists L > 0 such that |f(x)− f(y)| ≤ L|x− y|, for all

x, y ∈ [0,∞) (f is Lipschitz function), then

|L(α,β)
n (f ;λn)(x)− f(x)| ≤ 2L

√
λn ·

√
λn(α− xβ)2 + x, n ∈ N, x ≥ 0.

Remarks. 1) If x belong to a compact subinterval of [0,+∞), then

evidently that we get uniform convergence in that subinterval.

2) Since the sequence λn can be chosen to converge to zero as fast as

we want, the results in Theorem 3.2.2 Corollary 3.2.3 are of definitive type,

that is are the best possible (cannot be improved).

3.3 Generalized Baskakov-Stancu operators

on [0,+∞)

Let 0 ≤ α, β and λn > 0, n ∈ N be with limn→∞ λn = 0.

In this section we obtain estimates for the generalized Baskakov-Stancu

operators given by the formula

K(α,β)
n (f ;λn)(x)

= (1+x)−1/λn

∞∑
j=0

1

j!
· 1

λn
·
(

1 +
1

λn

)
·...·
(
j − 1 +

1

λn

)
· xj

(1 + x)j
f

(
λn(j + α)

1 + βλn

)

=
∞∑
j=0

(1 + λn) · ... · (1 + (j − 1)λn)

[
λnα

1 + λnβ
, ...,

λn(α + j)

1 + λnβ
; f

]
xj, x ≥ 0.

Evidently, K
(α,β)
n is positive linear operator on [0,+∞), for any n ∈ N.
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Firstly, we need the following auxiliary result.

Lemma 3.3.1. (Opriş [59]) Let 0 ≤ α, β and λn > 0, n ∈ N be with

limn→∞
1
λn

= +∞. For all n ∈ N and x ≥ 0 we have :

(i) K
(α,β)
n (e0;λn)(x) = 1 ; K

(α,β)
n (e1;λn)(x) = x+λnα

1+λnβ
;

(ii) K
(α,β)
n (e2;λn)(x) = (x+λnα)2+λnx(x+1)

(1+λnβ)2
=
[
x+λnα
1+λnβ

]2

+ λnx(x+1)
(1+λnβ)2

;

(iii) K
(α,β)
n ((· − x)2;λn)(x) = λn · λn(α−xβ)2+x(1+x)

(1+λnβ)2
.

Denote by CB(R+) the space of all bounded continuous real-valued func-

tions on [0,∞). We can state the following.

Theorem 3.3.2. (Opriş [59]) Let 0 ≤ α, β and λn > 0, n ∈ N be

with limn→∞ λn = 0, as fast we want. Then, for f ∈ CB(R+) uniformly

continuous, the following estimate holds

|K(α,β)
n (f ;λn)(x)−f(x)| ≤ 2ω1

(
f ;
√
λn ·

√
λn(α− xβ)2 + x(1 + x)

)
, x ≥ 0,

where ω1(f ; δ) = sup{|f(x) − f(y)|;x, y ∈ [0,∞), |x − y| ≤ δ} denotes the

modulus of continuity of f .

Remark. For α = β = 0 we recapture the estimate for Vn(f ;λn)

obtained in Corollary 2.1, (ii) in [43] (see also the previous Section 3.1).

As an immediate consequence of Theorem 3.3.2, we get the following

corollary.

Corollary 3.3.3. (Opriş [59]) Under the hypothesis of Theorem 3.3.2,

if, in addition, there exists L > 0 such that |f(x)− f(y)| ≤ L|x− y|, for all

x, y ∈ [0,∞) (f is Lipschitz function), then

|K(α,β)
n (f ;λn)(x)−f(x)| ≤ 2L

√
λn ·
√
λn(α− xβ)2 + x(1 + x), n ∈ N, x ≥ 0.

Remarks. 1) If x belong to a compact subinterval of [0,+∞), then

evidently that we get uniform convergence in that subinterval.
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2) Since the sequence λn can be chosen to converge to zero as fast as

we want, the results in Theorem 3.3.2 Corollary 3.3.3 are of definitive type,

that is are the best possible (cannot be improved).



Ch. 4

Approximation with an

arbitrary order by Szász and

Baskakov kind operators of

complex variable

In this chapter we consider the ideas in the previous chapter, but applied

now to the case of approximation of analytic functions by complex Szász and

Baskakov type operators, in compact sets in C. Two cases are studied : (i)

approximation in compact disks with center at origin ; (ii) approximation

in arbitrary compacts by using the Faber polynomials attached to these

compact sets.

4.1 Arbitrary order in compact disks

By using a sequence λn > 0, n ∈ N with the property that λn → 0 as fast

we want, in this section we obtain the approximation order O(λn) for some

37
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generalized/modified Szász, Szász-Kantorovich, and Baskakov complex op-

erators attached to entire functions or to analytic functions of exponential

growth in compact disks and without to involve the values on [0,+∞).

4.1.1 Introduction

In [15], with the notations there for two sequences an and bn, n ∈ N, and

denoting here λn = bn
an

, the authors introduced the generalized complex

Szász operator by

Sn(f ;λn)(z) = e−z/λn
∞∑
j=0

(z/λn)j

j!
· f(jλn), (4.1)

where λn > 0, λn → 0.

For this operator, attached to functions f : DR

⋃
[R,+∞)→ C of expo-

nential growth in DR

⋃
[R,+∞), analytic in the disk DR = {z ∈ C; |z| < R},

R > 1 and continuous on [0,+∞), the exact order of approximation O(λn)

is obtained in [15]. Also, in the same paper a Voronovskaja-type result with

an upper estimate of order O(λ2
n) is proved.

The first goal of the present section is to extend the results in [15] to

the case of entire functions and then, to a kind od Szász operator which

does not involve the values of f on [0,+∞). Also, a complex operator of

Szász-Kantorovich type is introduced, for which similar results are proved,

essentially improving the order of approximation O(1/n) obtained in [58].

The second goal is to introduce generalized/modified complex Baskakov

type operators, for which similar results with those obtained for the Szász

operators are proved.



4.1. ARBITRARY ORDER IN COMPACT DISKS 39

4.1.2 Szász and Szász-Kantorovich operators

In the case of complex Szász operator, we can prove the following result.

Theorem 4.1.1. (Gal-Opriş [46]) Let λn > 0, n ∈ N be with λn → 0

as fast we want. Let f : DR → C, 1 < R ≤ +∞, i.e. f(z) =
∑∞

k=0 ckz
k,

for all z ∈ DR. Suppose that there exist M > 0 and A ∈ (1/R, 1), with the

property |ck| ≤M Ak

k!
, for all k = 0, 1, ..., (which implies |f(z)| ≤MeA|z| for

all z ∈ DR). Consider 1 ≤ r < 1
A

.

(i) If R = +∞, (1/R = 0), i.e. f is an entire function, then Sn(f ;λn)(z)

is entire function, we have Sn(f ;λn)(z) =
∑∞

k=0 ckSn(ek;λn)(z) for all z ∈

C, n ∈ N and for all |z| ≤ r the following estimates hold :

|Sn(f ;λn)(z)− f(z)| ≤ Cr,M,A · λn,

|S(p)
n (f ;λn)(z)− f (p)(z)| ≤ p!r1 · Cr1,M,A

(r1 − r
· λn,∣∣∣∣Sn(f ;λn)(z)− f(z)− λn

2
zf ′′(z)

∣∣∣∣ ≤Mr(f)(z) · λ2
n ≤ Cr(f) · λ2

n,

‖S(p)
n (f ;λn)− f (p)‖r ∼ λn,

the last equivalence holding if f is not a polynomial of degree ≤ p ∈ N and

the constants in the equivalence depend on f , r, p.

Above, Cr,M,A = M
2r

∑∞
k=2(k + 1)(rA)k < ∞, p ∈ N, 1 ≤ r < r1 <

1
A

,

Mr(f)(z) = 3MA|z|
r2
·
∑∞

k=2(k + 1)(rA)k−1 < ∞, Cr(f) = 3MA
r
·
∑∞

k=2(k +

1)(rA)k−1 and ‖f‖r = max{|f(z)|; |z| ≤ r}.

(ii) If R < +∞, then the complex approximation operator

S∗n(f ;λn)(z) =
∞∑
k=0

ck · Sn(ek;λn)(z), z ∈ Dr,

is well-defined and S∗n(f ;λn)(z) satisfies all the estimates from the point (i),

for all 1 ≤ r < 1
A
< R.
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In what follows, we can define the generalized/modified complex Szász-

Kantorovich type operator by the formula

Kn(f ;λn)(z) = e−z/λn
∞∑
j=0

(z/λn)j

j!
· 1

λn
·
∫ (j+1)λn

jλn

f(v)dv

= e−z/λn
∞∑
j=0

(z/λn)j

j!
·
∫ 1

0

f ((t+ j)λn) dt.

Denoting F (z) =
∫ z

0
f(t)dt, simple calculation leads to the formula (under

the hypothesis that the series Sn(F ;λn)(z) is uniformly convergent)

Kn(f ;λn)(z) = S ′n(F ;λn)(z). (4.2)

We can prove the following results.

Theorem 4.1.2. (Gal-Opriş [46]) Let λn > 0, n ∈ N be with λn → 0

as fast we want. Let f : DR → C, 1 < R ≤ +∞, i.e. f(z) =
∑∞

k=0 ckz
k,

for all z ∈ DR. Suppose that there exist M > 0 and A ∈ (1/R, 1), with the

property |ck| ≤M Ak

k!
, for all k = 0, 1, ..., (which implies |f(z)| ≤MeA|z| for

all z ∈ DR). Also, consider 1 ≤ r < 1/A.

(i) If R = +∞, (1/R = 0), i.e. f is an entire function, then, Kn(f ;λn)(z)

is entire function, we have Kn(f ;λn)(z) =
∑∞

k=0 ckKn(ek;λn)(z) for all

z ∈ C, n ∈ N and for all |z| ≤ r the following estimates hold :∣∣∣∣Kn(f ;λn)(z)− f(z)− λn
2

[f ′(z) + zf ′′(z)]

∣∣∣∣ ≤ C ′r(f) · λ2
n,

‖K(p)
n (f ;λn)− f (p)‖r ∼ λn,

the last equivalence holding if f is not a polynomial of degree ≤ p and the

constants in the equivalence depend on f , r, p.

Above p ∈ N
⋃
{0}, C ′r(f) < ∞ is a constant independent of n and z

and ‖f‖r = max{|f(z)|; |z| ≤ r}.
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(ii) If R < +∞, then the complex approximation operator

K∗n(f ;λn)(z) =
∞∑
k=0

ck ·Kn(ek;λn)(z), z ∈ Dr,

is well-defined and K∗n(f ;λn)(z) satisfies all the estimates from the point

(i), for all 1 ≤ r < 1
A
< R.

Remarks. 1) In conclusion, the results in the complex case in Theorems

4.1.1 and 4.1.2, are of definitive type, in the sense that they exhibit operators

which can approximate the functions with an arbitrary chosen order.

2) The first estimate in the statement of Theorem 4.1.1, (i), was ex-

tended (with a different constant, of course) in [36] to the approximation

by generalized Szász-Faber type operators in compact sets in C.

4.1.3 Generalized Baskakov operators

For x real and ≥ 0, the original formula of the classical now Baskakov

operator is given by (see [7])

Zn(f)(x) = (1 + x)−n
∞∑
k=0

(
n+ k − 1

k

)(
x

1 + x

)k
f(k/n)

and many approximation results of this operators were published.

According to [54], Theorem 2, under the same hypothesis on f that

Zn(f)(x) is well defined and denoting by [0, 1/n, ..., j/n; f ] the divided dif-

ference of f on the knots 0, ..., j/n, for x ≥ 0 we can write Zn(f)(x) =

Wn(f)(x), x ≥ 0, where

Wn(f)(x) :=
∞∑
j=0

(
1 +

1

n

)
· ... ·

(
1 +

j − 1

n

)
· [0, 1/n, ..., j/n; f ]xj, x ≥ 0,

(4.3)

(here for j = 0 and j = 1 we take (1 + 1/n) · ... · (1 + (j − 1)/n) = 1).



42 CH. 4. COMPLEX SZÁSZ AND BASKAKOV OPERATORS

For λn ↘ 0, arbitrary, by formula (1) in the paper [43] (particularizing

there ϕn(λn;x) = (1 + x)−1/λn), Zn(f)(x) can be generalized to

Zn(f ;λn)(x)

= (1 +x)−1/λn ·
∞∑
j=0

1

j!
· 1

λn

(
1 +

1

λn

)
· ... ·

(
j − 1 +

1

λn

)
·
(

x

1 + x

)j
f (jλn) ,

x ≥ 0, where by convention 1
λn

(
1 + 1

λn

)
· ... ·

(
j − 1 + 1

λn

)
= 1 for j = 0.

For this generalization, in [43] the order of approximation ω1(f ;
√
λn ·√

x(1 + x)) was obtained.

Accordingly, Wn(f)(x) given by (4.3), can be generalized to

Wn(f ;λn)(x) =
∞∑
j=0

(1 + λn) ... (1 + (j − 1)λn) · [0, λn, ..., jλn; f ]xj, x ≥ 0,

where by convention, (1 + λn) ... (1 + (j − 1)λn) = 1 for j = 0.

It is clear that Zn(f ;λn)(x) = Wn(f ;λn)(x) for all x ≥ 0, but as it was

remarked in [34], p. 124, in the particular case λn = 1
n
, if |x| < 1 is not

positive then Wn(f ;λn)(x) and Zn(f ;λn)(x) do not necessarily coincide and

because of this reason in Section 1.8 of the book [34], pp. 124-138, they were

studied separately, under different hypothesis on f and z ∈ C.

In what follows we study the approximation properties of the complex

generalized Baskakov type operators Wn(f ;λn)(z) attached to analytic func-

tions satisfying some exponential-type growth condition.

In this sense, we can state the following.

Theorem 4.1.3. (Gal-Opriş [46]) Let 0 < λn ≤ 1
2
, n ∈ N be with λn → 0

as fast we want. Let f : DR → C, 1 < R ≤ +∞, i.e. f(z) =
∑∞

k=0 ckz
k,

for all z ∈ DR. Suppose that there exist M > 0 and A ∈ (1/R, 1), with the

property |ck| ≤M Ak

k!
, for all k = 0, 1, ..., (which implies |f(z)| ≤MeA|z| for

all z ∈ DR). Consider 1 ≤ r < 1
A

.
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(i) If R = +∞, (1/R = 0), i.e. f is an entire function, then for |z| ≤ r

Wn(f ;λn)(z) is analytic, we have Wn(f ;λn)(z) =
∑∞

k=0 ckWn(ek;λn)(z) and

the following estimates hold :

|Wn(f ;λn)(z)− f(z)| ≤ Cr,M,A · λn,

|W (p)
n (f ;λn)(z)− f (p)(z)| ≤ p!r1 · Cr1,M,A

(r1 − r
· λn,

∣∣∣∣Wn(f ;λn)(z)− f(z)− λn
2
zf ′′(z)

∣∣∣∣ ≤Mr(f) · λ2
n,

‖W (p)
n (f ;λn)− f (p)‖r ∼ λn,

the last equivalence holding if f is not a polynomial of degree ≤ p ∈ N and

the constants in the equivalence depend on f , r, p.

Above, Cr,M,A = 6M
∑∞

k=2(k + 1)(k − 1)(rA)k < ∞, p ∈ N, 1 ≤ r <

r1 < 1
A

, Mr(f) = 16M ·
∑∞

k=3(k − 1)(k − 2)(rA)k < ∞ and ‖f‖r =

max{|f(z)|; |z| ≤ r}.

(ii) If R < +∞, then the complex approximation operator

W ∗
n(f ;λn)(z) =

∞∑
k=0

ck ·Wn(ek;λn)(z), z ∈ Dr,

is well-defined and W ∗
n(f ;λn)(z) satisfies all the estimates from the point

(i), for all 1 ≤ r < 1
A
< R.

Remark. Due to the results in the real case in [43] and to those in

the complex case in Theorem 4.1.3, we can say that they seem to be of

definitive type, in the sense that exhibit Baskakov type operators which can

approximate the functions with an arbitrary chosen order.
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4.2 Arbitrary order by Baskakov-Faber op-

erators

By using a sequence λn > 0, n ∈ N with the property that λn → 0 as

fast we want, in this paper we obtain the approximation order O(λn) for

a generalized Baskakov-Faber type operator attached to analytic functions

of exponential growth in a continuum G ⊂ C. Several concrete examples

of continuums G are given for which this operator can explicitly be con-

structed.

In this way, the results obtained in the previous section for compact

disks, are generalized to the case when the disk is replaced by a compact

set in C.

4.2.1 Introduction

According to the considerations in Subsection 4.1.1, denoting

Wn(f)(z) =
∞∑
j=0

(
1 +

1

n

)
· ... ·

(
1 +

j − 1

n

)
· [0, 1/n, ..., j/n; f ]zj,

for analytic functions satisfying some exponential-type growth condition,

quantitative estimates of order O
(

1
n

)
in approximation by Wn(f)(z) in

compact disks with center at origin were obtained in [34], Section 1.9, pp.

124-138. For f(z) =
∑∞

k=0 akz
k, all the quantitative results are based on

the formula Wn(f)(z) =
∑∞

k=0 ak ·Wn(ek)(z), with ek(z) = zk, i.e. by using

(4.3) too,

Wn(f)(z) =
∞∑
k=0

ak ·
k∑
j=0

(
1 +

1

n

)
· ... ·

(
1 +

j − 1

n

)
· [0, 1/n, ..., j/n; ek]z

j.

(4.4)
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Also, it is worth noting that similar quantitative estimates in approximation

by other complex operators can be found in, e.g., the books [34], [35], [48]

and in the papers [15], [37], [38]-[47], [55]-[57].

By using a sequence of real positive numbers, (λn)n∈N, with the proper-

ties that λn → 0 as fast we want, suggested by the formula (4.4) too, the aim

of this note is to generalize the approximation by the operators Wn(f)(z), to

the approximation by the so-called by us generalized Baskakov-Faber type

operators attached to analytic functions of some exponential growth in a

continuum in C, obtaining the approximation order O (λn).

Since λn → 0, obviously that without to loose the generality, everywhere

in the paper we may suppose that 0 < λn ≤ 1
2
, for all n ∈ N.

4.2.2 Preliminaries

Firstly, we briefly recall some basic concepts on Faber polynomials and

Faber expansions.

For G ⊂ C a compact set such that C̃ \G is connected, let A(G) be the

Banach space of all functions that are continuous on G and analytic in the

interior of G, endowed with the norm ‖f‖G = sup{|f(z)|; z ∈ G}. Denoting

Dr = {z ∈ C; |z| < r}, according to the Riemann Mapping Theorem,

there exists a unique conformal mapping Ψ of C̃ \ D1 onto C̃ \G such that

Ψ(∞) = ∞ and Ψ′(∞) > 0. Then, to G one may attach the polynomial

of exact degree n, Fn(z), called Faber polynomial, defined by Ψ′(w)
Ψ(w)−z =∑∞

n=0
Fn(z)
wn+1 , z ∈ G, |w| > 1.

If f ∈ A(G) then

an(f) =
1

2πi

∫
|u|=1

f(Ψ(u))

un+1
du =

1

2π

∫ π

−π
f(Ψ(eit))e−intdt, n ∈ N ∪ {0}

are called the Faber coefficients of f and
∑∞

n=0 an(f)Fn(z) is called the
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Faber expansion (series) attached to f on G. It is worth noting that the

Faber series represent a natural generalization of the Taylor series, when

the unit disk is replaced by an arbitrary simply connected domain bounded

by a ”nice” curve.

Detailed properties of Faber polynomials and Faber expansions can be

found in e.g. [31], [62].

Let G be a connected compact subset in C (that is a continuum) and

suppose that f is analytic on G, that is there exists R > 1 such that

f is analytic in GR, given by f(z) =
∑∞

k=0 ak(f)Fk(z), z ∈ GR. Recall

here that GR denotes the interior of the closed level curve ΓR given by

ΓR = {Ψ(w); |w| = R} (and that G ⊂ Gr for all 1 < r < R).

Suggested by the formula (4.4), we can introduce the following.

Definition 4.2.1. (Gal-Opriş [45]) The generalized Baskakov-Faber

type operators attached to G and f is defined by

Wn(f ;λn, G; z) =
∞∑
k=0

ak(f) ·Wn(ek;λn, G; z),

i.e.,

Wn(f ;λn, G; z)

=
∞∑
k=0

ak(f)·
k∑
j=0

(1 + λn)·...·(1 + (j − 1)λn)·[0, λn, ..., jλn; ek]·Fj(z), (4.5)

where for j = 0 and j = 1, by convention (1 + λn) · ... · (1 + (j − 1)λn) = 1.

Remark. For λn = 1/n, n ∈ N and G = D1, since Fj(z) = zj, the above

generalized Baskakov-Faber type operators reduce to the classical complex

Baskakov operators, introduced and studied in [34], Section 1.9.

4.2.3 Main results

For the proof of the main result, we need two lemmas, as follows.
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Lemma 4.2.2. (Gal-Opriş [45]) Let 0 < λn ≤ 1
2
< 1, n ∈ N, be with

λn → 0. For all k, n ∈ N with k ≤ [1/λn] (here [a] denotes the integer part

of a) we have the inequality

Ek,n :=
k−1∑
j=0

(1 + λn) · ... · (1 + (j − 1)λn) · [0, λn, ..., jλn; ek] ≤ λn · (k + 3)!.

Here, by convention, for j = 0 and j = 1 we take (1+λn)·...·(1+(j−1)λn) =

1.

Also, we can prove the following.

Lemma 4.2.3. (Gal-Opriş [45]) Let 0 < λn ≤ 1
2
, n ∈ N, be with λn → 0.

For all k ≥ 0 and n ∈ N, we have

Gk,n :=
k∑
j=0

(1 + λn) · ... · (1 + (j − 1)λn) · [0, λn, ..., jλn; ek] ≤ (k + 1)!.

The main result is the following.

Theorem 4.2.4. (Gal-Opriş [45]) Let f be analytic on the continuum

G, that is there exists R > 1 such that f is analytic in GR, given by f(z) =∑∞
k=0 ak(f)Fk(z), z ∈ GR. Also, suppose that there exist M > 0 and A ∈(

1
R
, 1
)
, with |ak(f)| ≤ M Ak

k!
, for all k = 0, 1, ..., (which implies |f(z)| ≤

C(r)MeAr for all z ∈ Gr, 1 < r < R).

Let 1 < r < 1
A

be arbitrary fixed. Then, there exist an index n0 ∈ N and

a constant C(r, f) > 0 depending on r and f only, such that for all z ∈ Gr

and n ≥ n0 we have

|Wn(f ;λn, G; z)− f(z)| ≤ C(r, f) · λn.

Remarks. 1) Theorem 4.2.4 generalizes Theorem 1.9.1, p. 126 in [34],

in two senses : firstly, it is extended from compact disks with center at
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origin to compact sets and secondly, the order of approximation O
(

1
n

)
is

essentially improved to the order O (λn), with λn → 0 as fast we want.

2) It is clear that Theorem 4.2.4 holds under the more general hypothesis

|ak(f)| ≤ Pm(k) · Ak

k!
, for all k ≥ 0, where Pm is an algebraic polynomial of

degree m with Pm(k) > 0 for all k ≥ 0.

3) There are many concrete examples for G when the conformal mapping

Ψ and the Faber polynomials associated to G, and consequently when the

Baskakov-Faber type operators too, can explicitly be written (see, e.g., [35],

pp. 81-83, or [36]), as follows : G = [−1, 1], G is the continuum bounded

by the m-cusped hypocycloid, G is the regular m-star (m = 2, 3, ...,), G is

the m-leafed symmetric lemniscate, m = 2, 3, ...,, G is a semidisk, or G is a

circular lune.
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