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INTRODUCTION

Introduction

Foreword

In recent decades, if we consult the electronic databases, we observe that
the fixed point theory have recorded significant growth as the number of
papers written by authors from various areas of mathematics. Also, it rep-
resents a powerful method of solving several problems arising in these areas
of mathematics, especially in pure and applied mathematics.

The fixed point idea came to determine the solutions of the equation x =

f(x) and became famous in the study of existence and uniqueness problems
of differential equations and inclusions.

Its development continues in research teams with the theme fixed point
theory.

Among authors who have made major contributions in fixed point theory
are found: S. Banach, B. Knaster, K. Kuratowski, S. Mazurkiewicz, R. Cac-
cioppoli, V.V. Niemytzki, L. Kantorovich, M.A. Krasnoselskii, T. Wazewski,
M. Edelstein, A.I. Perov, F.E. Browder, W.A. Kirk, L.B. Ćirić, I.A. Rus,
K. Goebel, J. Caristi, B. Fisher, S. Heikkila, B.E. Rhoades, S. Seikkalä, M.
Kwapisz, J. Matkowski, S. Reich, J. Dugundji, A. Granas, T.A. Makarevich,
P.P. Zabrejko, E. De Pascale, T. Burton, R.P. Agarwal, D. O’Regan, C.
Avramescu.

Motivation research

The Contraction Principle of Banach–Caccioppoli has a central role in
the metrical theory of fixed point. Nowadays there are many generalizations
of this result which were given in different types of metric spaces, including
the generalized metric space, b-metric and E-metric space.

Through mathematical modeling, many problems from physics, biology,
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INTRODUCTION

chemistry, engineering, etc. give rise to a two-dimensional or multi-dimensio-
nal equations system, respectively differential or integral inclusions.

Such systems of equations, respectively inclusions can be studied as an
operatorial equation, respectively operatorial inclusion also in the context of
a vector metric space. To determine if there is a solution, respectively a set
of solutions for an unknown parameter of the system we need the fixed point
technique.

Thus, appears the need to obtain fixed point results in an operatorial
way used in many current works. After obtaining the solution existence of
a system using a metrical fixed point theorem is sometimes wish some of its
properties, called theories.

In this way, the problem may be complicated. For example, to consider as
a model a system of equations, respectively inclusions each having in compo-
nents a sum of two integral operators. Is required to find necessary conditions
such that the system admits solution, respectively a set of solutions. So on
the metric can be replaced by a b-metric or the system can be abstracted
and to require the imposition of necessary conditions such that the system
admits solution in a set of function spaces.

In this respect, the aim of this dissertation is to continue the scientific
research on the following topics:

• fixed point theorems, which ensure the existence of solution in a gen-
eralized metric space for operators which satisfies a multivalued A-
contraction condition in Nadler’s sense, an open problem from [19];

• new fixed point theorems for singlevalued, respectively multivalued op-
erators in E-metric spaces starting from the idea of [25] and other
properties given in [5], [45], [99], [24];

• development of a theory for an E-metrical fixed point theorem for sin-
glevalued, respectively multivalued operators using the classical model
of [89], respectively [75];

• various extensions of the Contraction Principle for the case of ϕ-contrac-
tions in the context of E-metric spaces using the model from [43];
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• Krasnoselskii type theorems and other connected results for a sum
of two singlevalued and multivalued operators in generalized Banach
spaces starting from classical results obtained in [48], [72], [20];

• existence results of the solution, respectively of the set of the solutions
for the abstract case of Fredholm–Volterra type integral equations and
inclusions systems in generalized Banach spaces starting from results
obtained in [71], [72], [76], [77];

• Krasnoselskii type theorems for the sum of two singlevalued and mul-
tivalued operators in E-Banach spaces using ideas from [29], [31], [42],
[96], [97];

• existence results of the solution, respectively of the set of the solutions
for the case of Fredholm–Volterra type integral equations and inclusions
systems in E-Banach spaces with the benchmark [71], [72], [29], [31],
[42], [96], [97];

• fixed and strict fixed point theorems in generalized b-metric spaces
for singlevalued and multivalued operators using the Picard and weak
Picard operators technique from the ideas of [14], [16], [12];

• fixed point theorems in E-b-metric spaces for singlevalued and multi-
valued operators using the Picard and weak Picard operators technique
in the cone of strict order unit elements, concept introduced in [57].

Thesis contents. Original results

The Ph.D. Thesis entitled „Operatorial inclusions by fixed point technique
in vector metric spaces” is divided in four chapters, each chapter containing
several sections.

Chapter 1: Vector metric spaces

In the first chapter we define the notions of generalized metric space and
vector metric space, in particular when the metric takes values in a Riesz
space. Also, we discuss about Archimedean and order completeness property
(Dedekind), that can enjoy a Riesz space. In these metric spaces endowed
with a finite and infinite dimensional vector metric, we define the notions of
convergent sequence, Cauchy sequence, complete sequence, closed subset, the

v



INTRODUCTION

diameter and bounds of a subset of a vector metric space, some properties and
topological elements. Also, we enounce some metrical and topological fixed
point results preliminary to Krasnoselskii’s theorem in a generalized Banach
space, like Perov’s theorem in a generalized metric space and Schauder’s
theorem in a generalized Banach space. For the case of multivalued operators
we obtain new extended results.

Personal contributions: lemmas 1.3.16, 1.3.17, 1.3.18 and theorem 1.3.19,
which represents Perov’s theorem for an operator which satisfies a multival-
ued A-contraction condition in Nadler’s sense, being given in response to an
open problem enounced in A. Bucur, L. Guran, A. Petruşel [19]. In lemma
1.3.20 we establish a data dependence result for the excess between the fixed
points sets of two multivalued operators which satisfies a multivalued A-
contraction condition in Nadler’s sense, and in theorem 1.3.21 we extend a
preliminary result to Krasnoselskii’s theorem given in L. Rybinski [92], which
ensure the existence of a continuous selection for a multivalued operator, in
the context of generalized Banach spaces.

The scientific paper which contain the original results of this chapter is:

I.-R. Petre, A. Petruşel, Krasnoselskii’s Theorem in generalized Banach
spaces and applications, Electron. J. Qual. Theory Differ. Equ., No. 85,
2012, 1-20.

Chapter 2: The theory of an E-metrical fixed point theorem

In the second chapter, starting from ideas of [29], [5] and [25], the new
results include extensions of some metrical fixed point theorems for singleval-
ued and multivalued operators, by the classical theory to E-metrical spaces
situation (theorems 2.1.3, 2.1.4, 2.1.6, 2.1.8 and 2.1.11). Also, we discuss a
theory of the Contraction Principle for singlevalued and multivalued opera-
tors in E-metric spaces, which contains the extended Cauchy lemma 2.2.1,
respectively the theorems 2.2.3, 2.2.12, 2.2.13 and 2.2.14 using the concept of
theory of a metrical fixed point theorem introduced and studied by prof. I.A.
Rus in the classical metric case. This consist in the study of some fixed point
properties as: the existence and uniqueness of fixed points and strict fixed
points, the data dependence of fixed points, the convergence of fixed points
set, the Ulam–Hyers stability of the fixed point problem, well-posedness of
fixed point problem property, the limit shadowing property and so on (see
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[89] and [75]). In a similar way, the theory can be extended on the others
studied metrical fixed point theorems which satisfies generalized contraction
conditions in E-metric spaces. It provides examples for extensions made (ex-
amples 2.1.2 and 2.1.9) and applications for the Contraction Principle for
singlevalued operators (Gronwall’s lemma 2.2.5 and the comparison theorem
2.2.6).

In the context of E-metric spaces are presented various global and local
extensions of the Contraction Principle for singlevalued operators (theorems
2.3.3, 2.3.4, 2.3.5, lemmas 2.3.6, 2.3.7 and theorem 2.3.9), respectively for
multivalued operators (theorem 2.3.10 and problem 2.3.14) which satisfies a
nonlinear ϕ-contraction condition. These results generalize well-known fixed
point principles in the literature (historically, see [84], [47], [46], [98], [29],
[96], [97] and [25]). Also, we present other metrical and topological fixed
point results preliminary to Krasnoselskii’s theorem in order complete E-
metric spaces (lemmas 2.3.15, 2.3.16, theorem 2.3.17 and problem 2.3.19,
but also an extended version of Cantor’s theorem and of Cesaro’s lemma,
which found in lemma 2.3.20, respectively lemma 2.3.21).

The scientific papers which contains the original results of this chapter
are:

I.-R. Petre, Fixed points for ϕ-contractions in E-Banach spaces, Fixed
Point Theory, Vol. 13 (2), 2012, 623-640.

I.-R. Petre, Fixed point theorems in vector metric spaces for single-valued
operators, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity,
Vol. 9, 2011, 59-80.

I.-R. Petre, Fixed point theorems in vector metric spaces for multivalued
operators, Topol. Methods Nonlinear Anal. (submitted for publication).

Chapter 3: Topological fixed point theorems and applications in vector
Banach spaces

In the third chapter we prove Krasnoselskii’s theorem and other possible
existence results of the fixed point for a sum of two operators in a gener-
alized Banach space, respectively in an E-Banach space. The study of the
fixed point occurs for singlevalued and multivalued operators which satisfies
an A-contraction condition, respectively ϕ-contraction and a compactness
condition, theorems 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.3.1 and problem 3.3.2. We
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present some open problems and also, the applying mode of theorems in the
study of abstract systems of Fredholm–Volterra type integral equations and
inclusions in a generalized Banach space, respectively in an E-Banach space,
theorems 3.2.1, 3.2.3, 3.4.1 and problem 3.4.2.

The scientific papers which contains the original results of this chapter
are:

I.-R. Petre, A. Petruşel, Krasnoselskii’s Theorem in generalized Banach
spaces and applications, Electron. J. Qual. Theory Differ. Equ., No. 85,
2012, 1-20.

I.-R. Petre, Fixed points for ϕ-contractions in E-Banach spaces, Fixed
Point Theory, Vol. 13 (2), 2012, 623-640.

I.-R. Petre, A multivalued version of Krasnoselskii’s theorem in gener-
alized Banach spaces, An. Ştiinţ. Univ. “Ovidius” Constanţa, Ser. Mat.
(submitted for publication).

Chapter 4: Fixed point theorems in vector b-metric spaces

In the last chapter, we start from the classical notion of b-metric space
appeared in [30] and several reference works, as [12], [38], [14] and [16].
Thus, we introduce the notions of generalized b-metric space, respectively
E-b-metric space and a relevant concept of strict positivity in a Riesz space
(see [57]). An advantage of this concept follows immediately by renunciation
to the hypothesis ϕ(t) < t for t ∈ E+ on the o-comparison operator ϕ and
using a kind of “ε–δ” formalism to prove our results in sections 4.3 and 4.4.

The personal contributions are found in examples 4.1.2, 4.1.3, 4.1.4, lem-
mas 4.1.5, 4.1.6, 4.1.7, 4.1.8, 4.1.9, 4.1.10 and in a nontrivial mode in propo-
sitions 4.3.3, 4.3.4, 4.3.5, lemma 4.3.6, corollary 4.3.7 and lemma 4.3.8, which
works with the concept of strict positivity. Also, the fixed point theorems
4.2.1, 4.2.3, 4.2.4, 4.2.6 and strict fixed point 4.2.7, 4.2.8 in generalized b-
metric spaces, respectively in E-b-metric spaces (the fixed point theorems
4.4.2 and 4.4.4) using the Picard and weak Picard operators technique, rep-
resents new results.

The scientific papers which contains the original results of this chapter
are:

Zs. Páles, I.-R. Petre, Iterative fixed point theorems in E-metric spaces,
Acta Math. Hung., DOI: 10.1007/s10474-012-0274-8.
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I.-R. Petre, M. Bota, Fixed point theorems on generalized b-metric spaces,
Publ. Math. Debrecen (accepted for publication).

I.-R. Petre, Fixed point theorems in E-b-metric spaces, Arabian J. Math.
(submitted for publication).
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Chapter 1

Vector metric spaces

1.1 Generalized metric space. E-metric space

It is well known that historically, A.I. Perov [58], respectively A.I. Perov
and A.V. Kibenko [59]) extended the classical Banach contraction principle
to contraction mappings endowed with vector-valued metrics. In this sense,
we recall in section 1.3 some basically results from A.-D. Filip, A. Petruşel
[33], R. Precup [79] and some new ones. Also, in R. Precup [79], are pointed
out some advantages of a vector-valued norm with respect to the usual scalar
norm.

In the late of XX-th century and the beginning of XXI century appear
works which treat results where the vector metric takes values in an infinite
dimensional space, in particular, the Riesz space (see C. Çevik, I. Altun
[25], W.A.J. Luxemburg, A.C. Zaanen [45], A.C. Zaanen [99]). These metric
spaces as he called P.P. Zabrejko in [100] extend the generalized metric spaces.
But in many results to obtain applications in these spaces is often difficult
due to the abstracted work mode. Next we define the notion of generalized
metric space and E-metric space.

Definition 1.1.1. ([58]) Let X be a nonempty set and consider the space
Rm+ endowed with the usual component-wise partial order. The mapping
d : X ×X → Rm+ which satisfies all the usual axioms of the metric is called a
generalized metric in Perov’s sense and (X, d) is called a generalized metric
space.

Let (X, d) be a generalized metric space in Perov’s sense. Thus, if v, r ∈
Rm, v := (v1, v2,. . . , vm) and r := (r1, r2,. . . , rm), then by v ≤ r we mean
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vi ≤ ri, for each i ∈ {1, 2,. . . ,m} and by v < r we mean vi < ri, for each
i ∈ {1, 2,. . . ,m}. Also, |v| := (|v1|, |v2|,. . . , |vm|).

If u, v ∈ Rm, with u := (u1, u2,. . . , um) and v := (v1, v2,. . . , vm), then
max(u, v) := (max(u1, v1),. . . ,max(um, vm)). If c ∈ R, then v ≤ c means
vi ≤ c, for each i ∈ {1, 2,. . . ,m}.

Definition 1.1.2. ([5]) A set E equipped with a partial order „≤” is called
a partially ordered set. In a partially ordered set (E,≤) the notation x < y

means x ≤ y and x 6= y. An order interval [x, y] is the set {z ∈ E : x ≤ z ≤ y}.
Notice that if x � y, then [x, y] = ∅.

Definition 1.1.3. ([5]) An element z is the supremum of a pair of elements
x, y ∈ E if:

(i) z is an upper bound of the set {x, y}, i.e. x ≤ z and y ≤ z;

(ii) z is the least such bound, i.e. x ≤ u and y ≤ u imply z ≤ u.

The infimum of two elements x, y ∈ E is defined similarly and we de-
note the supremum of such elements by x ∨ y = sup {x, y}, respectively the
infimum by x ∧ y = inf {x, y}.

Definition 1.1.4. ([5]) A partially ordered set (E,≤) is a latice if each pair
of elements x, y ∈ E has a supremum and an infimum.

The functions (x, y) 7→ x ∨ y and (x, y) 7→ x ∧ y are the lattice oper-
ations on E. In a lattice, every finite nonempty set has a supremum and
an infimum. If {x1, . . . , xn} is a finite subset of a lattice, then we write
n
∨
i=1
xi = sup {x1, . . . , xn}, respectively

n
∧
i=1
xi = inf {x1, . . . , xn}.

Definition 1.1.5. Let E be a real linear space. We say that K ⊂ E is a
convex cone if:

(i) K is a cone, i.e. tK ⊂ K, for all t > 0 (equivalent, t > 0 and x ∈ K
imply tx ∈ K);

(ii) K is convex, i.e. K +K ∈ K (equivalent, x, y ∈ K imply x+ y ∈ K).

Definition 1.1.6. ([5]) A real linear space E with an order relation „≤”
that is compatible with the algebraic structure of E in the sense that for any
x, y ∈ E are satisfied two properties:

2
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(1) x ≤ y imply x+ z ≤ y + z, for any z ∈ E;

(2) x ≤ y imply tx ≤ ty, for any t > 0;

is called an ordered linear space.

Definition 1.1.7. ([5]) An ordered linear space that is also a lattice is called
a Riesz space or linear lattice.

The geometric interpretation of the lattice structure on a Riesz space is
shown in Figure 1.

0

E+

x ∧ y

x ∨ y

x

y

Figure 1: The geometry of sup and inf.

Definition 1.1.8. ([5]) For a vector x in a Riesz space, we define

|x| = x ∨ (−x) the absolute value of x.

Many familiar spaces are Riesz spaces, as the following examples show.

Example 1.1.9. ([5]) The Euclidean space Rn with norm defined by

||x|| =

(
n∑
i=1

xi

) 1
2

and with the usual ordering relation, where x = (x1, . . . , xn) ≤ y = (y1, . . . , yn)

whenever xi ≤ yi, for each i = 1, . . . , n is a Riesz space. The infimum and
supremum of two vectors x and y are given by

x ∨ y = (max {x1, y1} , . . . ,max {xn, yn}) and

x ∧ y = (min {x1, y1} , . . . ,min {xn, yn}) .

Example 1.1.10. ([5]) Both the vector space C (X) of all continuous real
functions (with X a compact set) and the vector space Cb (X) of all bounded
continuous real functions on the topological space X, with norms defined by

||f ||∞ = sup {|f (x)| : x ∈ X}

3
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and with the ordering relation defined pointwise, i.e. f ≤ g whenever f (x) ≤
g (x), for each x ∈ X are Riesz spaces. The lattice operations of the real
functions f and g are given by

(f ∨ g) (x) = max (f (x) , g (x)) and

(f ∧ g) (x) = min (f (x) , g (x)) .

Example 1.1.11. ([5]) The vector space Lp (µ) , 0 ≤ p ≤ ∞, with norm
defined by

||f ||p =

{ (∫
|f |p dµ

) 1
p , 0 ≤ p <∞

ess sup |f | , p =∞

and with the almost everywhere pointwise ordering relation, i.e. f ≤ g in
Lp (µ) whenever f (x) ≤ g (x), for µ-almost every x is a Riesz space. The
lattice operations are given by

(f ∨ g) (x) = max (f (x) , g (x)) and

(f ∧ g) (x) = min (f (x) , g (x)) .

Definition 1.1.12. (L. Kantorovich, [25], [100]) Let X be a nonempty set
and let E be a Riesz space. The function d : X × X → E is said to be a
vector metric or E-metric if it satisfies the following properties:

(a) d (x, y) = 0 if and only if x = y;

(b) d (x, y) ≤ d (x, z) + d (y, z) , for all x, y, z ∈ X.

Also, the triple (X, d,E) is said to be a vector metric space or an E-metric
space.

It is obvious that E-metric spaces generalize the notion of metric spaces
and for arbitrary elements x, y, z, w of an E-metric space, the following prop-
erties hold:

(i) 0 ≤ d (x, y) ;

(ii) d (x, y) = d (y, x) ;

(iii) |d (x, z)− d (y, z)| ≤ d (x, y) ;

(iv) |d (x, z)− d (y, w)| ≤ |d (x, y)− d (z, w)|.

4
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Example 1.1.13. (L. Kantorovich, [25], [100]) A Riesz space E is an E-
metric space with d : E × E → E defined by

d (x, y) = |x− y| .

This E-metric is called to be the absolute valued metric on E. For more
examples of E-metric spaces, see C. Çevik, I. Altun [25].

If X is a nonempty set and f : X → X is a singlevalued operator,
we denote by Fix (f) := {x ∈ X | x = f (x)}, and if F : X → P (X) is a
multivalued operator, we denote by

Fix (F ) := {x ∈ X | x ∈ F (x)} ;

SFix (F ) := {x ∈ X | {x} = F (x)} ;

s (X) :=
{

(xn)n∈N∗ | xn ∈ X, n ∈ N∗
}
.

In the context of a metric space (X, d), we will denote by

P (X) := {Y | Y ⊆ X} ;

P (X) := {Y ∈ P (X) | Y 6= ∅} ;

Pcl (X) := {Y ∈ P (X) | Y is closed} ;

Pb,cl := {Y ∈ P (X) | Y is bounded and closed}

Pb,cl,cv (X) := {Y ∈ P (X) | Y is bounded, closed and convex} ;

Pcp (X) := {Y ∈ P (X) | Y is compact} ;

Pcp,cv := {Y ∈ P (X) | Y is compact and convex} ;

Graph (F ) := {(x, y) ∈ X ×X | y ∈ F (x)}

and we will use the following functionals:

Dd : P (X)×P (X)→ R+, Dd (A,B) = inf {d (a, b) : a ∈ A, b ∈ B} - the gap
functional;

δd : P (X) × P (X) → R+, δd (A,B) = sup {d (a, b) : a ∈ A, b ∈ B} - the
diameter functional;

ρd : P (X) × P (X) → R+, ρd (A,B) = sup {Dd (a,B) : a ∈ A} - the excess
functional;

Hd : P (X)×P (X)→ R+, Hd (A,B) = max

{
sup
a∈A

inf
b∈B

d (a, b) , sup
b∈B

inf
a∈A

d (a, b)

}
- the Pompeiu–Hausdorff functional.
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If A and B are two nonempty sets of a generalized metric space (X, d)

with d(x, y) :=


d1(x, y)

...
dm(x, y)

, then we denote by

D(A,B) =


Dd1 (A,B)

...
Ddm (A,B)

 , δ (A,B) =


δd1 (A,B)

...
δdm (A,B)

 ,

ρ(A,B) =


ρd1 (A,B)

...
ρdm (A,B)

 , H(A,B) =


Hd1 (A,B)

...
Hdm (A,B)

 .

Notice that if A and B are two nonempty sets of an E-metric space
(X, d,E), then these functionals can be defined as in the context of metric
spaces, in the particular case when A and B are two E-bounded sets and
the Riesz space E is order complete. These restrictive conditions, in view of
Definition 1.2.9, ensure that there exists a supremum, respectively infimum
in E.

The multivalued operator F : X → P (X) is called E-closed if Graph (F )

is E-closed in X ×X. A sequence (xn)n∈N ⊂ X, recurrently defined by{
x0 = x, x1 = y;
xn+1 ∈ F (xn) , for all n ∈ N

is called the sequence of successive approximations of F starting from (x, y) ∈
X ×X.

For definitions of E-boundedness, E-closedness of a set and for order
completeness property of a Riesz space, see next section.

1.2 Properties and topological elements

In the case of generalized metric spaces in the sense of Perov, the notions
of convergent sequence, Cauchy sequence, completeness, open and closed
subset are similar to those for usual metric spaces. Also, in what follows
we present some elements of topology (see, for example, A. Granas and J.
Dugundji [35], P.P. Zabrejko [99], E. Zeidler [101]).
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Definition 1.2.1. ([25]) Let (X, d) be a generalized metric space. A subset
A ⊂ X is called open if, for any x ∈ A, there exists r ∈ Rm+ with r > 0

such that B (x0, r) ⊂ A, where B (x0, r) = {x ∈ X : d (x0, x) < r} denotes
the open ball centered in x0 with radius r. Any open ball is an open set and
the collection of all open balls of X generates the generalized metric topology
on X.

Definition 1.2.2. ([99]) Let (X, d) be a generalized metric space. A subset
C of X is called compact if, every open cover of C has a finite subcover.
A subset C of X is sequentially compact if, every sequence in C contains a
convergent subsequence with limit in C.

A subset C of X is totally bounded if, for each ε ∈ Rm+ with ε > 0,
there exists a finite number of elements x1, x2, . . . , xn in X such that C ⊂
n
∪
i=1
B (xi, ε). The set {x1, x2, . . . , xn} is called a finite ε-net.

A set C of a topological space is relatively compact if its closure is com-
pact, i.e., C̄ is compact. The set C is sequentially relatively compact if, every
sequence in C contains a convergent subsequence (the limit need not be an
element of C), i.e., C̄ is sequentially compact.

Proposition 1.2.3. ([99]) If C is a subset of X, then the following affirma-
tions hold:

(i) C is compact ⇔ C is sequentially compact ⇔ C is closed and totally
bounded;

(ii) C relatively compact ⇔ C sequentially relatively compact ⇔ C totally
bounded.

Definition 1.2.4. ([86], [100]) LetX be a nonempty set and let |·| : X → Rm

be a norm on X. Then, the pair (X, |·|) is called a generalized normed space.
If, moreover, (X, |·|) has the property that any Cauchy sequence from X is
convergent in norm, then we say that (X, |·|) is a generalized Banach space.

Definition 1.2.5. ([101]) Let X, Y be two generalized normed spaces, K ⊂
X and let f : K → Y be an operator. Then f is called:

(i) compact, if for any bounded subset A ⊂ K we have f (A) is relatively
compact or f (A) is compact;
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(ii) complete continuous, if f is continuous and compact;

(iii) with relatively compact range, if f is continuous and f (K) is relatively
compact or f (K) is compact.

In the following we present some order and lattice properties that can
enjoy Riesz spaces and in the context of E-metric spaces, we will define the
notions of E-convergent sequence, E-Cauchy sequence, E-complete sequence,
E-open and E-closed subset, the E-diameter and the E-boundedness of a
subset of an E-metric space as well as other properties, which works in a
different manner that the usual ones.

Definition 1.2.6. ([5]) Let E be a Riesz space. A subset A ⊂ E is order
bounded from above (from below) if there is a vector u called an upper bound
(lower bound) of A that dominates (is dominated by) each element of A, that
is, a ≤ u (a ≥ u), for each a ∈ A. Therefore, A is order bounded if A is both
order bounded from above and from below.

Definition 1.2.7. ([5]) Let E be a Riesz space and let (xn) be a sequence
in E. We say that (xn) is decreasing (increasing), we denote xn ↓ (xn ↑), if
n ≥ m imply xn ≤ xm (xn ≥ xm) and the symbol xn ↓≥ x (xn ↑≤ x) denotes
a decreasing sequence (increasing) order bounded from below (above) by x.

The notation xn ↓ xmeans that xn is a decreasing sequence and inf {xn} =

x. If (xn) , (yn) ⊂ E, then some basic properties of decreasing sequences are:

xn ↓ x and ym ↓ y imply xn + ym ↓ x+ y;

xn ↓ x imply λxn ↓ λx, for λ > 0 and λxn ↑ λx, for λ < 0;

xn ↓ x and ym ↓ y imply xn ∨ ym ↓ x ∨ y and xn ∧ ym ↓ x ∧ y.

The meaning of the notation xn ↑ x and some basic properties of increasing
sequences are similar.

Definition 1.2.8. ([5]) We say that a Riesz space E is Archimedean if, 1
n
x ↓ 0

for each x ∈ E+, where

E+ := {x ∈ E : x ≥ 0} is the positive cone of E.

Definition 1.2.9. ([5]) We say that a Riesz space E is order complete or
Dedekind complete if every nonempty subset of E which is bounded from
above has a supremum (equivalently, every nonempty subset of E which is
bounded from below has an infimum).
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Lemma 1.2.10. ([5]) Every order complete Riesz space is Archimedean.

The converse of Lemma 1.2.10 is false, an Archimedean Riesz space, but
not order complete is C [0, 1].

Example 1.2.11. ([5]) Consider the sequence of piecewise linear functions
(fn)n≥2 and (gn)n≥2 in C [0, 1] defined by

fn (x) =


1, if 0 ≤ x ≤ 1

2
− 1

n
,

−n
(
x− 1

2

)
, if 1

2
− 1

n
≤ x ≤ 1

2
,

0, if 1
2
≤ x ≤ 1.

gn (x) =

{
1, if 0 ≤ x ≤ 1− 1

n
,

n (1− x) , if 1− 1
n
≤ x ≤ 1.

x

fn (x)

0 1
2
− 1

n
1
2 1

x

gn (x)

0 1− 1
n 1

Figure 2: Graphics of functions fn and gn.

We have 0 ≤ fn ↑≤ 1 in C [0, 1], where 1 is the constant function one,
but {fn} does not have a supremum in C [0, 1] (see Figure 2), thus C [0, 1] is
not order complete. Also, notice that the implication

fn (x) ↑ f (x) , for each x ∈ [0, 1] imply fn ↑ f

is true in the lattice sense. On the other hand, fn ↑ f in the lattice sense
does not imply that fn (x) ↑ f (x), for each x ∈ [0, 1]. A such example is
function gn (see Figure 2), where gn ↑ 1 in the lattice sense, while gn (1) = 0,
for all n ∈ N∗.

Definition 1.2.12. ([25], [29], [100]) Let E be a Riesz space. A sequence
(bn) in E o-converges to some b ∈ E, written bn

o−→ b, if there is a sequence
(an) in E such that an ↓ 0 and |bn − b| ≤ an, for all n ∈ N.
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Definition 1.2.13. ([25], [29], [100]) Let E,F be two Riesz spaces and let
f : E → F be a function. We say that f is o-continuous if, bn

o−→ b in E
imply f (bn)

o−→ f (b) in F .

Definition 1.2.14. ([25], [29], [100]) Let E be a Riesz space. A sequence
(bn) in E is called o-Cauchy, if there is a sequence (an) in E such that an ↓ 0

şi |bn − bn+p| ≤ an, for all n ∈ N and p ∈ N∗.

Definition 1.2.15. ([25], [29], [100]) We say that a Riesz space E is o-
complete if each o-Cauchy sequence is o-convergent.

For many aspects of order and lattice properties, order convergence and
order continuity in a Riesz space, the interested reader may consult the book
of C.D. Aliprantis, K.C. Border [5].

Definition 1.2.16. ([25], [29], [100]) Let (X, d,E) be an E-metric space. A
sequence (xn) in X E-converges to some x ∈ E, written xn

d,E−→ x, if there is
a sequence (an) in E such that an ↓ 0 and d (xn, x) ≤ an, for all n ∈ N.

Definition 1.2.17. ([25], [29], [100]) Let (X, d,E) be an E-metric space. A
sequence (xn) in X is called E-Cauchy, if there is a sequence (an) in E such
that an ↓ 0 and d (xn, xn+p) ≤ an, for all n ∈ N and p ∈ N∗.

Definition 1.2.18. ([25], [29], [100]) An E-metric space (X, d,E) is called
E-complete if each E-Cauchy sequence in X E-converges to a limit in X.

Definition 1.2.19. ([25], [29], [100]) LetX, Y be two E-metric spaces and
let f : X → Y be a function. We say that f is E-continuous if, xn

d,E−→ x in
X imply f (xn)

d,E−→ f (x) in Y .

Lemma 1.2.20. ([25]) If xn
d,E−→ x, then the following properties hold:

1. The limit x is unique;

2. Any subsequence of (xn) E-converges to x;

3. If yn
d,E−→ y then d (xn, yn)

o−→ d (x, y) .

If (X, d,E) is an E-metric space, then a subset A ⊂ X is called E-open
if for any x ∈ A, there exists r > 0 in E such that B (x, r) ⊂ A, where
B (x, r) = {y ∈ X | d (x, y) < r}. Any E-open ball is an E-open set and the
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collection of all E-open subsets of X represents the E-metric topology on X
denoted by τd,E.

In an E-metric space, the notions of compact set, relatively compact set,
totally bounded set, compact operator, complete continuous operator and
operator with relatively compact range, respectively the notions of sequen-
tially compactness (characterized by sequences) are defined as in the context
of generalized metric spaces by replacing the space Rm with the Riesz space
E. Proposition 1.2.3 also holds in the case of E-metric spaces (see A.C. Za-
anen [99], pp. 500). Similarly, the concepts of E-closed and E-bounded set
are defined in the E-metric sense.

Definition 1.2.21. ([25]) Let (X, d,E) be an E-metric space. We say that
a subset Y ⊂ X is E-closed if, (xn) ⊂ Y and xn

d,E−→ x imply x ∈ Y .

Definition 1.2.22. ([25]) Let (X, d,E) be an E-metric space. If A ⊂ X is
a nonempty set, then the symbol

δ (A) = sup {d (x, y) : x, y ∈ A}

is called the E-diameter of A if sup {d (x, y) : x, y ∈ A} exists in E. Further-
more, if there exists an a > 0 in E such that d (x, y) ≤ a, for any x, y ∈ A,
then A is called an E-bounded set.

Corollary 1.2.23. ([25]) If E is an order complete Riesz space, then any
E-bounded set of X has an E-diameter.

Theorem 1.2.24. ([25]) Let (X, d,E) be an E-metric space. Then the fol-
lowing affirmations hold:

(i) Any E-convergent sequence is E-Cauchy;

(ii) Any E-Cauchy sequence is E-bounded;

(iii) If an E-Cauchy sequence (xn) has a subsequence (xnk
) such that

xnk

d,E−→ x, then xn
d,E−→ x;

(iv) If (xn) and (yn) are two E-Cauchy sequences, then (d (xn, yn)) is an
o-Cauchy sequence.

Remark 1.2.25. ([25]) If E = R, the concepts of E-convergence and metric
convergence are the same, respectively the concepts of E-Cauchy sequence
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and Cauchy sequence are the same. If X = E and d is the absolute valued
vector metric on X, then the concepts of E-convergence and o-convergence
are the same.

Definition 1.2.26. ([29]) Let X be a linear space and let E be a Riesz space.
A function ||·|| : X → E is called an E-norm on X if it satisfies the following
properties:

(a) ||x|| ≥ 0, for all x ∈ X;

(b) ||x+ y|| ≤ ||x||+ ||y|| , for all x, y ∈ X.

Moreover, the triple (X, ||·|| , E) is called an E-normed space.

Remark 1.2.27. ([29]) If ||·|| is an E-norm on X, then the function d :

X × X → E, d (x, y) = ||x− y|| is an E-metric on X and d is called the
E-metric generated by the E-norm ||·||.

Definition 1.2.28. ([29]) An E-normed space (X, ||·|| , E) is called a vector
Banach space (or E-Banach space) if any E-Cauchy sequence in X is E-
convergent with respect to ||·||.

If |·| represents the absolute value of the Riesz space E, then (E, |·| , E)

is an E-Banach space. Any E-normed Riesz space is Archimedean and thus,
an E-Banach space is obviously Archimedean (see A.C. Zaanen [99]).

1.3 Fixed point results in generalized metric spaces

Already knowing what means a vector metric, which takes values in the
finite dimensional space Rm or the Riesz space E, we propose in this section
to pay attention to notions and to metrical and topological fixed point results,
which are based on generalized metric in the sense of Perov. Next chapter
will be dedicated exclusively to E-metric.

Now, we recall how to define the contraction and other known helpful
results for the proof of Krasnoselskii’s theorem for singlevalued operators in
generalized Banach spaces.

Definition 1.3.1. ([94]) A square matrix of real numbers is said to be con-
vergent to zero if and only if, An −→ 0 as n→∞.
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Definition 1.3.2. ([58]) Let (X, d) be a generalized metric space and let
f : X → X be a singlevalued operator. Then, f is called a singlevalued
A-contraction if and only if, A ∈ Mm,m (R+) is a matrix convergent to zero
and

d (f (x) , f (y)) ≤ Ad (x, y) , for any x, y ∈ X.

Definition 1.3.3. ([86]) Let (X, d) be a generalized metric space. Then
f : X → X is a Picard operator (briefly PO), if:

(i) Fix(f) = {x∗} ;

(ii) for any x0 ∈ X, the sequence xn = fn (x0) converges to the fixed
point of f .

Definition 1.3.4. ([86]) Let (X, d) be a generalized metric space and let
f : X → X be a Picard operator. Then f is a M-Picard operator (briefly
M -PO) if and only if, M ∈ Mm,m (R+) and there exists the operator f∞ :

X → X, f∞ (x) = lim
n→∞

fn (x0) such that

d [x0, f
∞ (x0)] ≤Md [x0, f (x0)] , for any x0 ∈ X.

Theorem 1.3.5. (Perov [58]). Let (X, d) be a complete generalized metric
space and let f : X → X be a singlevalued A-contraction, then:

(i) there exists a unique fixed point x∗ for fand the sequence of successive
approximations (xn)n∈N , xn = fn (x0) is convergent to x∗, for all x0 ∈
X and each n ∈ N∗;

(ii) d (xn, x
∗) ≤ An (I − A)−1 d (x0, x1) , for all n ∈ N∗.

Lemma 1.3.6. ([79], [87]) Let A ∈ Mm,m (R+). Then the following state-
ments are equivalent:

(i) A is a matrix convergent to zero;

(ii) The eigenvalues of A are in the open unit disc, i.e., |λ| < 1, for every
λ ∈ C with det (A− λI) = 0;

(iii) The matrix I−A is non-singular and (I − A)−1 = I+A+· · ·+An+· · · ;
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(iv) The matrix I − A is non-singular and (I − A)−1 has nonnegative ele-
ments;

(v) Anq −→ 0 and qAn −→ 0 as n→∞, for any q ∈ Rm.

Example 1.3.7. ([79]) Some examples of matrices convergent to zero are:

1) A =

[
a a

b b

]
, where a, b ∈ R+ and a+ b < 1;

2) A =

[
a b

a b

]
, where a, b ∈ R+ and a+ b < 1;

3) A =

[
a b

0 c

]
, where a, b, c ∈ R+ and max {a, c} < 1.

Theorem 1.3.8. (Schauder [29]). Let (X, |·|) be a generalized Banach space,
let Y ⊂ X be a closed and convex set and let f : Y → Y be an operator with
relatively compact range. Then f has at least one fixed point in Y .

For the case of multivalued operators we have the following notions.

Definition 1.3.9. ([19]) Let (X, d) be a generalized metric space, Y ⊂ X and
let F : Y → P (X) be a multivalued operator. Then, F is called amultivalued
A-contraction if and only if, A ∈ Mm,m (R+) is a matrix convergent to zero
and for any x, y ∈ Y and for each u ∈ F (x), there exists v ∈ F (y) such that

d (u, v) ≤ Ad (x, y) .

We recall that a multivalued operator F : X → P (Y ) is called lower
semi-continuous (briefly l.s.c.) in x0 ∈ X if and only if, for any open set
U ⊂ X such that F (x0) ∩ U 6= ∅, there exists a neighborhood V for x0 such
that for any x ∈ V , we have that F (x) ∩ U 6= ∅.

The multivalued operator F is called Hausdorff lower semi-continuous
(briefly H-l.s.c.) in x0 ∈ X if and only if, for any ε ∈ Rm+ with ε > 0,
there exists ηε ∈ Rm+ with ηε > 0 such that for any x ∈ B (x0, ηε), we have
F (x0) ⊂ V (F (x) , ε), where

V (F (x) , ε) = {x ∈ X : D (x, F (x)) ≤ ε} .

Notice now that a generalized Pompeiu–Hausdorff functional

H : Pb,cl (X)× Pb,cl (X)→ Rm+
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can be introduced on a generalized metric space in the sense of Perov and
thus, the concept of multivalued contraction mapping introduced by S.B.
Nadler Jr. in [50] can be extended to generalized metric spaces in the sense
of Perov.

Definition 1.3.10. ([19]) Let Y ⊂ X and let F : Y → Pb,cl (X) be a multi-
valued operator. Then, F is called a multivalued A-contraction in Nadler’s
sense if and only if, A ∈Mm,m (R+) is a matrix convergent to zero and

H [F (x) , F (y)] ≤ Ad (x, y) , for any x, y ∈ Y .

To obtain dual type results, in a similar way we can consider the condition

H t [F (x) , F (y)] ≤ dt (x, y)A, for any x, y ∈ Y ,

where At denotes transposed of matrix A.

Also, by properties of H, if F is a multivalued A-contraction in Nadler’s
sense it follows that F is a multivalued A-contraction.

Definition 1.3.11. ([19]) Let (X, d) be a generalized metric space. Then F :

X → P (X) is a multivalued weak Picard operator (briefly MWP operator),
if for any x ∈ X and y ∈ F (x), there exists a sequence (xn)n∈N such that:

(i) x0 = x, x1 = y;

(ii) xn+1 ∈ F (xn) ;

(iii) the sequence (xn)n∈N is convergent to a fixed point of F .

For examples of MWP operators, see A. Petruşel [73] and I.A. Rus, A.
Petruşel, A. Sântămărian [90].

Definition 1.3.12. ([73]) Let (X, d) be a generalized metric space and let
F : X → P (X) be a MWP operator. Then we define the multivalued
operator

F∞ : Graph (F )→ P (Fix (F ))

by the formula {F∞ (x, y) = z ∈ Fix (F ) : there exists a sequence of succes-
sive approximations of F starting from (x, y) which converges to z}.
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Definition 1.3.13. ([82]) Let X, Y 6= ∅ and let F : X → P (Y ) be a
multivalued operator. Then the singlevalued operator f : X → Y is a
selection for F if and only if, f (x) ∈ F (x) for any x ∈ X.

Definition 1.3.14. ([73]) Let (X, d) be a generalized metric space and let
F : X → P (X) be aMWP operator. Then F is called amultivaluedM-weak
Picard operator (briefly M -MWP operator) if and only if, M ∈Mm,m (R+)

and there exists a selection f∞ for F∞ such that d [x, f∞ (x, y)] ≤Md (x, y),
for any (x, y) ∈ Graph (F ).

Lemma 1.3.15. ([86]) Let (X, |·|) be a generalized Banach space. Then:

H (Y + Z, Y +W ) ≤ H (Z,W ) , for each Y, Z,W ∈ Pb (X) .

We recall that a measurable multivalued operator F : [a, b]→ Pcp (Rn) is
said to be integrable bounded if and only if, there exists a Lebesgue integrable
function m : [a, b]→ Rn such that for all v ∈ F (t), we have |v| ≤ m (t), a.e.
on [a, b]. For a measurable and integrable bounded multivalued operator F ,
the set S1

F of all Lebesgue integrable selections for F is closed and nonempty
(see H. Covitz, S.B. Nadler Jr. [27]).

To prove Krasnoselskii’s theorem in our section 3.1 and the other con-
nected results for a sum of two multivalued operators in generalized Banach
spaces, we need to present now some new auxiliary results:

- we prove Perov’s Theorem for an operator which satisfies a multivalued
A-contraction condition in Nadler’s sense, an answer to an open problem
enounced in A. Bucur, L. Guran, A. Petruşel [19];

- we establish a data dependence result for the excess between the fixed
points sets of two operators which satisfies a multivalued A-contraction con-
dition in Nadler’s sense;

- we extend a preliminary result to Krasnoselskii’s theorem given in L.
Rybinski [92].

Lemma 1.3.16. Let (X, d) be a generalized metric space and let A,B ⊂
Pcl (X), q > 1. Then, for any a ∈ A, there exists b ∈ B such that

d (a, b) ≤ qH (A,B) .

Lemma 1.3.17. Let (X, d) be a generalized metric space, A ∈ P (X) and
x ∈ X. Then D (x,A) = 0 if and only if x ∈ Ā.
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Lemma 1.3.18. Let A ∈Mm,m (R+) be a matrix convergent to zero. Then,
there exists Q > 1 such that for any q ∈ (1, Q) we have that qA is convergent
to 0.

Theorem 1.3.19. Let (X, d) be a complete generalized metric space and let
F : X → Pcl (X) be a multivalued A-contraction in Nadler’s sense. Then, F
is a (I − A)−1-MWP operator.

Lemma 1.3.20. Let (X, d) be a complete generalized metric space and F1, F2 :

X → Pb,cl (X) be two multivalued A-contractions in Nadler’ sense. Then:

ρ[Fix (F1) ,Fix (F2)] ≤ (I − A)−1


sup
x∈X

ρd1 [F1 (x) , F2 (x)]

...
sup
x∈X

ρdm [F1 (x) , F2 (x)]

 .

Theorem 1.3.21. Let (X, d) be a generalized metric space and Y be a closed
subset of a generalized Banach space (Z, ‖·‖). Assume that the multivalued
operator F : X × Y → Pcl,cv (Y ) satisfies the following conditions:

(i) A is a matrix convergent to zero and
H (F (x, y1) , F (x, y2)) ≤ A ‖y1 − y2‖ , for each (x, y1) , (x, y2) ∈
X × Y ;

(ii) for every y ∈ Y , F (·, y) is H-l.s.c. on X.

Then there exists a continuous mapping f : X × Y → Y such that:

f (x, y) ∈ F (x, f (x, y)) , for each (x, y) ∈ X × Y .
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Chapter 2

The theory of an E-metrical fixed point

theorem

2.1 E-metrical fixed point theorems

A reference result to study the existence and uniqueness of fixed points
in an E-metric space is given in a theorem by C. Çevik and I. Altun in [25].

Theorem 2.1.1. ([25]) Let (X, d,E) be an E-complete vector metric space
with E is Archimedean and let f : X → X be an operator, which satisfies a
k-contraction condition, i.e. there exists a constant k ∈ [0, 1) such that

d [f (x) , f (y)] ≤ kd (x, y) , for any x, y ∈ X.

Then f has a unique fixed point x∗ ∈ X and for any x0 ∈ X, the iterative
sequence (xn) defined by xn = f(xn−1) for any n ∈ N∗, E-converges to the
fixed point of f .

Example 2.1.2. ([39]) Let E = R2 with coordinatwise ordering (thus E is
Archimedean) and we consider

X =
{

(x, 0) ∈ R2 : 0 ≤ x ≤ 1
}
∪
{

(0, x) ∈ R2 : 0 ≤ x ≤ 1
}
.

The mapping d : X ×X → E is defined by

d [(x, 0) , (y, 0)] =

(
4

3
|x− y| , |x− y|

)
,

d [(0, x) , (0, y)] =

(
|x− y| , 2

3
|x− y|

)
,

d [(x, 0) , (0, y)] =

(
4

3
x+ y, x+

2

3
y

)
.
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The theory of an E-metrical fixed point theorem

Then X is an E-complete vector metric space. Let f : X → X with
f ((x, 0)) = (0, x) and f ((0, x)) =

(
x
2
, 0
)
, then f satisfies the singlevalued

k-contraction condition for k = 3
4
, which follows by the inequalities

d [f (x, 0) , f (y, 0)] ≤ 3

4
d [(x, 0) , (y, 0)] ,

d [f (x, 0) , f (0, y)] ≤ 3

4
d [(x, 0) , (0, y)] ,

d [f (0, x) , f (y, 0)] ≤ 3

4
d [(0, x) , (y, 0)] ,

d [f (0, x) , f (0, y)] ≤ 3

4
d [(0, x) , (0, y)]

and by Theorem 2.1.1, f has a unique fixed point in X, but f is not a
contraction mapping (for example, using the Cebisev metric) on X ⊆ R2,
thus we can not apply the classical Banach’s fixed point theorem.

Next, we extend another fixed point results for singlevalued operators,
which satisfies generalized contraction conditions in the context of E-metric
spaces.

Theorem 2.1.3. Let X be an E-complete vector metric space with E is
Archimedean. Suppose that f : X → X is an (a, b, c)-contraction, i.e. there
exists a, b, c ∈ R+ with a+ b+ c < 1 such that

d [f (x) , f (y)] ≤ ad (x, y) + bd [x, f (x)] + cd [y, f (y)] , for all x, y ∈ X.

Then f has a unique fixed point in X and for any x0 ∈ X, the iterative
sequence (xn) defined by xn = f(xn−1) for any n ∈ N∗, E-converges to the
fixed point of f .

Theorem 2.1.4. Let X be an E-complete vector metric space with E is
Archimedean. Suppose that g : X → X is an (a, b, c, e, f)-contracion, i.e.
there exists a, b, c, e, f ∈ R+ with a + b + c + 2f < 1 such that for any
x, y ∈ X, we have

d [g (x) , g (y)]

≤ ad (x, y) + bd [x, g (x)] + cd [y, g (y)] + ed [y, g (x)] + fd [x, g (y)] .

Then g has a unique fixed point in X and for any x0 ∈ X, the iterative
sequence (xn) defined by xn = g(xn−1), for any n ∈ N∗, E-converges to the
fixed point of g.
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Remark 2.1.5. Theorem 2.1.4 generalize Theorem 2.1.3 by choosing the
constants e = f = 0 and Theorem 2.1.3 generalize Theorem 2.1.1 by choosing
the constants b = c = 0.

Another metrical fixed point theorem for singlevalued operators which
can be extended to E-metric spaces is the first form of Ćirić’s Theorem.
Notice that this result is another particular case of Theorem 2.1.4, the proof
being similar.

Theorem 2.1.6. Let X be an E-complete vector metric space with E is
Archimedean. Suppose that g : X → X satisfies a Ćirić type α-contraction
condition, i.e. there exists α ∈ [0, 1) such that for any x, y ∈ X, we have

d [g (x) , g (y)]

≤ αmax

{
d (x, y) , d [x, g (x)] , d [y, g (y)] ,

1

2
[d (x, g (y)) + d (y, g (x))]

}
.

Then g has a unique fixed point in X and for any x0 ∈ X, the iterative
sequence (xn) defined by xn = g(xn−1), for any n ∈ N∗, E-converges to the
fixed point of g.

In the following we present several fixed point theorems for multivalued
operators in E-metric spaces.

Definition 2.1.7. Let (X, d,E) be an E-metric space. The operator F :

X → Pcl (X) is a multivalued k-contraction, if and only if k ∈ [0, 1) and for
any x, y ∈ X and any u ∈ F (x), there exists v ∈ F (y) such that

d (u, v) ≤ kd (x, y) .

Theorem 2.1.8. Let (X, d,E) be an E-complete vector metric space with E
is Archimedean and F : X → Pcl (X) be a multivalued k-contraction. Then F
has a fixed point in X and for any x ∈ X, there exists a sequence of successive
approximations of F starting from (x, y) ∈ Graph (F ), which E-converges in
(X, d,E) to the fixed point of F .

Example 2.1.9. Let E = R2 with coordinatwise ordering (thus E is Archi-
medean) and we consider

X =
{

(x, 0) ∈ R2 : 0 ≤ x ≤ 1
}
∪
{

(0, x) ∈ R2 : 0 ≤ x ≤ 1
}
.
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The theory of an E-metrical fixed point theorem

The mapping d : X ×X → E is defined by

d [(x, 0) , (y, 0)] =

(
4

3
|x− y| , |x− y|

)
,

d [(0, x) , (0, y)] =

(
|x− y| , 2

3
|x− y|

)
,

d [(x, 0) , (0, y)] =

(
4

3
x+ y, x+

2

3
y

)
.

Then X is an E-complete vector metric space. Let F : X → Pcl (X) with
F (x1, x2) = {u (x1, x2) , v (x1, x2)}, where u, v : X → X are defined by

u ((x, 0)) = (0, x) şi u ((0, x)) =
(x

2
, 0
)
;

v ((x, 0)) = (0, x) şi v ((0, x)) =
(x

3
, 0
)
.

We have the following possibilities:
Case 1: for any (x, 0) , (y, 0) ∈ X and any (0, x) ∈ F (x, 0), there exists

(0, y) ∈ F (y, 0);
Case 2: for any (x, 0) , (0, y) ∈ X and any (0, x) ∈ F (x, 0), there exists(

y
2
, 0
)
∈ F (0, y) or

(
y
3
, 0
)
∈ F (0, y);

Case 3: for any (0, x) , (y, 0) ∈ X and any
(
x
2
, 0
)
∈ F (0, x) or for any(

x
3
, 0
)
∈ F (0, x), there exists (0, y) ∈ F (y, 0);

Case 4: for any (0, x) , (0, y) ∈ X and any
(
x
2
, 0
)
∈ F (0, x), there exists(

y
2
, 0
)
∈ F (0, y), respectively for any (0, x) , (0, y) ∈ X and any

(
x
3
, 0
)
∈

F (0, x), there exists
(
y
3
, 0
)
∈ F (0, y).

For all of these cases the multivalued k-contraction condition holds for
k = 3

4
. By Theorem 2.1.8, it follows that F has a fixed point in X, but

F is not a contraction mapping (for example, using the Cebisev metric) on
X ⊆ R2, thus we can not apply the classical Nadler’s fixed point theorem.

Definition 2.1.10. Let (X, d,E) be an E-metric space. The operator F :

X → Pcl (X) is a multivalued (a, b, c)-contraction, if and only if a, b, c ∈ R+

with a + b + c < 1 and for any x, y ∈ X and any u ∈ F (x), there exists
v ∈ F (y) such that

d (u, v) ≤ ad (x, y) + bd (x, u) + cd (y, v) .

Theorem 2.1.11. Let (X, d,E) be an E-complete vector metric space with
E is Archimedean and F : X → Pcl (X) be a multivalued (a, b, c)-contraction.
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The theory of an E-metrical fixed point theorem

Then F has a fixed point in X and for any x ∈ X, there exists a sequence
of successive approximations of F starting from (x, y) ∈ Graph (F ), which
E-converges in (X, d,E) to the fixed point of F .

Remark 2.1.12. Theorems 2.1.8 and 2.1.11 generalizes several known results
in the theory of fixed points (see Nadler [85], Covitz-Nadler [75], S. Reich
[80], A. Bucur, L. Guran and A. Petruşel [19]), etc. Notice also that here we
do not need a closed graph condition on F , as in [19], for example.

2.2 The theory of an E-metrical fixed point theorem

In this section, we discuss the theory of Banach–Caccioppoli’s fixed point
theorem in E-metric spaces (see Theorem 2.1.1) from the above section. The
notion of theory of a metrical fixed point theorem was introduced by I.A.
Rus in [89] for the classical metric spaces. Also, we discuss the multivalued
case using the model given by A. Petruşel and I.A. Rus in [75].

Similarly, the theory can be extended for the rest of the metrical fixed
point theorems from the above section, which satisfies generalized contraction
conditions in E-metric spaces.

We start our aim with a Cauchy lemma given by I.A. Rus, M.-A. Şerban
in [91] and we extend it to the case of Riesz spaces.

Lemma 2.2.1 (Extended Cauchy Lemma). Let E be an order complete Riesz

space. Let an ∈ R+, bn ∈ E+, n ∈ N∗ such that
∞∑
i=0

|ai| < +∞ and bn
o−→ 0

as n→∞. Then

n∑
i=0

an−ibi
o−→ 0 as n→∞.

Remark 2.2.2. If (X, d,E) is an E-metric space and f : X → X is a
singlevalued k-contraction, it is easy to observe that f is E-continuous.

Theorem 2.2.3. Let (X, d,E) be an E-complete vector metric space with E
is Archimedean and let f : X → X be a singlevalued k-contraction. Then the
following affirmations hold:

i) Fix (f) =
{
x∗f
}
and fn (x)

d,E−→ x∗f as n→∞, for any x ∈ X, i.e., f is
a vector Picard operator (briefly E-PO);
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The theory of an E-metrical fixed point theorem

ii) Fix (f) = Fix (fn) =
{
x∗f
}
, for any n ∈ N∗, i.e., f is a vector Bessaga

operator;

iii) d
[
fn (x) , x∗f

]
≤ kn

1−kd [x, f (x)], for any x ∈ X and n ∈ N∗;

iv) d
(
x, x∗f

)
≤ 1

1−kd [x, f (x)], for any x ∈ X, i.e., f is E- 1
1−k -PO;

v)
∑
n∈N

d [fn (x) , fn+1 (x)] ≤ 1
1−kd [x, f (x)], for any x ∈ X, i.e., f is a good

E-PO;

vi)
∑
n∈N

d
[
fn (x) , x∗f

]
≤ 1

1−kd
(
x, x∗f

)
, for any x ∈ X, i.e., f is a special

E-PO;

vii) If xn ∈ X, n ∈ N are such that

d [xn, f (xn)]
d,E−→ 0 as n→∞,

then

xn
d,E−→ x∗f as n→∞,

i.e., the fixed point problem for the operator f is well posed;

viii) If xn ∈ X,n ∈ N and

(d (xn+1, f (xn)))
o−→ 0 as n→∞,

imply that there exists x ∈ X such that

d [xn, f
n (x)]

o−→ 0 as n→∞,

i.e., the operator f has the limit shadowing property;

ix) If (xn)n∈N is an E-bounded sequence in X, then

fn (xn)
d,E−→ x∗f as n→∞;

x) If g : X → X is such that there exists η ∈ E+ with

d [f (x) , g (x)] ≤ η, for any x ∈ X,

then:

x∗g ∈ Fix (g) imply d
(
x∗f , x

∗
g

)
≤ 1

1− k
η;
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The theory of an E-metrical fixed point theorem

xi) If fn : X → X, fn
unif.−→ f , x∗n ∈ Fix (fn), n ∈ N, then

x∗n
d,E−→ x∗f as n→∞;

xii) If (X, d,E) is an E-normed metric space, with d (x, y) = |x− y|, where
|·| : X → E+, then 1X − f : X → X is an E-topological isomorphism;

xiii) If (X, d,E) is an E-bounded vector metric space with E order complete,
then

∩
n∈N

fn (X) =
{
x∗f
}
,

i.e., f is a Janos operator.

Now we present two applications of the studied E-metrical fixed point
theorem for singlevalued operators. In this scope we need the following re-
quest.

Definition 2.2.4. By definition, (X, d,E,≤) is an ordered E-metric space
if (X, d,E) is an E-metric space and „≤” is a partial ordering relation on X,
such that the following implication holds: if (xn)n∈N, (yn)n∈N in X are such
that

i) xn ≤ yn, for all n ∈ N;

ii) xn
d,E−→ x, yn

d,E−→ y as n→∞,

then

x ≤ y.

Lemma 2.2.5 (Gronwall Lemma for k-contractions). Let (X, d,E,≤) be an
ordered E-complete vector metric space such that E is Archimedean and let
f : X → X be an operator. Supposing that f is a singlevalued k-contraction
and f is increasing, then:

i) x ≤ f (x) imply x ≤ x∗f ;

ii) x ≥ f (x) imply x ≥ x∗f .

Theorem 2.2.6 (Comparison Theorem for k-contractions). Let (X, d,E ≤)

be an ordered E-complete vector metric space such that E is Archimedean
and let f, g, h : X → X be three operators. We suppose that:
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The theory of an E-metrical fixed point theorem

i) f ≤ g ≤ h;

ii) f, g, h are singlevalued k-contractions;

iii) the operator g is increasing.

Then:

x∗f ≤ x∗g ≤ x∗h.

For the multivalued case (see Theorem 2.1.8), also, we study other fixed
point properties, as well as:

- the existence of fixed and strict fixed points;

- the data dependence of fixed points;

- the convergence of fixed points set for a sequence of multivalued opera-
tors;

- the Ulam–Hyers stability of the inclusion x ∈ F (x);

- the well-posedness property of the fixed point problem;

- the limit shadowing property of the multivalued operator;

- others.

Definition 2.2.7. Let (X, d,E) be an E-metric space. Then the multivalued
operator F : X → P (X) is called vector weak Picard (briefly E-MWP

operator), if and only if for each x ∈ X and each y ∈ F (x), there exists a
sequence (xn)n∈N in X such that:

(i) x0 = x, x1 = y;

(ii) xn+1 ∈ F (xn), for all n ∈ N;

(iii) the sequence (xn)n∈N is E-convergent and its limit is a fixed point of
F .

Definition 2.2.8. Let (X, d,E) be an E-metric space and let F : X →
P (X) be an E-MWP operator. Then we define the multivalued operator
F∞ : Graph (F ) → P (Fix (F )) by the formula {F∞ (x, y) = x∗ ∈ Fix (F ) :
there exists a sequence of successive approximations of F starting from (x, y)

that E-converges to x∗}.

Definition 2.2.9. Let (X, d,E) be an E-metric space and let F : X → P (X)

be an E-MWP operator. Then the multivalued operator F is called vector
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The theory of an E-metrical fixed point theorem

c-weak Picard (briefly E-c-MWP operator) if and only if c ∈ R∗+ and there
exists a selection f∞ of F∞ such that d [x, f∞ (x, y)] ≤ cd (x, y), for all
(x, y) ∈ Graph (F ).

Definition 2.2.10. Let (X, d,E) be an E-metric space and let (Fn)n∈N be
a sequence of ordered sets in Pcl (X). Then Fn is called to be Hausdorff
E-convergent to an ordered and closed set F of X, denoted by Fn

H,d,E−→ F as
n → ∞ if and only if there exists a sequence (an) ⊂ E such that an ↓ 0 as
n→∞ and for any un ∈ Fn (x), there exists v ∈ F (x) (respectively for any
v ∈ F (x), there exists un ∈ Fn (x)) such that

d (un, v) ≤ an, for any n ∈ N.

Definition 2.2.11. Let (X, d,E) be an E-complete vector metric space and
let F : X → P (X) be a multivalued operator. Then the multivalued operator
F is called vector Picard operator (briefly E-MPO) if and only if:

(i) SFix (F ) = Fix (F ) = {x∗};

(ii) F n (x)
H,d,E−→ {x∗} as n→∞, for any x ∈ X.

A first result for multivalued k-contractions in E-metric spaces is the
following.

Theorem 2.2.12. Let (X, d,E) be an E-complete vector metric space with
E is Archimedean and let F : X → Pcl (X) be a multivalued k-contraction.
Then the following statements hold:

i) Fix (F ) 6= ∅;

ii) F is an E- 1
1−k -MWP operator;

iii) Let G : X → Pcl (X) be a multivalued k-contraction and η ∈ E+ such
that for any u ∈ G (x), there exists v ∈ F (x) such that d (u, v) ≤
η (respectively for any u ∈ F (x), there exists v ∈ G (x) such that
d (u, v) ≤ η). Then for any p ∈ Fix (G), there exists q ∈ Fix (F )

such that d (p, q) ≤ 1
1−kη (respectively for any p ∈ Fix (F ), there exists

q ∈ Fix (G) such that d (p, q) ≤ 1
1−kη).

iv) Let Fn : X → Pcl (X), n ∈ N be a sequence of multivalued k-contractions
such that Fn (x)

H,d,E−→ F (x) as n→∞, uniformly with respect to x ∈ X.
Then, Fix (Fn)

H,d,E−→ Fix (F ) as n→∞;
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v) (Ulam–Hyers stability of the inclusion x ∈ F (x)) Let ε ∈ E+ be such
that there exists y ∈ F (x) : d (x, y) ≤ ε. Then, there exists x∗ ∈
Fix (F ) such that d (x, x∗) ≤ 1

1−kε.

A second result for multivalued k-contractions in E-metric spaces is as
follows.

Theorem 2.2.13. Let (X, d,E) be an E-complete vector metric space with
E is Archimedean and let F : X → Pcl (X) be a multivalued k-contraction
with SFix (F ) 6= ∅. Then the following statements hold:

i) Fix (F ) = SFix (F ) = {x∗};

ii) Fix (F n) = SFix (F n) = {x∗}, for n ∈ N∗;

iii) F n (x)
H,d,E−→ {x∗} as n→∞, for any x ∈ X;

iv) Let G : X → Pcl (X) be a multivalued operator and η ∈ E+ such that
Fix (G) 6= ∅ and for any u ∈ G (x), there exists v ∈ F (x) such that
d (u, v) ≤ η (respectively for any u ∈ F (x), there exists v ∈ G (x) such
that d (u, v) ≤ η). Then for any p ∈ Fix (G), there exists q ∈ Fix (F )

such that d (p, q) ≤ 1
1−kη (respectively for any p ∈ Fix (F ), there exists

q ∈ Fix (G) such that d (p, q) ≤ 1
1−kη);

v) Let Fn : X → Pcl (X), n ∈ N be a sequence of multivalued operators
such that Fix (Fn) 6= ∅ for each n ∈ N and Fn (x)

H,d,E−→ F (x) as n →
∞, uniformly with respect to x ∈ X. Then, Fix (Fn)

H,d,E−→ Fix (F ) as
n→∞.

vi) (Well-posedness property of the fixed point problem) If (xn)n∈N is a
sequence in X such that there exists yn ∈ F (xn), n ∈ N with the
property

d (xn, yn)
o−→ 0 as n→∞,

then xn
d,E−→ x∗ as n→∞.

vii) (Limit shadowing property of the multivalued operator) If (yn)n∈N is
a sequence in X such that there exists un ∈ F (yn), n ∈ N with the
property

d (yn+1, un)
o−→ 0 as n→∞,
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then there exists a sequence (xn)n∈N ⊂ X of successive approximations
for F , such that

d (xn, yn)
o−→ 0 as n→∞.

A third result for multivalued k-contractions in E-metric spaces is the
following.

Theorem 2.2.14. Let (X, d,E) be an E-complete vector metric space with
E is Archimedean and let F : X → Pcp (X) be a multivalued k-contraction
such that F (Fix (F )) = Fix (F ). Then the following statements hold:

i) F (x) = Fix (F ), for each x ∈ Fix (F );

ii) If (xn)n∈N ⊂ X is a sequence such that xn
d,E−→ x∗ ∈ Fix (F ) as n→∞,

then F (xn)
H,d,E−→ Fix (F ) as n→∞.

2.3 Nonlinear fixed point results in E-metric spaces

The purpose of this section is to give some extensions of the Contraction
Principle to the case of E-metric spaces. More precisely we will realize the
study of the fixed point theory for (local and global) nonlinear contractions
with an o-comparison function in E-metric spaces. Our results generalize
some theorems given in J. Matkowski [47], M. Kwapisz [43], R. Cristescu
[29], F. Voicu [96], [97], P.P. Zabrejko [100], C. Çevik, I. Altun [25]. Also,
are presented new auxiliary fixed point results for Krasnoselskii’s theorem in
E-metric spaces and are pointed out some open problems.

Definition 2.3.1. An increasing operator ϕ : E+ → E+ with ϕ (t) ≤ t and
ϕn (t)

o−→ 0 for any t > 0 is called an order comparison operator (briefly
o-comparison operator).

Definition 2.3.2. Let (X, d,E) be an E-metric space and let ϕ : E+ → E+

be an o-comparison operator. We say that the operator f : X → X is a
singlevalued nonlinear ϕ-contraction, if and only if

d [f (x) , f (y)] ≤ ϕ [d (x, y)] , for any x, y ∈ X.

Theorem 2.3.3. Let (X, d,E) be an E-complete metric space with E-Archi-
medean and let f : X → X be a singlevalued nonlinear ϕ-contraction. Then:
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i) there exists a unique fixed point x∗ for f in X and for any x ∈ X, the
sequence fn (x)

d,E−→ x∗;

ii) d [x∗, fn (x)] ≤ ϕn [d (x∗, x)], for any n ∈ N.

A local version of Theorem 2.3.3 can be obtained in the closed ball

B̄ (x0, r) := {x | x ∈ X, d (x0, x) ≤ r} .

Theorem 2.3.4. Let (X, d,E) be an E-complete metric space with E-Archi-
medean, x0 ∈ X, r ∈ E+, let f : B̄ (x0, r) → X be an operator and there
exists an increasing operator ϕ : [0, r] → [0, r] ⊂ E+ such that ϕn (t)

o−→ 0,
for any t ∈ (0, r] with the property d [f (x) , f (y)] ≤ ϕ [d (x, y)] and d (x, y) ≤
r, for any x, y ∈ B̄ (x0, r). We assume that d [x0, f (x0)] ≤ r − ϕ (r). Then:

i) there exists a unique fixed point x∗ for f în B̄ (x0, r) and for any x ∈
B̄ (x0, r), the sequence fn (x)

d,E−→ x∗;

ii) d [x∗, fn (x)] ≤ ϕn (b), for any n ∈ N.

Following the ideas from M. Kwapisz [43], other results with equivalent
conclusions with Theorems 2.3.3 and 2.3.4 can be obtained in the space

X (x0, r) := ∪
λ∈E+

B̄ (x0, λr) = ∪
λ∈E+

{x | x ∈ X, d (x, x0) ≤ λr} .

Theorem 2.3.5. Let (X, d,E) be an E-complete metric space with E-Archi-
medean, x0 ∈ X, r ∈ E+, let f : X (x0, r) → X be an operator and there
exists an increasing operator ϕ : E+ → E+ such that ϕn (t)

o−→ 0, for any
t > 0, with properties:

1) ϕ (λr) ≤ ϕ (λ) r, for λ ∈ E+;

2) d [f (x) , f (y)] ≤ ϕ [d (x, y)] şi d (x, y) ≤ λr, for any x, y ∈ X (x0, r)

and for λ ∈ E+;

3) d [x0, f (x0)] ≤ λ0r, for λ0 ∈ E+.

Then:

i) there exists a unique fixed point x∗ for f în X (x0, r) and for any x ∈
X (x0, r), the sequence fn (x)

d,E−→ x∗;

ii) d [x∗, fn (x)] ≤ ϕnd (x∗, x), for any n ∈ N.
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Lemma 2.3.6. If (yn) ⊂ X (x0, r) and yn
d,E−→ y, then y ∈ X (x0, r), i.e.,

X (x0, r) is E-closed in X with respect to the convergence d,E−→.

If we endow the space X (x0, r) ⊂ X with an E-metric ρ : X (x0, r) ×
X (x0, r)→ E+, given by

ρ (x, y) = inf
λ∈E+

{d (x, y) ≤ λr} ,

we have the following:

Lemma 2.3.7. Let (X, d,E) be an E-complete metric space with E-Archi-
medean. Then, the space X (x0, r) is E-complete with respect to ρ.

If we use the same conditions as in Theorem 2.3.5, we can obtain another
existence and uniqueness result in the E-metric space X (x0, b). Notice that,
this time, the proof is based on the relationship between the E-metrics ρ
and d. Thus, we will not apply Theorem 2.3.5 to show that the sequence of
successive approximations of f converges with respect to d,E−→ to the unique
fixed point of f in X (x0, b).

Theorem 2.3.8. If all the assumptions of Theorem 2.3.5 hold, then:

i) f is a singlevalued nonlinear ϕ-contraction in X (x0, r) with respect to ρ;

ii) there exists a unique fixed point x∗ for f in X (x0, r) and for any y0 ∈
X (x0, r), we have that fn (y0)

d,E−→ x∗.

In the following we present how to define a multivalued nonlinear ϕ-
contraction, a nonlinear version of Theorem 2.1.1 for multivalued operators
and open problems on this direction.

Definition 2.3.9. Let (X, d,E) be an E-metric space and let ϕ : E+ → E+

be an o-comparison operator. We say that the operator F : X → Pcl (X) is a
multivalued nonlinear ϕ-contraction if and only if, for any x, y ∈ X and any
u ∈ F (x), there exists v ∈ F (y) such that

d (u, v) ≤ ϕ [d (x, y)] .

Theorem 2.3.10. Let (X, d,E) be an E-complete vector metric space. As-
sume that the operator F : X → Pcl (X) is a multivalued nonlinear ϕ-
contraction, then F has a fixed point in X and for any x ∈ X, there ex-
ists a sequence of successive approximations (xn)n∈N for F starting from
(x, y) ∈ Graph(F ), which E-converges in (X, d,E) to the fixed point F .
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If we choose the particular case when ϕ (t) = kt, k ∈ [0, 1) we obtain
Theorem 2.1.8.

Remark 2.3.11. Theorems 2.3.3, 2.3.4 and 2.3.10 represents the extensions
to the case of E-metric spaces of some classical fixed point metrical principles
from the nonlinear analysis. If we choose X = E and d the absolute valued
metric on E, then we obtain fixed point theorems in the Riesz space E (see
R. Cristescu [29]).

Problem 2.3.12. To prove other fixed point theorems in E-metric spaces
for singlevalued operators which satisfies nonlinear generalized ϕ-contraction
conditions and also, to study the theory of such a theorem (see I.-R. Petre
[63], A. Petruşel, I.A. Rus [75] and I.A. Rus [89]).

We consider the following definition:

Definition 2.3.13. Let (X, d,E) be an E-metric space with E order com-
plete and let ϕ : E+ → E+ be an o-comparison operator. We say that
the operator F : X → Pb,cl (X) is a multivalued nonlinear ϕ-contraction in
Nadler’s sense, if and only if

H [F (x), F (y)] ≤ ϕ [d (x, y)] , for any x, y ∈ X. (2.3.1)

Problem 2.3.14. To define a lucrative functional H for which the condition
(2.3.1) occurs when E is a linear lattice, to prove Theorem 2.3.10 in terms
of Definition 2.3.13 and to establish a data dependence lemma for the excess
of fixed points sets of two operators, which satisfies a multivalued nonlinear
ϕ-contraction condition in Nadler’s sense.

The difficulty arises because usually we can not deny the inequality u ≤ v

for u, v ∈ E+. For example, for E+ = R2
+, we have the following figure:

x

y

(0,0) a

b

D

D̄

(a, b)

Figura 3: Difficulties of denial in a linear latice.
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From here you see that the comparable elements are on the bold diagonal
and the elements outside the rectangle D = [0, a] × [0, b] are not just those
in the portion D̄. Thus, we can not establish a Lemma of type 1.3.16 in the
context of E-metric spaces. To avoid such issues for demonstration such a
lemma, in section 4.3 we introduce a notion of strict positivity in a Riesz
space and thus, we have a new way to approach for Problem 2.3.14.

Lemma 2.3.15. Let (X, d,E) be an E-metric space with E order complete
and let A ⊂ Pb (X). Then D (x,A) = 0 if and only if x ∈ Ā.

Notice that Ky Fan’s Lemma and Schauder’s Theorem can be proved, in
an E-Banach space X, by a similar method to the classical case, where we
assume that E is order complete and Y ⊂ X is an E-bounded set (thus,
the order completeness guarantees that inf

x∈Y
||x− f (y0)|| exists in E). More

precisely, we have the following results.

Lemma 2.3.16. Let X be an order complete E-normed space, let Y ⊂ X

be an E-compact and E-convex set and let f : Y → X be an E-continuous
operator. Then ||y0 − f (y0)|| = inf

x∈Y
||x− f (y0)||.

Theorem 2.3.17. Let (X, ||·|| , E) be an E-Banach space with E order com-
plete, let Y ⊂ X be an E-bounded, E-closed and E-convex set and let
f : Y → Y be an operator with E-relatively compact range. Then f has
at least one fixed point in Y .

Remark 2.3.18. For another Schauder type theorem in Hausdorff Archime-
dean vector lattice, see T. Kawasaki, M. Toyoda, T. Watanabe [42].

Problem 2.3.19. To prove a Rybinski type theorem before the model of
Theorem 1.3.21 in the context of E-metric spaces, which ensure that there
exists an E-continuous selection for a given multivalued operator, which sat-
isfies a multivalued nonlinear ϕ-contraction condition in Nadler’s sense with
respect to the second argument.

We need an extended version of Cantor’s intersection theorem and of
Cesaro’s lemma.

Lemma 2.3.20. Let (X, d,E) be an E-complete metric space with the prop-
erty that for every descending sequence {Fn}n≥1 of nonempty E-closed sub-
sets of X we have that δ (Fn)

o−→ 0 as n→∞. Then the intersection
∞
∩
n=1

Fn

contains one and only one element.
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The theory of an E-metrical fixed point theorem

Lemma 2.3.21. Let (X, d,E) be an E-complete metric space such that E
is Archimedean and let (xn) be an E-bounded sequence in X. Then, there
exists an E-convergent subsequence (xnk

) in X.
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Chapter 3

Topological fixed point theorems and

applications in vector Banach spaces

3.1 Krasnoselskii’s theorem in generalized Banach spaces

In this section we prove Krasnoselskii’s fixed point theorem in generalized
Banach spaces for singlevalued and multivalued operators. Also, we discuss
other possible fixed point existence results for a sum of two multivalued
operators, where one of them satisfies a multivalued A-contraction condition
and the other one satisfies a compactness condition.

Theorem 3.1.1. Let (X, |·|) be a generalized Banach space and let Y ∈
Pcl,cv (X). Assume that the operators f, g : Y → X satisfies the properties:

i) f is a singlevalued A-contraction;

ii) g is continuous;

iii) g (Y ) is relatively compact and f (x) + g (y) ∈ Y for any x, y ∈ Y .

Then f + g has a fixed point in Y .

For a matrix A := (aij)i,j∈{1,··· ,m} ∈Mm,m(R) we denote by

|A| := (|aij|)i,j∈{1,··· ,m} ∈Mm,m(R+).

In this context, we say that a non-singular matrix A has the absolute
value property if A−1|A| ≤ I. Some examples of matrices convergent to zero
A ∈M2,2(R), which also satisfies the property

(I − A)−1|I − A| ≤ I
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are:

1) A =

(
a 0

0 b

)
, where a, b ∈ R+ and max(a, b) < 1;

2) A =

(
a −c
0 b

)
, where a, b, c ∈ R+ and a+ b < 1, c < 1;

3) A =

(
a −a
b −b

)
, where a > 1, b > 0 şi |a− b| < 1.

For the study of existence of fixed point for a sum of two multivalued
operators, the basic form of Krasnoselskii’s theorem in a generalized Banach
space and other connected results are presented in the following.

Theorem 3.1.2. Let (X, |·|) be a generalized Banach space and let Y ∈
Pcp,cv (X). Assume that the operators F : Y → Pb,cl,cv (X), G : Y →
Pcp,cv (X) satisfies the properties:

i) F (y1) +G (y2) ⊂ Y for each y1, y2 ∈ Y ;

ii) F is a multivalued A-contraction in Nadler’s sense;

iii) G is l.s.c and G (Y ) is relatively compact;

iv) the matrix I − A has the absolute value property.

Then F +G has a fixed point in Y .

Extending an idea of T.A. Burton (see [20]), let us observe that the
condition i) in our basic result (Theorem 3.1.2) can be relaxed.

Theorem 3.1.3. Let (X, |·|) be a generalized Banach space and let Y ∈
Pcp,cv (X). Assume that the operators F : Y → Pb,cl,cv (X), G : Y →
Pcp,cv (X) satisfies the properties:

i) y ∈ F (y) +G (x) , x ∈ Y then y ∈ Y ;

ii) F is a multivalued A-contraction in Nadler’s sense;

iii) G is l.s.c and G (Y ) is relatively compact;

iv) the matrix I − A has the absolute value property.

Then F +G has a fixed point in Y .
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Theorem 3.1.4. Let us suppose that the conditions ii), iii) and iv) of The-
orem 3.1.3 hold. If there exists r ∈ Rm+ such that for Y = {x ∈ X : |x| ≤ r},
we have G (Y ) ⊂ Y and |y| ≤ D [y, F (y)], y ∈ Y , then the conclusion of
Theorem 3.1.3 holds.

Notice that in the terms of an abstract measure of noncompactness on
Y , we can say that the multivalued operator F : Y → Pb,cl (X) is called a
multivalued (α,A)-contraction if and only if, A ∈ Mm,m (R+) is a matrix
convergent to zero and α (F (B)) ≤ Aα (B), for each B ∈ Pb (Y ). In this
sense, we can rise another direction in the study of Krasnoselskii’s theorem
using the classical results given by A. Petruşel in [70], I.A. Rus in [88] and
A. Petruşel in [72].

Problem 3.1.5. Let (X, |·|) be a generalized Banach space and let F1, F2 :

X → Pb,cl (X) be two multivalued operators, such that F1 is a multivalued
A-contraction and F2 is compact. Then F1 + F2 is a multivalued (α,A)-
contraction.

Problem 3.1.6. Let (X, |·|) be a generalized Banach space and let Y ∈
Pb,cl,cv (X). If F : Y → Pcl,cv (Y ) is an upper semicontinuous (briefly u.s.c.),
(α,A)-contraction multivalued operator, then F has a fixed point in Y .

Problem 3.1.7. Let (X, |·|) be a generalized Banach space and let Y ∈
Pb,cl,cv (X). Assume that the operators F,G : Y → Pcp,cv (X) satisfies the
properties:

i) F (y) +G (y) ⊂ Y for each y ∈ Y ;

ii) F is a multivalued A-contraction in Nadler’s sense;

iii) G is u.s.c. and compact.

Then F +G has a fixed point in Y .

3.2 Applications

It is known that the classical form of Theorems 3.1.1 and 3.1.2 have a
lot of interesting applications. For example, L. Collatz [26] established the
existence of a solution for the integral equation

x (t) =
1

3

[
x2 (t) + t

]
+

1

3

∫ 1

0

|x (s)− t|
1
2 ds, t ∈ [0, 1] .
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Another application of Krasnoselskii’s theorem in Hilbert spaces can be found
in M. Zuluaga [102] or for the multivalued case, see, for example A. Petruşel
[72].

Our purpose is to extend this applications for our results obtained in the
above section, imposing an A-contraction condition on one of the integral
operators and other conditions to get the existence of the solution for an
integral equation and inclusion system in a generalized Banach space. Using
Theorems 3.1.1 and 3.1.2 we can obtain existence results for systems of dif-
ferential equations and inclusions. In the following we consider the abstract
case of systems of two Fredholm–Volterra type integral equations.

Theorem 3.2.1. Let I = [0, a] (with a > 0) be an interval of the real axis
and let us consider the following equations system in C (I,Rn)× C (I,Rp):{

x1 (t) = λ11

∫ t
0
k1 (t, s, x1 (s) , x2 (s)) ds+ λ12

∫ a
0
l1 (t, s, x1 (s) , x2 (s)) ds

x2 (t) = λ21

∫ t
0
k2 (t, s, x1 (s) , x2 (s)) ds+ λ22

∫ a
0
l2 (t, s, x1 (s) , x2 (s)) ds

for t ∈ I, where λij ∈ R for i, j ∈ {1, 2}. We assume that:

i) k1, l1 ∈ C (I2 × Rn × Rp,Rn) and k2, l2 ∈ C (I2 × Rn × Rp,Rp);

ii) there exists the matrix A =

(
a11 a12

a21 a22

)
∈M2,2 (R+) such that

|ki (t, s, u1, u2)− ki (t, s, v1, v2)| ≤ ai1 |u1 − v1|+ ai2 |u2 − v2| ,

for each (t, s, u1, u2) , (t, s, v1, v2) ∈ I2 × Rn × Rp, i ∈ {1, 2} ;

iii)

(
|λ11|
|λ21|

)
≤

(
r1

2a(a11r1+a12r2)

r2
2a(a21r1+a22r2)

)
and

(
|λ12|
|λ22|

)
≤

 r1
2Ml1

r2
2Ml2

, where

r :=

(
r1

r2

)
, cu r1, r2 > 0 and Mli = max

t∈[0,a]

∫ a
0
|li (t, s, x1 (s) , x2 (s))| ds,

for i ∈ {1, 2}.

Then, there exists x0 := (x0
1, x

0
2) ∈ C (I,Rn) × C (I,Rp) such that our equa-

tions system has at least one solution x∗ := (x∗1, x
∗
2) ∈ B̄ (x0

1, r1)×B̄ (x0
2, r2) ⊂

C (I,Rn)× C (I,Rp).
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Remark 3.2.2. Theorems 3.2.1 and 3.2.3 can be improved supposing instead
of the existence of a real positive number square matrix A, another square
matrix A = (aij)i,j=1,2, where aij ∈ L

p ([0, a] ,R+) , i, j ∈ {1, 2} and using the
Hölder’s inequality which guarantees that∫ t

0

aij (s) eτsds ≤ |aij|Lp

(∫ t

0

aij (s) eqτsds

) 1
q

, where
1

p
+

1

q
= 1,

we can obtain too, another similar results.

Using Theorem 3.1.2 we will prove a nice existence result for an ab-
stract system of Fredholm–Volterra integral inclusions in a generalized Ba-
nach space. Notice that in the following result the existence of the fixed
point holds for a set of multivalued operators Fi : Yi → Pcp,cv (Xi), where(
Xi, |·|Xi

)
is a Banach space and Yi ∈ Pb,cl,cv (Xi) for i ∈ {1, 2}.

To show that Fi is a multivalued contraction in Nadler’s sense means
to show that for i ∈ {1, 2}, there exists a matrix convergent to zero A =

(aij)i,j=1,2 ∈ M2,2 (R+) with the property that for any x := (x1, x2), y :=

(y1, y2) ∈ Y1 × Y2 and for any ui ∈ Fi (x1, x2), there exists vi ∈ Fi (y1, y2),
respectively for any vi ∈ Fi(y1, y2), there exists ui ∈ Fi(x1, x2) such that

|ui − vi|Xi
≤ ai1 |x1 − y1|X1

+ ai2 |x2 − y2|X2
.

We consider the multivalued operator F : Y1 × Y2 → Pcp,cv (X1 ×X2) de-
fined by F := (F1, F2) and denote by Y := Y1 × Y2, X := X1 × X2,

|u− v|X :=

(
|u1 − v1|X1

|u2 − v2|X2

)
. Then the above inequalities can be repre-

sented in the matrix form: for any x, y ∈ Y and for any u ∈ F (x), there
exists v ∈ F (y), respectively for any v ∈ F (y), there exists u ∈ F (x) such
that

|u− v|X ≤ A |x− y|X , where A =

(
a11 a12

a21 a22

)
∈M2,2 (R+) .

Theorem 3.2.3. Let I = [0, a] (with a > 0) be an interval of the real axis
and let us consider the following inclusions system in C (I,Rn)× C (I,Rp):{

x1 (t) ∈ λ11

∫ t
0
K1 (t, s, x1 (s) , x2 (s)) ds+ λ12

∫ a
0
L1 (t, s, x1 (s) , x2 (s)) ds

x2 (t) ∈ λ21

∫ t
0
K2 (t, s, x1 (s) , x2 (s)) ds+ λ22

∫ a
0
L2 (t, s, x1 (s) , x2 (s)) ds

for t ∈ I, where λij ∈ R, i, j ∈ {1, 2}. We assume that:
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i) K1 : I2 × Rn × Rp → Pcl,cv (Rn), K2 : I2 × Rn × Rp → Pcl,cv (Rp) are
two l.s.c., measurable and integrable bounded multivalued operators;

ii) L1 : I2×Rn×Rp → Pcp,cv (Rn), L2 : I2×Rn×Rp → Pcp,cv (Rp) are two
l.s.c., measurable and integrable bounded (by two integrable functions
mL1, mL2) multivalued operators;

iii) there exists the matrix A =

(
a11 a12

a21 a22

)
∈ M2,2 (R+) such that for

each (t, s, u1, u2), (t, s, v1, v2) ∈ I2 × Rn × Rp and for i ∈ {1, 2}, we
have:

H (Ki (t, s, u1, u2) , Ki (t, s, v1, v2)) ≤ ai1 |u1 − v1|+ai2 |u2 − v2| ;

iv)

(
|λ11|
|λ21|

)
≤

(
R1

2a(a11R1+a12R2)

R2

2a(a21R1+a22R2)

)
and

(
|λ12|
|λ22|

)
≤

 R1

2ML1
a

R2

2ML2
a

, where

ML1 = max
t∈[0,a]

|mL1|Rn , ML2 = max
t∈[0,a]

|mL2|Rp

and mLi
represents the set of continuous selections for the multivalued

operator t −→ λi2
∫ a

0
Li (t, s, x1 (s) , x2 (s)) ds, for i ∈ {1, 2}.

v) the matrix I −M has the absolute value property, where

M =

(
|λi1| aij
τ

)
i,j=1,2

, τ > 0.

Then, there exists (x0
1, x

0
2) ∈ C (I,Rn)×C (I,Rp) such that our inclusions

system has at least one solution x∗ := (x∗1, x
∗
2) ∈ B̄ (x0

1, R1) × B̄ (x0
2, R2) ⊂

C (I,Rn)× C (I,Rp).

3.3 Krasnoselskii’s theorem in E-Banach spaces

In this section we prove a nonlinear version of Krasnoselskii’s fixed point
theorem in E-Banach spaces for singlevalued operators. The multivalued
case is an open problem, which rises from Problem 2.3.14.

Theorem 3.3.1. Let (X, ||·|| , E) be an E-Banach space with E order com-
plete and let Y be a nonempty, E-bounded, E-convex and E-closed subset of
X. Assume that the operators f, g : Y → X satisfy the properties:
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i) f is a nonlinear ϕ-contraction and the operator ψ : E+ → E+ defined
by ψ (t) = t− ϕ (t) satisfies the following relation:

if (ψ(tn)) ↓ 0 as n→ +∞, then (tn) ↓ 0 as n→ +∞.

ii) g is E-continuous;

iii) g (Y ) is E-relatively compact and f (x) + g (y) ∈ Y for any x, y ∈ Y .

Then f + g has a fixed point in Y .

Problem 3.3.2. To prove Krasnoselskii’s Theorem in an E-Banach space
for a sum of two multivalued operators, where one of the operators satisfies
a multivalued nonlinear ϕ-contraction condition in Nadler’s sense and the
second operator satisfies a compactness condition.

3.4 Applications

In this last section, we give an existence result for the solution of a
Fredholm–Volterra type integral equation in an E-Banach space in which
we need to apply Theorem 3.3.1. To obtain an existence result for the so-
lution of a Fredholm–Volterra type integral inclusion in an E-Banach space
represents an open problem, consequence of Problem 3.3.2.

Theorem 3.4.1. Let E be an order complete Riesz space, r ∈ E+ with r > 0

and let I := [0, a] (where a > 0) be an interval of real axis. We consider the
following Fredholm–Volterra type integral equation in C (I, E):

x (t) =

∫
I

k (t, s, x (s)) ds+

∫ t

0

l (t, s, x (s)) ds, t ∈ I. (3.4.1)

We assume that:

i) k ∈ C (I2 × E,E) and l ∈ C (I2 × E,E) are two o-continuous opera-
tors;

ii) there exists ω ∈ C (I2, E+) with sup
t∈I

∫
I
ω (t, s) ds ≤ 1, such that

|k (t, s, x)− k (t, s, y)| ≤ ω (t, s)ϕ (|x− y|) , for any t, s ∈ I, x, y ∈ E,

where ϕ : E+ → E+ is an o-comparison operator and the operator
ψ : E+ → E+ defined by ψ (t) = t−ϕ (t) satisfies the following relation:

if (ψ(tn)) ↓ 0 as n→ +∞, then (tn) ↓ 0 as n→ +∞.
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iii) we have that Ml := sup
t∈I

∫ t
0
l (t, s, x (s)) ds ≤ 1

2
r and ψ(r) ≥ δ, where

δ := sup
x∈B̄(0,r)

∣∣∣∣sup
t∈I

∫
I

k (t, s, x (s)) ds

∣∣∣∣ ∈ E+.

Then, the equation (3.4.1) has a solution x∗ in B̄ (0, r) ⊂ C (I, E).

Problem 3.4.2. Let E be an order complete Riesz space, r ∈ E+ with r > 0

and let I = [0, a] (where a > 0) be an interval of real axis. We consider the
following Fredholm–Volterra type integral inclusion in C (I, E):

x (t) ∈
∫
I

K (t, s, x (s)) ds+

∫ t

0

L (t, s, x (s)) ds, t ∈ I. (3.4.2)

Impose conditions on the multivalued operators K,L : I2 ×E → P (E) such
that the inclusion (3.4.2) to admit a solution x∗ in B̄ (0, r) ⊂ C (I, E).
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Chapter 4

Fixed point theorems in vector b-metric

spaces

4.1 Generalized b-metric space

In this section we introduce a larger notion of generalized b-metric space,
which extends the classical notion of b-metric space used by other authors:
V. Berinde in [12], S. Czerwik in [30], J. Heinonen in [38], M. Boriceanu, A.
Petruşel, I.A. Rus in [14], M. Bota in [16]. Using this context, we present
some useful properties and auxiliary results to prove our fixed point theorems
in the following section.

Definition 4.1.1. Let X be a set and let S ≥ I be a square m×m matrix of
nonnegative real numbers, where I denotes the identity matrix. A functional
d : X × X → Rm+ is said to be a generalized b-metric if and only if for all
x, y, z ∈ X the following conditions are satisfied:

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. d(x, z) ≤ S[d(x, y) + d(y, z)].

The pair (X, d) is called a generalized b-metric space.

The class of generalized b-metric spaces is larger then the class of general-
ized metric spaces, since a generalized b-metric space is a generalized metric
space when S = I in the third assumption of the above definition. Some
examples of b-metric spaces are given by V. Berinde [12], S. Czerwik [30], J.
Heinonen [38]. Here we give some examples of generalized b-metric spaces.
Notice that if A,B ∈Mm,m (R+) , A = [aij] , B = [bij], for i, j ∈ {1, 2, . . . ,m}
then by A ≤ B we mean aij ≤ bij, for i, j ∈ {1, 2, . . . ,m}.
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Fixed point theorems in vector b-metric spaces

Example 4.1.2. Let X be a set with the cardinal card(X) ≥ 3. Suppose
that X = X1 ∪ X2 is a partition of X such that card(X1) ≥ 2. Let S =[
s11 s12

s21 s22

]
≥

[
1 0

0 1

]
be a matrix of real numbers. Then, the functional

d : X ×X → R2
+ defined by:

d(x, y) :=



[
0

0

]
, x = y

2

[
s11

s22

]
, x, y ∈ X1[

1

1

]
, otherwise

is a generalized b-metric on X.

Example 4.1.3. The set `p(R) (with 0 < p < 1), where `p(R) := {(xn) ⊂ R

|
∞∑
n=1

|xn|p <∞}, together with the functional d : (`p(R)× `q(R))2 → R2
+,

d(x, y) :=


(
∞∑
n=1

|x1n − y1n|p)1/p

(
∞∑
n=1

|x2n − y2n|q)1/q



is a generalized b-metric space with S =

[
21/p s12

s12 21/q

]
>

[
1 0

0 1

]
. Notice

that the above example holds for the general case lp(X) with 0 < p < 1,
where X is a generalized Banach space.

Example 4.1.4. The space Lp[0, 1] (where 0 < p < 1) of all real functions
x(t), t ∈ [0, 1] such that

∫ 1

0
|x(t)|pdt <∞, together with the functional

d(x, y) :=

[
(
∫ 1

0
|x1(t)− y1(t)|pdt)1/p

(
∫ 1

0
|x2(t)− y2(t)|qdt)1/q

]
, for each (x1, y1) , (x2, y2) ∈

Lp[0, 1]× Lq[0, 1]

is a generalized b-metric space with S =

[
21/p 0

0 21/q

]
.
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Generalized b-metric space

Notice that in a generalized b-metric space (X, d) the notions of conver-
gent sequence, Cauchy sequence, completeness, open subset and closed subset
are similar to those for usual metric spaces, but the generalized b-metric is
not continuous in general and does not induces a topology on X.

Lemma 4.1.5. Let (X, d) be a generalized b-metric space and let A,B ∈
P (X). We suppose that there exists η ∈ Rm+ , η > 0 such that:

(i) for each a ∈ A there is b ∈ B such that d(a, b) ≤ η;

(ii) for each b ∈ B there is a ∈ A such that d(a, b) ≤ η.

Then, H(A,B) ≤ η.

Lemma 4.1.6. Let (X, d) be a generalized b-metric space, A ∈ P (X) and
x ∈ X. Then D(x,A) = 0 if and only if x ∈ A.

Lemma 4.1.7. Let (X, d) be a generalized b-metric space and let {xk}nk=0 ⊂
X. Let S ∈Mm,m (R), with S ≥ I. Then:

d(x0, xn) ≤ Sd(x0, x1) + · · ·+ Sn−1d(xn−2, xn−1) + Sn−1d(xn−1, xn).

Lemma 4.1.8. Let (X, d) be a generalized b-metric space and let S ∈Mm,m (R),
with S ≥ I. Then for all A,B,C ∈ P (X), we have:

H(A,C) ≤ S[H(A,B) +H(B,C)].

Lemma 4.1.9. Let (X, d) be a generalized b-metric space and let A,B ∈
Pcl(X). Then for each α ∈ Rm+ , α > 0 and for each b ∈ B, there exists a ∈ A
such that

d(a, b) ≤ H(A,B) + α.

If, moreover, A,B ∈ Pcp(X) and S ∈ Mm,m (R) with S ≥ I. Then for
each b ∈ B, there exists a ∈ A such that

d(a, b) ≤ SH(A,B).

Lemma 4.1.10. Let (X, d) be a generalized b-metric space and let A,B ∈
Pb(X), q > 1. Then, for all a ∈ A, there exists b ∈ B such that:

δ(A,B) ≤ qd(a, b).
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Fixed point theorems in vector b-metric spaces

4.2 Fixed point theorems in generalized b-metric spaces

In this section we present some fixed and strict fixed point theorems in
E-b-metric spaces using the Picard and weak Picard operators technique.
The definition mode of Picard, M -Picard, multivalued weak Picard and mul-
tivalued M -weak Picard operators in a generalized b-metric space is similar
to those used in a generalized metric space (see section 1.3).

We start to present some fixed point theorems in generalized b-metric
spaces for singlevalued operators.

Theorem 4.2.1. Let (X, d) be a complete generalized b-metric space with
S ∈ Mm,m (R+), S ≥ I and let f : X → X be a singlevalued A-contraction
such that AS = SA and SA < I. Then f is a (I − SA)−1 S-Picard operator.

Definition 4.2.2. Let (X, d) be a generalized b-metric space and let f : X →
X be a singlevalued operator. Then, f is called a singlevalued (A,B,C)-
contraction if and only if there exists the matrices A,B,C ∈ Mm,m (R+),
where A is convergent to zero with A+B + C < I such that

d [f (x) , f (y)] ≤ Ad (x, y)+Bd [x, f (x)]+Cd [y, f (y)] , for any x, y ∈ X.

Theorem 4.2.3. Let (X, d) be a complete generalized b-metric space with
S ∈ Mm,m (R+), S ≥ I and let f : X → X be a singlevalued (A,B,C)-
contraction such that KS = SK, where K := (I − C)−1 (A+B) and SA <

I. Then f is a (I − SA)−1 S (I −B)-Picard operator.

It is easy to observe (see S. Czerwik [30]) that if (X, d) is a generalized
b-metric space, then the functional H : Pb,cl(X)× Pb,cl(X)→ Rm+ is a gener-
alized b-metric in Pb,cl(X). Also, if (X, d) is a complete generalized b-metric
space, we have that (Pb,cl(X), H) is a complete generalized b-metric space.

In the following we present some fixed and strict fixed point theorems in
generalized b-metric spaces for multivalued operators.

Theorem 4.2.4. Let (X, d) be a complete generalized b-metric space with
S ∈ Mm,m (R+), S ≥ I and let F : X → Pcl(X) be a multivalued A-
contraction in Nadler’s sense such that AS = SA and SA < I. Then F is a
multivalued (I − SA)−1 S-weak Picard operator.
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E-b-metric space

Definition 4.2.5. Let Y ⊂ X be a nonempty set and let F : Y → Pcl (X) be
a multivalued operator. Then, F is called a multivalued (A,B,C)-contraction
if and only if there exists the matrices A,B,C ∈ Mm,m (R+), where A is
convergent to zero with A+B + C < I such that

H [F (x), F (y)] ≤ Ad(x, y)+BD [x, F (x)]+CD [y, F (y)] , for any x, y ∈ Y .

Theorem 4.2.6. Let (X, d) be a complete generalized b-metric space with
S ∈ Mm,m (R+), S ≥ I and let F : X → Pcl(X) be a multivalued (A,B,C)-
contraction such that KS = SK, where K := (I − qC)−1 (A+B), q ∈(

1, 1
ρ(A+B+C)

)
and SA < I. Then F is a multivalued (I − SA)−1 S (I −B)-

weak Picard operator.

We have two additional results for the strict fixed point set of F . The
first one in the terms of functional H, and the second one in the terms of
functional δ.

Theorem 4.2.7. If all the assumption of Theorem 4.2.6 holds and SFix (F )

is nonempty, then:

Fix (F ) = SFix (F ) = {x∗} .

Theorem 4.2.8. Let (X, d) be a complete generalized b-metric space with
S ∈ Mm,m (R+), S ≥ I and let F : X → Pb(X) be such that A,B,C ∈
Mm,m (R+), where A is convergent to zero with A+B +C < I, KS = SK,
where K := (I − C)−1 (A+B), SA < I and

δ [F (x) , F (y)] ≤ Ad (x, y)+Bδ [x, F (x)]+Cδ [y, F (y)] , for any x, y ∈ X.

Then SFix (F ) = {x∗}.

Remark 4.2.9. If we choose B = C = 0 in Theorem 4.2.8 implies that
δ [F (x) , F (x)] = 0, for any x ∈ X which yields that F is a singlevalued
operator. Therefore the statement of Theorem 4.2.8 is nontrivial if B+C > 0.

4.3 E-b-metric space

In this section we introduce the notion of E-b-metric space and a relevant
concept of strict positivity in a Riesz space. Also, we present some auxiliary
results, which works with the concept of strict positivity and are used to
prove the fixed point theorems in the following section.
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Fixed point theorems in vector b-metric spaces

Definition 4.3.1. Let X be a nonempty set and let s ≥ 1 be a real number.
A functional d : X ×X → E+ is called an E-b-metric if and only if, for all
x, y, z ∈ X the following conditions are satisfied:

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X, d,E) is called an E-b-metric space.

We recall from C.D. Aliprantis, K.C. Border [5] that an element e ∈ E+ in
a Riesz space E is called an order unit element if, for any x ∈ E, there exists
λ ∈ R+ such that |x| ≤ λe. However, this notion of strict positiveness is
insufficient for our purposes. Therefore, we introduce the following concept.

Definition 4.3.2. We say that e ∈ E+ is a strict order unit element, written
e� 0 if, for any subset H ⊂ E+ with inf H = 0, there exist h1, . . . , hn ∈ H
such that min (h1, . . . , hn) ≤ e.

For example, if E = R2, E+ = R2
+, then e = (e1, e2) � 0 if and only if

e1 > 0 and e2 > 0. Thus, in this case, we can see that order unit elements
are strict order unit elements as well.

Proposition 4.3.3. If E is Archimedean and e is a strict order unit element,
then e is an order unit element.

The reversed implication in the above proposition is not true in general
as is shown by the next proposition.

Proposition 4.3.4. In the space E = `∞ with the positive cone

E+ = {(e1, e2, . . .) : ei ≥ 0} ⊂ `∞,

e ∈ E+ is an order unit element if and only if inf {e1, e2, . . .} > 0. However,
there is no strict order unit element in E.

Let us denote by E++ the set of strict order unit elements in E.

Proposition 4.3.5. E++ is a convex cone.

In the following results we characterize the convergence of sequences in
terms of strict order unit elements.
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Lemma 4.3.6. Let E be order complete and assume that E++ is nonempty.
Then hn

o−→ 0 if and only if, for all e ∈ E++, there exists n0 ∈ N such that

|hn| ≤ e, for all n ≥ n0.

Corollary 4.3.7. Let (X, d,E) be an E-complete metric space, where E is
order complete such that E++ is nonempty. Then xn

d,E−→ x∗ if and only if,
for any e ∈ E++, there exists n0 ∈ N such that

d (xn, x
∗) ≤ e, for all n ≥ n0.

Lemma 4.3.8. Let (X, d,E) be an E-complete metric space, where E is
order complete such that E++ is nonempty. Then xn

d,E−→ x∗ is an E-Cauchy
sequence if and only if, for any e ∈ E++, there exists n0 ∈ N such that

d (xn, xm) ≤ e, for all m > n ≥ n0.

4.4 Fixed point theorems in E-b-metric spaces

In this section we present some fixed point theorems in E-b-metric spaces
using the Picard and weak Picard operators technique. The study of fixed
point is realized in the strict order unit elements cone E++. The notion was
introduced in the above section, see also Zs. Páles, I.-R. Petre [57] and I.-R.
Petre [61]. Moreover, the following theorems does not need to impose the
condition ϕ (t) < t on the o-comparison operator ϕ.

Definition 4.4.1. Let (X, d,E) be an E-metric space and let f : X → X

be a vector Picard operator. Then, the operator f is called a vector ψ-
Picard operator iff, the operator ψ : E+ → E+ have the properties: for any
decreasing sequence (tn) ⊂ E+ with tn ↓ t, we have ψ (tn) ↓ ψ (t), for any
t ∈ E+ with t > 0 and d (x, x∗) ≤ ψ [d (x, f(x))], for any x ∈ X.

Theorem 4.4.2. Let (X, d,E) be a complete E-b-metric space with E order
complete and let s ≥ 1. We assume that E++ is nonempty and let f : X → X

be a nonlinear ϕ-contraction. If for any decreasing sequence (tn) ⊂ E+ with
tn ↓ t, we have ϕ (tn) ↓ ϕ (t), and the operator ψ : E+ → E+ defined by
ψ (t) = 1

s
t− ϕ (t) is inversable, then f is a vector ψ−1-Picard operator.
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Definition 4.4.3. Let (X, d,E) be an E-metric space and let F : X → P (X)

be a multivalued vector weak Picard operator. Then, the operator F is called
a vector ψ-weak Picard operator iff, the operator ψ : E+ → E+ have the
properties: for any decreasing sequence (tn) ⊂ E+ with tn ↓ t, we have
ψ (tn) ↓ ψ (t), for any t ∈ E+ with t > 0 and there exists a selection f∞ for
F∞ such that d [x, f∞ (x, y)] ≤ ψ [d (x, y)], for any (x, y) ∈ Graph (F ).

Theorem 4.4.4. Let (X, d,E) be a complete E-b-metric with E order com-
plete and let s ≥ 1. We assume that E++ is nonempty and let F : X →
Pcl(X) be a multivalued nonlinear ϕ-contraction. If for any decreasing se-
quence (tn) ⊂ E+ with tn ↓ t, we have ϕ (tn) ↓ ϕ (t) and ϕ (st) ≤ sϕ (t),
for any t ∈ E+ with t > 0, and the operator ψ : E+ → E+ defined by
ψ (t) = 1

s
t− s2ϕ (t) is inversable, then F is a vector ψ−1-weak Picard opera-

tor.
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[98] R. Wȩgrzyk, Fixed point theorems for multifunctions and their appli-
cations to functional equations, Dissertationes Math., Vol. 201, 1982,
1-28.

58



BIBLIOGRAPHY

[99] A.C. Zaanen, Riesz Spaces, North-Holland Publishing Company, Ams-
terdam, Vol. 2, 1983.

[100] P.P. Zabrejko, K-metric and K-normed linear spaces: survey, Collect.
Math., Vol. 48, No. 4-6, 1997, 825-859.

[101] E. Zeidler, Nonlinear Functional Analysis, Vol. I, Fixed Point Theo-
rems, Springer, Berlin, 1993.

[102] M. Zuluaga, On a fixed point theorem and application to a two-point
boundary value problem, Comment. Math. Univ. Carolinae, Vol. 27,
1986, 731-735.

59


