
BABES-BOLYAI UNIVERSITY, CLUJ-NAPOCA, ROMANIA

Faculty of Economics and Business Administration

Department of Business Information Systems

Using Distributed Computing Resources for

E�cient Execution of Complex Business

Applications

Ph.D. Thesis Summary

Ph.D. Student:

Gabriela Andreea Morar

Ph.D. Supervisor:

Prof. Dr. Nicolae Tomai

Research Field: Cybernetics and Statistics

2012

Cuvinte cheie englez

Key words: distributed systems, cloud computing, performance, work�ow,

Hadoop, negotiation domain, resource negotiation

1

Contents

Contents vi

1 Introduction 1

1.1 Research Motivation . 1

1.2 Research Objectives . 3

1.3 Thesis Structure . 4

I Theoretical Notions Regarding Parallel Programming
and Distributed Systems 7

2 Parallel Computing Overview 8

2.1 Parallel Computing - Background and a Brief History. 8

2.2 Why Are Parallel Systems and Parallel Computing Needed? . . . 9

2.3 Why Are Parallel Programs Needed? 10

2.3.1 Di�erent Levels of Parallelism. 11

2.3.2 Steps Needed in Building a Parallel Program 12

2.4 The von Neumann Architecture 13

2.5 Parallel Hardware . 13

2.5.1 SISD - Single Instruction, Single Data 14

2.5.2 SIMD - Single Instruction, Multiple Data 14

2.5.3 MISD - Multiple Instructions, Single Data 15

2.5.4 MIMD - Multiple Instructions, Multiple Data 15

2.6 Connections Among Concurrent, Parallel and Distributed Com-

puting . 16

vi

CONTENTS

2.7 Performance Evaluation of Parallelization 17

2.7.1 Computing Speedup and E�ciency 18

2.7.2 Amdahl's Law . 19

2.7.3 Evaluating the Scalability of the Program 20

2.7.4 Timing the Elapsed Times 21

2.8 Conclusions . 23

3 Distributed Systems Overview 24

3.1 Distributed Systems De�nition . 24

3.1.1 Main Goals of Distributed Systems 25

3.1.2 Pitfalls of distributed systems 27

3.1.3 Advantages and Disadvantages of Distributed Systems Over

Centralized Systems . 28

3.1.4 Advantages of Distributed Computing Environments Over

Standalone Applications 30

3.2 Distributed Systems Types . 31

3.2.1 Distributed Computing Systems 31

3.2.2 Distributed Information Systems 31

3.2.3 Distributed Pervasive Systems 31

3.2.4 Distributed Computing Systems Types 32

3.2.4.1 Clusters De�nition 32

3.2.4.2 Grid De�nition 32

3.2.4.3 Cloud Computing De�nition 35

3.2.4.3.1 Cloud computing characteristics 39

3.2.4.3.2 Technologies that lead to the appearance

of cloud computing 41

3.2.4.4 Advantages and Disadvantages of Cloud Computing 42

3.2.4.5 Cloud Computing Types 43

3.2.4.5.1 Private cloud 43

3.2.4.5.2 Public cloud 43

3.2.4.5.3 Hybrid cloud 43

3.2.4.5.4 Federated cloud 44

3.2.4.5.5 Community Cloud 44

vii

CONTENTS

3.2.4.6 Cloud Computing Business Models 44

3.2.4.6.1 Infrastructure-as-a-Service 45

3.2.4.6.2 Platform-as-a-Service 45

3.2.4.6.3 Software-as-a-Service 45

3.2.5 Cluster, Grid and Cloud Computing Comparison 45

3.3 Conclusions . 49

II Available Means for Parallelizing Applications and
Used Technologies and Frameworks 51

4 Means of Parallelizing Applications 52

4.1 Means for Harvesting Distributed Systems for Running Parallel

Applications . 52

4.2 Using Work�ows as a Means for Parallelizing Application Execution 54

4.2.1 Work�ow De�nition . 54

4.2.2 Life Cycle of Scienti�c Work�ows 55

4.2.3 Advantage and Limitations of Work�ows 58

4.2.3.1 Advantages of scienti�c work�ows. 58

4.2.3.2 Limitations of Scienti�c Work�ows. 60

4.2.4 Types of Work�ows and Work�ows Components 61

4.2.4.1 Work�ow Types 61

4.2.4.2 Work�ow Modeling Components 61

4.2.4.3 Work�ow Patterns 64

4.2.5 What are Work�ow Management Systems 67

4.2.6 Requirements of Scienti�c Work�ows Management Systems 72

4.2.6.1 User Requirements for Scienti�c Work�ows . . . 73

4.3 Using MapReduce for Parallel Data Processing 75

4.3.1 What is MapReduce and How Does it Work? 76

4.3.1.1 How do MapReduce Jobs Work? 78

4.4 Conclusions . 79

5 Used Technologies and Frameworks 80

5.1 Askalon Grid Application Development and Computing Environment 80

viii

CONTENTS

5.2 Hadoop's Implementation of MapReduce 82

5.2.1 What is Hadoop? . 82

5.2.2 Hadoop's Components . 83

5.2.2.1 HDFS . 83

5.2.2.2 MapReduce . 84

5.3 Hadoop's Infrastructure Topology 84

5.4 Hadoop's Advantages and Drawbacks 85

5.5 Eucalyptus Private Cloud Environment 87

5.5.1 Eucalyptus Components 89

5.5.1.1 Node Controller 89

5.5.1.2 Cluster Controller 90

5.5.1.3 Storage Service (Walrus) 91

5.5.1.4 Cloud Controller 92

5.5.1.5 Eucalyptus Networking Modes 93

5.5.2 Why Use Eucalyptus? . 94

5.5.3 How to Access the System 96

5.6 Conclusions . 96

III Practical Applications and Use Cases 98

6 Work�ow Use Cases 99

6.1 Run Work�ow Use Cases on Askalon 99

6.1.1 The eBay Work�ow . 101

6.1.1.1 eBay Crawler Description 102

6.1.1.2 Preparing the Application for the Work�ow . . . 103

6.1.1.3 The eBay Work�ow 103

6.1.1.4 XML Representation of the eBay Work�ow . . . 104

6.1.1.5 Experiments and Results for the eBay Work�ow . 107

6.1.1.6 Conclusions Regarding the eBay Work�ow 110

6.1.2 The RainCloud (Meteorological) Work�ow 111

6.1.2.1 The RainCloud Linear Model-based Meteorologi-

cal Application 111

6.1.2.2 The RainCloud Work�ow 113

ix

CONTENTS

6.1.2.3 RainCloud Work�ow Graphical Modeling 113

6.1.2.4 XML Representation of the RainCloud Work�ow 115

6.1.2.5 RainCloud Work�ow Flavors 117

6.1.2.6 Experiments and Results for the RainCloudWork-

�ow . 119

6.1.2.7 Conclusions for the RainCloud Work�ow 125

6.2 Conclusions . 126

7 Using Hadoop to Optimize Run Times of Twitter Data Process-

ing 127

7.1 Hadoop's Key Factors for Performance Tuning 127

7.2 Running Mahout Over Hadoop for Processing Large Data 129

7.3 Hadoop Cluster Setup . 130

7.4 Testing the Cluster's Performance with Benchmarks 131

7.5 Twitter Input Dataset . 135

7.6 Conducted Experiments . 137

7.6.1 Input Data Preprocessing 137

7.6.2 The K-means Algorithm 138

7.7 Run Experiments for Testing Hadoop's Performance 139

7.8 Performance Results . 139

7.9 Conclusions . 142

8 Agent-based Cloud Resource Negotiation 143

8.1 Using Intelligent Agents to Negotiate Cloud Resources Overview . 144

8.2 A Few SLA Negotiation Related Facts 147

8.3 Components of a Negotiation Scenario 148

8.3.1 The Negotiation Protocols Used 149

8.3.2 The Cloud Negotiation Domain 151

8.3.3 The Intelligent Agents Used for the Negotiation. 154

8.3.3.1 The Q-learning Agent 154

8.3.3.2 The Bayesian-Learning Agent 156

8.3.3.3 Simple Q-learning Agent and Simple Bayesian Agent157

8.4 Experiments and Results for the Agent-based Resource Negotiation 158

x

CONTENTS

8.5 Conclusion . 168

9 Conclusions 170

9.1 Contributions . 170

9.2 Research Mobility . 172

9.3 Results Dissemination . 174

9.4 Future Research Direction . 175

List of Figures 177

List of Tables 180

References 182

xi

Contents

Contents 1

1 Research Motivation . 4

2 Research Objectives . 6

3 Thesis Structure . 7

4 Contributions . 21

5 Research Mobility . 23

6 Results Dissemination . 25

7 Future Research Direction . 26

List of Figures 28

References 29

1

Abstract

In the last decade the number of companies and scientists that rely

on distributed computing systems in order to remain competitive has

greatly increased. As the costs of operating a self-owned supercom-

puter are rather high, not all companies or research groups can a�ord

acquiring the needed infrastructure for running their applications or

experiments. Hence they have to turn to external computational re-

sources. In the beginning clusters and grids were the ones that got

the attention of industry and academia but they still had some limita-

tions. The newly emerged cloud computing paradigm promises them

all the needed resources at any time based on a pay-as-you-go model.

But having the necessary infrastructure at a�ordable costs at their

disposal is not enough for all of them, as some do not possess the nec-

essary means or knowledge to take advantage of the newly emerged

technologies.

In this work we show that distributed systems can be e�ectively used

by industry and academia in order to increase the performance of their

applications and reduce the execution costs. We present two main

paradigms that can help users that do not own advanced parallel

programming skills to parallelize their applications: work�ows and

MapReduce [8].

We also present two use cases consisting of building two work�ows

based on real-life applications and testing their performance when

running on cloud resources. Since the work�ows do not �t the needs

of all users that want to take advantage of distributed resources, we

also conducted a study regarding the e�ciency of the MapReduce

paradigm. In this case we selected the Hadoop [13] implementation

of the paradigm and in order to prove its e�ciency in processing large

amounts of data we tested it by running a clustering algorithm on

data retrieved from Twitter. We wanted to test how the performance

o�ered by Hadoop is in�uenced by the type of storage used (solid

state disk or hard disk) and by the values of the parameters that can

be set by the user when they con�gure their clusters.

After assessing the performance of applications that run on distributed

resources (in our case cloud resources) we have identi�ed the need for

resource selection from a variety of possible existing resources without

exceeding certain costs. This was done in a best-�t manner regard-

ing a user's requirements. Thus the idea of using intelligent agents

for concurrent resource negotiation arose. For this reason we have

implemented a specialized negotiation domain based on IaaS cloud

resources characteristics. We have considered the case of an academ-

ical federated cloud consisting only of private clouds.

We created a mechanism that � based on the data o�ered by the cloud

controller of these clouds � can semi-automatically generate negoti-

ation pro�les. We have developed a negotiation mechanism consist-

ing of an agent representing the resource buyer and several agents

representing the cloud providers. The semi-automatic creation of ne-

gotiation domains can be considered a �rst step in our intention of

achieving on-time cloud resource provisioning for cloud based applica-

tions. Integrating the developed mechanism in real platforms is part

of future work.

Key words: distributed systems, cloud computing, performance, work-

�ow, Hadoop, negotiation domain, resource negotiation

The current document contains a summary of the PhD thesis with the ti-

tle "Using Distributed Computing Resources for E�cient Execution of Complex

Business Applications". The summary is meant to give an overview of the thesis

and presents the main achievements obtained in the course of my PhD studies.

1 Research Motivation

Nowadays staying competitive on the market is one of the main problems that

companies have to deal with. Sometimes this might require reducing time and

costs of processing large amounts of data. Scientists also deal with similar prob-

lems. They need to optimize execution times and reduce costs for their exper-

iments or simulations because they constantly have to deal with deadlines and

limited budgets.

During the past decades progress in computing technology has contributed

greatly to accelerating scienti�c progress by reducing execution times of scienti�c

and business applications [15]. Several research domains require great computa-

tional power for running experiments and validating research hypotheses. Hence

scientists need to be able to easily reuse software and to vary input parameters

or starting hypotheses for their experiments.

Whenever scienti�c experiments are conducted we can identify two main prob-

lems that might be the cause of failure:

• not having the right scienti�c ideas or not �nding the right simulations to

validate these ideas.

• and not being able to implement the scienti�c idea such that it will facilitate

the execution of the experiments.

Not all scientists possess the necessary skills for developing complex applica-

tions that need to bring together tools belonging to di�erent areas: data analysis

tools, domain-speci�c tools, etc. This is even a more di�cult task when we have

to take limited resources like time and �nancial costs into consideration.

Thesis Summary

Several technical solutions that come as a helping hand for scientists that

need some aid in maximally exploiting the computational resources they pos-

sess have arisen in the past few years. First we mention the work�ow paradigm

and the multiple Work�ow Management Systems that were developed in order

to facilitate the mapping of the execution of complex scienti�c applications on

distributed resources. This solution better �ts applications that need high com-

putational power in order to complete within reasonable time limits. Second we

discuss the MapReduce technique as a means for improving execution times in the

case of applications that need to process large amounts of data. Of all available

MapReduce implementations we focus on the one o�ered by the Hadoop project.

Even if distributed systems are an obvious solution when it comes to improv-

ing execution times of applications, they are not easy to manage and implement-

ing applications that can run on them is a rather challenging task. From the

complexity and heterogeneity of these systems a series of problems might arise.

Failures can occur in the systems at any time, especially if they are formed by

large numbers of heterogeneous resources bound together. Possible solutions for

this problem could be: data replication in the case of applications that process

large amounts of data or jobs resubmission.

When it comes to distributed computing systems there were three main models

that got scientists' and industry's attention: clusters, grids and cloud computing.

Grid computing is a form of distributed computing which is composed of

loosely coupled computers and appears to the user as a super computer. A grid

consists of heterogeneous machines that o�er their computational resources to

the public in the form of virtual organizations (VOs)1[12].

Recently an increased interest in Service Oriented Architectures (SOAs) and

virtualization has been manifested by the computer science community. Based on

these technologies a new type of distributed system was born: cloud computing.

Cloud computing has emerged as an alternative to previous types of dis-

tributed systems, and tries to solve cost problems by using a pay-as-you-go pricing

model and by providing users with elastic resources that can be accessed from

anywhere without requiring previous booking. In the past decade a considerable

1VOs are de�ned as �A set of individuals, institutions is intended to share resources by
following sharing rules�

5

Thesis Summary

number of organizations have chosen to expose their resources, both hardware

and software, using the everything-as-a-service paradigm.

The costs generated by creating in-house supercomputers are considerably

high and accessing already existing infrastructures, like grids, requires lots of time,

specialized knowledge, access permission from third parties, in-advance scheduling

of resources, etc. Due to their �exibility clouds receive a growing interest from

the industry and academia, whereas grids are mostly used by the academia as

large scale computing and storage environments.

As the number of cloud providers on the market continues to increase daily,

the need for automatic cloud resource management systems emerges. Their pur-

pose is to enforce regulation of the supply and demand of cloud resources [31].

Cloud computing service delivery requires speci�c Quality of Service (QoS) to be

maintained by the providers in order to meet the users' objectives and sustain

their operations. In this context, an SLA-oriented resource management system

established through a process of negotiation for the interaction between cloud

participants is needed.

The conducted research tries to tackle the problem of resource provisioning

based on certain QoS requirements in federated cloud environments. We want

to observe how we can solve the resource negotiation problem on a competitive

market with the use of intelligent agents. The agents will represent the cloud

buyers and the cloud providers. Basically, we are interested in how can we get

a maximum utility for the buyer when it deals with the problem of acquiring

computational resources from various cloud providers.

2 Research Objectives

In this work we try to study the way in which the use of computational resources,

provided by distributed systems, can increase the performance of various appli-

cation types and reduce their execution costs. Keeping this goal in mind we have

studied the current types of existing distributed systems, compared their suit-

ability in running complex applications and the cost derived from their usage.

Starting from this initial scenario several questions arose:

6

Thesis Summary

1. What is the best type of distributed computing resource for an application

to run on?

2. What is the best way for a regular user to harvest the performance of such

resources?

3. How do the technical characteristics (number of cores, RAM, hard disk, etc.)

of these computing resources in�uence the performance of the application?

4. How to choose the best option for running an application, in the context of

cost e�ciency, when several resource providers are available?

These are the main questions that the current work tries to give an answer

to. First by investigating the characteristic of parallel programs, then identifying

the main means for parallelizing an application without needing strong parallel

programming skills. Furthermore we will evaluate the way in which applications'

performance can be improved and their execution costs reduced by using dis-

tributed computational resources. Finally we will try to suggest a mechanism

that could help users acquire the needed resources when they are dealing with

several resource providers.

3 Thesis Structure

Structura tezei reiese din �gura 1:

Part I - Theoretical Notions Regarding Parallel Programming and

Distributed Systems - consists of Chapter 2 and Chapter 3 and has the role

of providing the reader with an overview regarding parallel computing and dis-

tributed systems and why they are needed for improving the performance of

todays applications.

Chapter 2: Parallel Computing Overview discuses how parallel comput-

ing appeared, gives motivations of why parallel systems and parallel programming

are needed, presents the di�erent levels of parallelism and enumerates the main

types of parallel hardware that were created based on the Von Neumann archi-

tecture. This chapter also gives an insight on how the performance of a parallel

program can be assessed (speedup, e�ciency, Amdahls law, etc.).

7

Thesis Summary

Part 1: Theoretical Notions Regarding Parallel Programming and Distributed Systems

Part 2: Available Means for Parallelizing Applications and Used Technologies and Frameworks

Part 3: Practical Applications and Use Cases

Chapter 2: Parallel Computing Overview

Chapter 3: Distributed Systems Overview

Chapter 4: Means of Parallelizing Applications

Chapter 5: Used Technologies and Frameworks

Chapter 6: Workflow Use Cases

Chapter 7: Using Hadoop to Optimize Run Times of Twitter Data Processing

Chapter 8: Agent-based Cloud Resource Negotiation

Chapter 1: Introduction

Chapter 9: Conclusions

Figure 1: Thesis structure �ow.

8

Thesis Summary

In [26] a discussion on why parallel systems and parallel programing are needed

takes place. The author argues that the need for parallel computing arose with the

need for ever-increasing performance. The development of research in areas such

as: climate modeling, protein folding, drug discovery, energy research, etc., and

the need for fast web searches and more realistic image rendering and computer

games lead to the increase of performance appetite. This could only be achieved

trough parallel systems and by using parallel programs.

With the time the evolution of single processor performance mainly consisted

of increasing the number of transistors on integrated circuits. In order to ac-

commodate more performance in the same component the size of the transistors

was gradually decreased as their speed increased. But as the performance of the

transistors increased so did their power consumption. This resulted in an increase

of heat generated by the component. According to [14] during the �rst decade of

the twenty-�rst century, air-cooled circuits are close to their limit of their ability

to dissipate heat.

Another issue that lead to the need for parallel systems is the fact that there is

a minimum voltage required to drive the microprocessor at the desired frequency,

which is presented in [4]. This minimum voltage is approximately proportional

to the frequency. This leads to the well-known cube-root rule that the speed s is

roughly proportional to the cube-root of the power P, or equivalently, P (s) = s3.

This means that increasing the speed by a speci�c amount causes an increase in

power consumption by the same amount to the power of three. In order to be

able to discuss parallel computer architectures we �rst have to identify di�erent

levels at which parallelism may occur. Based on the data presented in [23], [14]

and [26] we have created a short list of the main parallelization levels:

Parallel hardware and software has evolved from conventional serial hardware

and software. In 1966 Michael Flynn [?] proposed a classi�cation of computer

architectures based on the number of concurrent instruction and data streams:

SISD (Single Instruction, Single Data), SIMD (Single Instruction, Multiple Data),

MISD (Multiple Instruction, Single Data), and MIMD (Multiple Instructions,

Multiple Data). When it comes to evaluating the performance achieved by par-

allelizing a certain program or the execution of an application there are several

means that can be of great help. Usually programmers use a combination of them

9

Thesis Summary

in order to better assess the results achieved and to help them decide if future

changes are still needed. Some of these means of appreciating the e�ectiveness of

the parallelizations are presented in [26]. When it comes to parallelizing applica-

tions in order to achieve better execution times the best result that one can hope

for is to equally divide the work among the available cores without introducing

extra work for them.

If we succeed in doing this, and we run our program with p cores, one thread

or process executing on each core at a time, then our parallel program should

run, in theory, p times faster than the serial program. If we consider Tserial the

time needed for the serial execution of the application and Tparallel the parallel

execution time, then the best we can hope for is Tparallel = Tserial/p. If this

happens we can appreciate that our parallel program has a linear speedup.

S =
Tserial

Tparallel

, (1)

Back in the 1960s, Amdahl [3] made an observation thats become known as

Amdahl law. It says, roughly, that unless virtually all of a serial program is par-

allelized, the possible speedup is going to be limited � regardless of the number

of cores available.

We can say about a technology that it is scalable if it can handle increasing

problem sizes. In the case of parallel programs scalability refers to maintaining

the same level of e�ciency by varying the number of processes/threads and the

problem size.

There are several indicators that help us evaluate the performance of the

parallelization of a program. The ones presented here represent only a small part

of them.

Chapter 3: Distributed Systems Overview presents an overview regard-

ing di�erent types of distributed systems (clusters, grids, clouds), presents their

advantages and disadvantages, and focuses more on cloud computing. Its busi-

ness models, advantages and disadvantages are presented as well as a comparison

between the main types of distributed systems presented.

In their book about distributed systems [33] Tanenbaum and Steen de�ne

such a system as follows:

10

Thesis Summary

A distributed system is a collection of independent computers that appear to

the users of the system as a single computer

Such a system contains a number of independent computers that cooperate

with one another over a communications network in order to achieve a speci�c

objective. One of the subgroups of distributed computing systems are clusters.

[6] and [27] de�ne clusters as follows:

A Cluster is a type of parallel and distributed system, which consists of a

collection of inter-connected stand-alone computers working together as a single

integrated computing resource.

Another subgroup of distributed computing systems are grids. [6] and [27]

de�ne them as follows:

A Grid is a type of parallel and distributed system that enables the sharing,

selection, and aggregation of geographically distributed `autonomous' resources

dynamically at runtime depending on their availability, capability, performance,

cost, and users' quality-of-service requirements.

One vision of 21st century computing is that users will access Internet services

from anywhere based on a pay-as-you-go pricing model. [7] envisions the cloud

computing power as the 5th utility (after water, electricity, gas, and telephony).

This computing utility is supposed to provide the basic level of computing service

that is considered essential to meet the everyday needs of the general community.

A number of computing paradigms were proposed for delivering such a utility.

The newest is cloud computing. This is only a reduced set of the characteristics

that were given to cloud computing so far:

• pay-per-use pricing model

• elastic capacity and the illusion of in�nite resources

• resources are abstracted or virtualized

• on-demand self-service/elasticity

The majority of work done in this area also contains data about cloud computing

business models, among them the works of [20], [35], [1], , [23], [6]:

11

Thesis Summary

• Infrastructure-as-a-Service � infrastructure providers (IPs) manage a

large set of computing resources, such as storing and processing capacity.

Through virtualization, they are able to split, assign and dynamically resize

these resources to build ad-hoc systems upon customer demand.

• Platform-as-a-Service � cloud systems can o�er an additional abstraction

level: instead of supplying a virtualized infrastructure, they can provide the

software platform on which systems run.

• Software-as-a-Service � there are services of potential interest to a wide

variety of users hosted in cloud systems. This is an alternative to locally

run applications.

Part II - Available Means for Parallelizing Applications and Used

Technologies and Frameworks - consists of Chapter 4 and Chapter 5 and

elaborates on the main means available on the market for application paralleliza-

tion (work�ows and MapReduce paradigms). This part gives an overview of the

main frameworks and technologies used in the practical applications section: the

Askalon framework for developing scienti�c work�ows that can be run on grids or

clouds; Hadoop, a Java implementation of the MapReduce paradigm that allows

processing of large data in a parallel manner; and Eucalyptus, a private cloud

platform that enables users to create their in-house cloud infrastructures.

Capitolul 4: Available Means for Parallelizing Applications describes

the main technologies (work�ows, MapReduce) present on the market that allow

researchers that have limited parallel programming skills to parallelize their ap-

plication in order to limit their running costs and at the same time increase their

performance.

According to [17] the number of multiprocessor research papers has constantly

increased since 2001 and surpassed its peak point in the last years. [32] argues

that one of the next challenges for this research area is concurrency. Nowadays

software is in�uenced by the industry's requirements to create larger systems that

deal with greater problems and that should exploit the ever-growing capabilities

of computing and storage resources.

Another challenge that current and future software will need to deal with is

data, the volume of which increases faster than the processing power of compu-

12

Thesis Summary

tational resources. [16] estimate that planned and future experiments are going

to generate orders of magnitude more data than has been collected in the entire

human history. Processing this data will require the usage of more computing

and communication power than was possible until a few years ago.

One of the existing ways for parallelizing the execution of applications over

distributed heterogeneous resources are work�ows. This section will deal with

de�ning the work�ow concept and analyzing how this paradigm can in�uence the

execution of scienti�c/business applications.

�A scienti�c work�ow is the process of combining data and processes

into a con�gurable, structured set of steps that implement semi-automated

computational solutions of a scienti�c problem.� [2]

The Work�ow Management Coalition de�ne the work�ow as:

�The automation of a business process, in whole or part, where docu-

ments, information or tasks are passed from one participant to another

to be processed, according to a set of procedural rules.� [18]

When scienti�c work�ows �rst appeared in the late 1990s, they were mainly used

for visualization purposes. Since then there has been signi�cant development

in technology [34]. Some of them that are of higher interest for WFMS are:

component-oriented frameworks, data and computational grids, service-oriented

architecture and web services, semantic data models and tools to increase domain-

speci�city, virtual organizations, peer-to-peer networks, virtualization and cloud

computing. They all marked the evolution and improvement of WFMS in one way

or another. Thus, scienti�c work�ows have evolved to satisfy di�erent scienti�c

requirements, computational technologies and scienti�c approaches, leading to a

complete transformation of the scienti�c method. With time they evolved from

state-of-the-art to commodity, thus having a great impact on scienti�c studies.

Another mean used for parallelizing applications was the MapReduce paradigm

[8], which is designed to simplify the concepts around large scale distributed com-

puting and allows dealing with large datasets.

It is divided into two steps: map and reduce. The map function takes a single

instance of the type key/value pair as an input. The output of the function

13

Thesis Summary

are key/value pairs that are grouped by key and are used as an input for the

reduce function. Based on the key value and the list of values outputted by the

map function, the reduce function performs some computations over that list and

outputs key/value pairs.

Chapter 5: Used Technologies and Frameworks � gives details on the

frameworks used in order to test the e�ciency of application parallelization. The

Askalon framework is described since it is one of the main work�ow development

platforms that allow users to harvest cloud resources. For the parallelizing the

processing of large data the Hadoop framework was chosen. The main computing

infrastructure used for running the experiments was a private cloud based on the

Eucalyptus platform.

Askalon [10] is a grid application development and computing environment

whose �nal goal is to provide an invisible grid to the application developers. It

was extended in order to be able to run on cloud resources too. In Askalon

the user composes grid work�ow applications at a high-level of abstraction using

an XML-based language (AGWL) that shields the application developer from

the grid/cloud. The AGWL representation of a work�ow is then given to the

middleware services (run-time system) for scheduling and reliable execution.

In 2004 Doug Cutting [25], a well known open-source software developer,

decided to create his own implementation of the MapReduce algorithm previously

developed by Google. He named the new software after the name of a stu�ed

elephant his child had.

Hadoop has two main components: HDFS (Hadoop's distributed �le system)

and MapReduce. HDFS stores �les across a collection of servers in a cluster. Files

are decomposed into blocks, and each block is written to more than one of the

servers (the implicit value is 3, but can be customized by users). This replication

provides both fault-tolerance (loss of a single disk or server does not destroy a

�le) and performance (any given block can be read from one of several servers,

improving system throughput).

[24] presents Eucalyptus, an open-source cloud-computing framework that

uses computational and storage infrastructure commonly available to academic

research groups. Eucalyptus has several components that interact with one an-

other through well-de�ned interfaces.

14

Thesis Summary

The architecture of the Eucalyptus system is simple, �exible and modular with

a hierarchical design re�ecting common resource environments found in many

academic settings. In essence, the system allows users to start, control, access,

and terminate entire virtual machines using an emulation of Amazon EC2's SOAP

and �Query� interfaces. That is, users of Eucalyptus interact with the system

using the exact same tools and interfaces that they use to interact with Amazon

EC2.

Each high-level system component is implemented as a stand-alone web ser-

vice. This has the following bene�ts: �rst, each web service exposes a well de�ned

language-agnostic API in the form of a WSDL document containing both opera-

tions that the service can perform and input/output data structures. Second, we

can leverage existing web service features such as web service security policies for

secure communication between components.

Part III - Practical Applications and Use Cases - consists of Chapter

6, Chapter 7, and Chapter 8. This part holds all the study cases conducted in

order to assess the e�ciency provided by various distributed systems and parallel

programming for applications' execution time and costs.

Chapter 6: Work�ows Use Cases describes two di�erent work�ows: the

eBay work�ow 1 that is based on an eBay data crawler and the RainCloud 2

work�ow that is based on a real life meteorological application. While the �rst

one is I/O intensive the second one is computationally intensive. The two work-

�ows were implemented using the Askalon framework and were run on cloud

resources in order to test their performance and estimate their execution costs.

The work�ow used for this case study was implemented in the Askalon work�ow

management system. In order to be able to create a work�ow for an application

several steps need to be followed. These steps are presented as a suggestion in

[9]:

1part of the work presented in this chapter was published in Gabriela Andreea Morar,
Cristina Ioana Muntean, Gheorghe Cosmin Silaghi, �Implementing and Running a Work�ow
Application on Cloud Resources�, Economy Informatics, vol. 15, no. 3/2011, pages 15-27

2part of the work presented in this chapter was published in Gabriela Morar, Felix
Schueller, Simon Ostermann, Radu Prodan, and Georg Mayr, �Meteorological Simulations in
the Cloud with the ASKALON Environment�, CoreGRID/ERCIM Workshop on Grids, Clouds
and P2P Computing, Rhodes Island, August, 2012, accepted

15

Thesis Summary

Figure 2: eBay work�ow implemented in Askalon.

• Identify sections of the application that have the least connections with each

other. These sections will become independent activities in the work�ow.

• Establish sections of the code that could be run in parallel. These sections

will be included in a parallel section of the work�ow.

• If some previously de�ned activities have too many dependencies between

each other, they should be grouped together in a single activity.

• Input and output data needed for each activity should to be identi�ed.

• Correlations between activities must be established.

Figure 2 presents the work�ow designed for the eBay data retrieval application.

Nrusers is the activity in which the number of sellers is being computed

based on the input �le that contains the list with all the sellers. The number

of sellers is not �xed because the content of the input �le containing the sellers'

user names can vary. This is one of the steps that ensure the scalability of the

application. In this same activity the large �le containing the users' names is

divided into several di�erent �les that will serve as input for each activity in the

parallel section.

ParallelSec is the section of the application that was identi�ed as being

parallel. In this activity, data about the sellers is being retrieved based on the

16

Thesis Summary

<<ParallelFor>> ParallelFor_1

PrepareLM
<<Activity>>

PostprocessSingle
<<Activity>>

then

LinearModel
<<Activity>>

else

PostprocessFinalLM
<<Activity>>

PostprocessFinalPPS
<<Activity>>

else then

thenelse

topo - Topography.tar.gz
datain - DataIN.tar.gz
NGroup
decisonPostprocessFinal
PostpreocessFinalPPS
decisionNotPostprocessFinal

topo
datain

Template_iterations.txt
PLM_g_out.tar.gz

PLM_g_out.tar.gz
templateIterations from
Template_iterations.txt

LM_g_out.tar.gz

PLM_g_out.tar.gz
templateIterations from
Template_iterations.txt
ForLoop goes from 1 to
templateIterations

PPS_g_out.tar.gz

PPS_g_out.tar.gz
LM_g_out.tar.gz

LM_g_out.tar.gz

FINAL.tar.gz

PPS_g_out.tar.gz

FINAL.tar.gz

Figure 3: Graphical work�ow representation in Askalon.

names contained by the �les previously created in the Nrusers activity.

The last activity, CopyFiles, has the main purpose of gathering all the data

contained in the two collections produced by the parallel for section of the work-

�ow.

We run experiments for the eBay work�ow on di�erent types of cloud instances

and using input �les with 6000 and 12000 users. The results show that the

application can successfully run on cloud resources with a speed up of almost 40,

speedup computed based on the time archived by running the application in a

sequential manner.

The application for which the RainCloud work�ow is meant to investigate

and simulate precipitation in mountainous regions with a simple meteorological

numerical model called linear model of orographic precipitation (LM) [5]. Appli-

cations of this model range from climatological studies to hydrological aspects.

As LM is a very simple and basic model, it can be run easily in a large number of

parameter studies. Figure 3 depicts the graphical representation of the work�ow

and the input and output �les needed by each activity. Based on the desired out-

put and the purpose of running the work�ow more scenarios or execution paths

were created. We designed the work�ow to be run in three ��avors�:

17

Thesis Summary

• ideal �avor belongs to the operational area in which the whole setup uses

idealized topography and atmospheric conditions. This work�ow is mostly

used for model testing or investigation of meteorological phenomena.

• semi-ideal �avor belongs to the research area and is designed such that

either the topography is idealized or the atmospheric input is simpli�ed,

however, at least one part has real world application. For example, the

topography is based on real topography data, but the atmospheric condi-

tions are �manually� given. This �avor is used for e.g. interpretation of

meteorological measurements.

• real �avor belongs to the research area such that both topography and at-

mospheric conditions are given by a real-world observations or full numerical

models. This �avor is used for forecasting/downscaling precipitation.

In general, the execution of one work�ow with the experimental input data

would cost approximately 2.72$ if executed on Amazon EC2 using 4 c1.xlarge

instances (0.68$/hour). This result applies to all presented work�ow instances,

as their execution time is lower than the one-hour payment granularity of EC2.

SIMON: the next sentence does not make sense

For a yearly cost of 992.8$ this work�ow can be run once every day, which

is only a fraction of the amount the purchase of a comparable, dedicated system

would cost.

Scienti�c work�ows are now being used on a large scale in order to help

scientist run their applications and take advantage of the computational resources

that they have at their disposal. At the beginning, work�ows appeared as a means

for scientists to better identify the steps their applications were made of and to

help them scale the applications by identifying the component activities and

the correlations existent between them. Nowadays, many work�ow management

systems exist, some of the most used being mentioned in the introduction section,

but the majority of them being employed to run work�ows on grid and cluster

resources. Only in the near past they were modi�ed in such a manner that they

could take full advantages of the newly emerged kind of computational resources,

namely cloud resources.

18

Thesis Summary

Chapter 7: Using Hadoop to Optimize Run Times of Twitter Data

Processing - describes how Hadoop can be used in order to achieve better execu-

tion times for applications that need to process large quantities of data. For the

application part the Mahout [22] library was used, since it o�ers a large number

of machine learning algorithms and is implemented in such a way that it runs on

a Hadoop based infrastructure. We conducted a series of experiments i order to

assess how the type of the storage used by the clusters in�uences Hadoop's perfor-

mance. We also tried to vary di�erent con�gurations parameters based on which

Hadoop's allows users to tune their clusters according to their needs. Based

on these setups we assessed the performance achieved in running the k-means

clustering algorithm on users data retrieved from Twitter1.

Hadoop has over 165+ parameters that allow the user to tune the jobs, maps

and reduces and the HDFS. Finding the right con�guration that will enable your

applications to perform the best is not a trivial task. When con�guring a certain

Hadoop installation there are several key factors that need to be taken into ac-

count.It is the user's duty to tune Hadoop such that it o�ers the best performance

for a certain type of application. Several tips regarding Hadoop performance tun-

ing can be found in [28],[37], and [19].

In order to test the performance of Mahout algorithms we created 2 clusters

similar in size but having di�erent storage characteristics. The clusters were

created using Oracle VirtualBox 4.1.18 [36] virtual machines having the same

characteristics. Both clusters on which Hadoop runs have 1 master node and

3 slave nodes as presented in Figure 4. The main di�erence between them is

the storage type: the �rst cluster (ClusterHD) runs on a hard disk while the

second one (ClusterSSD) runs on an SSD. After setting up the Hadoop clusters

it is recommended to test their performance in order to see if they were set

up properly. Hadoop comes with a library hadoop − ∗ − test.jar that includes

some benchmarks meant to help developers test the performance of their clusters.

A short introduction about using these benchmarks is presented in [37]. It is

recommended to test the clusters with an input dataset similar to the data that

1part of the work presented in this chapter was published in Cristina Ioana Muntean,
Gabriela Andreea Morar, and Darie Moldovan, "`Exploring the meaning behind Twitter
hashtags through clustering"', in Lecture Notes in Business Information Systems, vol. 127,
pages 231 - 242. Springer-Verlag Berlin, 2012

19

Thesis Summary

Hadoop Master
NameNode
DataNode

Machine 1

Hadoop Slave
DataNode

Machine 3

Hadoop Slave
DataNode

Machine 4

Hadoop Slave
DataNode

Machine 2

Figure 4: Hadoop cluster architecture.

user will later use.

For our experiments we used a dataset collected through the Twitter Stream-

ing API for a period of one week, starting 10.12.2011 until 16.12.2011. The

resulting dataset represents a random sample of 10% of the entire daily activity.

K-means [21] is a rather simple but well known unsupervised learning algo-

rithm for clustering. Given a dataset, the algorithm partitions data into a number

of clusters. This number of clusters, k, is �xed a priori.

Our experiments show that Hadoop's performance can vary signi�cantly based

on the installation being done on an SSD or a hard disk. Also we can say that ex-

ecution times can be greatly decreased just by adding extra nodes to the Hadoop

cluster. The achieved performance is also in�uenced by the time of the input size

and the network type that connects the clusters nodes.

Due to the fact that Hadoop was created in such way that it can also take

advantage of cloud resources we can say that if scientists need to occasionally

process large data in a limited amount of time and with low costs, then this

could be a good solution to their problems.

Chapter 8: Agent-based Cloud Resource Negotiation presents an ex-

ample of how intelligent agents can be used in order to negotiate cloud resources

that better �t users requirements. In this chapter we described a negotiation

domain (CloudDomain)1 that we implemented using the Genius platform and we

1part of the work presented in this chapter was published in Gabriela Andreea Morar,
and Andreea Ilea, Alexandru Butoi, Gheorghe Cosmin Silaghi, �Agent-based Cloud Resources
Negotiation�, in Proceeding of 8th International Conference on Intelligent Computer Communi-

20

Thesis Summary

test its performance in the context of multi-party negotiations. The negotiation

pro�le is generated in a semi-automatic way based on the data o�ered by private

clouds providers through their Cloud Controllers. We studied the performance

of the implemented negotiation domain in the context of cloud resource negotia-

tions where a buyer need to select one cloud provider from a series of 10 available

options. Intelligent agents using Bayesian and Q-learning learning mechanisms

were used. The negotiations protocols used were the ones described in [29] and

[30].

We mention that we have implemented a semi-automatic system for the gen-

eration of negotiation pro�les. This generates the cloud providers' preferences

pro�les based on the data given directly by them. The only part of the pro�les

that can't be generated in automated manner is the importance cloud provider

give to each of the negotiated issues. This problem could be solved by imple-

menting a machine learning mechanism that could compute these values based

on the preferences expressed by cloud providers in previous negotiation rounds.

4 Contributions

This section will summarize the contributions that were presented in each chapter

of the thesis:

Chapter 2: Parallel Computing Overview - presents a wide theoretical

study of parallel computing: how it appeared, what were the causes that led to

its appearance and gives examples on how the performance of parallel programs

can be correctly measured.

Chapter 3: Distributed Systems Overview - contains a large theoretical

study regarding the existing types of distributed systems and brings together sev-

eral comparisons that were made between grid, clusters and cloud computing in

the domain literature. It also provides a detailed study regarding cloud comput-

ing: the way it appeared, its business models, its advantages and disadvantages,

etc.

Chapter 4: Available Means for Paralleling Applications - contains

an overview regarding the main means existing on the market that allow scien-

cations and Processing, pag. 297-300 30 August - 1 Septembrie, 2012 in Cluj-Napoca, Romania

21

Thesis Summary

tists or businessmen to parallelize their applications in order to achieve better

execution times and reduce costs. We focused on the work�ow paradigm and

the MapReduce paradigm. The �rst one usually addresses applications that need

high computing power, while MapReduce is mainly intended to be used for ap-

plications that process large amounts of data. We studies the way in which they

work in order to be able to apply them to optimize the execution of certain

applications.

Chapter 5: Used Technologies and Frameworks - describes the tech-

nologies and platforms used for assessing the above-presented means for par-

allelizing applications and gives advantages and disadvantages regarding their

complexity of use. We thoroughly studies these frameworks and platforms and

identi�ed their advantages and disadvantages.

Chapter 6: Work�ows Use Cases - presents the two work�ows that we

created based on two rather di�erent applications: one I/O intensive (eBay user

data crawler) and the second one computationally intensive (a real life mete-

orological application that will be used by the Tyrolean avalanche service for

forecasting possible avalanches). Both work�ows were implemented using the

Askalon framework and their performance was tested on cloud resources. We

identify the main sections of both applications, and based on the sections that

can only be run in a serial manner and the ones that can run in parallel we im-

plemented the two work�ows. We also applied di�erent techniques that lead to

lower execution times, resulting in lower costs. Especially for the second applica-

tion, reduced execution time is of great importance due to the fact that the data

processed by it is needed daily at a certain time.

Chapter 7: Using Hadoop to Optimize Run Times of Twitter Data

Processing - describes the way in which users, that consider Hadoop as a tool

for running their data intensive applications, can create and con�gure their own

clusters in order to achieve better results regarding execution time. This also

ensures lower execution costs in case the user chooses cloud resources as their

computing infrastructure. We conducted some performance tests on di�erent

types of Hadoop cluster con�gurations and compared the gathered results.

Chapter 8: Agent-based Cloud Resource Negotiation - describes a ne-

gotiation domain that we created in order to be used by agents to negotiate cloud

22

Thesis Summary

resources in the context of a market were several di�erent cloud providers compete

for the same users. CloudDomain contains 5 di�erent issues (CPU, RAM, num-

ber of available instances, price and hard disk size). The pro�le was implemented

in order to be used by the Genius [11] framework. The created pro�les were used

in order to simulate the way in which populations consisting of 10 agents having

di�erent structures and Q-learning or Bayesian learning mechanisms behave in

the context of cloud resource negotiation. A one-to-many negotiation protocol

was used for these experiments. We created a mechanism that can generate in

a semi-automated manner the negotiation pro�les based on the characteristics

revealed by private clouds (in our case an Eucalyptus private cloud).

5 Research Mobility

During my PhD I had the opportunity to go for a research mobility abroad. For

eight months I was part of the Distributed and Parallel Systems Group from

the Institute of Computer Science, University of Innsbruck, Austria under the

supervision of Assistant Prof. Radu Prodan. During my stay there I collaborated

with my supervisor on one of his projects: the RainCloud project. The project is a

collaboration between the Distributed and Parallel Systems Group, the Institute

for Meteorology and Geophysics, University of Innsbruck and Tyrolean avalanche

service (�Tiroler Lawinenwarndienst� (LWD)). The �nal scope of the project was

to provide the LWD with a meteorological application which will run each day

at the same time and which will provide them with realistic forecasts about the

precipitation quantity that might occur in a certain area.

The project had two main parts:

• First Part � implementing the meteorological application that based on a

certain topology and meteorological input data will generate the forecast.

This part was taken care of by the Institute for Meteorology and Geophysics,

University of Innsbruck.

• Second Part � creating a work�ow using the Askalon grid/cloud appli-

cation development platform. The work�ow had optimizing the execution

23

Thesis Summary

times of the applications by parallelizing some of its areas as a purpose; �nd-

ing a way how to run the application with the best the performance and

minimum costs. This part was under the responsibility of the Distributed

and Parallel Systems Group from the Institute of Computer Science, Uni-

versity of Innsbruck.

As part of the Distributed and Parallel System Group I had the role of im-

plementing the work�ow for the meteorological application implemented by the

other party. My tasks were:

• collaborating with the person that implemented the meteorological appli-

cation and identifying the di�erent sections of the application that could

be mapped as single activities or parallel activities in the work�ow.

• identifying all the dependencies existing between the previously found ac-

tivities in order to be able to de�ne them in the work�ow.

• collaborating with the person that created the application in order to make

the necessary changes needed to improve the performance of the application.

• implementing the actual work�ow based on the above-presented application.

• testing the work�ow's performance on cloud resources; �rst on the private

cloud that the research group had at its disposal and then on real pub-

lic cloud instances in order to be able to estimate the costs generated by

executing the application each day for an entire year.

As a result of my research mobility in Austria I published an article with

my coworkers based on the work�ow we implemented. The article is: Gabriela

Morar, Felix Schueller, Simon Ostermann, Radu Prodan, and Georg Mayr, �Me-

teorological Simulations in the Cloud with the ASKALON Environment�, Core-

GRID/ERCIM Workshop on Grids, Clouds and P2P Computing, Rhodes Island,

August, 2012, accepted.

The research mobility allowed me to gather substantial experience in the �eld

of distributed systems, especially grids and clouds. I also learned how work-

�ows operate, how to implement them and how to modify applications in order

24

Thesis Summary

to increase their performance. The entire practical and theoretical experience

gathered during this period had a signi�cant impact on my research.

6 Results Dissemination

The results obtained during the time of the PhD were presented at several inter-

national conferences or workshops or were published in di�erent journals. A list

of the publications is presented bellow:

• Gabriela Andreea Morar, Cristina Ioana Muntean, Gheorghe Cosmin

Silaghi, �Implementing and Running a Work�ow Application on Cloud Re-

sources�, Economy Informatics, vol. 15, no. 3/2011, pages 15-27

• Cristina Ioana Muntean,Gabriela Andreea Morar, and Darie Moldovan,

"`Exploring the meaning behind Twitter hashtags through clustering"', in

Lecture Notes in Business Information Systems, vol. 127, pages 231 - 242.

Springer-Verlag Berlin, 2012.

• Alexandru Butoi, Gabriela Andreea Morar, and Andreea Ilea, �Two-

Phased Protocol for Providing Data Con�dentiality in Cloud Storage En-

vironments�, in Lecture Notes in Business Information Systems, vol. 127,

pages 220 - 230. Springer-Verlag Berlin, 2012.

• Gabriela Andreea Morar, and Andreea Ilea, Alexandru Butoi, Gheorghe

Cosmin Silaghi, �Agent-based Cloud Resources Negotiation�, in Proceeding

of 8th International Conference on Intelligent Computer Communications

and Processing, pages 297-300 August 30 - September 1, 2012 in Cluj-

Napoca, Romania

• Gabriela Morar, Felix Schueller, Simon Ostermann, Radu Prodan, and

Georg Mayr, �Meteorological Simulations in the Cloud with the ASKALON

Environment�, CoreGRID/ERCIM Workshop on Grids, Clouds and P2P

Computing, Rhodes Island, August, 2012, accepted

• Alexandru Butoi, Gabriela Andreea Morar, Andreea Ilea, �Agent-Based

Framework for Implementing and Deploying of SOA�, Journal of Mobile, Vol

25

Thesis Summary

4, No 2 (2012), Embedded and Distributed Systems (JMEDS) ISSN: 2067

- 4074, pages 107-113

• Alexandru Butoi, Andreea Ilea and Gabriela Andreea Morar, �Concep-

tual Design for Business SOA using Object-Oriented Paradigm�, in Proceed-

ings of �The Eleventh International Conference on Informatics in Economy

IE 2012�, Bucharest, Romania, pages 41-45

• Gabriela Andreea Morar, Cristina Ioana Muntean and Nicolae Tomai ,

�An Adaptive M-learning Architecture for Building and Delivering Content

based on Learning Objects�, The Second Romanian Workshop on Mobile

Business, Cluj-Napoca, Romania, published Economy Informatics, vol. 10,

no. 1/2010, pages 63-73

7 Future Research Direction

The research conducted for the current thesis provided me with a greater knowl-

edge regarding parallel computing, distributed systems (especially cloud com-

puting) and means of negotiating computation resources using intelligent agents.

The experience accumulated so far, as well as the need that exists on the mar-

ket for ensuring on-time computational resources lead to identify possible future

research directions:

• implementing a module for Askalon, which will have the role of negotiating

cloud resources at runtime based on user's QoS requirements and based on

the estimation of resources needed by the next activity in a work�ow. In

the �rst phase this negotiation mechanism could be applied to federated

private clouds composed of academical clouds.

• implementing a scheduler that will schedule jobs based on the estimated

energy consumption of the available resources, as reducing energy consump-

tion is likely to be the main direction that scientist are interested in after

cost optimization and time e�ciency.

26

Thesis Summary

• implementing a module for Genius that will be capable of automatically

generating negotiation pro�les based on the characteristics exposed by cloud

providers, pro�les that will be further used by a broker agent that has the

role to negotiate with users on behalf of the cloud providers.

• implementing a module that will automatically install Hadoop on nodes

newly added to a cluster and con�gure them according to the master node.

Implementing and creating a model between di�erent Hadoop con�gura-

tions and cluster infrastructures, that will be able to suggest to users the

best con�guration for their current cluster. This is a multi-objective opti-

mization problem since Hadoop has a large number of con�gurable param-

eters and setting them to optimal values is not intuitive for either new or

experienced users.

These are only a few of the main future research directions that could be

followed based on the research conducted so far. All of them refer to areas that

currently are of great interest to the research community.

������������������������

27

List of Figures

1 Thesis structure �ow. 8

2 eBay work�ow implemented in Askalon. 16

3 Graphical work�ow representation in Askalon. 17

4 Hadoop cluster architecture. 20

28

References

[1] Technical report. 11

[2] I. Altintas, O. Barney, Z. Cheng, T. Critchlow, B. Ludaescher, S. Parker,

A. Shoshani, and M. Vouk. Accelerating the scienti�c exploration process

with scienti�c work�ows. In Journal of Physics: Conference Series, vol-

ume 46, page 468. IOP Publishing, 2006. 13

[3] Gene M. Amdahl. Validity of the single processor approach to achieving

large scale computing capabilities. In Proceedings of the April 18-20, 1967,

spring joint computer conference, AFIPS '67 (Spring), pages 483�485, New

York, NY, USA, 1967. ACM. doi: 10.1145/1465482.1465560. URL http:

//doi.acm.org/10.1145/1465482.1465560. 10

[4] Nikhil Bansal. Dynamic speed scaling to manage energy and temperature.

In In IEEE Syposium on Foundations of Computer Science, pages 520�529,

2004. 9

[5] Idar Barstad and Felix Schüller. An Extension of Smith's Linear Theory

of Orographic Precipitation: Introduction of Vertical Layers. Journal of

the Atmospheric Sciences, 68(11):2695�2709, November 2011. ISSN 0022-

4928. doi: 10.1175/JAS-D-10-05016.1. URL http://journals.ametsoc.

org/doi/abs/10.1175/JAS-D-10-05016.1. 17

[6] Rajkumar Buyya. High Performance Cluster Computing: Architectures and

Systems. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999. ISBN

0130137847. 11

29

http://doi.acm.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1465482.1465560
http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-10-05016.1
http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-10-05016.1

REFERENCES

[7] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and

Ivona Brandic. Cloud computing and emerging it platforms: Vision, hype,

and reality for delivering computing as the 5th utility. Future Generation

Comp. Syst., 25(6):599�616, 2009. 11

[8] J. Dean and S. Ghemawat. Mapreduce: Simpli�ed data processing on large

clusters. Communications of the ACM, 51(1):107�113, 2008. 2, 13

[9] T. Fahringer and Askalon Team. Askalon grid environment, 2007. 15

[10] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. Seragiotto Jr, and H. L.

Truong. Askalon: a tool set for cluster and grid computing. Concurrency

and Computation: Practice and Experience, 17(2-4):143�169, 2005. 14

[11] Cristian Figueroa, Nicolas Figueroa, Alejandro Jofre, Akhil Sahai, Yuan

Chen, and Subu Iyer. A Game Theoretic Framework for SLA Negotiation.

Technical report, Enterprise Systems Storage Laboratory, HP Laboratories,

2008. http://www.hpl.hp.com/techreports/2008/HPL-2008-5.pdf, consulted

on 5 August 2011. 23

[12] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid:

Enabling scalable virtual organizations. Int. J. High Perform. Comput.

Appl., 15(3):200�222, 2001. ISSN 1094-3420. doi: http://dx.doi.org/10.

1177/109434200101500302. 5

[13] Hadoop. Hadoop website. http://hadoop.apache.org, 2012. 2

[14] John L. Hennessy and David A. Patterson. Computer Architecture, Fourth

Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2006. ISBN 0123704901. 9

[15] A. J. G. Hey, S. Tansley, and K. M. Tolle. The fourth paradigm: data-

intensive scienti�c discovery. Microsoft Research Redmond, WA, 2009. 4

[16] T. Hey and A. Trefethen. The data deluge: An e-science perspective. In

Grid computing, pages 809�824. Wiley Online Library, 2003. 13

30

http://hadoop.apache.org

REFERENCES

[17] M.D. Hill and M.R. Marty. Amdahl's law in the multicore era. Computer,

41(7):33�38, 2008. 12

[18] D. Hollingsworth. Work�ow management coalition: The work�ow reference

model. Technical report, The Work�ow Management Coalition, 1995. 13

[19] S.B. Joshi. Apache hadoop performance-tuning methodologies and best prac-

tices. In Proceedings of the third joint WOSP/SIPEW international confer-

ence on Performance Engineering, pages 241�242. ACM, 2012. 19

[20] Tobias Kurze, Markus Klems, David Bermbach, Alexander Lenk, Stefan Tai,

and Marcel Kunze. Cloud Federation. In Proceedings of the 2nd Interna-

tional Conference on Cloud Computing, GRIDs, and Virtualization (CLOUD

COMPUTING 2011). IARIA, September 2011. 11

[21] J. B. MacQueen. Some methods for classi�cation and analysis of multivariate

observations. In L. M. Le Cam and J. Neyman, editors, Proc. of the �fth

Berkeley Symposium on Mathematical Statistics and Probability, volume 1,

pages 281�297. University of California Press, 1967. 20

[22] Apache Mahout. Mahout website. http://mahout.apache.org, 2012. 19

[23] Dan C. Marinescu. Cloud computing: Theory and practice, 2012. URL

http://www.cs.ucf.edu/~dcm/LectureNotes.pdf. 9, 11

[24] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youse�,

and D. Zagorodnov. The eucalyptus open-source cloud-computing system.

In Cluster Computing and the Grid, 2009. CCGRID'09. 9th IEEE/ACM

International Symposium on, pages 124�131. IEEE, 2009. 14

[25] M. Olson. Hadoop: Scalable, �exible data storage and analysis. IQT Quar-

terly, pages 14�18, 2010. 14

[26] Peter Pacheco. An Introduction to Parallel Programming. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 1st edition, 2011. ISBN

9780123742605. 9, 10

31

 http://mahout.apache.org
http://www.cs.ucf.edu/~dcm/LectureNotes.pdf

REFERENCES

[27] Gregory F. P�ster. In search of clusters (2nd ed.). Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1998. ISBN 0-13-899709-8. 11

[28] B. T. Rao, N. V. Sridevi, V. K. Reddy, and L. S. S. Reddy. Performance

issues of heterogeneous hadoop clusters in cloud computing. Global Journal

of Computer Science and Technology, 11(8), 2011. 19

[29] L. S¦rban, C. �tefanache, G. Silaghi, and C. Litan. A qualitative ascend-

ing protocol for multi-issue one-to-many negotiations. Complex Automated

Negotiations: Theories, Models, and Software Competitions, pages 143�159,

2013. 21

[30] Liviu Dan Serban, Cristina Maria Stefanache, Gheorghe Cosmin Silaghi,

and Cristian Marius Litan. A qualitative ascending protocol for multi-issue

one-to-many negotiations. In Proc. of the 2011 Workshop on Agent-based

Complex Automated Negotiations, Studies in Computational Intelligence.

Springer, 2012. to appear. 21

[31] Kwang Mong Sim. Towards complex negotiation for cloud economy. In

Advances in Grid and Pervasive Computing, volume 6104 of LNCS, pages

395�406. Springer, 2010. 6

[32] H. Sutter. The free lunch is over: A fundamental turn toward concurrency

in software. Dr. Dobb?s Journal, 30(3):202�210, 2005. 12

[33] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Princi-

ples and Paradigms (2nd Edition). Prentice-Hall, Inc., Upper Saddle River,

NJ, USA, 2006. ISBN 0132392275. 10

[34] I.J. Taylor. Work�ows for e-science: scienti�c work�ows for grids. Springer-

Verlag New York Inc, 2007. 13

[35] Luis M. Vaquero, Luis Rodero-merino, Juan Caceres, and Maik Lindner. A

break in the clouds: Towards a cloud de�nition. ACM SIGCOMM Computer

Communication Review, pages 50�55, 2009. URL http://dx.doi.org/10.

1145/1496091.1496100. 11

32

http://dx.doi.org/10.1145/1496091.1496100
http://dx.doi.org/10.1145/1496091.1496100

REFERENCES

[36] Virtualbox. Virtualbox website. https://www.virtualbox.org/, 2012. 19

[37] T. White. Hadoop: The de�nitive guide. Yahoo Press, 2010. 19

33

 https://www.virtualbox.org/

	Contents
	1 Research Motivation
	2 Research Objectives
	3 Thesis Structure
	4 Contributions
	5 Research Mobility
	6 Results Dissemination
	7 Future Research Direction

	List of Figures
	References
	Contents
	1 Introduction
	1.1 Research Motivation
	1.2 Research Objectives
	1.3 Thesis Structure

	I Theoretical Notions Regarding Parallel Programming and Distributed Systems
	2 Parallel Computing Overview
	2.1 Parallel Computing - Background and a Brief History.
	2.2 Why Are Parallel Systems and Parallel Computing Needed?
	2.3 Why Are Parallel Programs Needed?
	2.3.1 Different Levels of Parallelism.
	2.3.2 Steps Needed in Building a Parallel Program

	2.4 The von Neumann Architecture
	2.5 Parallel Hardware
	2.5.1 SISD - Single Instruction, Single Data
	2.5.2 SIMD - Single Instruction, Multiple Data
	2.5.3 MISD - Multiple Instructions, Single Data
	2.5.4 MIMD - Multiple Instructions, Multiple Data

	2.6 Connections Among Concurrent, Parallel and Distributed Computing
	2.7 Performance Evaluation of Parallelization
	2.7.1 Computing Speedup and Efficiency
	2.7.2 Amdahl's Law
	2.7.3 Evaluating the Scalability of the Program
	2.7.4 Timing the Elapsed Times

	2.8 Conclusions

	3 Distributed Systems Overview
	3.1 Distributed Systems Definition
	3.1.1 Main Goals of Distributed Systems
	3.1.2 Pitfalls of distributed systems
	3.1.3 Advantages and Disadvantages of Distributed Systems Over Centralized Systems
	3.1.4 Advantages of Distributed Computing Environments Over Standalone Applications

	3.2 Distributed Systems Types
	3.2.1 Distributed Computing Systems
	3.2.2 Distributed Information Systems
	3.2.3 Distributed Pervasive Systems
	3.2.4 Distributed Computing Systems Types
	3.2.4.1 Clusters Definition
	3.2.4.2 Grid Definition
	3.2.4.3 Cloud Computing Definition
	3.2.4.3.1 Cloud computing characteristics
	3.2.4.3.2 Technologies that lead to the appearance of cloud computing

	3.2.4.4 Advantages and Disadvantages of Cloud Computing
	3.2.4.5 Cloud Computing Types
	3.2.4.5.1 Private cloud
	3.2.4.5.2 Public cloud
	3.2.4.5.3 Hybrid cloud
	3.2.4.5.4 Federated cloud
	3.2.4.5.5 Community Cloud

	3.2.4.6 Cloud Computing Business Models
	3.2.4.6.1 Infrastructure-as-a-Service
	3.2.4.6.2 Platform-as-a-Service
	3.2.4.6.3 Software-as-a-Service

	3.2.5 Cluster, Grid and Cloud Computing Comparison

	3.3 Conclusions

	II Available Means for Parallelizing Applications and Used Technologies and Frameworks
	4 Means of Parallelizing Applications
	4.1 Means for Harvesting Distributed Systems for Running Parallel Applications
	4.2 Using Workflows as a Means for Parallelizing Application Execution
	4.2.1 Workflow Definition
	4.2.2 Life Cycle of Scientific Workflows
	4.2.3 Advantage and Limitations of Workflows
	4.2.3.1 Advantages of scientific workflows.
	4.2.3.2 Limitations of Scientific Workflows.

	4.2.4 Types of Workflows and Workflows Components
	4.2.4.1 Workflow Types
	4.2.4.2 Workflow Modeling Components
	4.2.4.3 Workflow Patterns

	4.2.5 What are Workflow Management Systems
	4.2.6 Requirements of Scientific Workflows Management Systems
	4.2.6.1 User Requirements for Scientific Workflows

	4.3 Using MapReduce for Parallel Data Processing
	4.3.1 What is MapReduce and How Does it Work?
	4.3.1.1 How do MapReduce Jobs Work?

	4.4 Conclusions

	5 Used Technologies and Frameworks
	5.1 Askalon Grid Application Development and Computing Environment
	5.2 Hadoop's Implementation of MapReduce
	5.2.1 What is Hadoop?
	5.2.2 Hadoop's Components
	5.2.2.1 HDFS
	5.2.2.2 MapReduce

	5.3 Hadoop's Infrastructure Topology
	5.4 Hadoop's Advantages and Drawbacks
	5.5 Eucalyptus Private Cloud Environment
	5.5.1 Eucalyptus Components
	5.5.1.1 Node Controller
	5.5.1.2 Cluster Controller
	5.5.1.3 Storage Service (Walrus)
	5.5.1.4 Cloud Controller
	5.5.1.5 Eucalyptus Networking Modes

	5.5.2 Why Use Eucalyptus?
	5.5.3 How to Access the System

	5.6 Conclusions

	III Practical Applications and Use Cases
	6 Workflow Use Cases
	6.1 Run Workflow Use Cases on Askalon
	6.1.1 The eBay Workflow
	6.1.1.1 eBay Crawler Description
	6.1.1.2 Preparing the Application for the Workflow
	6.1.1.3 The eBay Workflow
	6.1.1.4 XML Representation of the eBay Workflow
	6.1.1.5 Experiments and Results for the eBay Workflow
	6.1.1.6 Conclusions Regarding the eBay Workflow

	6.1.2 The RainCloud (Meteorological) Workflow
	6.1.2.1 The RainCloud Linear Model-based Meteorological Application
	6.1.2.2 The RainCloud Workflow
	6.1.2.3 RainCloud Workflow Graphical Modeling
	6.1.2.4 XML Representation of the RainCloud Workflow
	6.1.2.5 RainCloud Workflow Flavors
	6.1.2.6 Experiments and Results for the RainCloud Workflow
	6.1.2.7 Conclusions for the RainCloud Workflow

	6.2 Conclusions

	7 Using Hadoop to Optimize Run Times of Twitter Data Processing
	7.1 Hadoop's Key Factors for Performance Tuning
	7.2 Running Mahout Over Hadoop for Processing Large Data
	7.3 Hadoop Cluster Setup
	7.4 Testing the Cluster's Performance with Benchmarks
	7.5 Twitter Input Dataset
	7.6 Conducted Experiments
	7.6.1 Input Data Preprocessing
	7.6.2 The K-means Algorithm

	7.7 Run Experiments for Testing Hadoop's Performance
	7.8 Performance Results
	7.9 Conclusions

	8 Agent-based Cloud Resource Negotiation
	8.1 Using Intelligent Agents to Negotiate Cloud Resources Overview
	8.2 A Few SLA Negotiation Related Facts
	8.3 Components of a Negotiation Scenario
	8.3.1 The Negotiation Protocols Used
	8.3.2 The Cloud Negotiation Domain
	8.3.3 The Intelligent Agents Used for the Negotiation.
	8.3.3.1 The Q-learning Agent
	8.3.3.2 The Bayesian-Learning Agent
	8.3.3.3 Simple Q-learning Agent and Simple Bayesian Agent

	8.4 Experiments and Results for the Agent-based Resource Negotiation
	8.5 Conclusion

	9 Conclusions
	9.1 Contributions
	9.2 Research Mobility
	9.3 Results Dissemination
	9.4 Future Research Direction

	List of Figures
	List of Tables
	References

	Contents
	1 Research Motivation
	2 Research Objectives
	3 Thesis Structure
	4 Contributions
	5 Research Mobility
	6 Results Dissemination
	7 Future Research Direction

	List of Figures
	References

