

Requirements Engineering for

Web Applications

PhD Student: CĂLIN EUGEN NICOLAE GAL-CHIȘ

Supervisor: Prof. Univ. BAZIL PÂRV

Faculty of Mathematics and Computer Science

Babeș-Bolyai University

Cluj Napoca - România

A thesis summary submitted for the degree of PhD

Doctor of Philosophy (PhD)
August 2017

1

Table of Contents

Table of Contents... 1

1. Introduction ... 3

1.1 MOTIVATION ... 4

1.2 PROBLEM STATEMENT .. 6

1.3 MAIN CONTRIBUTIONS ... 6

2. State of Art .. 7

2.1 REQUIREMENTS ENGINEERING ... 7

2.1.1 Requirements Engineering Approaches ... 7

2.1.2 Requirements Management .. 7

2.1.3 Visualizing Requirements in UML ... 8

2.2 WEB APPLICATIONS DEVELOPMENT METHODOLOGIES ... 8

2.2.1 Web applications .. 8

2.2.2 Web technologies ... 8

2.2.3 Web Application Methodologies With RE Tools Support ... 9

2.3 CONCERNS AND ASPECTS IN SOFTWARE DEVELOPMENT .. 9

2.3.1. Separation of Concerns ... 10

2.3.2 Methodologies based on Aspects and Separation of Concerns .. 10

2.3.3 AORE approaches and methodologies based on Separation of Concerns .. 10

2.3.4 Conclusions ... 10

3. Requirements Engineering Using MultiCoS .. 11

3.1 MODELING CONCERN SPACES USING MULTICOS, A MULTI-DIMENSIONAL SEPARATION OF CONCERNS APPROACH 11

3.2 PRIMITIVES OF THE MULTICOS APPROACH ... 11

3.3 MODELING ENTITY SPACES USING MULTICOS ... 13

3.3.1 Addressing the same concern space .. 13

3.3.2 Addressing multiple concern spaces... 13

3.3.3 Traceability issues .. 14

3.4 MANAGEMENT USING MULTICOS .. 14

3.4.1 Requirements Management using MultiCoS .. 14

3.4.2 Applying the MultiCoS process to manage concern spaces exemplified in existing approaches 14

3.5 MEASURING SEMANTIC SIMILARITIES ... 15

3.6 CONCERN MANAGEMENT AND SPECIFICATION .. 17

3.6.1 The AORA process .. 17

3.6.2 Identifying Concerns in MultiCoS.. 17

3.6.3 Concern specification in MultiCoS .. 17

3.6.4 Composing concerns... 17

3.7 THE MULTICOS PROCESS .. 17

3.7.1 Concern management .. 18

3.7.2 Entity management .. 18

3.7.3 Similarity check .. 19

3.8 USING MULTICOS ... 19

3.8.1 Similarity of some requirements from a new problem ... 19

3.8.2 Reusability of artefacts .. 20

2

3.9 SUMMARY ... 20

4. The MultiCoS Tool .. 21

4.1 AORE AND MCSA TOOLS .. 21

4.1.1 AMPLE tool suite .. 21

4.1.2 AO-MD-PLE tool ... 21

4.1.3 Hyper/J tool .. 21

4.1.4 HyperC# tool ... 21

4.2 THE MULTICOS TOOL .. 22

4.2.1 Application Architecture ... 22

4.2.2 Data Model and Storage .. 22

4.2.3 GUI and Reporting .. 22

4.3 SUMMARY ... 22

5. Using MultiCoS... 23

5.1 CASE STUDY ... 23

5.2 USING MULTICOS TO INVESTIGATE REQUIREMENT SIMILARITY ... 24

5.2.1 Managing concerns .. 24

5.2.2 Managing requirements ... 25

5.2.3 Similarity check .. 25

5.3 USING MULTICOS TO INVESTIGATE REUSE OF CODE MODULES ... 26

5.3.1. Concern management ... 27

5.3.2. Entity management ... 27

5.3.3. Similarity check ... 27

5.3 MULTICOS EVALUATION .. 30

5.3.1 A Testbed for AOSD .. 30

5.3.2 MultiCoS quantitative evaluation... 30

5.3.3 MultiCoS quality evaluation ... 31

5.4 SUMMARY ... 31

6. Conclusions and further work .. 32

6.1 GENERAL CONCLUSIONS ... 32

6.2 LIMITATIONS .. 32

6.3 FURTHER WORK .. 32

References ... 33

3

1. Introduction

This work relates Requirements Engineering and Web Engineering

paradigms using a separation of concerns approach.

A Requirement is “a description of a service the stakeholders expect of the

system, the system behavior, and constraints and standards that it should meet”

[114]. The requirements can be derived in sub-requirements and in the same way,

concerns can have sub-concerns. According to Friedental et all [109]: “a

requirement specifies a capability or condition that must be satisfied. A

requirement can define a function that a system must perform, or a performance

condition a system must achieve”. Usually, requirements can be expressed

textually or graphically, using diagrams, and are considered model elements. They

are related to other model elements (including other requirements).

A Concern is known to be “a high-level unit for system partitioning, a

container for localizing semantically related requirements; it can be simple

(containing only requirements), or composite (containing other concerns as well as

requirements), thus allowing hierarchical structuring of related requirements” [22].

Ossher [91] defines Separation of Concerns (SoC) saying that: “in its most

general form, the separation of concerns refers to the ability to identify,

encapsulate, and manipulate those parts of software that are relevant to a

particular concept, goal or purpose.”. According to this, a ‘concern’ is an entity that

encapsulates a particular area of interest. The concerns are the main factor in the

decision of refining software into more specific, atomic elements. Related concerns

are grouped in so-called concern spaces. Multi-dimensional SoC refers to SoC using

several concern spaces.

The concerns and requirements are entities identified by elements spread

along multiple sentences. Regardless, the smallest entity of interaction is a simple

sentence, and for the purpose of relating to this smallest unity of interaction the

elements composing it are needed to be defined. According to Chitchyan et all. [22],

the main such elements in the Requirements Description Language are subject,

object, and relationship.

Requirements Engineering (RE) is defined as “the area of software

engineering that focuses on the RE process which involves understanding customer

needs and expectations (requirements elicitation), requirements analysis and

specification, requirements prioritization, requirements derivation, partitioning and

allocation, requirements tracing, requirements management, requirements

verification, and requirements validation” [131].

RE is a field in the Software Engineering discipline and is related to the

software requirements. RE is the process in which the requirements of the software

systems are methodologically managed regarding how they are formulated, the

documents they are specified in or related to them, and the way they are

maintained. RE is defined [60] as “the task of capturing, structuring, and

accurately representing the user's requirements so that they can be correctly

embodied in systems which meet those requirements”. More generally, RE is [94]

4

the process of identifying and articulating needs for a new technology and

applications.

Web Engineering (WE) is “the establishment and use of sound scientific,

engineering and management principles and disciplined and systematic approaches

to the successful development, deployment and maintenance of high quality Web-

based applications” [84].

WE is a discipline that promotes the process of producing quality web-

based applications using appropriate methodologies, approaches, techniques and

tools. WE directions are guiding the process of web application design,

development, evolution and evaluation. WE and Software Engineering are related in

the sense that WE can be considered as Software Engineering meant to meet the

specific profile of web-based applications.

All content delivered through Internet technology is part of Web sites, Web

applications or Web-based systems. All software systems generating this content

are referred in this thesis as web applications. On the other hand, for the

applications not based on web the term traditional software is used.

In this thesis is presented a RE approach that improves Web application’s

requirements management. The approach is based on the separation of concerns.

Managing the requirements using separation of concerns provides a basis to

requirements engineering process along the development cycle.

The requirements engineering in the web application development is

somehow similar to the engineering process in the development of traditional

software. The main differences are found in the process of capturing web-specific

aspects like navigation and technology and in the way that the requirements are

implemented into code.

In order to address the need of managing the artefacts of web applications

and to facilitate the reuse of artefacts such as code and documentation, a

methodology of managing the web requirements is introduced. This methodology

may support also the traditional software development and even other new fields,

but, in this thesis, we will focus on the web application field. The methodology is

based on multidimensional SoC and uses model-to-model transformations and

links between models to capture the specific of different web applications using a

similarity metric. This approach will allow us to access and reuse the artefacts of a

web application in order support the development of another one.

This chapter is organized as follows: in Section 1, the purpose of the thesis

is explained. In Section 2 is presented the problem to be solved and main research

objectives. Section 3 focuses on the original contributions.

1.1 Motivation

It is very important for requirements engineering activities to be efficient in

order to fulfill the users and customers’ needs, and that the application should be

delivered on time with respects to release time frame and targeted budget [3]. Once

the Web Engineering developed in the last decade of the twentieth century, one of

the main gaps observed was the lack of proper requirements specification

techniques for Web applications [84] [32].

5

In the domain of the Requirements Engineering there were presented

several approaches in the last decades. Some approaches, like Constantine and

Lockwood [28], Jaaksi [65], Leite et al. [77], Durán et al. [35] or Rosenberg and

Scott [105], were excellent regarding the requirements specification linked to the

structure and behavior of software systems. Other approaches, like of Chung et al.

[23], Cysneiros et al. [30], or Botella et al. [10], focused with success on methods to

describe non-functional requirements, like usability, reliability, reusability or

performance of software systems, collectively known as URPS.

According to Cachero and Koch [13], Schwabe et al. [112], Ceri et al. [17],

all these approaches were missing support for expressing the Web application

specific requirements, that have to consider critical Web applications features,

such as navigation. The navigation is important in Web applications which are

based on heavy user interaction [54], as the WWW role is to be a support for

information distribution - many web applications being developed as information

repositories. Web application development involves complex data capturing and

organizing in order to make it available to users. According to hypertext paradigm,

Conklin states that users can navigate information in non-linear directions in a

web of links, nodes and anchors [26].

Approaches like OOHDM [112], WebML [17], UWE [71], WSDM [31], W2000

[9], SOHDM [76], RNA [130] or OOH [14] are supporting the development of Web

applications. All of those are offering solutions on representing the navigational

aspects.

As the projects are larger and more complex, relevant principles like

modularization, abstraction and encapsulation [106] are followed, as they provide

an important support in reaching a clear separation of concerns. Structured or

Object-Oriented Software Engineering methods are providing methodologies based

on such principles, but they are not able to completely separate complex relations

between concerns as they focus the modularization process on a dominant

decomposition criteria. This tyranny of the dominant decomposition [119] leads to

an ineffective modularization process focused on a single concern.

Aspect-Oriented Software Development (AOSD) provides a better support in

managing the separation of concerns process and reach better modularity by

decomposing the system in parts that have as less as possible overlapping

functionalities [1]. Also, AOSD purpose is to manage the crosscutting concerns by

stressing a methodology based on “systematic identification, separation,

representation and composition of concerns” [98]. Basically, AOSD primary targets

the crosscutting concerns and their modularization and encapsulation processes.

Crosscutting concerns, meaning related concerns, are solution space attributes that

cannot cleanly separate. Their presence affects system architecture and produces

code duplication and undesired dependencies between system components. Recent

work was dedicated to crosscutting concerns management, not just in the

construction stage, but also in earlier phases of software development, like detailed

design [24], architecture design [120] and requirement analysis [99, 81].

In order to achieve such a goal, we need (a) a methodology of grouping and

addressing these artefacts, based on their semantics expressed in terms of

concerns, and (b) a process of creating relationships from requirements to not-yet-

developed artefacts or other existing candidate solutions. Such a methodology will

6

support artefact reuse (including code reuse), based on their semantic similarity

(defined by concern spaces), offering support and guidelines to reuse existing

artefacts from identical or similar application domains.

1.2 Problem statement

As we have seen, the requirements engineering of web applications is still

an open research topic, as there are areas that can be improved.

Organizing requirements and artefacts in categories and creating links

between them can lead to reuse of artefacts and code.

Research question 1: How should web applications requirements be

specified and organized in order to capture their attributes and semantics and

group them in categories?

Research question 2: What kind of bindings between models can be

created (and how) in order to access and reuse existing solutions or resources?

Problem Statement. Provide a methodology for the management of

relationships between resources and concerns to be applied in WE. Two resources

involved in the WE process (like requirements, artefacts, code, stakeholders, or any

other logical or physical entities) can be semantically compared in terms of their

similarity with respect to the same concern space. Subsequent goals can be derived

from this problem, as follows: G1: Management of the requirements, artefacts and

concerns specific to WE; G2: Definition of the matching function measuring

similarity between resources with respect to a concern space; G3: Application of the

similarity relationship to web engineering process.

1.3 Main Contributions

In this thesis the research conducted lead to the development of a

methodology supported by a software tool meant to provide a solution to the above

problem.

First, an approach is used to organize requirements and artefacts. The

approach is based on multidimensional separation of concerns [81] and was

adapted to be applied on different artefacts and resources, not limited to one single

type, such as requirements [49].

After the requirements and other artefacts are organized according to the

approach, we introduced a method to map the requirements and the resources in

different problem spaces to various representative concern spaces, based on their

semantic.

Once the matching vector is computed, we can compute a semantic

similarity coefficient of different pairs of resources, based on the Gower similarity

index [53]. According to the weight given by the similarity coefficients, we can trace

semantically similar artefacts in different problem spaces or in the same problem

space and decide to reuse them. Model to model transformations are performed

during the process to allow the method to produce the expected results.

7

2. State of Art

During the research process, the most important results and studies

related to the paradigms being part of the current thesis domain were investigated,

outlining for each, their specific and their core concepts and also pointing out the

relevant connection to the theme studied.

In order to capture the best from the big picture the following fields have

been under focus: Web Applications, Web Methodologies, and Requirements

Engineering, Requirements for Web Applications, RE Tools for Web applications,

Separation of Concerns and their methodologies, Requirements Semantic Analysis.

These concepts will be presented in this chapter.

2.1 Requirements Engineering

In order to have a better understanding of the requirements engineering in

this section will be reviewed aspects related to requirements engineering

methodologies, requirements management and methods to represent requirements.

The requirements are specifying what a software product should do or what

should perform. Given this, requirements are valuable statements that should be

specific, as clear as possible, unambiguous.

The recent work performed by Schmidt outlines the software requirements

characteristics [111] and proposes a set of best practices to analyze them [110].

2.1.1 Requirements Engineering Approaches

The most important and notable RE approaches are

 Agent oriented requirements engineering

 Goal Oriented requirements analysis/engineering (GORA/KAOS)

 Model Driven requirements engineering

 Aspect-Oriented requirements engineering (AORE)

 ViewPoint Oriented Approach (VOA)

 Business process-driven requirements engineering

Some of the most advanced frameworks supporting these requirements

engineering approaches are i*, fUML, KAOS. Other agile methodologies for

requirements engineering are proposing self-adapting selection and prioritization

techniques for requirements [96].

2.1.2 Requirements Management

Requirements engineering includes the following steps: elicitation, analysis

(elaboration and negotiation), specification (producing a document), and verification

(validation).

The requirements can be functional or non-functional. Functional

requirements for web applications include: data requirements, user

interaction/interface requirements, navigational requirements, personalization

requirements, and transactional requirements. Non-functional requirements can be

grouped under the FURPS+ acronym (F stands for functionality, U for usability, R

for reliability, P for performance, S for supportability, and “+” means technical or

8

development-related requirements (planning, design, implementation, interface,

and physical).

Requirements management is a methodology to elicit, organize, and

document the requirements of the system in an engineering fashion. It can also be

defined as a process that establishes and maintains changing requirements.

Requirements management is very important and helpful for real projects. Some of

the most common problems are the tracking of requirements change and the

difficulty to write them.

2.1.3 Visualizing Requirements in UML

The purpose of a system is to produce certain functionality for a client, in

order to assist him or to service him, make his life easier, more efficient. Usually,

the person developing the system is not the person the system is intended for, so,

there is the risk of miscommunication in between the intended requirements and

the product delivered.

For small systems the risk is reduced, as the prototyping and initial

versions can be easily adjusted, and the communication between users and

developers is not complete, reducing the misunderstanding gap.

On the other hand, for large systems this approach is not suitable, usually

leading to projects that will not meet deadlines or budget requirements. For these

large projects, most of the developers are not in the same location, some being

subcontracted from different companies, and certainly, not in contact with the end-

user, due to different levels of access to the project and the professional

relationship between developer and contractor. This is giving no chance to a direct

communication channel between the end parts of this process: developer and user.

2.2 Web applications development methodologies

2.2.1 Web applications

Web has evolved from simple content pages, linked by hyperlinks to

complex platforms for business applications. There are now Rich Internet

Applications with complex events and business logic, using AJAX, JSON or other

technologies. Given this, the initial paradigm for interacting in web applications

(static web pages navigated by hyperlinks) is no longer valid. The use of back and

forward buttons is not adequate anymore. The applications are behaving differently

even depending on a specific browser and its settings.

2.2.2 Web technologies

A lot of programming languages for web applications have tried to make it

on the market offering solutions for programmers. Over time, some failed, other

succeeded. There is good and not-so-good on both sides. A lot of things have

changed. Many of these languages and platforms development discontinued. The

only reason I have come to find about some them is this research. Other, new ones

came out. At this moment in time, I can say that we have some solid ones, but, no

one can predict what will come, or how long, those on top will they will be able to

stay there.

9

In programming a web application, one had to use several different

programming languages at once.

2.2.3 Web Application Methodologies With RE Tools Support

The information and content available through Internet technology is part

of Web sites, Web applications or Web-based systems. All software systems

generating this content are considered web applications.

There are several notable types of web applications:

 business integrated systems;

 educational systems;

 commercial systems – e-shops;

 regular static web pages;

 social applications;

 multimedia applications;

 developer applications.

The tools support is critical for any development methodology, including

web development ones. For certain methodologies, existing tools can be configured

and used, while for other, given their restricted or special specs, this is not

possible. With the increase technological progress, methodologies tend to be

developed integrated solutions to cover not only methodology support but support

during the entire application development cycle. Such web methodologies are

OOHDM, OO-H, UWE, and OOWS.

2.3 Concerns and Aspects in Software development

Concerns are particular goals, concepts, or areas of interest. A cross-

cutting concern is a concern affecting several software entities like classes or

modules.

Aspects are pieces of code implementing behaviors common to multiple

classes, being considered reusable entities. From our viewpoint, an aspect is a

piece of code implementing a concern. Aspect-oriented programming (AOP) is a

programming technique allowing developers to manage crosscutting concerns,

grouping them into separate and reusable modules.

AORE focuses on the importance of both functional and non-functional

aspects as a need to satisfy three important needs [113], related to: composition,

tracking and development of new technologies. On requirements level, an aspect is

a property of a requirement or of a set of requirements that is affecting a system as

it can restrict or modify a particular behaviour of requirements. Requirements

influenced by aspects can be decomposed using different abstractions used in

capturing requirements (viewpoints or use cases or scenarios).

AORE is based on four principles [113]:

 The identification of transversal properties in requirements

specification, and the semantic analysis of requirements documents;

 The ability to group transversal properties related to a particular aspect

in modules at requirements level;

10

 The ability to visualize the influence of aspects on requirement level (tool

supported, visually or structured);

 The ability to compose the requirements influenced by the same aspect

into high level requirements.

2.3.1. Separation of Concerns

The main reason of using SoC is to manage a problem in an easier way, by

splitting it in modules, which can be later combined to provide a complete answer

to the initial problem [33]. This principle is important in software development, as it

provides certain benefits as: reducing the complexity, supporting traceability,

offering better understanding of the problem. But, one of the most important

benefits is that it provides means to small impact changes as the concerns are

stored in different modules. The crosscutting concerns are of major importance and

are going to be addressed later. Some concerns cannot be completely incorporated

into one module, leading to different approaches in tackling the problems arising.

2.3.2 Methodologies based on Aspects and Separation of Concerns

This section contains a review of the most important methodologies in

Aspect-Oriented Requirement Analysis AORA. Each of them uses concerns in the

process, involved in the requirements definition.

2.3.3 AORE approaches and methodologies based on Separation of Concerns

When functional or non-functional crosscutting requirements, are difficult

to be separated in modules their effect in the system cannot be precisely quantified.

In contrast to other traditional approaches, unsuccessful in dealing with

crosscutting concerns, the AORE approaches are trying to compose requirements

using a high level of abstraction mechanism to manage crosscutting requirements.

The approaches presented have their own use of concerns, for which they

define their own models, targeted to support their specific processes. As the

concern concept is not uniformly approached, there is a necessity for a generic

model for concerns to be introduced, and accepted. A framework that processes

concerns should have several features like modeling concern spaces capabilities,

designing the interactions with other entities, supporting patterned processes for a

variety of situations.

2.3.4 Conclusions

Concerns are responsible providing meaning to the artefacts, but they add

workload to the application development phases. As the concerns can be easily

related to the requirements, there is a need to address the concerns at the same

time we are addressing the requirements.

In contrast to traditional approaches, AORE considers specifically the

crosscutting concerns, proposing a complete management process for

requirements, from elicitation and analysis to validation and implementation, with

efficient composition techniques for the crosscutting concerns.

11

3. Requirements Engineering Using

MultiCoS

The generality of concern in terms of modeling and relating it to other

artefacts was one thing that none of the methodologies presented in Chapter 2

possessed. Each one of these approaches defined and used the concern to fit their

own processual needs in the development process.

This chapter, tries to give a solution to the three goals set in the Problem

Statement - G1: Management of the requirements, artefacts and concerns specific

to WE; G2: Definition of the mapping function measuring similarity between

resources with respect to a concern space; G3: Application of the similarity

relationship to web engineering process. Sections 3.1 and 3.2 give results belonging

to G1, while Sections 3.3 thru 3.5 deal with the definition of the mapping function

(G2). Finally, Sections 3.6 thru 3.8 show how the similarity measure is used in a

WE process (G3).

3.1 Modeling Concern Spaces Using MultiCoS, a Multi-

Dimensional Separation of Concerns approach

All artefacts produced during the development of software products,

including specifications, requirements, models, source code, and documentation,

are labeled with key-words, or represented using specific attributes. The main goal

of these labels is related to the semantics of the artefact being described, and is

used for categorizing and searching purposes.

Such key-words are, in our approach, concerns. A generic definition states

that “a concern can be considered to be any matter of interest in a software system”

[45]. The approach presented in this thesis is named MultiCoS (Multiple Concern

Spaces), a Multi-Dimensional Separation of Concerns approach that was first

presented in [49]. MultiCoS relies on multi-dimensional separation of concerns [81]

briefly introduced in 2.3.3.8.

3.2 Primitives of the MultiCoS approach

The following primitives of MultiCoS will be defined: Concern, Concern

Space, MultiSpace, Entity, Entity Space, and Matching Value. They were adopted

from [46] [57] and used in the context of [81].

Definition 1 (Concern) A concern is anything considered relevant to a

software system. It has the purpose of describing an attribute of an entity.

In this thesis we use the concern definition given above. Alternative

definitions, found in the literature, are similar to some extent:

 A concern refers to “a property which addresses a certain problem that

is of interest to one or more stakeholders and which can be defined by a

set of coherent requirements” [12]. Given this, concerns are properties a

12

system has to possess in order to meet required functionalities. Related

concerns are grouped in concern spaces.

 A general definition coming from AOSD states that “a concern is any

matter of interest in a software system” [45].

 A more specific definition is provided by IEEE which states: “a concern

is those interests which pertain to the system’s development, its

operation or any other characteristics that are critical or otherwise

important to one or more stakeholders” [62].

Definition 2 (Concern Space) A Concern Space is “a group of concerns

referring to/describing similar capacities (issues/behaviors) of at least one type of

entities. A Concern Space has a name, a description, a set of concerns, and a

threshold (maxValue)” [48]. Other attributes can be specified, to properly configure

the Concern Space.

In the software field, concerns are defined many ways, most of them being

related to code, but concerns can be used in all processes related to software

development.

Definition 3 (MultiSpace) A MultiSpace is a Concern Space of Concern

Spaces. A MultiSpace “has a name, a description, and a set of Concern Spaces. The

MultiSpaces can be grouped in a Meta MultiSpace. This process can be applied

recursively, on higher levels, if necessary” [48]. The same way concerns can be

decomposed into sub-concerns, a set of related concerns (grouped in a concern

space) can be considered as a high-dimensional concern, part of a multispace.

Definition 4 (Entity) In our study, an Entity is an object related to the

software development process. An entity can be associated to one or more Concerns

from a Concern Space. Examples of entities are: requirements, artefacts, users,

code modules, development technologies, problem statements, and even concern

spaces.

Definition 5 (Entity Space) An Entity Space is a collection of cohesive

entities. Different categories of entities can be grouped in separate Entity Spaces -

such as Technologies entity space, Requirements entity space, Artefacts entity

space, Developers entity space.

One of the additions introduced by the MultiCoS is that in our model a

concern space can be used to describe multiple entity spaces (Figure 22) and

multiple concern spaces can be defined and related to a specific entity space (Figure

24). The relations formed between the entity spaces and concern spaces aim to add

a semantic value to the software engineering field, giving solutions to represent

relationships based on dependencies and semantic similarities of qualities and

attributes for various software concepts or entities.

For example, two different Entity spaces, each related to a web applications

are linked by using the same Concern Space to describe their components.

For every entity and for each concern space there is a vector expressing the

semantic relation of the entity to the concern space. A mathematical function can

be defined to define the relation between an entity and a concern space as they are

13

provided as arguments. The corresponding vector of concern semantic values will

be the result of the function.

Definition 6 (Matching value) To quantify the relationship between an

entity e and a specific concern c, we will assign it a value, measuring the strength

of relationship between e and c, and reflecting the weight (importance, matching) of

the entity e with respect to the concern c:

 mv(e,c) = v, where eE, cC, vR (1)

Definition 7 (Semantic mapping, [48]) Let e be an entity in the entity

space E, and C a n-dimensional concern space. The semantic matching function f (2)

describes the entity-concern space relation existing for an entity e and a concern

space C, measuring the degree of matching of entity e to each concern ci C.

 f(e,C) = v = (v1, v2, …, vn), where eE, vRn (2)

The vector v is called matching vector of the entity e in the concern space C.

It is obvious that vi = mv(e, ci), for all ci C.

The concern space C is described using the following format:

C = (id, name, description, set of concerns, max_value)

where: id is the label (providing unique identification), and name is the identifier of

the concern space. For each entity e and each concern c C, mv(e,c)  [0,

max_value]. The max_value is a threshold signifying the maximum weight an entity

can get for any concern in the concern space. In other words, for a given concern

space C, the threshold max_value is greater or equal to the maximum value of any

component of any matching vector v in (2).

3.3 Modeling Entity Spaces using MultiCoS

3.3.1 Addressing the same concern space

Having these matching vectors computed, we can make informed decisions

regarding the implementation of modules and available developers.

This way, we introduce a metric (numerical value) characterizing their

efficiency and being, this way, a comparison tool. So, we observe that developer

Dev3 does not have the highest skills in each domain, but has one of the highest

means, meaning that he/she possesses a strong background in each programming

language considered, with the lowest score, a 6 (Php), showing good skills even in

that domain.

3.3.2 Addressing multiple concern spaces

In this example, the same entity is associated with many Concern Spaces.

Consider the following concern spaces:

C1={1, “MVC”, “the weight in the Model-View-Controller”, (Model, View,

Controller), 1},

14

C2={2, “CRUDS”, “Create Read Update Delete Static functionalities of an

entity”, (read, create, update, delete, static), 1},

C3={3, “nonFA”, “non-functional aspects of entities”, (sleekdesign,

loadspeed, volatility), 10},

C4={4, “Priority”, “importance of the entity”, (priority), 10}.

3.3.3 Traceability issues

During the refinement process of requirements (considered entities in our

general model), the child requirements derived inherit all the relations and

matchings of the parent requirement from higher levels (concern spaces).

Unfortunately, details of the decomposition process are not contained in the

existing concern spaces. To deal with this, a new concern space is created, which

contains the original information of the parent requirement, showing the

relationship between the newly created sub-requirements and the original one.

3.4 Management using MultiCoS

Concerns are widely used to describe requirements. Given a problem

statement, requirements will be expressed using custom concern spaces, specific to

the problem at hand. These concern spaces can be used to characterize other

categories of entities, not only requirements.

From the moment the problem is accepted and assumed, the related

concern spaces can be defined. Here the stakeholders can be of a real help in

specifying different attributes/features of the application.

3.4.1 Requirements Management using MultiCoS

Concern spaces are used to characterize the semantics of the requirements.

In our example, we consider two concern spaces.

As associations are made in the model, a network of edges describe the

relation of dependence existing between requirements and concerns in the concern

spaces.

3.4.2 Applying the MultiCoS process to manage concern spaces exemplified in

existing approaches

The versatility of MultiCoS is that it can represent matchings of concern

spaces and entities existing in other approaches. Below, we give examples showing

how different situations can be modeled by using concern spaces and semantic

mapping function. Obtained matching vectors can be used to compute similarity

coefficients, as it is shown in 3.5.

Example 3 - MultiCoS with Volere

This example shows how concern spaces can be used in requirement

prioritization. Considering the prioritization analysis made in the Volere project

[104], the main factors that commonly affect prioritization decisions are: Minimize

Implementation Cost (development costs), Value to customer (the customer need),

Time to deliver (how long it takes to implement), Ease of technical implementation

15

(ease of use and access required technologies), the level of difficulty in business

implementation (ease to organize), Value to the business (to what extent the

business benefits), external authority constrains (to abide the law). Each

requirement is given a score (Priority Ranking), with respect to each of those

factors, on a scale from 1 to 10.

Using our notations, we define the following concern space:

C2={2, “prioritization”, “prioritization factors for requirements”, (Value

to Customer, Value to Business, Minimize Implementation Cost, Ease of

Implementation, Time to Implement), 10}.

Keeping the same notations for requirements (entities), and applying the

semantic mapping function f we obtain the following matching vectors for Concern

Space C2:
f(R1, C2)=(2,7,3,8,3)

f(R2, C2)=(8,8,5,7,6)

f(R3, C2)=(7,3,7,4,5)

f(R4, C2)=(6,8,3,5,9)

f(R5, C2)=(5,5,1,3,7)

f(R6, C2)=(9,6,6,5,4)

f(R7, C2)=(4,3,6,7,6)

3.5 Measuring semantic similarities

Two metrics will be used to measure the similarity of matching vectors in

the MultiCoS approach [48], given a concern space C. The similarity s and the

distance d are opposite values, the similarity index of two points x and y in an n-

dimensional space increases when the distance between them decreases, and vice-

versa. The relationship between the distance d and the similarity coefficient s are

mainly given by two equations, depending of the distance being normalized or not.

When the distance is normalized as a value in the [0, 1] range, the normalized

distance index is also called dissimilarity coefficient, and the equation relating the

dissimilarity (distance) and similarity is (3):

s(x,y) = 1 – d(x,y) (3)

Otherwise, the reciprocal (4) is used:

s(x,y) = 1/d(x,y) (4)

In order to compute semantic similarities, we follow the pattern in [18].

Let there be two entities X, Y in the entity space E: X, Y ∈ E; a concern

space C, with n dimensions: C = {c1, …, cn}; and k ∈ R+ being the maximum

matching threshold for C (max_value). Applying the semantic mapping function (2)

to X and Y, we obtain the mapping vectors A = f(X, C) = (a1, …, an) and B = f(Y, C) =

(b1, …, bn). The distance between X and Y w.r.t. concern space C is given by (5):

𝑑𝐶(𝑋, 𝑌) =
1

𝑛 𝑘
∑ |𝑎𝑖 − 𝑏𝑖|𝑛

𝑖=1 (5)

This was obtained using the Gower distance formula applied to normalized vectors

A and B (with respect to k). With this, the similarity coefficient (3) of entities X and

Y with respect to the concern C becomes:

16

𝑠𝑠𝐶 (𝑋, 𝑌) = 1 − 𝑑𝐶(𝑋, 𝑌) = 1 −
1

𝑛 𝑘
∑ |𝑎𝑖 − 𝑏𝑖|𝑛

𝑖=1 (6)

For example, let there be two entities X, Y in the entity space E, X, Y ∈ E,

and a concern space C, with n=5 concerns, C = {c1, c2, c3, c4, c5 }, and k=10 being the

maximum matching threshold for C. Applying the matching function (2) to X and Y,

we obtain the mapping vectors A = f(X, C) = (8, 4, 3, 2, 1) and B = f(Y, C) = (6, 4, 10,

0, 4). Figure 28 shows the mappings (left), and the normalized distance and

similarity (right), for the two entities, X and Y over C.

Figure 1 Mapping and distance/similarity coefficient for entities X and Y over C

Let us consider 𝑑𝑖 = |ai − 𝑏i|/𝑘, called concern projected distance

corresponding to the i-th concern, and si = 1 – di, the corresponding concern

similarity coefficient. For two equal values, ai = bi, we get di = 0, leading to si = 1,

meaning maximum similarity. This is true also for two null values, xi = yi = 0, which

leads to si = 1. For this reason, we will not take into account to compute these

values as concern similarity coefficients, as we cannot allow increase the similarity

of two entities based on an attribute missing in both entities. The same explanation

was used in the way the Tanimoto similarity and the Jaccard index [18] were

computed. The concept agreed upon is that the absence of a feature in two objects

does not provide information valuable to similarity measures [53].

The similarity coefficient (6) can be easily generalized if we consider as

basis for comparison a set of concern spaces instead of a single concern. The

multispace similarity coefficient, ms, of two entities X, Y over a set of w concern

spaces C1, ..., Cw is the computed average of the space similarity coefficients for all

w spaces in the concern spaces set.

𝑚𝑠(𝑋, 𝑌) =
∑ 𝑠𝑠

𝐶𝑗(𝑋,𝑌)𝑤
𝑗=1

𝑤
 (7)

This gives us the degree of similarity of two entities with respect to a set of

concern spaces.

Similarity coefficients (6) and (7) have values greater than or equal to 0 and

less than or equal to 1, where 0 stands for no semantic (weakest semantic

similarity) for two entities, and 1 represents the identical semantic (strongest

semantic similarity).

17

3.6 Concern Management and Specification

The concern spaces used in the previous section are proving the variety of

concerns that can be related to different entities. Some other will be considered

here.

3.6.1 The AORA process

MultiCoS process, our proposal for requirement management using

concern spaces, described in the next section, is using AORA process [12]. Next

sub-sections describe AORA Plan0 processes and their use in MultiCoS.

3.6.2 Identifying Concerns in MultiCoS

Concerns can be identified using complex and intensive processes, and

techniques already exist [87], but this task to identify all the concerns in a system

is beyond the purpose of the current work.

3.6.3 Concern specification in MultiCoS

In the process of concern specification, the relationship of each concern to

another concern has to be investigated as they are being important to be accounted

of. Usually, the concerns in a concern space are not independent of one another.

Adapting the AORA concern template document to the MultiCoS approach

format we obtain a meta-concern space as a document.

3.6.4 Composing concerns

Once all concerns are specified, the last step is to compose them. For each

matching point identified, activity diagram.After each match point identified, the

following activities can be performed in parallel: the identification of cross-cutting

concerns, conflict handling, and the definition of compositional rules.

3.7 The MultiCoS process

This section, presents the MultiCoS process, our solution for requirements

management using multiple concern spaces. The goal is to create a methodology

allowing creation of relationships between semantically similar requirements from

the same application or different applications, based on their semantic mapping

using concern spaces. This process is used for requirements engineering.

Once such semantic connections are defined and established, they will be

used to measure similarity between similar types of entities (like requirements and

code modules), which, in the next step, will help in code or artifact reuse. We

identified two types of questions that can be defined for which our process will be

able to provide an answer:

Question type 1 As software has to be developed to implement a solution

for a new problem, can we identify similar requirements, and plan to

use the same resources to implement part of them?

Question type 2 As new software has to be developed to implement a

solution a for new problem, can we identify similar artefacts already

created for existing software, and plan to reuse them to implement part

of the solution for the new problem?

18

MultiCoS process has three main steps:

1. Concern management

2. Entity (requirement) management

3. Similarity check

The novelty of our proposal, sketched in Figure 35, is to use these concerns

and concern spaces for identification of the reusable artifacts and resources in web

engineering processes. It includes newly proposed activities, such as: requirements

space transformation into entities space, establishing relationships between

entities and concerns (semantic mappings), generating relationships between

entities in the same space or different spaces (by computing matching vectors).

Figure 2 The MultiCoS process

 3.7.1 Concern management

For the first step, concern management, the MultiCoS process uses AORA

process [13], described in the previous section. Concerns are domain-specific and

application-specific, as well as software development process-specific. The

deliverables of this process are concern spaces and concern catalogues.

3.7.2 Entity management

The entities to be addressed in our proposal are specific to the problem

domain. For the problem at hand there will be a lot of requirements, functional and

non-functional, grouped into Requirements spaces. MultiCoS considers a

generalization of these problem-specific requirements, using entities instead.

Entities are related to concerns. More specifically, we use concerns to

compare entities in a semantic way. Each different entity type (like Requirements,

code modules, actors, developers, technologies or any other artefacts or resources

involved in the web development process) follows a specific transformation to

become an entity. The deliverables of the entity management step are entities and

entity spaces.

Entity management step has the following activities: (1) Entity gathering (2)

Entity grouping into entity spaces.

19

 3.7.3 Similarity check

This last step of the MultiCoS process deals with semantic similarities

between entities with respects to concern spaces. In order to get to this

desideratum, several sub steps will be performed (Figure 40): (1) select entity and

concern spaces to be considered, (2) compute the matching vectors, (3) compute

the similarity coefficients for entities with respects to each concern space selected,

and (4) compute the multispace similarity coefficients for entities with respects to

all the concern spaces selected.

Figure 3 Investigating requirements for semantic similarities in MultiCoS approach

The multispace similarity coefficients will help in the decision of reusing

artefacts, answering to the questions stated in the beginning of this section.Of

course, the final decision is made by humans, but MultiCoS provides means to

assist it. More examples will be presented in the next chapters, where the MultiCoS

tool is presented and a Study Case is conducted.

3.8 Using MultiCoS

Semantic similarity is used to answer the two questions stated at the

beginning of the previous section.

3.8.1 Similarity of some requirements from a new problem

Question type 1 is looking to identify similar requirements in a problem. We

plan to decompose the requirements into sub requirements, identifying those sub

requirements with very high similarity coefficients with respect to a concern space.

Having two requirements, A and B, we can decompose them into sub-

requirements, up to the level of primitive data operations. In order to compare sub-

requirements, we need a concern space. Once the similar sub requirements were

20

identified, we can decide to use the same code (or the same developer) to implement

them.

Figure 4 Identical sub requirements refining different requirements

3.8.2 Reusability of artefacts

Question type 2 is looking to identify similar requirements in different

problems. Problem P1 is already solved; during the development process, there are

well-established entities (requirements, documentation, code), and the

corresponding traceability links between requirements and resulting artifacts.

Problem P2 is a new problem to be solved, for which only the requirements are

known. By identifying the requirements with very high similarity coefficients in P1

and P2 with respect to some selected concern spaces, we can use the artifacts

implementing P1 requirements to implement P2 requirements. Figure 45 illustrated

the process.

Figure 5 Reusing code to implement semantic similar requirements in MultiCoS

As an outline, we have created two matching types: (1) requirements from

one problem space and requirements from another problem space, and (2)

requirements and code modules from same problem space. Then, using transitivity,

(3) we can create conceptual bindings between requirements from one problem

space and code modules from another problem space

3.9 Summary

This chapter presents the MultiCoS process, aimed to help the

identification of similar entities with respect to one or more concern spaces.

MultiCoS is supporting the reuse of artefacts such as code, based on the semantic

similarity of the requirements. Requirements and artefacts are considered entities.

MultiCoS process considers separately and entity management as in G1.

Semantic similarity of two entities with respect to a concern space or a set

of concern spaces are discussed in 3.2 and 3.5. The last step of MultiCoS process is

similarity check. All these issues belong to G2. The results presented in this

chapter are included in the papers published in Studia UBB, Informatica [49] and

in International Journal of Computers and Technology [46].

21

4. The MultiCoS Tool

This section presents the MultiCoS tool, intended to help designers and

business analysts to manage requirements similarities of web applications from

related application domains or problem spaces. MultiCoS process uses AORE,

derived from MCSA, for concern management. Original contribution of MultiCoS is

entity management and the computation of similarity coefficients for pairs of

entities, with respect to a concern space.

MultiCoS tool is supporting all steps of MultiCoS process described in 3.7.

Before its description, first section of the chapter refers to AORE and MCSA tools.

4.1 AORE and MCSA tools
Software Intensive Systems (SIS) development faces today a number of

challenges: software-based innovations driven by customer needs, increasing

complexity, pressure to reduce costs, shorter development times, and higher

quality demands. The aim of the MultiCoS approach presented in this thesis is to

assist the SIS development. As the approach is based on Aspect-Oriented

Requirements Engineering (AORE) and the Multidimensional Concern Spaces

Approach (MCSA), in this introductory section of this chapter, we will investigate

the AORE tools and the MCSA tool.

4.1.1 AMPLE tool suite

The Aspect-Oriented, Model-Driven, Product Line Engineering (AMPLE)

project [4] developed a tool suite for aspect-oriented, model-driven requirements

engineering for software product lines. The tool suite include “a set of model-driven

tools and languages that allows, at the domain analysis level, to reason about the

features, functional and non-functional requirements to help the definition of

Software Products Library (SPL) architectures” [2].

4.1.2 AO-MD-PLE tool

Aspect-Oriented Model-Driven Product Line Engineering (AO-MD-PLE)

describes product lines using a different range of models. On the model-level,

aspect oriented methods are applied to define variants. Also, aspect oriented

techniques are used in the transformations that leads to the production of running

applications, which are generated based on the variants defined.

4.1.3 Hyper/J tool

Hyper/J is a “tool which supports the multi-dimensional separation and

integration of concerns in standard Java software by using the hyperspace

approach” [92]

4.1.4 HyperC# tool

HyperC# tool provides support for C# programmers to use multi-

dimensional separation of concerns features. The graphical user interface of the

system is developed in C# [57].

22

4.2 The MultiCoS Tool
The purpose of MultiCoS tool is not to replace the other existing RE tools in

recording requirements or other RE related activities. The main goal of the

MultiCoS tool is to enhance RE processes by supporting MultiCoS process.

4.2.1 Application Architecture

The application logic (main loop) has five steps: (1) the user submits the

request, (2) the request is routed to the appropriate controller, (3) the controller

interacts with the Data Model, (4) the controller invokes the View to display the

result, and (5) the View is rendered in the web browser.

Figure 6 The MultiCoS tool architecture

4.2.2 Data Model and Storage

The MultiCoS tool can import requirements from other tools as long as the

data is recorded in XML format and the schema definition is mapped to facilitate

the XML file import. If the MultiCoS tool is used in capturing requirements, the

Volere Template [127] is used, in a reduced form, and a list of requirements is

produced and saved in XML format.

4.2.3 GUI and Reporting

The user interface of the tool helps the user to manage the MultiCoS

process, from recording and loading data (e.g. requirements) related to different

projects into the application data model, to processing and providing report tables

of similarity indices, and exporting data in XML format.

The user interface consists of six views, managing different parts of the

data model and the process: a) concern spaces, b) entity spaces, c) matching

vectors, d) computing similarities, e) generating reports, and f) transition manager.

4.3 Summary
This chapter describes MultiCoS tool, developed to support MultiCoS

process. Its design was inspired by other similar tools. It is subject of a research

paper accepted by IJSEKE journal [47].

23

5. Using MultiCoS

The goal of this case study is to evaluate the extent to which the research

goals stated in the Introduction chapter are fulfilled. The scenario is as follows:

 There is a web application already developed, denoted by A – ReadEng;

during its development, MultiCoS process and tool were used, and the

tool repository contains at least three entity spaces (Requirements

Space, Documents Space, Code Space);

 There is a list of general concern spaces considered, as presented in

Table 23;

 The development team needs to develop another web application,

denoted by B – MyTuneCaster, assisted by MultiCoS tool.

Given these facts, two case studies were performed: investigation of similar

requirements in the two applications, and investigation of code reuse (from

application A to application B).

The last part of the chapter contains a quantitative and qualitative

evaluation of MultiCoS, by comparing it with other similar approaches.

5.1 Case Study

Consider two web applications, A - ReadEng and B - MyTuneCaster. The

problem statements and the initial feature lists are given below.

Problem A – ReadEng.

A bookstore sells books online using ReadEng, a web application. This

application allows clients to browse the book catalog and make book orders. There

are three types of users: visitor, reader, and administrator.

The visitors are able just to browse the book catalog are they don’t need an

account.

A visitor who creates an account becomes reader. Authenticated readers

create online orders (add/remove books in the shopping cart), read book previews

and book excerpts, consult their orders’ history, manage their account profile.

The administrators manage the bookstore content, reject or approve

readers’ orders, and generate reports referring to: books sold, readers profiles, and

financial status of the bookstore.

Our intent is to develop ReadEng application which should allow users

(visitors, readers, administrators) to collaborate and interact in order to achieve

their own goals.

Problem B – MyTuneCaster.

An Audio Library online application offers users the possibility to search

and listen audio content available in the library. There are three types of users:

visitor, client, and administrator.

The visitors are able to browse the audio library, play regular audio content

and play excerpts of premium content. The visitors are displayed ads.

24

Visitors creating an account become clients. Authenticated clients have

unrestricted access to all audio content (regular and premium) and they are not

displayed ads. Visitors manage online playlists, and their account profiles. Clients

are charged a membership fee.

Administrators manage the audio library content, clients’ accounts, and

generate different reports: audio files played, clients profiles and financial status.

Usually, requirements are gathered and specified from the feature lists.

They express features in a more structured and precise way. The requirements

from each application will be grouped in two different Requirements Spaces.

For simplicity, we do not list the complete set of requirements, but we focus

on similar ones. At first sight, users in both applications can log in/out, search for

content, see/view a product, create orders of products, and buy them. Table 24

contains a subset of those similar requirements from the two problems considered.

Their identifiers are of the form Rxy, where R stands for Requirement, x denotes

the problem, and y is a serial number, problem-specific.

Table 1 Similar requirements in problems ReadEng and MyTuneCaster

Problem P-A –ReadEng Problem P-B - MyTuneCaster

Id Requirement Id Requirement

RA1 Search book RB1 Search song

RA2 View book RB2 Listen song

RA3 Add book to shopping cart RB3 Add song to playlist

RA4 Remove book from shopping cart RB4 Remove song from playlist

RA5 Login RB5 Login

RA6 Logout RB6 Logout

RA7 Create account RB7 Create account

RA8 Logged user can buy products in

shopping cart

RB8 Logged user can listen songs

in playlist

Our goal is to show how MultiCoS can be used in two areas: (a)

requirements similarity and (b) the reuse of code modules based on similarity of

requirements. Next two sections address these problems.

5.2 Using MultiCoS to investigate requirement similarity

In what follows the steps of MultiCoS are applied to our example

applications to investigate the similarity of requirements.

5.2.1 Managing concerns

While there are several concern spaces to cover regular attributes specific

to entities in generic software systems, other concern spaces are specific to almost

all web applications. In this study case we will make use of concern spaces suitable

for requirements. They are given in Table 25.

It is important to note that concerns (and concern spaces) are independent

of a particular application. They are used to compare entities (in our case

requirements).

25

Table 2 Samples of Concern Spaces used in MultiCoS

Id Space Name Concerns

C1 Type of user:1 Guest, user, superuser, admin

C2 Information retrieval:1 Application, hostmachine, user, database

C3 Prioritization:10 Time to Implement, Ease of Implementation, Minimize

Implementation Cost, Value to Business, Value to

Customer

C4 DB Action type:1 Create, Read, Update, Delete, Static

C5 Navigation type:1 Hyperlink, Header, Post, Get, State

C6 App type:10 Social, Ubiquitos, Eshop, Integrated system,

Multimedia

C7 Server Side Language:1 Python, Php, ASP, AJAX, MySQL, MS-SQL, Perl, .NET,

C#, Ruby

C8 Data format:1 Database, text, CSV, HTML, UML, XML, richformat,

DOM, spreadsheet,

C9 Activity details:1 add items to list, buys, view details, logges in, logges

out, remove item from list

C10 MVC:10 Model, View, Controller

C11 NonFunctional

requirements:10

sleekdesign, loadspeed, volatility, security

5.2.2 Managing requirements

Each problem has its own namespace: bookstore for ReadEng and

tunecast for MyTuneCast.

5.2.3 Similarity check

After the requirements spaces are stored, the similarity check is performed

as described in 3.7.

5.2.3.1 Computing matching vectors

First, we have to select concern spaces of interest for our study: C1, C2,

C3, C4, C9, C10 and C11. Next, for each requirement r and each concern c in a

concern space, matching vectors are computed by assigning a matching value to

each pair (r, c), as in Figure 57 (Mapping View). The value assigned is expressing

the beliefs of the human decider regarding the weight (importance, matching) of the

requirement r with respect to concern c.

As an example, for requirement RA4 (remove book) and the concern space

C4 with maxval = 1 (Table 25), the concerns (read, update, delete) are assigned a

maximum value of 1, because these operations are all needed to complete the

functionality of the requirement, while the concern (create) is not needed at all, so it

will get a matching value of 0.

This sub step is repeated for all requirement spaces and all concerns

selected. The results are stored as matching vectors in MultiCoS data model.

5.2.3.2 Computing Similarity Coefficients and Multispace Similarity

Coefficients

First, we select the requirements (as entities) from the two namespaces

considered and the concern spaces of interest in our study (shown in Table 26).

Then, by pressing generate coefficients button, the multispace similarity

26

coefficients are computed and displayed, as shown in Figure 62. As an intermediate

step, the grid below displays space similarity coefficients for the selected row in the

grid above (requirement RA4 in our example).

As an illustrative example, the process of computing space similarity

coefficients and multispace similarity coefficient for the pair (RA8, RB8) of

requirements is detailed below. Table 26 shows matching vectors and space

similarity coefficients for all concern spaces selected, and the multispace similarity

coefficient computed by equation (7).

Table 3 The multispace similarity coefficient for requirements RA8 and RB8

Concern

Space Requirement RA8 Requirement RB8
Space similarity

coeff icient

C1 f(RA8,C1) = (0,1,1,0) f(RB8,C1) = (0,1,1,0) ss1 = 1

C2 f(RA8,C2) = (0,1,0,1) f(RB8,C2) = (0,1,0,1) ss2 = 1

C3 f(RA8,C3) = (5,10,9,9,8) f(RB8,C3) = (10,9,9,8,9) ss3 = 0.84

C4 f(RA8,C4) = (1,0,1,0,0) f(RB8,C4) = (1,1,0,0,0) ss4 = 0.33

C9 f(RA8,C9) = (0,0,0,1,0,1) f(RB8,C9) = (0,0,1,0,1,1) ss9 = 0.25

C10 f(RA8,C10) = (8,0,10) f(RB8,C10) = (5,8,10) ss10 = 0.37

C11 f(RA8,C11) = (7,5,2,10) f(RB8,C11) = (9,10,6,5) ss11 = 0.60

multispace similarity ms=0.627

5.2.3.3 Investigating semantic similarity

The similarity matrix shown in Figure 62 reveals important (and informed)

information about all pairs (RA, RB) of requirements considered. Considering first

its main diagonal (which corresponds to the pairs listed in Table 24), one observe

that the similarity coefficients are closer to the maximum value: 90, 90, 95, 95,

100, 100, 100, 63. This means that our initial guess was correct in almost all

cases. The pair (RA8, RB8) has the weakest similarity.

Second, there are other pairs, not included in Table 24, which have strong

similarities. Table 27 shows similarity coefficients in decreasing order of their

values, including those already mentioned, and can serve as a guide in selecting

candidate artefacts (code modules implementing requirements from problem A) to

be reused in developing a web application for problem B.

Table 4 Strong semantic similarities in requirements spaces A and B

Similarity
coefficient

Entity Space A Entity Space B

Id Requirement Id Requirement

100 RA5 Login RB5 Login

100 RA6 Logout RB6 Logout

100 RA7 Create account RB7 Create account

95 RA3 Add book to shopping cart RB3 Add song to playlist

95 RA4 Remove book from
shopping cart

RB4 Remove song from playlist

5.3 Using MultiCoS to investigate reuse of code modules

Considering code modules as concerns, traceability of requirements to code

can be stored as a matching value from an entity to a concern. Using MultiCoS, we

27

can create a matching between a requirement space and a code modules concern

space, both in the same problem space. This is possible, usually, post-factum, i.e.

after the development process is completed.

5.3.1. Concern management

The code modules are recorded as concerns, in the problem space of the

application they belong.

5.3.2. Entity management

No other entities are needed. Of course, if we need a more detailed view,

requirements can be decomposed into sub-requirements and the corresponding

links can be recorded.

5.3.3. Similarity check

In this case, similarity check step can be used to investigate the similarity

of requirements with respect to a concern space representing code modules.

5.3.3.1 Computing matching vectors

Consider an entity (requirement) r and a concern (code module) cm. The

matching value mv(r,cm) has here the following semantics: the degree to which

code module cm implements the requirement r. Of course, a requirement is

implemented in one or many code modules, and in the same time a code module

can represent the implementation of one or more requirements. This way, the

matching value is a measure of traceability of requirements to code and vice versa.

5.3.3.2 Computing Similarity Coefficients and Multispace Similarity

Coefficients

This sub step is not needed here. We use similarity coefficients and the

multispace similarity coefficients already computed in 5.2.3.2 (Figure 62). Note that

ms(RAi, RBj) = ms(RBj, RAi).

5.3.3.3 Investigating semantic similarity

This sub step is performed using Mapping View (Figure 67). The process

uses the following input data: (a) multispace similarity coefficients computed in

5.2.3.2 ms(RBj, RAi) and (b) matching values mv(RAi, cmk) assigned in 5.3.3.1. Its

meaning is that a greater similarity and a greater matching value will lead to a

greater probability of reusing cmk to implement RBj.

The grid in Figure 67 contains (from left to right): multispace similarity

coefficients ms(RBj, RAi) and matching values mv(RAi, cmk). In other words, it

defines a “logical”, “transitive” mapping from a code module cmk to a requirement

RBj. The decision to reuse cmk in the implementation of RBj must take into account

(a) the value of ms(RBj, RAi) and (b) the value of mv(RAi, cmk).

28

Figure 7 Mapping manager in MultiCoS tool, with create report option

Figure 8 Reuse Report generated by MultiCoS tool.

A report can be generated here, as shown in Figure 68 and Table 28,

containing information on the code modules mapping. The mapping details

provided can assist the user in deciding over reusing code modules from the

existing application into the new one.

We can read from this report that, basically, the “Login” requirements in

the two applications are identical, which is a trivial situation. Still, we can reuse

the code related to the login process However, the code will have to be adjusted to

fit in the new application profile, but as long as we are using the existing

29

application as the only source for similar code, and the same framework, the other

libraries should be common, and the code adjustments will be minor.

Table 5 Detailed results of the transitivity mapping from MultiCoS report

Requirement Code module Details

RB5: Login

Matching value: 10 cm2: doLogin() user login file: Login.php, index.php, User.pho

RB6: Logout

Matching value: 10 cm3: doLogut() user logout file: Login.php, index.php, User.pho

RB7: Create account

Matching value: 10 cm8:
createAccount()

creates an user account file: register.blade.php,
main.blade.php, User.pho

RB2: Listen song

Matching value: 9 cm6: bookStore() displays book content file: bookreader.php

RB3: Add song to playlist

Matching value: 8 cm10: guestView creates a view for guest file: bookreader.php

Matching value: 8 cm11: userView creates a view for an autenticathed user file:
bookreader.php

RB4: Remove song from
playlist

Matching value: 8 cm10: guestView creates a view for guest file: bookreader.php

Matching value: 8 cm11: userView creates a view for logged user file: bookreader.php

RA1: Search song

Matching value: 9 cm7: search() searches database for song file: dbclass.php

Matching value: 9 cm9: displayResults creates a view creates a view with the search() function
response file: results.blade.php , index.php

Matching value: 8 cm10: guestView creates a view for guest file: guest.blade.php, index.php

Matching value: 8 cm11: userView creates a view for logged user file: user.blade.php, index.php

So far, we had no surprises as we could expect to get a high or a very high

semantic similarity coefficient for requirements implementing the same identical

operations in both applications, operations such as login, logout, create account.

This only validates the hypothesis regarding the reliability of using the MultiCoS

method in order to find out that identical requisitions in different problem spaces

are similar semantic entities. Also, an expected outcome of using the MultiCoS tool

is that similarity coefficients computed for identical requirements over a particular

multispace are of maximum value.

Such examples are given by following pairs of requirements, as indicated in

Figure 68:

1. (RA3 – “Add book to shopping cart”, RB3 – “Add song to

playlist”) with a semantic similarity coefficient of 95.

2. (RA4 – “Remove book from shopping cart”, RB4 – “Remove song

from playlist”) with a semantic similarity coefficient of 95.

Investigating the Transitivity Map from Table 28, for this two pairs, we

notice that the code modules available to be reused (bookstore.php) contain on

one hand, code snippets that had to be changed, as they are being specific to

online book readers, but, on the other hand, they contain code that can be reused

with small adjustments, like, the function calls, user type related specific

limitations, the design, the structure of the file and other dependencies (Appendix

3F). The code changes suggested are proposed below.

30

3. (RA1 – Search Book, RB1 – Search Song) with a semantic similarity

coefficient of 90.

4. (RA2 – View Book, RB2 – Listen Song) with a semantic similarity

coefficient of 90.

Once this investigation is finished and the decision to reuse code is

performed, the code from ReadEng application can be reused and adapted to fit the

requirements of MyTuneCast application.

5.3 MultiCoS Evaluation

This section refers to the evaluation of MultiCoS process from quantitative

and qualitative point of view. The quantitative evaluation is done by applying

several metrics taken from different AORE approaches. We will than compare the

results computed for the selected approaches. As here we will just test the amount

of resources and artefacts quantitatively; we will use in testing requirements

specifications relevant to the “Testbed for Aspect-Oriented Software Development

project (TAO)” [118] environment. This project’s main purpose was to define a

framework for testing AOSD techniques.

5.3.1 A Testbed for AOSD

The following testbed was also used as part in the other evaluations. The

TAO1 project was a large project, involving several research teams and it was

conducted by a team in Lancaster University with the purpose of assessing the

AOSD.

5.3.2 MultiCoS quantitative evaluation

The quantitative analysis of AORE approaches in the TAO project is

presented here. As investigated and stated in [12], “the metrics used were originally

proposed to RE for Object-Oriented approaches and then were adapted to AOSD.”.

In order to measure the product, the process and the individual skills,

certain metrics are used in Software Engineering and artefacts, characteristics;

resources are measured [36]. Table 31 displays the values of metrics.

MultiCoS and AORA have the lowest value of Concern Diffusion over

Artefacts when compared with the other two approaches, as their primary artefacts

are Concerns. The MultiCoS and AORA approaches, have zero value for the

cohesion metric. This is the case when concerns are the primary artefacts of the

approaches.

As a conclusion, MultiCoS obtained a good result at the quantitative

evaluation compared to other approaches, with a value of 3.2 operations per

artefact. This is due to the high level of abstraction of the process.

1
 http://www.comp.lancs.ac.uk/research/projects/project.php?pid=215

31

Table 6 Experimental values of metrics from Table 29 for AORE approaches,

 adapted from [12]

Attribute

s

Metrics MultiCoS EA-
Miner

Multi-
Dimensional

CORE

AOVGraph AORA

SoC Concern Diffusion
over Artefacts (CDA)

2 3 1 2 1

Concern Diffusion

over Operations (CDO)
5 23 11 12 7

Concern Diffusions
over LOC (CDLOC)

8 11 14 10 9

Coupling Coupling Between
Artefacts (CBA)

4 3 10 3 6

Cohesion
Lack of Cohesion in

Operations (LCOO)
0 23 0 24 0

Size

Artefacts (Artefacts) 20 15 18 22 22

Vocabulary Size (VS) 9 3 2 6 9

Weighted Operati

perArtefact (WOA)

Average:
3.2

Average:
6

Average:
4.4

Average:
8.3

Average:
3

5.3.3 MultiCoS quality evaluation

The evaluation of MultiCoS quality is guided on the rules used in

measuring requirements engineering methodologies proposed in [21]. The qualities

measured are: uniformity in treating requirements, assistance in decision and

trade-off resolution, validation and verification, crosscutting requirements

management, mapping requirements to other artefacts. The quality evaluation of

MultiCoS is outlined in Table below.

Table 7 MultiCoS quality control

Quality Acquired Reason

Traceability Yes Entity data model supports traceability of

requirements from their originator. Using code

modules as concern spaces, Relation class
stores links from entities to code modules.

Modularization of

crosscutting requirements

Yes Requirements are considered entities which

can be grouped into entity spaces. Each

problem has its own requirement space.

Identification of crosscutting

requirements

Yes Similar requirements in different applications

are detected by computing multispace

similarity coefficients

Composition of crosscutting
requirements

Partly There is a reversible decomposition
mechanism described in Figure 44.

Conflict management No Not covered yet

Tool support Yes MultiCoS - Web based Tool

Validation Yes Based on case studies

Mapping crosscutting

requirements to later

development stages

Partly Crosscutting requirements candidate to be

mapped in later stages can be grouped in

separate entity spaces, to be processed later.

Maturity No Not tested in large projects

5.4 Summary

This chapter is dedicated to validate MultiCoS process and tool. The two

case studies performed, as well as the evaluation made in Section 5.3 prove that

the proposed method and tool are useful in RE for web applications.

The results are disseminated in a papers published in Studia UBB,

Informatica [48].

32

6. Conclusions and further work

6.1 General conclusions

In this thesis, a new AORA type methodology was proposed for web

requirement engineering. The proposed process, called MultiCoS (Multiple Concern

Spaces) has three steps: concern management, entity management, and similarity

check.

Our proposal is applied in Requirement Engineering for web applications. In

MultiCoS, requirements are considered entities. MultiCoS is used to measure the

similarity between requirements from the same application or from requirements

from different applications. Also, MultiCoS allows us to define traceability of

requirements to code, by considering code modules as a concern space. MultiCoS

process is supported by a MultiCoS tool, a web-based application designed with the

goal of (a) maintaining a repository of data regarding concern spaces, entity spaces,

and similarity measures; (b) assisting the user in performing similarity studies, by

providing reporting and graphical means.

6.2 Limitations

The primary limitation of our work is due to the novelty of the AORA

methods in conjunction with separation of concerns principle. Also, some concrete

issues remain to be solved. All in all, this is, in our opinion, a good starting point in

using separation of concerns in requirement engineering of web applications.

6.3 Further work

Further research is aiming to: (a) improve MultiCoS process; (b) improve

the tool and (c) use MultiCoS in other fields.

Also, research should be done to investigate and select methodically the

right concern spaces fit for certain types of entities or scenarios. An important

contribution in this direction was done by Poshyvanyk et all in [97], and any

related work should take into account their results.

Another direction worth investigating is to attempt reverse engineering by

including concern related details into the source code of the web application. Such

an approach is described by Marcus and Rajlich in [78], where we can find outlined

the challenges they faced and the directions worth to follow.

The effect of using MultiCoS in web RE and during the software

development process will be part of future studies. Referring to tool improvement,

we mention import/export functions from the proprietary format to different

existing XML formats used to record requirements in UML and Eclipse SysML.

Referring to other application areas, further work will include the use of

MultiCoS for the development of medical applications. As an example, it can be

used to investigate similar medical conditions in patients; also, historical and

political circumstances can be modeled as entities and compared using this

method. Another use can be in image analysis of visual motion detectors, weather

phenomena, recruiting in human resources or in biomedical imaging.

33

References

[1] I. Sommerville, Software Engineering, 7ed: Addison-Wesley, 2004.

[2] S. Friedental, A. Moore and R. Steiner, A Practical Guide to SysML: The Systems Modeling Language, 3rd
edition, Waltham: OMG, 2015.

[3] R. Chitchyan, A. Rashid, P. Rayson and R. Waters, "Semantics-based Composition for Aspect-Oriented
Requirements Engineering," in AOSD IEEE Conference, 2007.

[4] H. Ossher and P. Tarr, "Hyper/J: Multidimensional Separation of Concerns for Java (Demonstration
Proposal).," IBM Research, 2000.

[5] R. Young, The Requirements Engineering Handbook, Norwood, MA, USA: Artech House, Incorporated,
2003.

[6] D. Howe, "Free On-line Dictionary of Computing," 1995. [Online]. Available:
http://dictionary.reference.com/browse/requirements engineering. [Accessed 10 10 2013].

[7] P. Parker, McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, The McGraw-Hill Companies, Inc.,
2003.

[8] S. Murugesan, Y. Deshpande, S. Hansen and A. Ginige, "Web Engineering: A New Discipline for
Development of Web-based Systems," in Proceedings of theFirst ICSE Workshop on Web Engineering,
International Conference on Software Engineering, 1999.

[9] A. Al-Rawas and S. Easterbrook, "Communication problems in requirements engineering: a field study,"
in In Proceedings of the First Westminster Conference on Professional Awareness in Software
Engineering, London, 1996.

[10] Y. Deshpande and S. Hansen, "Web engineering: creating a discipline among disciplines.," IEEE
Multimedia, no. April - June, pp. 82-87, 2001.

[11] L. Constantine and L. Lockwood, Software for Use: A practical Guide to the Models and Methods of
Usage-Centered Design, Reading, MA: Addison-Wesley, 1999.

[12] A. Jaaksi, "Our cases with use cases," Journal of Object-Oriented Programming, vol. 10, no. 9, pp. 58-65,
1998.

[13] J. Leite, G. Rossi, F. Balaguer and V. Maiorana, "Enhancing a requirements baseline with scenarios,"
Requirements Engineering, vol. 1, no. 4, pp. 184-198, 1998.

[14] A. Durán, B. Bernárdez, A. Ruiz and M. Toro, "A Requirements Elicitation Approach Based on Templates
and Patterns," in International Workshop on Requirements Engineering (WER’99), Buenos Aires
(Argentina), 1999.

[15] D. Rosenberg and K. Scott, "Use CASE Driven Object Modelling with UML," Addison Wesley, 1999.

[16] L. Chung, B. A. Nixon, E. Yu and J. Mylopuolos, "Non-Functional Requirements in Software Engineering,
Volume 5," in International Series in Software Engineering, Springer, 1999.

[17] L. Cysneiros, J. Leite and J. Neto, "A Framework for integrating non-functional requirements into
conceptual models," in Requirements Engineering, Vol. 6, 2, London, Springer, 2001, pp. 97-155.

[18] P. Botella, X. Burgués, X. Franch, M. Huerta and G. Salazar, "Modeling Non-Functional Requirements," in
Applying Requirements Engineering - JIRA Catedral publicaciones, 2001.

[19] C. Cachero and N. Koch, "Conceptual Navigation Analysis: a Device and Platform Independent
Navigation Specification," 2 nd International Workshop on Web-oriented Software Technology
(IWWOST’02), June 2202.

[20] D. Schwabe, G. Rossi and S. Barbosa, "Systematic Hypermedia Application Design with OOHDM," In
Proceedings of the Seventh ACM Conference on Hypertext. Bethesda, Maryland, United States,
HYPERTEXT '96. ACM, New York, NY, pp. 116-128, 16-20 March 1996.

[21] S. Ceri, P. Fraternali and A. Bongio, "Web Modeling Language (WebML): a Modeling Language for
Designing Web Sites," in WWW9 Conference, Amsterdam, 2000.

34

[22] P. Greenspun, hilip and Alex guide to Web publishing, Morgan Kaufmann; 1st edition, 1999.

[23] J. Conklin, "Hypertext: An Introduction and Survey," IEEE Computer, vol. 20, no. 9, pp. 17-41, 1987.

[24] N. Koch, Software Engineering for Adaptive Hypermedia Applications. PhD thesis, Muynich, Germany:
Ludwig-Maximilians-University, 2000.

[25] O. De Troyer and C. Leune, "WSDM: A User-Centered Design Method for Web Sites. Computer Networks
and ISDN systems," in Proceedings of the 7th International World Wide Web Conference, pp. 85 - 94,
Publ. Elsevier, Brisbane, Australia, 1998.

[26] L. Baresi, F. Garzotto and P. Paolini, "Extending UML for Modeling Web Applications," in Proceedings of
the 34th Hawaii International Conference on System Sciences, 2001.

[27] H. Lee, C. Lee and C. Yoo, "A Scenario-Based Object Oriented Methodology for Developing Hypermedia
Information Systems," in In Proceedings of the Thirty-First Annual Hawaii international Conference on
System Sciences-Volume 2. January 06 - 09, 1998.

[28] J. Yoo and M. Bieber, "A Systematic Relationship Analysis for Modeling Information Domains," 1998.
[Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.2058&rep=rep1&type=pdf. [Accessed 5
5 2013].

[29] C. Cachero, Una extensión a los métodos OO para el modelado y generación automática de interfaces
hipermediales. PhD Thesis, Alicante, Spain: Universidad de Alicante, 2003.

[30] D. Ross, J. Goodenough and C. Irvine, "Software Engineering: Processes, Principles, and Goals," in IEEE
Computer, IEEE Computer Society, 1975, pp. 17-27.

[31] P. Tarr, H. Ossher, H. Harrison and S. Sutton Jr, "N Degrees of Separation: Multi-Dimensional Separation
of Concerns," In 21th International Conference on Software Engineering (ICSE'99), pp. 107-119, 1999.

[32] ACM, "Special Issue on Aspect-Oriented Programming," ACM Press, 2001.

[33] A. Rashid, A. Moreira and J. Araújo, "Modularization and Composition of Aspectual Requirements.," in In
2nd Aspect-Oriented Software Development Conference (AOSD'03), Boston, USA, 2003.

[34] S. Clarke and R. Walker, "Composition Patterns: An Approach to Designing Reusable Aspects," in 23rd
International Conference on Software Engineering, (ICSE'01), Ontario, 2001.

[35] B. Tekinerdogan, "ASAAM: Aspectual Software Architecture Analysis Method," in 4th Working IEEE/IFIP
Conference on Software Architecture (WICSA'04), Oslo, 2004.

[36] A. Rashid, A. Moreira, J. Araújo, B. Tekinerdogan, E. Baniassad and P. Clements, "Early Aspects," 2006.
[Online]. Available: http://www.early-aspects.net/.

[37] A. Moreira, A. Rashid and J. Araújo, "Multi-dimensional Separation of Concerns in Requirements
Engineering," in In 13th Requirements Engineering Conference (RE'05),, Paris, 2005.

[38] C. Gal-Chis, "A Multi-Dimensional Separation of Concerns of the Web Application Requirements," Studia
Universitatis Babes-Bolyai, Series Informatica, vol. LVIII, pp. 29-40, 2013.

[39] J. C. Gower, "Measures of similarity, dissimilarity, and distance," in Encyclopedia of statistical sciences,
New York, S. Kotz. , Wiley, 1985, pp. 397-405.

[40] R. Schmidt, "Chapter 7 – Understanding Software Requirements," in Software Engineering: Architecture-
driven Software Development, Morgan Kaufmann, 2013, pp. 121-137.

[41] R. Schmidt, "Chapter 8 – Software Requirements Analysis Practice," in Software Engineering:
Architecture-driven Software Development, Morgan Kaufmann, 2013, p. 139–158.

[42] A. M. Pitangueira, R. S. Pitangueira Maciela and M. Barros, "Software requirements selection and
prioritization using SBSE approaches: A systematic review and mapping of the literature," Journal of
Systems and Software, vol. 103, p. 267–280, 2015.

[43] L. Silva, E. Huzita and T. Tait, "Comparing approaches in AORE through ISO/IEC 9126," in New Trends in
Software Methodologies, Tools and Techniques, Québec, Canada, 2006.

[44] E. W. Dijkstra, A discipline of programming, Prentice Hall, 1976.

[45] R. Filman, T. Elrad, S. Clarke and M. Aksit, Aspect-Oriented Software Development, Addison-Wesley,
2005.

35

[46] C. Gal Chis, "Modeling Concern Spaces Using Multi Dimensional Separation of Concern," International
Journal of Computers and Techology, vol. 11, no. 2, pp. 2302-2313, 2013.

[47] Z. C. Hantelmann Angela, "Adding Aspect-Oriented Programming Features to C#.NET by Using
Multidimensional Separation of Concerns (MDSOC) Approach," Journal of Object Technology, vol. 5, no.
4, pp. 59-83, May-June 2006.

[48] I. S. S. Brito, Aspect-Oriented Requirements Analysis - PHd Thesis, Lisboa: Universidade Nova de Lisboa,
Faculdade de Ciência e Tecnologia, 2008.

[49] IEEE, IEEE Recommended Practice for Architectural Description of Software-Intensive Systems, IEEE,
2000.

[50] C. Gal-Chis, "Using Concern Spaces to Measure Requirements Similarities," Studia Universitatis Babes-
Bolyai - Series Informatica, vol. LX, no. 1, pp. 35-46, 2015.

[51] J. Robertson and S. Robertson, "Volere Requirements Specification Template," Atlantic Systems Guild,
London, UK, 2012.

[52] S.-H. Cha, "Comprehensive Survey on Distance/Similarity Measures between Probability Density
Functions," International Journal Of Mathematical Models And Methods In Applied Sciences, vol. 1, no.
4, pp. 300-307, 2007.

[53] B. Nuseibeh and S. Easterbrook, "Requirements Engineering: A Roadmap," in 22nd International
Conference on Software Engineering (ICSE'00), Limerick, Ireland, 2000.

[54] M. Alferez, V. Amaral, J. Araújo, P. Greenwood, U. Kulesza, R. Mateus and A. Moreira, "D1.5 - Tool suite
for aspect-oriented, model-driven requirements engineering - AMPLE Project," Lisboa, Portugal,
Universidade Nova de Lisboa, 2009 M. Alférez, et al.

[55] AMPLE, "Deliverable survey of state of the art AMPLE Aspect-Oriented, Model-Driven, Product Line
Engineering".

[56] H. Ossher and P. Tarr, Hyper/J User and Installation Manual, IBM Research, 2000.

[57] Volere, "Volere Requirements Specification Template," [Online]. Available:
http://www.volere.co.uk/template.htm. [Accessed 5 5 2013].

[58] C. Gal-Chis, "Web Application Methodologies with RE Tools Support," International Journal of
Computers and Technology, vol. 11, no. 2, pp. 2314-2320, 2013.

[59] C. Gal-Chis and B. Pârv, "MultiCoS - A Requirements Engineering Tool," International Journal of Software
Engineering and Knowledge Engineering, vol. accepted for publication, 7 2018.

[60] "TAO: A Testbed for Aspect Oriented Software Developmen," TAO Project, 2007. [Online]. Available:
http://www.comp.lancs.ac.uk/research/projects/project.php?pid=215. [Accessed 2012].

[61] C. Ebert, R. Dumke, M. Bundschuh and A. Schmietendorf, "Best Practices in Software Measurement.
How to Use Metrics to Improve Project and Process Performance," Springer, New York, 2005.

[62] A. Garcia, C. Sant'Anna, C. Chavez and V. Silva, "Separation of Concerns in Multi-Agent Systems: An
Empirical Study," in Software Engineering for Multi-Agent Systems II. Lecture Notes in Computer
Science, New York, Springer, 2940, 2004, pp. 49-72.

[63] A. Garcia, C. Sant'Anna, E. Figueiredo, U. Kulesza and et al, "Modularizing Design Patterns with Aspects:
a Quantitative Study," in 4th Aspect-Oriented Software Development Conference (AOSD'04), Chicago,,
2005.

[64] G. Mussbacher, D. Amyot, J. Araújo, A. Moreira and M. Weiss, "Visualizing Aspect-Oriented Goal Models
with AoGRL," in 2nd International Workshop on Requirements Engineering Visualization at 15th
Requirements Engineering Conference (RE'07),, New Delhi, 2007.

[65] R. Chitchyan, A. Rashid, P. Sawer, A. Garcia, M. Alarcom, J. Bakker, B. Tekinerdogan, S. Clarke and A.
Jackson, "Survey of Analysis and Design Approaches,"
http://www.comp.lancs.ac.uk/computing/aose/papers/d11.pdf, 2005.

[66] D. Poshyvanyk, M. Gethers and A. Marcus, "Transactions on Software Engineering and Concept Location
using Formal Concept Analysis and Information Retrieval," ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 21, no. 4, 2012.

[67] A. Marcus and V. Rajlich, "Panel: Identifications of Concepts, Features, and Concerns in Source Code," in

36

21st IEEE International Conference on Software Maintenance (ICSM2005), Budapest, 2005.

[68] Cutter Consortium, "Poor Project Management Number-one Problem of Outsourced E-projects.
CutterResearch Briefs," Cutter Consortium, 11 2000. [Online]. Available:
http://www.cutter.com/research/2000/crb001107.html. [Accessed 5 5 2013].

[69] E. Insfrán, A Requirements Engineering Approach for Object-Oriented Conceptual Modeling. PhD Thesis,
Valencia, Spain: Department of Information Systems and Computation. Technical University of
Valencia, October 2003.

[70] M. Saeki, "Semantic Requirements Engineering," in Intentional Perspectives on Information Systems
Engineering, Berlin Heidelberg, Springer-Verlag, 2010, p. 67.

[71] K. Verma, A. Kass and R. Vasquez, "Using syntactic and semantic analyses to improve the quality of
requirements documentation," Semantic Web, vol. 5, no. 5, pp. 405-419, 2014.

[72] K. Wiegers, "Software Requirements," Microsoft Press, 2003.

[73] International Institute of Business Analysis, "The Guide to the Business Analysis Body of Knowledge®
(BABOK® Guide) Version 1.6," 2006. [Online]. Available:
https://cs.anu.edu.au/courses/comp3120/public_docs/BOKV1_6.pdf. [Accessed 12 12 2015].

[74] J. Murray, "Model Based Systems Engineering," 2 5 2012. [Online]. Available:
http://syse.pdx.edu/program/portfolios/julia/MBSE.pdf. [Accessed 5 5 2013].

[75] M. Brambilla, J. Cabot and M. Grossniklaus, "Modeling Safe Interface Interactions in Web Applications,"
in International Conference on Web Engineering, 2009.

[76] L. Olsina, "Building a Web-based Information System applying the Hypermedia Flexible Process
Modeling Strategy," in The 1st Int. Workshop on Hypermedia Development, Hypertext, Pittsburg, 1998.

[77] U. Consortium, "Ubiquitous Web Applications," in eBusiness and eWork Conference 2002, Prague, 2002.

[78] A. T. Fernando Molina, "Integrating that can be evaluated in design time into Model Driven Engineering
of Web Information Systems," Advances in Engineering Software, vol. 40, no. 12, p. 1306–1317, 2009.

[79] R. Laddad, "I want my AOP!, JavaWorld," 2002. [Online]. Available:
http://www.javaworld.com/article/2073918/core-java/i-want-my-aop---part-1.html. [Accessed 5 5
2013].

[80] G. Kiczales, "The Fun Has Just Begun.," in In 2nd Aspect Oriented Software Development Conference
(AOSD'03), Boston, USA, 2003.

[81] "AspectJ," 2007, [Online]. Available: http://www.eclipse.org/aspectj/.

[82] IBM Research, "MDSOC: Software Engineering Using Hyperspaces," IBM Research, 2007. [Online].
Available: http://www.research.ibm.com/hyperspace/..

[83] L. Fernandes, "An Aspect-Oriented Approach to Model Requirements," in In 13th Requirements
Engineering Conference (RE'05), Paris, 2005.

[84] V. Kruskal, "A Blast from the Past: Using P-EDIT for Multidimensional Editing.," in Workshop on Multi-
Dimensional Separation of Concerns in Software Engineering, ICSE 2000, 2000.

[85] Eclipse, "Project Plan - Eclipse Process Framework," Eclipse Fundation, 2012. [Online]. Available:
http://epf.eclipse.org/wikis/openup/.

[86] A. Van Lamsweerde, "Goal-Oriented Requirements Engineering: A Guided Tour," in In: Proceedings of
the 5th IEEE international Symposium on Requirements Engineering, Washington, 2001.

[87] Haryono, "Adding Aspect-Oriented Programming features to Visual Basic.NET by using Multidimensional
Separation of Concerns(MDSOC) approach," in MS Project, California State University, Sacramento,
2003.

[88] P. J. Valderas, A Requirements Engineering Approach for the Development of Web Applications,
Valencia, Spain: Department of Information Systems and Computation Technical University of Valencia,
2007.

[89] E. Baniassad, P. Clements, A. Rashid, J. Araújo, A. Moreira and B. Tekinerdogan, "Discovering Early
Aspects. IEEE Software Special Issue on Aspect-Oriented Programming.," IEEE, 2006.

[90] E. Baniassad and S. Clarke, "Finding Aspects in Requirements with Theme/Doc," in The 3rd Aspect-

37

Oriented Software Development International Conference (AOSD'04),, Lancaster, 2004.

[91] J. Castro, M. Klop and J. Mylopoulos, "Towards requirements-driven information systems engineering:
the Tropos project," Information Systems, no. 27, pp. 365-389, 2002.

[92] X. Chen, Z. Liu and V. Mencl, "Separation of Concerns and Consistent Integration in Requirements
Modelling," Macao, 2007.

[93] R. Chitchyan, A. Rashid, P. Rayson and R. Waters, "Semantics-Based Composition for Aspect- Oriented
Requirements Engineering," in In 6th Aspect-Oriented Software Development Conference (AOSD'07),
Vancouver, Canada, 2007.

[94] J. Noppen and et al., "Modelling Imperfect Product Line Requirements with Fuzzy Feature Diagrams," in
Variability Modelling of Software-intensive Systems, Sevilla, 2009.

[95] I. Groher and M. Voelter, "Expressing Feature-Based Variability in Structural Models," in Workshop on
Managing Variability for Software Product Lines, 2007.

[96] I. Groher and M. Völter, "Using Aspects to Model Product Line Variability," in Software Product Lines ,
12th International Conference, Limerick, Ireland, 2008.

[97] J. M. Conejero, R.-E. Roberto, F. Sánchez-Figueroa, M. Linaje, J. C. Preciado and C. P. J., "Re-engineering
legacy Web applications into RIAs by aligning modernization requirements, patterns and RIA features,"
Journal of Systems and Software, vol. 86, no. 12, pp. 2981-2994, 2013.

[98] J. M. Rivero and G. Rossi, "MockupDD: Facilitating Agile Support for Model-Driven Web Engineering," in
ICWE 2013 International Workshops on Current Trends in Web Engineering, New York, 2013.

[99] J. M. Carrillo de Gea, J. Nicolás, J. L. Fernández Alemán, A. Toval and A. V. Christof Ebert, "Requirements
Engineering Tools," IEEE Software, vol. 28, no. 4, pp. 86-91, 2011.

[100] M. Alférez and et al., "A Model-Driven Approach for Requirements Refinement to Architecture, AMPLE
Project," Deliverable D1.4, 2009.

[101] M. Voelter and I. Groher, "Handling variability in model transformations and generators," in 7th OOPSLA
Workshop on Domain-Specific Modeling, Oopsla, 2007.

[102] M. J. Escalona, J. Torres and M. Mejías, "NDT-Tool: A case tool to deal with requirements in web
information systems," in ICWE, 2003.

[103] M. J. Escalona and N. Koch, "Metamodeling the Requirements of Web Systems," in WEBIST, Setubal,
2006.

[104] N. Koch, A. Knapp, G. Zhang and H. Baumeister, "UML-BASED WEB ENGINEERING - An Approach Based
on Standards," in Web Engineering: Modelling and Implementing Web Applications, Springer, 2008, pp.
pp 157-191.

[105] P. Kaminski, "Applying Multi-dimensional Separation of Concerns to Software Visualization," in
Workshop on Advanced Separation of Concerns, ICSE, 2001.

[106] P. Salinia and S. Kanmani, "Security Requirements Engineering Process for Web Applications," Procedia
Engineering, vol. 38, p. 2799–2807, 2012.

[107] T. Stahl and M. Voelter, Model-Driven Software Development, Wiley & Sons, 2006.

[108] W. Harrison, H. Ossher and P. Tarr, "General Composition of Software Artifacts," in Software
Composition Workshop 2006, 2006.

[109] T. Riechert, K. Lauenroth, J. Lehmann and S. Auer, "Towards semantic based requirements engineering,"
in Proceedings of the 7th International Conference on Knowledge Management, I-KNOW, 2007.

[110] A. Rashid, P. Sawyer, A. Moreira and J. Araújo, "Early Aspects, A Model for Aspect Oriented
Requirements Engineering," in In 10th Requirements Engineering Conference (RE'02), Essen, Germany,
2002.

[111] A. Rashid, A. Moreira and B. Tekinerdogan, "Editoral Early Aspects: Aspect-Oriented Requirements
Engineering and Architecture Design.," IEE - Proceedings Software, vol. 151, no. 4, pp. 153-156, 2004.

[112] V. Perrone and D. Bolchini, "iDesigning Communication Intensive Web Applications: A Case Study," in VII
Workshop on Requirements Engineering (WER 2004),, Tandil, 2004.

[113] H. Ossher and P. Tarr, "Multi-Dimensional Separation of Concern and the Hyperspace Approach.," in

38

Software Architectures and Component Technology, Kluwer Academic Publishers, 2001, p. Capitol 3.

[114] H. Ossher and P. Tarr, "Hyper/J™: Multi-Dimensional Separation of Concerns for Java™," in Proceedings
of the 23rd International Conference on Software Engineering (ICSE’01), IBM T. J. Watson Research
Center.

[115] M. Escalona, M. Urbietab, G. Rossib, G. J.A. and E. Robles Luna, "Detecting Web requirements conflicts
and inconsistencies under a model-based perspective," Journal of Systems and Software, vol. 86, no.
12, pp. 3024-3038, 2013.

[116] A. Vallecillo, N. Koch, C. Cachero and et al, "MDWEnet: A Practical Approach to Achieving
Interoperability of Model-Driven Web Engineering Methods. A position paper," in MDWEnet workshop,
Como, Italy, 2007.

[117] T. Zernadji, C. Tibermacinev, F. Cherifc and A. Zouiouech, "Integrating quality requirements in
engineering web service orchestrations," Journal of Systems and Software, no.
http://information.popular-
study.com/stories/52026/Integrating_quality_requirements_in_engineering_web_service_orchestratio
ns.html.

[118] A. Moreira, A. Rashid and J. Araújo, "Concern-Oriented Requirements Engineering Model," in In 17th
Advanced Information Systems Engineering Conference (CAISE'05), Porto, Portuga, 2005.

[119] G. Kiczales, J. Lamping, A. Mendhekar and C. Maeda, "Aspect-Oriented Programming," in In 11th
European Conference Object-Oriented Programming (ECOOP'97), Jyvaskyla, Finland, 1997.

[120] D. Distante, P. Pedone, G. Rossi and G. Canfora, "Model-Driven Development of Web Applications with
UWA, MVC and JavaServer Faces," ICWE, pp. 457-472, 2007.

[121] M. Escalona and N. Koch, "Requirements Engineering for Web Applications: A comparative study,"
Journal on Web Engineering, vol. 2, no. 3, pp. 193-212, 2004.

[122] R. Filman, T. Elrad, S. Clarke and M. Aksit, Aspect-Oriented Software Development, Amsterdam:
Addison-Wesley Longman,, 2006.

[123] I. N. P. Jacobson, I. Jacobson and P. Ng, "Aspect-Oriented Software Development with Use Cases,"
Addison-Wesley, 2004.

[124] J. Jendrik and A. Uwe, "Concern-Based (de)composition of Model-Driven Software Development
Processes," in Model Driven Engineering Languages and Systems, 2010, pp. 47-62.

[125] A. Lai and G. Murphy, "The Structure of Features in Java Code: An Exploratory Investigation," in
Workshop on Multi-Dimensional Separation of Concerns in Object-Oriented System, Oopsla, 1999.

[126] A. McDonald and R. Welland, "Web Engineering in Practice," in Proceedings of the 4th Workshop on
Web Engineering (in conjunction with 10th Int. Conf. on WWW), Hong Kong, 2001.

[127] S. Mellor, A. Clark and T. Futagami, "Model-driven development - Guest editor's introduction," IEEE
Software, vol. 20, no. 5, pp. 14-18, 2003.

[128] O. Pastor, J. Fons and V. Pelechano, "OOWS: A Method to Develop Web Applications from Web-
Oriented Conceptual Models," in Web Oriented Software Technology IWWOST 2003, 2003.

[129] I. Sommerville and P. Sawyer, Requirements Engineering: A good practice guide., West Sussex, England:
John Wiley & Sons, 1997.

[130] S. Sutton Jr and I. Rouvellou, "Concern Modeling for Aspect-Oriented Software Development," in
Aspect-Oriented Software Development, Addison-Wesley, 2004.

[131] P. Vilain, D. Schwabe and C. Sieckenius de Souza, "A Diagrammatic Tool for Representing User
Interaction," in UML'2000, York, 2000.

[132] J. Whittle and J. Araújo, "Scenario Modeling with Aspects," IEE Proceedings Software, vol. 151, no. 4, pp.
157-172, 2004.

