UNIVERSITATEA "BABEȘ-BOLYAI" CLUJ-NAPOCA FACULTATEA DE CHIMIE ȘI INGINERIE CHIMICĂ

TEZĂ DE DOCTORAT REZUMAT

ATENA PÎRVAN (CĂS. MOLDOVAN)

CONDUCĂTOR DE DOCTORAT Prof. Dr. MIRCEA V. DIUDEA

2017

UNIVERSITATEA "BABEȘ-BOLYAI" CLUJ-NAPOCA FACULTATEA DE CHIMIE ȘI INGINERIE CHIMICĂ

TOPOLOGIA IN LUMEA NANO REZUMAT

"Imaginația este mai importantă decât cunoașterea. Cunoașterea este limitată la tot ceea ce știm și înțelegem acum, pe când imaginația dă ocol lumii intregi, cuprinzând și ce va fi de cunoscut și de înțeles in viitor." Albert Einstein

> CONDUCĂTOR DE DOCTORAT Prof. Dr. MIRCEA V. DIUDEA

CUPRINS

I. Teoria grafurilor chimice	Page
I.1. Definiții de bază in grafuri	1
I.2. Matrici și indici topologici	3
I.2.1. Matricea Adiacență	3
I.2.2. Matricea Adiacență la distanță	3
I.2.3. Matricea Distanță	4
I.2.4. Matricea Detur	5
I.2.5. Matricea Wiener	6
I.2.6. Matrici de Cluj	7
I.2.7. Matrici Reciproce	8
I.2.8. Matrici Layer and Shell	8
I.2.8.1. Matricea Layer	8
I.2.8.2. Matricea Shell	9
I.3. Indici de Centralitate	11
I.3.1. Indicele de centralitate	11
I.3.2. Ring Signature Index	11
I.4. Simetrie topologică	12
I.5. Polinoame de enumerare	13
I.5.1. Polinomul Omega	13
I.5.2. Polinomul de Cluj	14
I.6. Teoria spectrală a grafurilor	15
I.6.1. Spectrul valorilor propri	15
I.6.2. Energia grafurilor	15
I.7. Poliedre si politopi	16
II. Operații pe mape	23
II.1. Dual	23
II.2. Medial	23
II.3. Trunchiere	24
II.4. Acoperiri cu poligoane	24
II.5. Snub	25

II.7. Quadrupling.26II.8. Septupling.26II.9. Propelling.27III. Noțiuni teoretice despre QSAR.30III.1. Parametri statistici în QSAR.32	
IV. Contribuții personale (Chimie structurală)	
IV.1. Structuri Cell@cell supradimensionale	
IV.2. Acoperiri cu clusteri având simetrie icosaedrală43	
IV.3. Acoperiri cu clusteri având simetrie octaedrală47	
IV.4. Rețele cubice și romb-dodecaedrale55	5
IV.5. Clusteri multi-strat înrudiți cu C ₆₀ 66	
IV.6. Caracteristica lui Euler70	
IV.7. Applicații ale Teoriei spectrale76	
IV.7.1. În clasa propelanilor76	
IV.7.2. În fulerenele C ₄₀ 79	
IV.8. Concluzii	
V. Contribuții personale (QSAR)92	2
V.1. QSAR în clasa fenotiazinelor92	2
V.2. QSAR în clasa triptanilor10	0
V.3. QSAR în derivați de sildenafil119)
V.4. QSAR în clasa cefalosporinelor	2
V.5. QSAR în clasa penicilinelor138	3
V.6. QSAR în derivați de capsaicină14	2
V.7. Concluzii14	9
VI. Concluzii finale152	
VI.1. Concluzii generale152	
VI.2. Lista publicațiilor154	

Abstract Teză

TOPOLOGY OF THE NANOWORLD "Topologia în lumea *nano*" se înscrie în efortul de a dezvălui complexitatea lumii materiale văzută la nivel *nano* (10⁻⁹ m). Pornind de la solidele lui Platon, prin transformări pe mape, au fost concepute structuri complexe. Acestea au fost supuse analizei topologice, având la bază noțiuni precum calculul centralității vîrfurilor, semnatura ringurilor din jurul unui nod/vârf/ atom, RSI, enumerarea figurilor, în concordanță cu Teorema lui Euler. Rezultatele obținute au fost prezentate în două capitole de contribuții personale: *IV*. *Chimie structurală* și *V. Relația cantitativă structură-activitate biologică*. Activitatea de cercetare s-a concretizat în șapte articole publicate, un capitol de carte la editura Springer, trei articole trimise spre publicare, șase prezentări orale la conferințe, trei postere.

Cuvinte-Cheie: graf, cluster multi-strat, clasă de echivalență pe vârfuri, indice topologic, matrice strat, indice de centralitate, hypermoleculă, algoritm TOPO GROUP CLUJ, predicție prin similarite pe clusteri.

I. Teoria grafurilor chimice

Teoria grafurilor chimice este o știință interdisciplinară, între Chimie și Matematică, bazându-se pe noțiuni din Teoria Grafurilor, Teoria Seturilor si Statistică, cu scopul de a rezolva dificultăți ale Chimiei, precum enumerarea izomerilor, simetrie și nu în ultmul rând, elucidarea unei structure. Energetica structurilor moleculare ori ionice, stabilitatea și reactivitatea lor constituie subiectul de studiu al Chimiei cuantice și nu fac parte din scopul acestei lucrări.

I.7. Poliedre și politopi

Un poliedru regulat este o structură cu simetrie ridicată, fiind vertex, muchii, fețe-tranzitivă (Coxeter, 1973). Există trei grupe de simetrie: *tetraedrală*; *octaedrală* (cubică) și *icosaedrală* (dodecaedrală). Doar cinci poliedre regulate există, cunoscute sub numele de *solide platonice* (Figura I.11): tetraedrul, cubul, octaedrul, dodecaedrul și icosaedrul, putând fi simbolizate {3,3}; {4,3}; {3,4}; {5,3} and {3,5} (Schläfli,1901)

Fig. I.11. Solidele platonice, simboluri, configurația unui vârf și simetria de grup

Solidele arhimediene (Tabelul I.4 și Figura I.12) sunt poliedre convexe de înaltă simetrie, semi-regulate, având două sau mai multe tipuri de poligoane regulate incidente intr-un vârf; sunt vertex-tranzitive, dar nu și fețe-tranzitive.

Nr	Simbol	Poliedru	Formula de obținere
1	TT	Tetraedru trunchiat	t(T)
2	ТО	Octaedru trunchiat	t(O) = t(m(T))
3	TC	Cub trunchiat	t(C) = t(d(m(T)))
4	TI	Icosaedru trunchiat	$t(I) = t(d(p_5(T)))$
5	TD	Dodecaedru trunchiat	$t(D) = t(p_5(T))$
6	CO	Cuboctaedru	m(C) = m(O) = m(m(T))
7	ID	Icosidodecaedru	m(I) = m(D) = m(s(T))
8	RCO	Rombicuboctaedru	$m(CO) = m(m(C)) = d(p_4(C))$
9	RID	Rombicosidodecaedru	$m(ID) = m(m(I)) = d(p_4(I))$
10	TCO	Cuboctaedru trunchiat	t(CO) = t(m(m(T)))
11	TID	Icosidodecaedru trunchiat	t(ID) = t(m(s(T)))
12	SC	Snub de cub	$s(C) = d(p_5(C))$
13	SD	Snub de dodecaedru	$s(D)=d(p_5(D))$

Table I.4. Solide arhimediene

Tetraedru trunchiat

TT T_d

Octaedru trunchiat

TO O_h

Cub trunchiat TC O_h

Rombicuboctaedru RCO

TD I_h

Dodecaedru trunchiat Icosaedru

Icosaedru trunchiat

 $\mathrm{TI}\,I_h$

Cuboctaedru

СО

Cuboctaedru

trunchiat

TCO

ID

Icosidodecaedru

Icosidodecaedru trunchiat TID

Snub de cub SC

Rombicosidodecaedru

Snub de dodecaedru SD

Fig. I.12. Solide arhimediene

Generalizarea unui poliedru n-dimensional se numește politop (Grünbaum, 2003; Coxeter, 1973). Un 4politop regulat, { α , β , γ }, însemnând: γ -poliedru de tip { α , β }incident în orice vârf al politopului. Există șase 4-politopi regulați: 5-Cell {3, 3, 3}, 8-cell {4, 3, 3}, 16-cell {3, 3, 4}, 24-cell {3, 4, 3}, 120-cell {5, 3, 3} și 600-cell {3, 3, 5}. Exceptându-l pe 24-cell, toți pot fi asociați platonicelor. 5-Cell {3, 3, 3} și 24cell {3, 4, 3} sunt reciproc-duale.Celelalte (8-cell & 16-cell), (120-cell & 600-cell) reprezintă perechi.

În dimensiunea a 5-a și mai sus, există trei tipuri de politopi convecși regulați, după cum urmează.

N-simplex (Coxeter 1973), având simbolul Schläfli $\{3^{n-1}\}$, și numărul de *k*-fețe $\binom{n+1}{k+1}$, este o generalizare a unui triunghi sau a unui tetraedru până la dimensiunea *n*. Simplexul poate fi definit ca cel mai mic set convex conținând un anumit număr de vârfuri.

Hipercubul, numit și *n*-cub, simbolizat Q_n , este un politop regulat având fețe reciproc perpendiculare; poartă simbolul Schläfli_{4,3^{*n*-2}} și numărul de *k*-fețe dat de relația $2^{n-k} {n \choose k}$. Se obține un hipercub în urma produsului cartezian: $(K_2)^{\Box n} = Q_n$.

Un *n-ortoplex* sau cros-politop (Coxeter, 1973) simbolizat de către Schläfli $\{3^{n-2},4\}$ are numărul de of *k*-fețe $2^{k+1}\binom{n}{k+1}$; există în orice dimensiune și este dualul unui *n*-cub.

Un politop *abstract* este o structură în construcția căruia se iau în considerare doar proprietățile combinatoriale ale unui politop clasic: proprietăți precum măsura unghiurilor, lungimea muchiilor, sunt neglijate. În cadrul acestei teorii nu este necesar un spațiu *n*-dimensional, precum spatiul euclidian, în care proprietățile combinatoriale sun exprimate ca seturi parțial ordonate, așa numitele "posets".

II. Operații pe mape

O mapă M este o porțiune discretizată a unei suprafețe; se pot aplica operații pe mape in vederea modificării topologiei sale. În urma acestor operații nu se modifică simetria mapei părinte.

II.1 Dual *d*

Dual: se pune câte un punct în centrul fiecărei fețe a mapei (a poligonului), se unesc doua asemenea puncte dacă fețele lor corespunzătoare au o muchie comună. Aceasta este Poincaré *dual d*(M);

Fig. II.1 Platonice ca perechi duale

II.2 Medial *m*

Medial: se marchează mijlocul fiecărei laturi și se unesc noile puncta dacă fețele mapei inițiale aveau comună o latură. Vârfurile inițiale se taie. (Figura II.2).

II.3 Trunchierea t

Trunchierea: în apropierea unui vârf, se secționează poliedrul cu un plan care intersecteaza laturile incidente in respectivul punct. (Figura II.3);

t(C); 3.8²

Fig. II.3 Trunchierea unui Cub (stânga) și a unui Octaedru (dreapta)

II.4 Poligonare *p_n*

Se pune în centrul fiecarei fețe câte un punct, iar pe muchii câte *n*-3 alte puncte. Se unește punctul central cu câte un punct de pe fiecare muchie (Figura II.4) (Diudea and Nagy, 2007).

Fig. II.4 Poligonare asupra unui Dodecahedron

II.5 Snub s

Snub reprezintă o succesiune de operații : $sM = dp_5M$. Ca și la medial, sM = sdM. (Figure II.5).

Fig. II.5 Snub pe solidele platonice

II.6 Leapfrog *l*

Leapfrog (*triplare*) (Eberhart, 1891; Fowler, 1986): $lM = d(p_3M) = t(dM)$. (Figura II.6.)

Fig. II.6 Operațiunea de leapfrog l pe o suprafață pentagonală f_5 .

II.7 Quadrupling q

Quadrupling (Eberhart, 1891; Diudea and John, 2001), sau *chamfering* c (Conway) se obține: $qM = t_{sel}(p_3M)$; (Figure II.7).

Fig. II.7. Quadrupling q pe o suprafață pentagonală f_5 .

II.8 Septupling

Se cunosc două astfel de operații în care se multiplică de șapte ori vârfurile structurii părinte, s₁ and s₂.

Fig. II.9 Septupling pe solidele platonice

II.9. Propelare

Punctele de pe diagonal mare a unui romb aparținând unei cuști Rh se unesc printr-un nou punct, obtinându-se propelani de generația I (existând 2 diagonale, putem avea doi izomeri, A și B) (Diudea *et al*, 2017). Urmează al doilea pas, în care se pune un punct opus unui vârf a cărui grad (d) e mai mare de 2 și se unește noul punct cu vârfurile d = 2 înconjurând vârful cu d > 2, (Figura II.10).

 $ppl(ppl(d(mC_{60}).92).214).242$

TOPO GROUP CLUJ a dezvoltat mai multe programe software specializate în acoperiri/desfășurări poliedrale și scufundări în suprafețe de diferite tipuri, finite ori infinite: TORUS, CageVersatile_CVNET, JSCHEM, Omega Polynomial Counter, NANO-Studio (Diudea *et al*, 2003; Stefu and Diudea, 2005; Nagy and Diudea, 2005; Cigher and Diudea, 2006; Nagy and Diudea, 2009).

Fig. II.10. Exemple de structuri obtainute prin propelare

Contribuții personale

IV. Chimie structurală

IV.1 Structuri Cell@cell supradimensionale

Clusterii cu punct centrat reprezintă cage-dualii poliedrelor având același număr de celule în jurul unuia central, identic; aparțin spațiului 4D Euclidean (Fathalikhani *et al*, 2016 (Tabel IV.1-8), respectându-se relația Euler-Poincare v-e+f=2(1-g). Această idee poate fi extinsă și la alte corpuri decât cele platonice (Figura IV.1-8).

d(TP).10 T@O.10

m(TP).10 T@O.10

t(TP).20 T@((TT)₄;(T)₄)@TT.20

Figure IV.2. Structuri derivate din TP

Tabel IV.2. Enumerarea figurilor din clusterii derivați din TP

Structura	v	e	f_3	f_5	f_6	f	p_1	p_2	p_3	Μ	c	χ	Sim	<i>pk</i> ; (M)
TP.5	5	10	10	0	0	10	4	0	0	1	5	0	3	T; 0; 0 (P; T)
<i>d</i> (TP).10	10	30	30	0	0	30	4	4	0	2	10	0	3	T; Oct=AP ₃ ; 0 (T;O)
<i>m</i> (TP).10	10	30	30	0	0	30	4	4	0	2	10	0	3	T; Oct=Ap ₃ ; 0 (T;O)
<i>t</i> (TP).20	20	40	20	0	10	30	4	4	0	2	10	0	3	T;TT; 0 (T; TT)

d(OP).20 $CO@((Ap4)_6;(T)_8)@C.20$ Fig. IV.3 . Structuri derivate din OP

m(OP).18 O@((O)₈;(Py4)₆)@CO.18

t(OP).36 O@((TT)₈;(Py4)₆)@TO.36

Tabel IV.3. Enumerarea figurilor din clusterii derivați din OP

Structura	v	e	\mathbf{f}_3	f_5	f_6	f	p_1	p ₂	p_3	М	с	χ	Sim	<i>k</i> ; (M)
OP.7	7	18	20	0	0	20	8	0	0	1	9	0	4	T;0;0 (P;O)
<i>d</i> (OP).20	20	60	44	12	0	56	8	6	0	2	16	0	4	T;Ap4;0 (CO;C)
<i>m</i> (OP).18	18	60	52	6	0	58	8	6	0	2	16	0	4	O; Py4 (Oct; CO)
<i>t</i> (OP).36	36	78	32	6	20	58	8	6	0	2	16	0	4	TT;Py4;0 (O;TO)

Tabel IV.4. Enumerarea figurilor din clusterii derivați din OP

Structura	v	e	\mathbf{f}_3	f_5	\mathbf{f}_{6}	f	p_1	p_2	p_3	М	с	χ	Sym	<i>pk</i> ; (M)
CP.9	9	20	12	6	0	18	0	6	0	1	7	0	4	0;Py4; 0 (P;C)
<i>d</i> (CP).18	18	60	52	6	0	58	8	6	0	2	16	0	4	Oct; Py4 (Oct; CO)
<i>m</i> (CP).20	20	60	44	12	0	56	8	6	0	2	16	0	4	T;Ap4;0 (C; CO)
<i>t</i> (CP).40	40	80	32	6+6	12	56	8	6	0	2	16	0	4	T;HTO;0 (C; TC)

d(CP).18 O@((O)8;(Py4)₆)@CO.18

m(CP).20 C@((Ap4)₆;(T)8)@CO.20

t(CP).40 C@((HTO)₆;(T)₈)@TC.40

Figure IV.4.Structuri derivate din CP

Tabel IV.5. Enumerarea fi	urilor din	clusterii	derivați	din	IP
---------------------------	------------	-----------	----------	-----	----

			0				,							
Structura	v	e	\mathbf{f}_3	\mathbf{f}_5	\mathbf{f}_6	f	p_1	p_2	p_3	М	c	χ	Sim	<i>p</i> _k ; (M)
IP.13	13	42	50	0	0	50	20	0	0	1	21	0	5	T; 0; 0 (P; I)
<i>d</i> (IP).50	50	150	110	24	0	134	20	12	0	2	34	0	5	T;AP5;0 (ID.30;D)
<i>m</i> (IP).42	42	150	130	60	12	142	20	12	0	2	34	0	5	Oct; Py5;0 (I;ID30)
<i>t</i> (IP).84	84	192	80	0	62	142	20	12	0	2	34	0	5	TT; Py5; 0 (I;C ₆₀)

d(IP).50 ID@((Ap5)₁₂;(T)₂₀)@D.50 m(DP).50=D@((Ap5)₁₂;(T)₂₀)@ID.50 **Fig IV.5**. Structuri derivate din IP

m(IP).42 I@((O)₂₀;(Py5)₁₂)@ID.42

t(IP).84I@((TT)₂₀;(Py5)₁₂)@C₆₀.84

ID@ID.60 ID@((P5)₁₂;(P3)₂₀)@ID.60

T(4,12)Q4T5.96 **Fig. IV.7** . Alte structuri cell@cell

 $\begin{array}{c} C_{60}@C_{60}.120\\ \\ C_{60}@((P5)_{12};(P6)_{20})@C_{60}.120 \end{array}$

Q6(TU(4,8)Q6T7).64

Table 11. 7 Enumerarea rigurnor apașinand obrecteror un rigura 17.7.															
Structura	0	1	f3	f4	f5	f6	2	р3	p5	рб	m	3	4	5	χ
ID@ID.60	60	150	40	60	24	0	124	20	12	0	2	34	0	0	0
$C_{60}@C_{60}.120$	120	240	0	90	24	40	154	0	12	20	2	34	0	0	0
$T(4,12)Q_4T_5.96$	96	240	0	216	0	0	216	0	0	0	0	84	12	0	0*
Q6.64	64	192	0	240	0	0	240	0	0	0	0	160	60	12	0

Tabel IV.7 Enumerarea figurilor apaținând obiectelor din Figura IV.7.

CO@C.20 CO@((AP4)₆;(T)₈)@C *m*(CP).20 C@CO.20 C@((AP4)₆;(T)₈)@CO d(OP).20 ID@Do.50 $ID@((AP5)_{12};(T)_{20})@Do$ m(DP).50

D@ID.50 D@((AP5)₁₂;(T)₂₀)@ID d(IP).50

Fig. IV.8. Evidențierea transformărilor din dimensiunea a patra

IV.2. Acoperiri cu clusteri având simetrie icosaedrală

Designul cuștilor multi-strat

Secvența de operații din construcția lui C₇₅₀, este: $ts(p_4(C_{60})).330$; $s_2(C_{60}).420$; $ts(p_4(C_{60}))@s_2(C_{60}).750$ (Figura IV.9). Clusterul C₇₅₀ este poros, fiind o acoperire cu C₂₀:

 $ts(p_4(C_{60}))@(s_2(C_{60}).420).750$

 $C_{60}((C_{20})_{60}).750$

 $s_2(C_{60}).420$

Fig.IV.9. Structură multi-shell având 750 atomi

Clasă	Semnătura de centralitate (5;6)	Nr de elemente	Gradul vârfului	Tipul de atom
1	0.0425537487829127	60	4	5^5
2	0.0425405656366799	30	4	5^5
3	0.0408741428983785	60	3	5^3
4	0.0403249632533878	60	4	5^6
5	0.0403215210989583	60	4	5^5.6
6	0.0403184110690464	60	4	5^5.6
7	0.0380980964599947	60	4	5^5
8	0.0380776127196794	60	4	5^5
9	0.0380525586272046	60	4	5^5
10	0.0363966020960237	60	3	5^3
11	0.0363899446618803	60	3	5^3
12	0.0363398403991418	120	3	5^3

Tabel IV.9. Simetria lui C_{750} : Automorfism grup = $C_2 \times A_5$ = Ih ; |Ih| = 120.

Structura C_{810} (Figura IV.10) seamănă cu C_{750} , doar că aceasta din urmă găzduiește o fulerenă C_{60} în interiorul său, astfel încât $C_{810}=C_{60}@C_{750}$.

$C_{60}@((C_{20})_{12};(C_{24})_{20})@(C_{20})_{60}.810$

C₂₄

 $C_{60}(@((C_{20})_{12};(C_{24})_{20}).390$

 $C_{60}@(C_{60}(C_{20})_{60}).810$

C₆₀(D)₆₀750

Fig. IV.10 C_{810} și subcomponentele sale

Un alt cluster cu formula generalăM@M₁₂, este C₄₀₈=C₈₄@(C₈₄)₁₂.408=t(Diu45).408 (Pârvan-Moldovan et al, 2014 – Figura IV.11) a fost obținut în urma trunchierii structurii Diu₄₅=IP@(IP)₁₂.45

Fig. IV.11 C_{408} și subcomponentele sale

Fig. IV.13. Clusteri multi-strat având simetrie icosaedrală C2 x A5 și rang mai mare decât 3

IV. 3. Acoperiri cu clusteri având simetrie octaedrală

Structurile multi-strat din Figura IV.14 au fost obținute în urma trunchierii unor structuri (Figure IV.15), Diu_k, unde *k* reprezintă numărul de atomi; (Kooperazan-Moftakhar, 2015).

Figura IV.14. Structuri cu simetrie octaedrală

Structura $C_{72}@(C:TO_4)_6.360$ este poroasă; în interiorul ei încape cu exactitate $C_{72} = (4:6_4)_6; 6_8.72$, de asemenea și $C_{88} = C@TO_6.88$ (6 octaedre trunchiate lipite pe fețele unui cub, Figura IV.15).

 $C_{72} = (4:6_4)_6; 6_8.72$

C₈₈=C@TO₆.88

C₄₄=C@CO₆.44 d(O@(O)₈.18).52X.44

 $m(p_3(C)P^{14}15)P^8.51 = \text{Diu}_{51}$ $p_3(C)P^8.15@(P^8@(O)_413)_6.51$

O@(TT)₈.36 O@((TT)₈;(Py₄)₆)@TO.36 *t*(OP).36

*p*₃(*p*₃(CO)P¹⁸.19).25=Diu₂₅

 $(P^{8}@(O)_{6}15)@(P^{8}@(O)_{6}15)_{6}.57)$ $(p_{3}(C)P^{8}.15)@(p_{3}(C)P^{8}.15)_{6}.57)$ $p_{3}(Diu_{51})=Diu_{57}$

Fig. IV.15. Structuri cu simetrie octaedrală

 C_8

 $C@(C_{88})_6.424$

 $t(p_3(C)P^{8}.15).88$

t(Diu57).424

Diu₅₇=(p_3 (C)P^8.15)@(p_3 (C)P^{^8}.15)6.57

 $p_3(C)P^{8}.15)@(p_3(C)P^{8}.15)_6.57$

 $(P^{^{8}}@Oct_{6}.15)@(P^{^{8}}@Oct_{6}.15)_{6}.57$

 $Diu_{57} = p_3(Diu_{51})$

Fig IV.18. Clusterul Diu₅₇ și substructurile sale

 $(P^{^{\wedge 8}}@(O)_{6}.15)@(P^{^{\wedge 8}}@(O)_{4}.13)_{6}.51$

0.6

 $p_3(C)P^{14}.15$ $P^{14}@(T)_{24}.15$

 $CD(m(O@(O)_8.18)60).15$

 $m(p_3(C)P^{^{14}}.15)P^{^{8}}.51$

 $(P^{^{8}}@(O)_{6}.15)@(P^{^{8}}@(O)_{6}.15)_{6}.57$

IV.4. Rețele cubice și romb-dodecaedrale

Pentru umplerea spațiului cu structuri cubice și romb-dodecaedrale obținute prin operații pe mape sunt necesare metode de construire de rețele infinite, dar și de investigare a lor.

Ca structură de pornire luam clusterul $P^{8}@(O)_6@p_3C.15$, constituit din șase octaedre unite intr-un vertex/punct "P" sau p_3 CP.15 (Pârvan-Moldovan and Diudea, 2015a, b). Transformările sale în urma operațiilor de dual, medial, trunchiere și leapfrog reprezintă unități care se repeat, rezultând o rețea. (Figura IV.20)

Fig IV.20. Clusteri de pornire pentru obținerea de rețele cubice

Fig. IV.21. Unități structural obținute în urma operațiilor pe mape

Perechile rețea (net) și co-rețea (co-net) sunt după cum urmează: *dual* net ($d(p_3(CP))$).36 / $d(P@(CP)_8)$.96; *medial* net ($m(p_3(CP))$).44 / $m(P@(CP)_8)$.94); *truncate* net ($t(p_3(CP))$).88 / $t(P@(CP)_8)$.172) și *leapfrog* net ($l(p_3(CP))$).108 / $l(P@(CP)_8)$.264);

C36.444.768.sel.432

C36.444.768.sel.432

C₉₄.333.1480.sel.576

*m(st*CP).44

C₉₄.333.1480.sel.576

Fig. IV.23. Rețea cubică obținută prin p_3

C₈₈.444.2392.sel.428

Fig. IV.24. Rețea cubică obținută prin trunchiere

C264.333.2256.sel.576

P@8CP.35

C₈₈.444.2392.sel.428

C₂₆₄.333.2256.sel.576

Fig. IV.25. Rețea cubică obținută prin *leapfrog*

	v	е	3(2)	4(2)	5/6/8(2)	2	1(3)	2(3)	3(3)	М	3	χ	k	<i>n</i> (3);(M);(4)
1	15	44	36	0	0	36	6	0	0	1	7	0	4	O;(P; <i>st</i> C)
2	36	84	20	36	8	64	6	8	0	2	16	0	4	C;hCO;(CO;TO)
3	96	240	64	102	6	172	12	8	6	2	28	0	4	C;CO;h <i>mm</i> C;(<i>mm</i> C)
4	44	108	36	36	0	72	6	0	0	2	8	0	4	CO;(C)
5	94	240	72	96	0	168	12	8	0	2	22	0	4	CO;C;(Rh ₁₂)
6	88	152	0	36	36	72	6	0	0	2	8	0	4	TO;(C)
7	172	302	0	72	72	144	12	0	0	2	14	0	4	TO;(Rh ₁₂)
8	108	180	44	0	36	80	6	0	0	2	8	0	4	TC;(TC)
9	264	480	136	6	96	238	20	0	0	2	22	0	4	TC;(<i>d</i> (<i>st</i> CO).48)

Tabel IV.18. Enumerarea figurilor din derivații de *p*₃CP.15

 $1 = p_3 \text{CP.15}; 2 = d(p_3(\text{CP})).36; 3 = d(\text{P}@8\text{CP}).96; 4 = m(p_3\text{CP}).44; 5 = m(\text{P}@8\text{CP}).94; 6 = t(p_3\text{CP}).88; 7 = t(\text{P}@8\text{CP}).172; 8 = l(p_3(\text{CP})).108; 9 = l(\text{P}@8\text{CP}).264.$

 $d(p_3(CP)).36/d(P@(CP)_8).96$

m(*p*₃(CP)).44/*m*(P@(CP)₈).94

Fig. IV.26. Rețea și co-rețea pentru structuri cubice înrudite

Acoperiri cu Rh₁₂ și structuri derivate

Accentul se pune pe romb-dodecaedru, Rh_{12} .14, ca unitate de umplere a spațiului, obținut în urma operației d(mC).14 ori dCO).

 $l(p_3(CP)).108/l(P@(CP)_8.264)$

 $t(p_3(CP)).88/t(P@(CP)_8).172$

 $Rh_{12}@12Rh_{12}.94$

Fig. IV.27. Acoperiri cu derivați ai CO

 $Rh_{12}.14 = d(mC).14 = dCO$

l((Rh₁₂@12Rh₁₂).480

TCO@(6TC;8TT;12TCO).480

l(Rh₁₂@12Rh₁₂).480.4

Fig. IV.28. Acoperiri cu TCO

 $l(Rh_{12}@12Rh_{12}).480$

TT@4TCO.168

l(DCO) = TCO(4); net

Rh₁₂@12Rh₁₂.94

Fig. IV.29. Acoperiri cu derivați ai CO

IV.5. Clusteri multi-strat înrudiți cu C₆₀

Este prezentată o structură complexă, obținută prin trunchierea clusterului $\text{Diu}_{125}=p_3(\text{C}_{60}@d(\text{C}_{60})\text{P}^{^{32}}).125$ (Figure IV.30); detalierea ei fiind $\text{C}_{1208}=t(\text{Diu}_{125}).1208=(d~(\text{C}_{60}))@(\text{C}_{84})_{12};\text{C}_{100})_{20}).1208.$

Fig. IV.30. C₁₂₀₈ și componentele sale

Cluster	v	е	f_3	f_5	f_6	f	c1	c2	c3	c4	c5	c	χ	$M_k;[M]$
$d(C_{60}).32$	32	90	60	0	0	60	0	0	0	0	0	0	2	((3^5) ₁₂ ;(3^6) ₂₀)=St(Do)32
$C_{180}(I_h)$	180	270	0	12	80	92	0	0	0	0	0	0	2	(5.6^2)60;(6^3)120
$C_{540}(I_h)$	540	810	0	12	260	272	0	0	0	0	0	0	2	(5.6^2)60;(6^3)480
P@p ₃ (Ap ₅).13	13	42	50	0	0	50	20	0	0	0	1	21	0	T;0;0;0;[St(Ap5)=Ico.12]
C ₈₄	84	192	80	12	50	142	20	12	0	0	2	34	0	TT; Py5;0;0;[Ico; C ₆₀ (I _h)]
P@p ₃ (Ap ₆).15	15	50	60	0	0	60	24	0	0	0	1	25	0	T;0;0;0;(<i>p</i> ₃(Ap6))
C_{100}	100	230	96	12	62	170	24	12	2	0	2	40	0	$[p_3(Ap_6);C_{72}(D_{6d})]$
C ₃₃	33	122	150	0	0	150	60	0	0	0	1	61	0	T;0;0; 0;(p_3 (D)32)
Tr(C ₃₃).244	244	572	240	12	170	422	60	12	20	0	2	94	0	$[(d(C_{60}), 32; C_{180}]]$
C ₁₂₅	125	604	870	0	0	870	390	0	0	0	1	391	0	T;0;0;0; $(p_3(C_{60})92)$
C ₁₂₀₈	1208	3214	1560	12	950	2522	390	24	40	60	2	516	0	TT; $(Py_5;St(Ap_5);$ ($Py_6; p_3(Ap_6); J52^*;$ [$d(C_{60})32;C_{540}$]
				P	р.	• • •								

Tabel IV.23. Formula lui Euler pentru clusterii studiați

* Obiectul Johnson J₅₂; Py_k =Piramidă cu baza k; Ap_k =Antiprisma cu baza k.

 $(d(\mathbf{C}_{60}))@((\mathbf{TT})_{12};(\mathbf{T})\mathbf{T}_{20})@\mathbf{C}_{180}(I_h).244$

TT.12

J.

D.20

 $C_{244} = t(Diu_{33}).244$

*p*₃ (DP^{^32}).33=Diu₃₃

Fig.IV.31. C_{244} și componentele sale

IV.6. Euler characteristic

Genul g este implicat în determinarea caracteristicii lui Euler pentru o suprafață orientabilă închisă (g = numărul de tori obținuți în urma descompunerii unei suprafețe sau numărul orificiilor deținute de un obiect) prin relația Euler-Poincaré:

$$v - e + f = \chi = 2(1 - g)$$
 (2)

Caracteristica lui Euler poate fi calculată pentru diverse suprafețe ca sumă alternantă a figurilor de dimensiune /rang k.

$$\chi = f_0 - f_1 + f_2 - f_3 + \dots, \tag{6}$$

Perechi de operații pe mape

Theorem 1. Fie {v, e, f} and { $n_1e+\delta$, n_2e , n_3e } un poliedru părinte și derivatul său, obținut prin operații pe mape, o(P). De asemenea, ambele structuri să aibă aceeași caracteristică Euler, χ ; $\delta = \chi$, dacă și numai dacă ($n_1 + n_3$) = n_2 . (Pîrvan-Moldovan *et al*, 2016)

Corolar 1 (2). Dualul transformării generale d(o(P)) va fi de tipul: $\{n_3e, n_2e, n_1e+\chi\}$.

Corolar 1 (3). Diferența dintre numărul de vârfuri ale obiectelor obținute prin transformările perechi, o_1 și o_2 , este egală cu insăși caracteristica lui Euler a suprafeței pe care sunt construite (Table IV.29-30): $|V(o_1(P))| - |V(o_2(P))| = \chi$.

Fig. IV.33. Operații asupra unui C (sus) și Dodecaedru D (jos): Diferența dintre numărul de vârfuri: $\chi=2$ (χ corespunzătoare unei sfere).

H6.8.48 {4⁴}

 $dm(H6.8).96 \{4^4\}$

 $m(H6.8).96 \{4^4\}$

Fig. IV.34. Operații acționând pe un tor acoperit cu patrulatere: diferența dintre numărul vârfurilor: $\chi=0$ (χ corespunzător unui tor)).

Fig. IV.35. Operații pe un triplu tor: $\chi = -4$; g=3.

Fig. IV.36. Operații pe un multi-tor dodecaedral: $\chi = -20$; g=11.

Enumerarea poligoanelor din Figurile IV.34-36 este cuprinsă in Tabelul IV.29.

Structura	v	е	f_3	f_4	f_5	f_6	f_7	f	χ	g	Diff
H6.8	48	96	0	48	0	0	0	48	0	1	-
<i>m</i> (H6.8)	96	192	0	96	0	0	0	96	0	1	-

Table IV.29. Figure count for the objects in Figs. 2 to 4.

<i>dm</i> (H6.8)	96	192	0	96	0	0	0	96	0	1	0
H ₃₄₀	340	510	0	0	12	118	36	166	-4	3	-
$dm(H_{340})$	506	1020	0	510	0	0	0	510	-4	3	-
$m({ m H}_{340})$	510	1020	340	0	12	118	36	506	-4	3	- 4
C ₂₈₀	280	420	0	0	0	0	120	120	-20	11	-
$p_4(C_{280})$	820	1680	0	840	0	0	0	840	-20	11	-
<i>l</i> (C ₂₈₀)	840	1260	0	0	0	280	120	400	-20	11	- 20

Fig. IV.37. Alte exemple de perechi de operații

Table IV.30. Enumerarea poligoanelor din Figurile IV.37-38

			U		U									
Structure	v	e	f3	f4	f5	f6	f7	f8	f10	f12	f14	f	χ	g
H.1220	1220	1830	0	0	0	470	120	0	0	0	0	590	-20	11
t H.1220	3660	5490	1220	0	0	0	0	0	0	470	120	1810	-20	11
<i>p4</i> H.1220	3640	7320	0	3660	0	0	0	0	0	0	0	3660	-20	11
<i>l</i> H.1220	3660	5490	0	0	0	1690	120	0	0	0	0	1810	-20	11
C60	60	90	0	0	12	20	0	0	0	0	0	32	2	0
t C60	180	27	60	0	0	0	0	0	12	20	0	92	2	0
<i>p4</i> C60	182	360	0	180	0	0	0	0	0	0	0	180	2	0
<i>l</i> C60	180	270	0	0	12	80	0	0	0	0	0	92	2	0
H68_48	48	96	0	48	0	0	0	0	0	0	0	0	0	1

t H68_48	192	288	0	48	0	0	0	0	0	0	0	0	0	1
<i>p4</i> H68_48	192	384	0	192	0	0	0	0	0	0	0	0	0	1
<i>l</i> H68_48	192	288	0	48	0	0	0	48	0	0	0	96	0	1
TTT57	104	156	0	0	12	0	36	0	0	0	0	48	-4	3
t TTT57	312	468	104	0	0	12	0	0	0	6	42	152	-4	3
<i>p4</i> TTT57	308	624	0	312	0	0	0	0	0	0	0	312	-4	3
<i>l</i> TTT57	312	468	0	0	12	104	36	0	0	0	0	152	-4	3

Fig. IV.38. Operations acting on a C₆₀; vertex number differece: $\chi = 2$; g=0.

IV.7. Applicații ale Teoriei spectrale IV.7.1. În clasa propelanilor

Fig. IV.39. Triacontaedrul și cele trei poliedre disconecte care compun propelanii.

În propelani, toate ringurile sunt suprafețe romboidale. Ca o proprietate generală, toate clasele de echivalență ale vârfurilor reprezintă seturi disconecte, astfel că numărul chromatic este egal cu cel al claselor de chivalență. Această proprietate ușurează identificarea partiției vârfurilor ca poliedre și evaluarea energiei grafurilor lor. Se poate obține o energie de "legătură" E_{bind} (măsurată în unități Beta (

Tabel IV.31) pentru graful părinte, în funcție de componentele sale independente (energia compoziției, E_{compos}), asemănător cu calculele cuantice din grafurile moleculare.

Rh₃₀_PrpA.62

Fig. IV.40. Propelani de generația I-a

Rh₃₀_PrpAD.82

Fig.IV.41. Propelani de generația a II-a

Rh₃₀_PrpACD.94

Fig. IV.42. Propelani de generația a III-a

(10)

 Rh_{30} _PrpB.62

Rh₃₀_PrpBD.74

Rh₃₀_PrpBCD.94

	Cluster	Compoziție	v	Е	E compos	E_{bind}	λ max	$\lambda \min$
1	Icosaedru		12	23.416			5	-2.236
2	Dodecaedru		20	29.416			3	-2.236
3	Icosidodecaedru		30	55.416			4	-2
4	Rh ₃₀	I+D	32	47.896	52.832	-4.936	3.873	-3.873
5	Rh ₃₀ _Prp1A	I+D+ID	62	71.872	108.248	-36.376	5	-5
6	Rh ₃₀ _Prp1B	I+D+ID	62	87.314	108.248	-20.934	4.583	-4.583
7	Rh ₃₀ _Prp2A	I+2D+ID	82	129.43	137.664	-8.234	5.269	-5.269
8	Rh ₃₀ _Prp2B	2I+D+ID	74	132.828	131.664	1.164	5	-5
9	Rh ₃₀ _Prp3A	2I+2D+ID	94	154.906	161.08	-6.174	5.568	-5.568
10	Rh ₃₀ _Prp3B	2I+2D+ID	94	162.292	161.08	1.212	5.349	-5.349

Tabel IV.31. Propelani, derivați ai Rh_{30} .32; Energia grafului; $E_{bind} = E - E_{compos}$.

IV.7.2. În fulerenele C₄₀

Energia grafurilor în evaluarea energiei fulerenelor

Fig.IV.43. Graficele variațiilor E/atom (în au) Strain energy/atom (în kcal/mol) funcție de numărul pentagoanelor adiacente n_p .

Modelele QSPR (Table IV.35-36) pot fi obținute dintr-o varietate de combinații; scopul urmărit a fost Acela de a arăta că enegia grafurilor acestor fullerene poate fi folosită în evaluarea energiei moleculare calculate cuantic. Tabelul IV.34 cuprinde câteva combinații, incluzând energia grafurilor și a grafurilor la distanță, cu și fără parametrul n_p .

\mathbf{X}_1	X_2	X_3	\mathbf{R}^2	S
n_p			0.900	0.000662
SD _{E/atom}			0.849	0.000813
LEig			0.780	0.000981
n_p	E_1		0.916	0.000616
	D_3		0.915	0.000617
n_p	E_1	LEig	0.924	0.000591
		D_3	0.921	0.000605
		C(Sh(D))	0.918	0.000614
SD _{E/atom}	LEig		0.897	0.000680
	D3D		0.882	0.000727
SD _{E/atom}	LEig	C(Sh(D))	0.918	0.000615
		D3D	0.907	0.000655

IV.8. Concluziile capitolului **IV**

Au fost prezentate următoarele rezultate:

- 1. Cei mai mici clusteri de dimensiune/rang 4
- 2. Clusteri cu simetrie icosaedrală
- 3. Clusteri cu simetrie octaedrală
- 4. Rețele cubice și romb-dodecaedrale
- 5. Clusteri înrudiți cu C₆₀
- 6. Energia grafurilor în clasa propelanilor
- 7. QSPR în clasa fulerenelor C_{40} folosind energiile grafurilor ca descriptori.

V. Contribuții personale (QSAR)

În aceste studii QSAR a fost urmat algoritmul propus de Diudea (Moldovan *et al*, 2008), având la bază suprapunerea moleculelor peste o hipermoleculă (Balaban *et al*, 1980) și precedeul corelației ponderate (Toropov *et al*, 2001,2002) cuplată cu o versiune predictivă bazată pe clusteri de similaritate (Willett, 1998) efectuată pentru fiecare moleculă din setul test.

V.1. QSAR în clasa fenotiazinelor

Fenotiazina este un compus organic heterocyclic din clasa thiazinelor, cu formula brută $S(C_6H_4)_2NH$. Derivații săi au revoluționat domeniul psihiatriei și tratamentul alergiilor.

Mol	CID	Name	Canonical Smiles	logP	LD50 mg/kg
1	2726	chlorpromazine	CN(C)CCCN1C2=CC=C2SC3=C1C=C(C=C3)Cl	5.41	14
2	2801	clomipramine	CN(C)CCCN1C2=CC=CC=C2CCC3=C1C=C(C=C3)Cl	5.19	150
3	2995	desipramine	CNCCCN1C2=CC=CC=C2CCC3=CC=CC=C31	4.90	85
4	3089	fonazine/dimetothiazine	CC(CN1C2=CC=CC=C2SC3=C1C=C(C=C3)S(=O)(=O)N(C)C)N(C)C	3.34	190
5	3781	isothipendyl	CC(CN1C2=CC=C2SC3=C1N=CC=C3)N(C)C	3.66	62
6	4066	mequitazine	C1CN2CCC1C(C2)CN3C4=CC=CC=C4SC5=CC=CC=C53	4.70	54
7	4744	perazine	CN1CCN(CC1)CCCN2C3=CC=CC=C3SC4=CC=C42	4.10	185
8	4747	periciazine	C1CN(CCC10)CCCN2C3=CC=CC=C3SC4=C2C=C(C=C4)C#N	3.52	115
9	4748	perphenazine	C1CN(CCN1CCCN2C3=CC=CC=C3SC4=C2C=C(C=C4)Cl)CCO	4.20	64
10	4917	prochlorperazine	CN1CCN(CC1)CCCN2C3=CC=C3SC4=C2C=C(C=C4)Cl	4.88	120
11	4926	promazine	CN(C)CCCN1C2=CC=CC=C2SC3=CC=CC=C31	4.55	140
12	4927	promethazine	CC(CN1C2=CC=CC=C2SC3=CC=CC=C31)N(C)C	4.81	124
13	5452	thioridazine	CN1CCCCC1CCN2C3=CC=CC=C3SC4=C2C=C(C=C4)SC	5.90	65
14	5566	trifluoperazine	CN1CCN(CC1)CCCN2C3=CC=C3SC4=C2C=C(C=C4)C(F)(F)F	5.03	120
15	6075	mepazine/pecazine	CN1CCCC(C1)CN2C3=CC=CC=C3SC4=CC=CC=C42	5.60	140
16	6077	acetylpromazine	CC(=0)C1=CC2=C(C=C1)SC3=CC=CC=C3N2CCCN(C)C	4.20	350
17	6761	pipamazine	C1CN(CCC1C(=O)N)CCCN2C3=CC=CC=C3SC4=C2C=C(C=C4)Cl	4.40	80
18	10646	pyrathiazine	C1CCN(C1)CCN2C3=CC=CC=C3SC4=CC=CC=C42	4.70	190
19	14670	prothypendyl	CN(C)CCCN1C2=CC=CC=C2SC3=C1N=CC=C3	3.40	135
20	14677	methdilazine	CN1CCC(C1)CN2C3=CC=CC=C3SC4=CC=CC=C42	5.23	183
21	16414	7-hidroxyclorpromazine	CN(C)CCCN1C2=C(C=C(C=C2)O)SC3=C1C=C(C=C3)Cl	4.80	119
22	19396	oxomemazine	CC(CN1C2=CC=CC=C2S(=O)(=O)C3=CC=CC=C31)CN(C)C	3.40	185
23	19675	piperacetazine	CC(=0)C1=CC2=C(C=C1)SC3=CC=CC=C3N2CCCN4CCC(CC4)CCO	4.21	98
24	65535	diethazine	CCN(CC)CCN1C2=CC=CC=C2SC3=CC=CC=C31	4.90	225
25	65750	chlorproethazine	CCN(CC)CCCN1C2=CC=CC=C2SC3=C1C=C(C=C3)Cl	5.90	90
26	68223	fenethazine	CN(C)CCN1C2=CC=CC=C2SC3=CC=CC=C31	4.20	115
27	69500	difazin	CCN(CC)CC(=0)N1C2=CC=CC=C2SC3=CC=CC=C31	3.80	210
28	70413	opromazine	CN(C)CCCN1C2=CC=C2S(=0)C3=C1C=C(C=C3)C1	3.90	163
29	72287	levomepromazine	C[C@@H](CN1C2=CC=C2SC3=C1C=C(C=C3)OC)CN(C)C	4.68	58.5
30	94280	dimetacrine	CC1(C2=CC=CC=C2N(C3=CC=CC=C31)CCCN(C)C)C	4.96	206

Tabel V.1. Fenotiazine studiate; nume; CID; proprietățile logP și LD₅₀.

Fig. V.1. Hipermolecula cuprinzînd caracteristicile (substituenții) setului studiat

Au fost obținute ecuțiile de bază care descriu relațiile cantitative dintre proprietatea/activitatea biologică a compușilor și structurile lor moleculare:

$$logP= 59.096+SD_{logP};$$
 n=30; R²=0.946; s=0.165; F=488.078 (1)

$$LD_{50}=9113.289+SD_{LD50};$$
 n=28; R²=0.956; s=13.964; F=566.487 (2)

(moleculele 1 and 23 sunt outliers, valoarea lor reziduală >2×eroarea standard)

Modele QSAR (pentru log P)

Modelele au fost obținute pe setul training (de învățare, școală) (structures 11-30) iar cele mai bune rezultate (în ordinea descrescătoare a lui R²) sunt prezentate în Tabelele V.3 and V.4 (Pîrvan-Moldovan, 2016).

Regresie monovariată	$logP=57.266+0.966\times SD_{logP}$	(3)
	n=20; R ² =0.946; s=0.172; F=317.170	
Regresie bivariată	$logP = 57.299 + 0.968 \times SD_{logP} + 3.54 \times 10^{-5} \times IP[CfMax]$	(4)
	n=20; R ² =0.949; s=0.173; F=157.155	
Regresie trivariată	$logP=56.341+0.948\times SD_{logP}+1.26\times 10^{-}\times IP[CfMin]+0.097\times Chem.pot.$	(5)
	n=20; R ² =0.951; s=0.174; F=103.820	

Modele QSAR (pentru LD₅₀) (https://www.drugbank.ca/)

Modelele au fost obținute pe setul training (de învățare, școală), iar cele mai bune rezultate (în ordinea descrescătoare a lui R^2) sunt prezentate în Tabelele V.5 and V.6.

Regresie monovariată	$LD_{50} \!=\! 9444.65 \!+\! 1.037 \!\times\! SD_{LD50}$	(6)
	n=19; R ² =0.940; s=13.534; F=265.126)	
Regresie bivariată	$LD_{50}\!\!=\!\!9415.945\!+\!1.033\!\times\!\!SD_{LD50}\!\!-\!0.0266\!\times\!\!IE[CfMax]$	(7)
	n=19; R ² =0.943; s=13.607; F=131.573)	
Regresie trivariată	$LD_{50}\!\!=\!\!9606.267\!+\!1.055\!\times\!\!SD_{LD50}\!\!-\!0.2024\!\times\!\!IE[CfMax]\!+\!0.047\!\times\!\!Distance$	(8)
	n=19; R ² =0.947; s=13.498; F=89.557	

Validarea modelelor

(a) Leave-one-out

Calitatea analizei leave-one-out (Jäntschi, 2005) referitoare la modelele propuse este evidențiată în Tabelele V.7 și V.8.

Tabel V.7. Analiza Leave-one-out pentru cele mai bune modele care descriu logP

	Descriptori	Q^2	R^2 - Q^2
1	$\mathrm{SD}_{\mathrm{logP}}$	0.938	0.008
2	SD _{logP} , IP[CfMax]	0.928	0.021
3	SD _{logP} , IP[CfMin], Chem.pot.	0.910	0.041

	Descriptori	Q^2	$R^2 - Q^2$
1	$\mathrm{SD}_{\mathrm{LD50}}$	0.931	0.009
2	SD _{LD50} , IE[CfMax]	0.925	0.018
3	SD _{LD50} , IE[CfMax], Distance	0.919	0.030

(b) Validare externă

Fig.V.3. Graficul variației $logP_{exp}$ funcție de $logP_{calc.}$ pentru setul test (validare externă).

Fig.V.4. Graficul variației LD_{50exp} funcție de LD_{50calc.} pentru setul test (validare externă).

Reiese din Figurile V.3 and V.4 că modelele propuse prezintă o bună abilitate de predicție.

(c) Validare prin clusteri de similaritate

Fig.V.5. Graficul variației $logP_{exp}$ funcție de $logP_{calc.}$ pentru setul test (clusteri).

Fig. V.6. Graficul variației LD_{50exp} funcție de LD_{50calc} pentru setul test (clusteri).

V.2. QSAR în clasa triptanilor

Sumatriptanul, $C_{14}H_{21}N_3O_2S$, este un medicament de sinteză, din clasa triptanilor folosit pentru tratarea migrenelor.

Molecule	XLogP3	CID	Canonical SMILES
1	0.9	5358	CNS(=0)(=0)CC1=CC2=C(C=C1)NC=C2CCN(C)C
2	2	4440	CNS(=0)(=0)CCC1=CC2=C(C=C1)NC=C2C3CCN(CC3)C
3	4 1	77993	CN1CCC[C@@H]1CC2=CNC3=C2C=C(C=C3)CCS(=O)(=O)C4=CC=C4
4	1.2	100/13/191	CN1CCCN(S1(-0)-0)CC2-CC3-C(C-C2)NC-C3CCN(C)C
4	1.2	10043491	CN1CCCN(S1(-0)-0)CC2-CC3-C(C-C2)NC-C3CCN(C)C
5	1.9	24955	CC1 - CC2 - C(C - C1)NC - C2CN(C)C
6	2.2	34833	
7	1.2	10257	CN(C)CCC1=CNC2=C1C=C(C=C2)O
8	2.7	10340828	CN(C)CCC1=CNC2=C1C=C(C=C2)N3CCN(S3(=0)=0)CC4=CC=CC=C4
9	-1.2	439280	C1=CC2=C(C=C1O)C(=CN2)C[C@@H](C(=O)O)N
10	0.1	11722814	CN1CCN(S1(=0)=0)CC2=CC3=C(C=C2)NC=C3CCN
11	1.4	10404770	CN(C)CCC1=CNC2=C1C=C(C=C2)CCN3CCNS3(=O)=O
12	1.9	9998879	CC(C)N1CCN(S1(=O)=O)CC2=CC3=C(C=C2)NC=C3CCN(C)C
13	1.6	123606	CN(C)CCC1=CNC2=C1C=C(C=C2)CS(=O)(=O)N3CCCC3
14	2.3	9802530	CN(C)CCC1=CNC2=C1C=C(C=C2)OS(=O)(=O)C(F)(F)
15	3	10618751	CCN(CC)CCC1=CNC2=C1C=C(C=C2)OS(=O)(=O)C(F)(F)F
16	0.5	4713248	CNS(=0)(=0)C1=CC2=C(C=C1)NC=C2CCN(C)C
17	3.9	9954663	C1CCN(C1)CCC2=CNC3=C2C=C(C=C3)C4=CCN(CC4)S(=O)(=O)C5=CC=C5
18	1.5	18423663	CNS(=0)(=0)CC1=CC2=C(C=C1)NC=C2CC3CCCN3C
19	1	18423665	CNS(=0)(=0)CC1=CC2=C(C=C1)NC=C2CC3CCCN3
20	4.6	11177383	CC(C)C1=CC=C(C=C1)S(=O)(=O)NC2=CC3=C(C=C2)NC=C3CC4CCCN4C
21	1.5	12822482	C1=CC=C(C=C1)S(=O)(=O)NCC2=CC3=C(C=C2)NC=C3CCN
22	2.3	53644294	C1CN(CC1CNCC2=CC=C2)CCC3=CNC4=C3C=C(C=C4)CS(=O)(=O)N
23	4.3	19422723	CN1CCCC1CC2=CNC3=C2C=C(C=C3)C(=C)S(=O)(=O)C4=CC=CC=C4
24	2.9	67923722	CNS(=0)(=0)C(CC1=CC=CC=C1)C2=CC3=C(C=C2)NC=C3CCN(C)C
25	3	44400804	C1CC(NC1)CC2=CNC3=C2C=C(C=C3)NS(=O)(=O)C4=CC=CC=C4
26	2.2	13475733	C1=CC=C(C=C1)CNS(=O)(=O)CCC2=CC3=C(C=C2)NC=C3CCN
27	1.4	13286052	C1=CC=C(C=C1)CNS(=O)(=O)CC2=CC3=C(C=C2)NC=C3CCN
28	1.5	13286055	C1=CC=C(C=C1)NS(=O)(=O)CC2=CC3=C(C=C2)NC=C3CCN
29	1.4	12822479	C1=CC=C(C=C1)CS(=O)(=O)NCC2=CC3=C(C=C2)NC=C3CCN
30	3.3	12082798	CN1CCC(=CC1)C2=CNC3=C2C=C(C=C3)CCS(=O)(=O)N(C)CC4=CC=C4
31	2.4	10571277	CNS(=0)(=0)CC1=CC2=C(C=C1)NC=C2CCN(C)CC3=CC=CC=C3
32	5	10203969	CICCN(CI)CCC2=CNC3=C2C=C(C=C3)NS(=O)(=O)C4=CC=C(C=C4)C5=CC=CC
33	2.1	102242445	CCC1=CNC2=C1C=C(C=C2)CS(=O)(=O)N3CCCCC3
34	3.6	89221361	CNTCCCCTC2=CNC3=C2C=C(C=C3)/C=C/S(=0)(=0)C4=CC=C4
35	1.8	77350860	CNS(=0)(=0)CC1=CC2=C(C=C1)NC=C2CCC3CCCN3C
36	2.8	76115652	CCCCTCCN(CT)CC2=CNC3=C2C=C(C=C3)CS(=O)(=O)N(C)C
3/	3	/1510938	CNUCCI=UN(C2=CIC=U(C=C2)US(=0)(=0)N3UUUC3)UC4=UC=UC=U4
38	1.5	71215712	CNICCC(CCI)C2=CNC3=C2N=C(C=C3)OS(=O)(=O)C
39	1.1	71313712	CNUCCI=CNC2=CIC=C(C=C2)CS(=O)(=O)(NSCCCCS)
40	2.0	70940454	CN(CCC1-CNC)=C2C=C(C=C)(CS(=0)(=0)C4=CC=C2+C4)
42	10	70932804	CC(C1-CNC2-C1C-C(C-C2)CS(-C)(-C)(N3CCCCC3)N(C)C
43	1.7	67834586	CC(C1=CC2=C(C=C1)NC=C2CC3CCCN3)S(=O)(=O)NC
44	1.7	67767267	CC1(CN(S(=0)(=0)N1)CC2=CC3=C(C=C2)NC=C3CCN(C)C)C
45	4.8	67424557	C1CC(N(C1)C1)CC2=CNC3=C2C=C(C=C3)CCS(=O)(=O)C4=CC=C4
46	5.4	67125361	CCCC(CC1=CC2=C(C=C1)NC=C2CC3CCCN3C)S(=O)(=O)C4=CC=C4
47	1.2	66617669	C(C)(CC)=CNC2=C1C=C(C=C2)CS(=O)(=O)N3CCCC3)N
48	0.6	54293224	C1CC(NC1)CC2=CNC3=C2C=C(C=C3)CS(=O)(=O)N
49	0.8	54277349	CNS(=0)(=0)CC1=CC2=C(C=C1)NC=C2C3=CCN(CC3)C
50	1.8	54043760	CNS(=0)(=0)CCC1=CC2=C(C=C1)NC=C2C[C@H]3CCCN3
51	3.8	44400787	CC1=CC=C(C=C1)S(=O)(=O)NC2=CC3=C(C=C2)NC=C3CC4CCCN4C
52	0.6	10448821	CC1(CN(S(=0)(=0)N1)CC2=CC3=C(C=C2)NC=C3CCN)C
53	2.4	23192135	CN1CCCC1CC2=CNC3=C2C=C(C=C3)CCS(=O)(=O)N(C)C
54	1.2	22924406	CN1CCC(=CC1)C2=CNC3=C2C=C(C=C3)CCS(=O)(=O)N
55	1.8	22371684	CC(C1=CC2=C(C=C1)NC=C2CC3CCCN3C)S(=O)(=O)N
56	2.8	21852525	CC(C)(C)NS(=0)(=0)CC1=CC2=C(C=C1)NC=C2CC3CCCN3C
57	1.6	20066734	CNS(=O)(=O)CCC1=CC2=C(C=C1)NC=C2C3=CCN(CC3)C
58	1.9	19970226	CN1CCCC1CC2=CNC3=C2C=C(C=C3)CCS(=O)(=O)N
59	4	19970209	CC(C1=CC2=C(C=C1)NC=C2CC3CCCN3C)S(=O)(=O)C4=CC=CC=C4
60	26	100/11500	C1CC(NC1)CC2 = CNC3 = C2C = C(C = C3)CCS(=O)(=O)C4 = CC = C4

Fig.V.7.a. Aspectul HM care cuprinde caracteristicile structurilor având atomul de S la distanța a doua față de nucleul indolic, setul "2"

Fig. V.7.c. Aspectul HM care cuprinde caracteristicile structurilor având atomul de S la distanța a treia față de nucleul indolic, setul "3"

Au fost obținute ecuțiile de bază care descriu relațiile cantitative dintre proprietatea compușilor (30, rescpectiv 20) și structurile lor moleculare.

$logP=-15.734+0.999\times SD_{logP};$	n=30, R ² =0.927, s=0.321, F=355.73	(13)
logP=13.628+SD _{logP} ;	n=20, R ² =0.9998, s=0.017, F=119140	(14)

Modele QSAR în setul "2" (cazul logP)

Modelele au fost obținute pe setul training, iar cele mai bune rezultate (în ordinea descrescătoare a lui R^2) sunt prezentate în Tabelul V.12.

QSAR models:

Regresie monovariată	$logP=-15.294{+}0.978{\times}SD_{logP}$	(15)
	n=21, R ² =0.952, s=0.280	
Regresie bivariată	$logP=-16.582+1.124 \times SD_{logP} - 0.029 \times N$	(16)
	n=21, R ² =0.966, s=0.242	
Regresie trivariată	$logP=-16.582+1.154 \times SD_{logP} -0.032 \times N-0.431 \times HOMO$	(17)
	$n=21, R^2=0.969, s=0.237$	

Validarea modelelor

a. Validare internă

Performanța analizei leave-one-out (Jäntschi, 2005) referitoare la modelele propuse este evidențiată în Tabelul V.13.

Table V.13. Leave-one-out pentru cele mai bune modele logP						
	Descriptori	R^2	Q^2	R^2 - Q^2		
1	$\mathrm{SD}_{\mathrm{logP}}$	0.952	0.944	0.009		
2	$\mathrm{SD}_{\mathrm{logP}},\mathrm{N}$	0.966	0.955	0.012		
3	SD _{logP} , N, HOMO	0.969	0.956	0.014		

b. Validare externă

Fig.V.8. Graficul variației $logP_{exp}$ funcție de $logP_{calc.}$ pentru setul test (validare externă).

c. Validare prin clusteri de similaritate

Fig. V.9. Graficul variației $logP_{exp}$ funcție de $logP_{calc.}$ pentru setul test (clusteri).

Modele QSAR în set "2" pentru Afinitatea de legare (BA)

Interacțiunea ligand-proteină este bazată pe forte intermoleculare, precum legături ionice, legături de hydrogen, forțe Van der Waals. După docking poate avea loc disocierea, fiind un proces reversibil, de echilibru chimic. Capacitatea de legare se numește afinitate. Valorile afinității de legare (BA, Binding Affinity) au fost calculate prin docking molecular folosind AutoDock 4.2.6 (Morris *et al*, 2009)

Ecuația de bază care descrie relația dintre BA a compușilor și structura lor

Binding Affinity=-11.827+SD_{BA} (kcal/mol); $n=32, R^2=0.915, s=0.253, F=324.639$

(18)

Validarea modelului

În urma analizei de similaritate au fost alese moleculele care să constituie clusterul fiecărei molecule a cărei activitate trebuie prezisă. Fiecare cluster include același număr de molecule.

Fig.V.10. Graficul variației BA_{exp} funcție de BA_{calc.} pentru setul test (clusteri).

The plot BA_{exp} vs. $BA_{calc.}$ for the test set (Fig.V.10) shows a good correlation between experimental data and calculated ones.

Prezicerea afinității de legare pentru noi liganzi

Au fost propuse câte trei molecule noi pentru fiecare set și li s-a determinat fiecăreia valoarea descriptorului SD_{logP} (Tabel V.25). Fiecare nou ligand a fost comparat cu moleculele din setul său, noi ecuații au fost stabilite.

			υ	1 1 ,	
Ligand	Media BA		BA prezisă	Docking BA	Media BA a conformerilor
nou	(kcal/mol)	$\mathrm{SD}_{\mathrm{BA}}$	(kcal/mol)	(kcal/mol)	(kcal/mol)
2a	-7.30	9.494	-8.26	-8.7	-7.9
2b	-7.23	9.297	-8.27	-8.8	-8.3
2c	-7.18	9.829	-7.82	-8.9	-8.5
3a	-7.46	6.998	-7.49	-8.4	-7.8
3b	-7.49	7.004	-7.52	-8.0	-7.6
3c	-7.46	6.480	-8.02	-8.1	-7.8

T		T · · ·		
Table	V.25.	Liganzi	no1	propusi
				F F

Fig.V.13. Graficul variației BA_{docking} funcție de SD_{BA} în setul "2"

Fig.V.14. Graficul variației BAdocking funcție de SDBA în setul "3"

Ca o concluzie, este posibilă prezicerea activității biologice a unor molecule congenere netestate.

V.3. QSAR în derivați de sildenafil

Sildenafilul, $C_{22}H_{30}N_6O_4S$, este un puternic inhibitor selectiv al cGMP fosfodiesteraza de tip 5 (PDE5), o enzimă care promovează degradarea cGMP, responsabilă de fluxul sanguin din corpus cavernosum. Un set de 40 de molecule a fost descărcat (https://pubchem.ncbi.nlm.nih.gov), Tabelul V.26.

Tabl	able V.26. Derivați de sildenafil, CID și proprietățile logP și TPSA.								
#	CID	Canonical SMILES	XLogP	TPSA (A ²)					
1	5212	CCCC1=NN(C2=C1NC(=NC2=O)C3=C(C=CC(=C3)S(=O)(=O)N4CCN(CC4)C)OCC)C	1.5	118					
2	44440137	CCCC1=NN(C2=C1NC(=NC2=O)C3=C(C=CC(=C3)S(=O)(=O)N4CCC(CC4)P(=O)(OCC)OCC)OCCC)C	2.7	150					
3	44440128	CCCC1=NN(C2=C1NC(=NC2=O)C3=C(C=CC(=C3)S(=O)(=O)N4CCN(CC4)CP(=O)(O)OCC)OCCC)C	-1.1	164					
4	44391946	CCC1=C2C(=NC(=NC2=O)C3=C(C=CC(=C3)S(=O)(=O)N4CCN(CC4)C)OCC)N(N1)C5CCCC5	2.6	115					
5	110634	CCCC1=NC(=C2N1NC(=NC2=O)C3=C(C=CC(=C3)S(=O)(=O)N4CCN(CC4)CC)OCC)C	2.5	118					
6	44391895	CCCN1C2=NC(=NC(=O)C2=C(N1)CC)C3=C(C=CC(=C3)S(=O)(=O)N4CCN(CC4)C)OCC	2.2	115					
7	44402347	CCOC1=C(C=C(C=C1)S(=O)(=O)N2CCN(CC2)C)C3=NC(=O)C4=C(N3)N5C=CC=C(C5=N4)C	2.5	117					
8	44402480	CCOC1=C(C=C(C=C1)S(=O)(=O)N2CCN(CC2)C)C3=NC(=O)C4=C(N3)N5C=C(C=CC5=N4)C	2.5	115					
9	44402581	CCN1CCN(CC1)S(=0)(=0)C2=CC(=C(C=C2)OCC)C3=NC(=0)C4=C(N3)N5C(=CC=CC5=N4)C	2.9	117					
10	45266248	CCOC1=C(C=C(C=C1)S(=O)(=O)N2CCN(CC2)C)C3=NC(=O)C4=C(N3)N5C=CC=CC5=N4	2.2	117					
11	9913987	CCCC1=NN(C2=C1NC(=NC2=O)C3=C(C=CC(=C3)S(=O)(=O)N4CCC(CC4)C(=O)N)OCC)C	1	157					
12	44381943	CCCN1C=NC2=C1NC(=NC2=O)C3=C(C=CC(=C3)S(=O)(=O)N4CCN(CC4)C)OCCC	1.8	118					
13	45267330	CCCC1=C(C=C(C2=C1NC(=NC2=O)C3=C(C=CC(=C3)S(=O)(=O)N4CCN(CC4)C)OCC)O)OC	3.2	129					
14	72543811	CCCC1=NN(C2=C1N=C(N=N2)C3=C(C=CC(=C3)S(=O)(=O)N4CCN(CC4)C)OCC)C	1.4	115					
15	118728651	CCCC1=NN(C2=C1NC(=NC2=O)C3=C(C=CC(=C3)S(=O)(=O)NCCCCO)OCC)C	1.5	143					
16	118728655	CCCC1=NN(C2=C1NC(=NC2=O)C3=C(C=CC(=C3)S(=O)(=O)NCCN(CC)CC)OCC)C	2.3	126					
17	118728656	CCCC1=NN(C2=C1NC(=NC2=O)C3=C(C=CC(=C3)S(=O)(=O)NCCCN(C)C)OCC)C	1.9	126					
18	9935230	CCCC1=NC(=C2N1NC(=NC2=O)C3=C(C=CC(=C3)S(=O)(=O)N4CCN(CC4)C)OCC)CC	2.5	118					
19	10227317	CCCC1=C2NC(=NC(=O)N2C(=N1)C)C3=C(C=CC(=C3)S(=O)(=O)N4CCN(CC4)C)OCC	2.1	118					
20	10277925	CCN1CCN(CC1)S(=0)(=0)C2=CN=C(C(=C2)C3=NC(=0)C4=NN5CCCCC5=C4N3)OCC	0.6	130					
21	11540832	CCC1=C2C(=O)N=C(NN2C(=N1)C3CCCC3)C4=C(C=CC(=C4)S(=O)(=O)N5CCN(CC5)C)OCC	3	118					
22	9955904	CCCN1C=NC2=C1NC(=NC2=O)C3=C(C=CC(=C3)S(=O)(=O)N4CCN(CC4)C)OCC	1.2	118					
23	9956558	CCCN1C2=NC(=NC(=O)C2=C(N1)C)C3=C(C=CC(=C3)S(=O)(=O)N4CCN(CC4)C)OCC	1.8	115					
24	24859502	CCCC1=NN(C2=C1NC(=NC2=O)C3=C(C=CC(=C3)S(=O)(=O)N4CCN(CC4)C5CCCCC5)OCC)C	3.3	118					
25	70687499	CCOC1=C(C=C(C=C1)S(=O)(=O)N2CCN(CC2)C)C3=NC(=O)C4=C(N3)C=NN4C	0.3	118					
26	9845589	CCCC1=NN(C2=C1NC(=NC2=O)C3=CC(=CC=C3)S(=O)(=O)N4CCN(CC4)C)C	1.1	108					
27	1896867	CCCC1=NN(C2=C1NC(=NC2=O)C3=C(C=CC(=C3)S(=O)(=O)N4CCCCC4)OCC)C	2.5	114					
28	53956764	CCOC1=C(C=C(C=C1)S(=O)(=O)N2CCN(CC2)C)C3=NC(=O)C4=C(N3)C(=NN4C)	0.7	118					
29	10072962	CCCC1=C2C(=NN1)C(=O)N=C(N2)C3=C(C=CC(=C3)S(=O)(=O)N4CCN(CC4)C)OCC	1.5	128					
30	10141109	CCCC1=NN(C2=C1NC(=NC2=O)C3=C(C=CC(=C3)S(=O)(=O)N4CC(NC(C4)C)C)OCC)C	1.9	126					
31	10228242	CCCC1=NN(C2=C1NC(=NC2=S)C3=C(C=CC(=C3)S(=O)(=O)N4CCN(CC4)C)OCC)C	2.1	133					
32	12018718	CCCC1=NC(=C2N1NC(=NC2=O)C3=C(C=CC(=C3)S(=O)(=O)N4CCNCC4)OCC)C	1.6	126					
33	24756844	CCCC1=NN(C2=C1NC(=NC2=O)C3=C(C=CC(=C3)S(=O)(=O)N4CCN(CC4)CC)OCC)C	1.8	118					
34	56841591	CCCC1=NN(C2=C1NC(=NC2=S)C3=C(C=CC(=C3)S(=O)(=O)N4CC(NC(C4)C)C)OCC)C	2.5	141					
35	25209618	CCCC1=NN(C2=C1NC(=NC2=O)C3=C(C=CC(=C3)S(=O)(=O)N4CCN(CC4)C5CCCC5)OCC)C	2.8	118					
36	102582026	CCCC1=NN(C2=C1NC(=NC2=O)C3=C(C=CC(=C3)S(=O)(=O)N4CCNCC4)OCCC)CC	1.8	126					
37	23449792	CCCCOC1=NC=C(C=C1C2=NC(=O)C3=NNC(=C3N2)CC)S(=O)(=O)N4CCN(CC4)CC	1.6	141					
38	22893606	CCCCCC1=NC(=C2N1NC(=NC2=O)C3=C(C=CC(=C3)S(=O)(=O)N(CC)CC)OCC)C	4.1	115					
39	23522695	CCCC1=C2NC(=NC(=O)N2C(=N1)C)C3=C(C=CC(=C3)S(=O)(=O)N4CCCCC4)OCC	3.1	114					
40	23522716	CCCC1=C2NC(=NC(=0)N2C(=N1)C)C3=C(C=CC(=C3)S(=0)(=0)NO)OCC	1.6	143					

Și în acest studio a fost urmat algoritmul propus de Diudea.

- Descărcarea dintr-o bază de date a structurilor moleculare; împărțirea lor în training set și test set
- Optimizarea geometriei (calcularea energiei și a sarcinilor parțiale)
- Calcularea descriptorilor/indicilor globali/locali
- Hipermolecula și calcularea vectorilor săi (cu mai multe aliniamente)
- Corelare ponderată și reducerea de date
- Calcularea descriptorului Sumă
- Modele QSAR (Toplis & Costello; Corelația de șansă)
- Validare internă și externă
- Obținerea clusterilor de similaritate
- Predicția/validarea prin clusteri de similaritate

Fig.V.14.b. Hipermolecula cuprinzînd caracteristicile (substituenții) setului studiat Au fost obținute ecuațiile de bază pe întreg setul.

$logP=16.901+SD_{logP};$	n=39, R ² =0.934, s=0.245, F=525.792	(21)
TPSA=207.877+0.989×SD _{TPSA} ;	n=37, R ² =0.925, s=0.323, F=433.889	(22)

Modele QSAR cu o variabilă

Modelele se obțin pe setul școală.

$$logP=17.121+1.0108 \times SD_{logP};$$
 n=26, R²=0.953, s=0.228, F=485.105 (23)

TPSA=210.063+0.987×SD_{TPSA};
$$n=26, R^2=0.953, s=2.954, F=486.036$$
 (24)

Concluziile trase din Tabelul V.29-30: deși R^2 crește, eroarea standard a estimării nu scade. Este evident că eroarea standard din modelul monovariat < eroarea standard a medelului bivariat< eroarea standard din modelul trivariat, astfel încât în predicțiile ulterioare se vor folosi cele mai simple modele (Eq. 23 and 24).

	Descriptori		\mathbb{R}^2	S	F
SD_{logP}			0.9529	0.2279	485.1048
$\mathrm{SD}_{\mathrm{logP}}$	LUMO		0.9535	0.2311	235.9656
$\mathrm{SD}_{\mathrm{logP}}$	LUMO	Detour	0.9537	0.2359	151.0588

Tabel V.31. Parametrii statistici ai regresiei multiliniare pentru cazul logP

Tabel V.32. Parametrii statistici ai regresiei multiliniare pentru cazul TPSA

	Ι	Descriptori	R^2	S	F
SD _{TPSA}			0.9529	2.9541	486.0361
$\mathrm{SD}_{\mathrm{TPSA}}$	HOMO		0.9546	2.9634	241.9298
$\mathrm{SD}_{\mathrm{TPSA}}$	НОМО	logWkOp[Adj.Det.D3D]	0.9554	3.0033	157.1547

Validarea modelelor

Validarea internă LOO

 Q^2 corespunde lui R^2 , în prezicere.

Table V.33. Rezulatele analizei Leave-one-out

Descriptor	R^2	Q^2	R^2-Q^2
$\mathrm{SD}_{\mathrm{logP}}$	0.9529	0.9468	0.0061
SD_{TPSA}	0.9529	0.9481	0.0048

Validare externă

Se construiesc clusteri de similaritate (dintre moleculele setului de învățare) pentru fiecare moleculă din setul test; se generează modele pentru clusterii respectivi (excluzând liderul); se prezic valorile activității pentru moleculele din setul test (individual, pe fiecare cluster de similaritate) (Tabel V.34).

Fig. V.15. Graficul variației $logP_{exp}$ funcție de $logP_{calc.}$ pentru setul test (validare externă).

Fig. V.16. Graficul variației TPSA_{ext} funcție de TPSA_{calc.} pentru setul test (validare externă).

Validare prin clusteri de similaritate

Principiul construirii clusterilor este același. Se rețin doar moleculele cu similaritatea peste 80% . Bazat pe clusteri de similaritate, se obțin valorile calculate pentru logP și TPSA (Table V.36-37).

Fig.V.17. Graficul variației $logP_{exp}$ funcție de $logP_{calc.}$ pentru setul test (clusteri).

Fig.V.18. Graficul variației TPSA_{ext} funcție de TPSA_{calc.} pentru setul test (clusteri).

Predicțiile pentru logP ($R^2=0.902$) și TPSA ($R^2=0.867$), sunt mai exacte atunci cand se folosesc clusterii de similaritate.

V.4. QSAR în clasa cefalosporinelor

Cefalosporinele sunt o clasă de antibiotice β -lactamice, discoperite în 1945 de către Giuseppe Brotzu și comercializate din 1964. Cefalosporinele sunt bactericide și au același mod de acțiune ca și alte penicilinele, dar sunt mai puțin sensibile la β -lactamaze.

	logP		PSA						
Mal	Numa	CID	Dubaham	AlegDS	Isham	DubCham	Isham	Polarizabilitate	Refractivitate
1	Cefacetrile	91562	-0.5	-0.52	-1.78	162	136.80	31.32	77.51
2	Cefaclor	51039	-1.8	0.85	-2.31	138	112.73	35.11	89.56
3	Cefadroxil	47965	-2.1	0.51	-2.45	158	132.96	35.86	90.95
4	Cefalotin	6024	-0.4	0.63	0.02	167	113.01	37.22	93.79
5	Cefamandole	456255	-0.9	-0.05	0.03	201	150.54	42.45	126.65
6	Cefapirin	30699	-1.1	0.18	-2.00	177	125.90	40.63	122.43
7	Cefazolin	33255	-0.4	-0.40	-1.52	235	156.09	41.44	119.86
8	Cefdinir	6915944	0	0.02	-1.69	212	158.21	36.12	94.34
9	Cefditoren	9870843	0.7	1.70	-0.15	242	160.10	49.19	124.18
10	Cefepime	5479537	-0.1	-0.37	-4.29	204	150.04	47.53	141.98
11	Cefixime	5362065	-0.7	0.25	-1.18	238	184.51	41.62	104.91
12	Cefmenoxime	9570757	0	-0.13	-0.83	270	190.81	47.04	133.51
13	Cefmetazole	42008	-0.6	-0.38	-0.65	239	163.33	44.50	124.57
14	Cefonicid	43594	-1.9	-0.71	-2.51	264	204.91	47.96	136.58
15	Cefoperazone	44187	-0.7	-0.11	-0.90	271	220.26	62.82	169.06
16	Ceforanide	43507	-3.2	-1.35	-3.17	244	193.63	49.27	139.87
17	Cefotaxime	5742673	-1.4	0.14	-1.41	227	173.51	41.77	105.11
18	Loracarbef	5284585	-1.7	0.55	-2.40	113	112.73	32.61	86.64
19	Cefotiam	43708	-2.4	-0.33	-3.09	251	172.46	49.87	142.34
20	Cefpiramide	636405	-0.1	0.53	0.22	259	212.76	58.79	164.81
21	Cefpodoxime	6335986	-1.4	0.05	-1.19	210	156.44	39.90	100.71
22	Cefprozil	5281006	-1.4	0.94	-1.92	158	132.96	39.35	101.27
23	Cefradine	38103	0.4	0.70	-2.45	138	112.73	33.19	92.00
24	Ceftazidime	5481173	0.4	-1.21	-4.12	245	191.22	51.06	143.88
25	Ceftizoxime	6533629	0	0.40	-0.85	201	147.21	35.38	89.90
26	Ceftobiprole	6918430	-3.7	-1.27	-4.53	250	203.44	50.41	131.04
27	Ceftolozane	53234134	-3.2	-1.20	-8.68	356	302.21	62.09	194.51
28	Ceftriaxone	5479530	-1.3	0.01	-1.79	288	208.98	51.47	128.47
29	Cefuroxime	5479529	-0.2	-0.24	-0.90	199	173.76	38.75	97.17
30	Cephalexin	27447	0.6	0.55	-2.14	138	112.73	32.52	89.97
31	Cephaloglycin	19150	-3	0.54	-2.90	164	139.03	37.64	99.90

 Tabel V.38. Medicamente din familia cefalosporinelor (https://pubchem.ncbi.nlm.nih.gov)

Hipermolecula corespunzătoare setului apare în Figura V.19.a-b.

Fig.V.19.a. Hipermolecula cuprinzînd caracteristicile (substituenții) setului studiat

Ecuația de bază, rezultată pe întreg setul de molecule, exceptând outlier-ii.

$$logP= 16.415+0.998 \times SD_{logP};$$
 n=27; R²=0.865; s=0.435; F=160.164 (25)

Modele QSAR

Modelele matematice generate în training set sunt ilustrate în Eq. 26-28.Regresie monovariată $logP= 16.924+1.0242 \times SD_{logP}$ (26) $n=18; R^2=0.874; s=0.452; F=111.735$ $n=18; R^2=0.879+0.970 \times SD_{logP}-14 \times 10^{-5} \times D3D$ (27) $n=18; R^2=0.902; s=0.413; F=69.167$ $n=18; R^2=0.902; s=0.413; F=69.167$ (28)Regresie trivariată $logP= 14.109+0.960 \times SD_{logP}-6 \times 10^{-4} \times D3D-3 \times 10^{-5} \times TE$ (28) $n=18; R^2=0.923; s=0.380; F=55.810$ $n=18; R^2=0.923; s=0.380; F=55.810$ $n=18; R^2=0.923; s=0.380; F=55.810$

Validarea modelelor

Validare internă, LOO

Table V.42. Rezultatele	analizei Leave-one-out
-------------------------	------------------------

D ₁	D ₂	D_3	\mathbb{R}^2	Q^2	$R^2 - Q^2$
$\mathrm{SD}_{\mathrm{logP}}$			0.875	0.845	0.030
$\mathrm{SD}_{\mathrm{logP}}$	D3D		0.902	0.866	0.036
$\mathrm{SD}_{\mathrm{logP}}$	D3D	TE/N	0.923	0.874	0.049

Validarea externă a modelului cu trei variabile, în setul test, cu ajutorul ecuației Eq.28, conduce la rezultatul reprezentat în Figura V.20.

Fig. V.20. Graficul variației $logP_{ext}$ funcție de $logP_{calc.}$ pentru setul test (validare externă).

5. QSAR în clasa penicilinelor

Antibioticele β -lactamice inhibă formarea de legături peptidoglicanice în peretele celular al bacteriilor, determinând moartea celulelor.

Fig. V.21.a Hipermolecula cuprinzînd caracteristicile (substituenții) setului studiat

Tabelul V.44 cuprinde 40 de structures având inel β -lactamic

Mol	CID	Name	MW	XlogP3	LD50 rat, oral	Canonical SMILES
1	5493108	AC1NUTQ9	463.51	-2.9	2310.0	CC1(C(N2C(S1)C(C2=0)NC(C3=CC=CC=C3)C(=0)NC(=0)C(CC(=0)N)N)C(=0)O)C
2	5745669	AC1NX6WR	479.51	-3.7	4610.0	CC1(C(N2C(S1)C(C2=0)NC(C3=CC=C(C=C3)O)C(=0)NC(=0)C(CC(=0)N)N)C(=0)O)C
3	5745670	AC1NX6WT	477.54	-2.7	2280.0	CC1(C(N2C(S1)C(C2=0)NC(C3=CC=CC=C3)C(=0)NC(=0)C(CC(=0)N)NC)C(=0)O)C
4	71365	Almecillin PenO	330.42	1.8	~	CC1(C(N2C(S1)C(C2=0)NC(=0)CSCC=C)C(=0)0)C
5	36273	Amdinocillin	325.43	2.1	1544.3	CC1(C(N2C(S1)C(C2=0)N=CN3CCCCCC3)C(=0)0)C
6	33613	Amoxicillin	365.40	-2	1703.6	CC1(C(N2C(S1)C(C2=0)NC(=0)C(C3=CC=C(C=C3)0)N)C(=0)0)C
7	6249	Ampicillin	349.41	-1.1	1562.0	CC1(C(N2C(S1)C(C2=0)NC(=0)C(C3=CC=CC=C3)N)C(=0)O)C
8	71961	Aspoxicillin	493.54	-3.4	8000.0	CC1(C(N2C(S1)C(C2=0)NC(=0)C(C3=CC=C(C=C3)0)NC(=0)C(CC(=0)NC)N)C(=0)0)C
9	15574941	Azidocillin	375.40	2.8	2132.9	CC1(C(N2C(S1)C(C2=0)NC(=0)C(C3=CC=CC3)N=[N+]=[N-])C(=0)0)C
10	5284519	Azlocillin	461.49	0.1	2183.8	CC1(C(N2C(S1)C(C2=0)NC(=0)C(C3=CC=CC3)NC(=0)N4CCNC4=0)C(=0)0)C
11	441397	Bacampicillin	465.52	2.7	2073.3	CCOC(=0)OC(C)OC(=0)C1C(SC2N1C(=0)C2NC(=0)C(C3=CC=CC=C3)N)(C)C
12	6196	Oxacillin	401.44	2.4	1658.3	CC1=C(C(=N01)C2=CC=C2)C(=0)NC3C4N(C3=0)C(C(S4)(C)C)C(=0)O
13	20824	Carbenicillin	378.40	1.1	1459.9	CC1(C(N2C(S1)C(C2=0)NC(=0)C(C3=CC=CC=C3)C(=0)0)C(=0)0)C
14	33672	Carfecillin	454.50	3	980.0	CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=CC3)C(=O)OC4=CC=CC=C4)C(=O)O)C
15	6098	Cloxacillin	435.88	2.4	1994.6	CC1=C(C(=N01)C2=CC=CC=C2Cl)C(=0)NC3C4N(C3=0)C(C(S4)(C)C)C(=0)O
16	19003	Cyclacillin	341.43	1.3	1864.3	CC1(C(N2C(S1)C(C2=0)NC(=0)C3(CCCCC3)N)C(=0)0)C
17	18381	Dicloxacillin	470.33	2.9	1994.6	CC1=C(C(=N01)C2=C(C=CC=C2CI)CI)C(=0)NC3C4N(C3=0)C(C(S4)(C)C)C(=0)O
18	71797	Ephicillin	433.57	2.9	~	CCN(CC)CCOC(=0)C1C(SC2N1C(=0)C2NC(=0)CC3=CC=CC=C3)(C)C
19	6438232	Flavicidin PenF	312.38	1.9	2000.0	CCC=CCC(=0)NC1C2N(C1=0)C(C(S2)(C)C)C(=0)O
20	12314049	Heptylpenicillin PenA	342.45	3.5	2000.0	CCCCCCCC(=0)NC1C2N(C1=0)C(C(S2)(C)C)C(=0)O
21	6087	Meticillin	380.42	1.2	1889.3	CC1(C(N2C(S1)C(C2=O)NC(=O)C3=C(C=CC=C3OC)OC)C(=O)O)C
22	36921	Ticarcillin	384.43	0.8	1459.1	CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CSC=C3)C(=O)O)C(=O)O)C
23	656511	Mezlocillin	539.58	-0.2	2500.3	CC1(C(N2C(S1)C(C2=0)NC(=0)C(C3=CC=C3)NC(=0)N4CCN(C4=0)S(=0)(=0)C)C(=0)O)C
24	8982	Nafcillin	414.48	2.9	2120.8	CCOC1=C(C2=CC=CC=C2C=C1)C(=0)NC3C4N(C3=0)C(C(S4)(C)C)C(=0)O
25	180562	O-Chlorophenoxymethyl penicillin	384.38	2.7	~	CC1(C(N2C(S1)C(C2=0)NC(=0)COC3=CC=CC=C3Cl)C(=0)0)C
26	6439405	Octenoylpenicillin	340.44	3	~	CCCCC=CCC(=0)NC1C2N(C1=0)C(C(S2)(C)C)C(=0)O
27	5852	Penicillamine	149.21	-1.8	2029.0	CC(C)(C(C(=0)O)N)S
28	115163	Pivmecillinam	439.57	3.1	2187.4	CC1(C(N2C(S1)C(C2=0)N=CN3CCCCCC3)C(=0)OCOC(=0)C(C)(C)C)C
29	167942	p-Hydroxy penicillin	366.39	1.7	~	CC1(C(N2C(S1)C(C2=O)NC(=O)COC3=CC=C(C=C3)O)C(=O)O)C
30	150610	Ertapenem	475.52	-1.5	2080.3	CC1C2C(C(=0)N2C(=C1SC3CC(NC3)C(=0)NC4=CC=CC(=C4)C(=0)O)C(=0)O)C(C)O
31	5904	Benzylpenicillin PenG	334.39	1.8	1652.3	CC1(C(N2C(S1)C(C2=0)NC(=0)CC3=CC=CC=C3)C(=0)0)C
32	123630	Tazobactam	300.29	-2	1810.0	CC1(C(N2C(S1(=0)=0)CC2=0)C(=0)0)CN3C=CN=N3
33	120720	Penicillin X (III)	350.39	1.5	1652.3	CC1(C(N2C(S1)C(C2=0)NC(=0)CC3=CC=C(C=C3)O)C(=0)O)C
34	71724	Adicillin PenN	359.40	-2.5	2000.0	CC1(C(N2C(S1)C(C2=0)NC(=0)CCCC(C(=0)0)N)C(=0)0)C
35	107556	Amylpenicillin PenDF	314.40	2.4	2000.0	CCCCCC(=0)NC1C2N(C1=0)C(C(S2)(C)C)C(=0)O
36	21319	Flucloxacillin	453.87	2.6	2083.4	CC1=C(C(=N01)C2=C(C=CC=C2CI)F)C(=0)NC3C4N(C3=O)C(C(S4)(C)C)C(=O)O
37	443387	Hetacillin	389.47	-0.6	1851.4	CC1(C(N2C(S1)C(C2=0)N3C(=0)C(NC3(C)C)C4=CC=CC=C4)C(=0)0)C
38	6869	Phenoxymethylpenicillin	350.39	2.1	1895.3	CC1(C(N2C(S1)C(C2=0)NC(=0)COC3=CC=CC=C3)C(=0)0)C
39	43672	Piperacillin	517.56	0.5	2392.5	CCN1CCN(C(=0)C1=0)C(=0)NC(C2=CC=C2)C(=0)NC3C4N(C3=0)C(C(S4)(C)C)C(=0)O
40	33478	Pivampicillin	463.55	2.9	1919.3	CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=CC3)N)C(=O)OCOC(=O)C(C)(C)C)C

Table V.44. penicillin derivatives with their CID and properties logP and LD₅₀.(https://pubchem.ncbi.nlm.nih.gov)

Există printer ele cinci molecule a căror activitate biologică e necunoscută. Scopul acestui studio este acela de a prezice activitățile lor.

Valoarea medie pentru LD_{50} pe întreg setul este 2167 mg/kg; pe baza acestei valori se calculează descriptorul SD_{LD50} .

Se obține mai întâi ecuația de bază.

$$LD_{50}=1997.8+0.992\times SD_{LD50};$$
 n=39, R²=0.954, s=233.751, F=761.981 (29)

Ecuația 30 redă modelul folosit în predicție.

$$LD_{50}=1994.253+0.999\times SD_{LD50};$$
 n=34, R²=0.961, s=230.279, F=791.147 (30)

Validarea modelului

Fig. V.22. Variația LD₅₀=f(SD_{LD50})

Valorile LD₅₀ calculate pentru cele cinci molecule se înscriu cu succes între valorile externe ale setului.

V.6. QSAR în derivați de capsaicină

Capsaicina, $C_{18}H_{27}O_3N$, și câțiva compuși înrudiți, *capsaicinoide*, sunt produși ca metaboliți secundari de către chilli peppers.

Moleculele studiate, descărcate de pe PubChem sunt cuprinse în Tabelul V.47.

Mol	CID	Canonical SMILES	XlogP3	TPSA(A ²)
1	1548943	CC©C=CCCCCC(=O)NCC1=CC(=C(C=C1)O)OC	3.6	58.6
2	42759	CCCCCCCCCC(=0)C1=CC(=C(C=C1)O)OC	4.1	58.6
3	2998	CCCCCCCC(=0)NCC1=CC(=C(C=C1)0)OC	4.2	58.6
4	3041745	CCCCCCCCCC(=0)CC1=CC(=C(C=C1)0)OC	4.2	58.6
5	69336196	CCCCCCCCC(=O)NCC1=CC(=C(C=C1)O)OC	2.8	67.8
6	10090630	CC(=CCCC(=CCC(=O)NCC1=CC(=C(C=C1)O)OC)C)C)C	5.8	58.6
7	25201160	CC(=CCCCCC(=O)NCC1=CC(=C(C=C1)O)OC)C	3.4	58.6
8	68413664	CCCCCCCCCCC(=O)NCC1=CC(=C(C=C1)O)OC	5.0	70.6
9	3065261	CCCCCCCCCC(=0)CC1=CC(=C(C=C1)0)OC	4.7	58.6
10	169252	CCCCCCCCC(=O)NCC1=CC(=C(C=C1)O)OC	4.7	58.6
11	3053256	CCCCCCCCCC(=0)NCC1=CC(=C(C=C1)0)OC	5.8	58.6
12	160785	COC1=C(C=CC(=C1)CNC(=O)CCCCCCCC=C)O	4.8	58.6
13	206278	CCCCCCCCCC(=0)NCC1=CC(=C(C=C1)0)OC	5.3	58.6
14	3021470	CCCC(=0)NCC1=CC(=C(C=C1)0)OC	1.5	58.6
15	3022073	CCCCC(=0)NCC1=CC(=C(C=C1)0)OC	2.0	58.6
16	46887832	CC1CCC(C(C1)NC(=0)NCC2=CC(=C(C=C2)0)OC)C©C	4.0	70.6
17	68414474	COC1=C(C=CC(=C1)CNC(=O)NCC2=CC=CC=C2)O	1.3	70.6
18	3041816	CCCCCC(=0)NCC1=CC(=C(C=C1)0)OC	2.6	58.6
19	68760229	COC1=C(C=C(C=C1)CNC(=O)O)O	0.7	78.8
20	67419566	CC©©N(CC1=CC(=C(C=C1)0)OC)C(=O)O	1.9	70.0
21	22245803	CC©©OC(=O)NC1=CC(=C(C=C1)OC)O	2.2	67.8
22	5149140	CCCCCCCC(=O)NCC1=CC(=C(C=C1I)O)OC	4.8	58.6
23	168836	CC©CCCCCC(=O)NCC1=CC(=C(C=C1)O)OC	3.9	58.6
24	9839519	CC©C=CCCCCC(=O)OCC1=CC(=C(C=C1)O)OC	4.2	55.8
25	101751387	CC(CCCCCCC(=0)NCC1=CC(=C(C=C1)0)OC)CO	3.0	78.8
26	20058472	CCCCCCCNC(=0)C©C1=CC(=C(C=C1)0)OC	4.7	58.6
27	66552406	CCCCCCCCCC(=0)C©C1=CC(=C(C=C1)O)OC	5.3	58.6
28	107982	CC©CCCCCC(=0)NCC1=CC(=C(C=C1)0)OC	4.4	58.6
29	4446034	CCCCCCCC(=0)NCC1=CC=CC=C1	4.6	29.1
30	44398654	CCCCCCCC(=0)NCC1=CC(=C(C(=C1)OC)O)CC	5.0	58.6
31	66552464	CCCCCCCC(=0)NC©C1=CC(=C(C=C1)0)OC	4.6	58.6
32	11630698	CC©CC=CCCC(=0)NCC1=CC(=C(C=C1)0)OC	3.1	58.6
33	11486920	CCCCCCCC(=0)NCC1=C(C(=C(C=C1)0)OC)I	4.8	58.6
34	122189959	COC1=CC=C(C=C1)CC(=O)NCC2=CC(=C(C=C2)O)O	1.9	78.8
35	52944666	CC©©C1=CC=C(C=C1)CNC(=O)CC2=CC(=C(C=C2)O)OC	3.9	58.6
36	71541380	CNOCCNC(=O)CC1=CC(=C(C=C1)O)OC	0.8	61.8
37	15068906	CC1=CC(=CC=C1)CCNC(=O)CC2=CC(=C(C=C2)OC)OC	3.4	47.6
38	9566808	CC(=NNC(=O)CC1=CC(=C(C=C1)OC)OC)C2=CN=CC=C2	1.9	72.8
49	71748835	CC©(C=CCCCCC(=O)NCC1=CC(=C(C=C1)O)OC)O	2.2	78.8
40	2966952	CC©©OC(=0)NC1=CC(=C(C=C1)OC)Cl	3.2	47.6

 Table V.47. Derivați de capsaicină, CID, proprietățile logP și TPSA.(https://pubchem.ncbi.nlm.nih.gov)

Fig.V.23.a Hipermolecula cuprinzînd caracteristicile (substituenții) setului studiat

Ecuația de bază (31) a fost obținută pe	întregul set.	
$logP=4.377+SD_{logP};$	n=40; R ² =0.791; s=0.644; F=143.535	(31)

Modele QSAR

Regresie monovariată	$logP=4.381+0.992\times SD_{logP}$	(32)
	n=28; R ² =0.815; s=0.672; F=114.300	
Regresie bivariată	$logP= 5.045+1.012 \times SD_{logP}-3.461 \times Charges$	(33)
	n=28; R ² =0.834; s=0.647; F=63.013	
Regresie trivariată	$logP=7.301+0.861\times SD_{logP}-2.856\times Charges+0.014\times TE/N$	(34)
	n=28; R ² =0.846; s=0.637; F=43.997	

Validarea modelelor

Validarea internă LOO

Tabel V.51. Rezultatele analizei LOO

D ₁	D ₂	D ₃	R^2	Q^2	R^2 - Q^2
SD_{logP}			0.815	0.791	0.024
$\mathrm{SD}_{\mathrm{logP}}$	Charges		0.834	0.798	0.037
$\mathrm{SD}_{\mathrm{logP}}$	Charges	TE/N	0.846	0.801	0.045

Validarea externă a modelului trivariat

Fig.V.24. Graficul variației $logP_{ext}$ funcție de $logP_{calc.}$ pentru setul test (validare externă).

Similarity Cluster Validation

The monovariate correlation for logP is plotted in Figure 25.

Fig.V.25. Graficul variației $logP_{ext}$ funcție de $logP_{calc.}$ pentru setul test (clusteri).

Predicția proprietății logP ($R^2=0.903$) este mult mai exactă la folosirea clusterilor de similaritate, în comparație cu validarea externă a modelului ($R^2=0.712$).

V.7. Concluzii QSAR

Ideea de bază a unui studiu QSAR este reprezintată de paradigma emisă de Corvin Hansch, conform căreia "molecule similare prezintă activitate biologică similară". Neprezentând o relatie de cauzalitate, rămâne doar o analiză statistică. Neavând drept scop găsirea celor mai bune modele, ci de a testa un algoritm, am prezentat o metodă care să ne permit cea mai bună predictie "ad-hoc", de aceea validarea în setul extern este opțională. Se poate efectua o predicție a activităților moleculelor a căror activitate externă este necunoscută, bazându-ne pe valoarea medie a setului. Au fost studiate sase seturi de molecule organice bioactive:

- 1. Fenotiazine 4. Cefalosporine
- 2. Sumatriptani

3. Derivați de Sildenafil

- 5. Peniciline
- 6. Capsaicine

VI. Concluzii finale

VI.1. Concluzii generale

În această lucrare,

- 1. Designul diversilor clusteri multi-strat cu simetrie icosaedrală, octaedrală și cubică a fost realizat cu operatii pe mape, iar structural or a fost descrisă prin enumerarea substructurilor (enumerarea figurilor), ceea ce a condus la stabilirea rangului lor (3D sau mai mare).
- 2. Clasele de echivalentă a figurilor (vârfuri/atomi, muchii/legături, fete și custi/cells) în clusterii icosaedrali, octaedrali, cubici, romboedrali, au fost elucidate prin folosirea indicelui de centralitate topologică, care ne oferă o imagine a distribuției atomilor în funcție de centralitatea moleculară.
- 3. Energia grafurilor a fost calculată pe baza valorilor propri caracteristice, în clasele propelanilor și a fulerenelor. A fost efectuat un studiu QSPR pe izomerii C₄₀.
- 4. S-au efectuat studii QSAR pe 6 clase de compuşi organici cu activitate biologică.
- 5. Cercetarea a condus la 8 articole publicate, un capitol de carte la editura Springer, 3 articole trimise spre publicare, 6 prezentări orale la conferințe internaționale, 3 postere.

Referințe (Selecție)

Bhattacharya D, Klein DJ, Ortiz Y (2016) The astounding buckyball buckyball. Chem Phys Lett 647:185-188

Blatov VA, O'Keeffe M, Proserpio DM (2010) Vertex-, face-, point-, Schläfli-, and Delaney-symbols in nets, polyhedra and tilings: recommended terminology, CrystEngComm. 12, 44–48.

Ciubotariu D (1987) Structură-reactivitate în clasa derivaților acidului carbonic, PhD Thesis, Timisoara, Romania

Coxeter HSM (1974) Regular complex polytopes. Cambridge Univ. Press, Cambridge; Section 11.3 Petrie polygons.

- Dinca M, Ciger S, Stefu M, Gherman F, Miklos K, Nagy CsL, Ursu O, Diudea MV (2004) Stability prediction in small fullerenes. *Carpath J Math* 20(2): 211-221
- Diudea MV (1979) "Fenotiazine și medicamente structural înrudite", PhD Thesis, Inst. Chem. Cluj, 1979.
- Diudea MV (2001), QSPR/QSAR "Studies by Molecular Descriptors", NOVA, New York.
- Diudea MV (2004) Covering forms in nanostructures. Forma (Tokyo) 19:131-163
- Diudea MV (2010) Nanomolecules and Nanostructures Polynomials and Indices, MCM, No 10, Univ Kragujevac, Serbia
- Diudea MV (2013) *Quasicrystals: between spongy and full space filling*. In: Diudea MV, Nagy CL (Eds.) Diamond and Related Nanostructures, Springer, Dordrecht, pp. 335–385
- Diudea MV (2015) 4D-Octahedral structures. Int J Chem Model (accepted)
- Diudea MV (2016) Multi-shell polyhedral clusters, Springer (in preparation).
- Diudea MV, Gutman I, Jäntschi L (2002) Molecular Topology, NOVA, New York.
- Diudea MV, Nagy CL (2007) Periodic nanostructures, Springer, Dordrecht
- Diudea MV, O. Ursu (2003) Layer matrices and distance property descriptors. Indian J Chem 42A:1283-1294
- Diudea MV, Pârv B, Ursu O (2003) TORUS, Univ Babes-Bolyai, Cluj
- Diudea MV, Pîrvan-Moldovan A, Kooperazan-Moftakhar F, Ashrafi AR (2016) Topological symmetry of multishell clusters. In: A. R. Ashrafi, M. V. Diudea, Eds. *Distance, Symmetry, and Topology in Carbon Nanomaterials*, Springer Int. Pub. Switzerland, pp. 61-82.
- Diudea MV, Pîrvan-Moldovan A, Kooperazan-Moftakhar F, Ghorbani M (2016), Topological symmetry of high rank and genus clusters, *Symmetry: Culture and Science* (Budapest). 2016 (accepted).
- Diudea MV, Pîrvan-Moldovan A, Pop A, Medeleanu M(2017) Energy of Graphs and Remote Graphs in

Hypercubes, Propellanes and Fullerenes. MATCH Commun. Math. Comput. Chem. (accepted).

Diudea MV, Rosenfeld VR (2017) The truncation of a cage graph, J. Math. Chem. 55(4):1014-1020.

Diudea MV, Stefu M, John PE, Graovac A (2006) Generalized operations on maps, Croat Chem Acta 79:355-362

- Euler L (1758) Elementa doctrinae solidorum. Novi Comm Acad Scient Imp Petrop 4:109-160
- Fathalikhani K, Pîrvan-Moldovan A, Diudea MV (2016) Topological indices in hyper-tubes of hypercubes, *Studia Univ. Babes-Bolyai, Chemia*, 61(1), 291-304.
- Florkowski SF (2008-2012) Spectral graph theory of the hypercube; thesis, Naval postgraduate school, Monterey, California
- Fowler PW (1986) How unusual is C₆₀? Magic numbers for carbon clusters. Chem Phys Lett 131:444–450
- Free SM, Wilson JW (1964) A Mathematical Contribution to Structure-Activity Studies, J. Med. Chem., 7, 395.

- Furusjö E, Svenson A, Rahmberg M, Andersson M (2006) The importance of outlier detection and training set selection for reliable environmental QSAR predictions. *Chemosphere*; 63:99-108.
- Geladi P, Kowalski BR (1986) Partial least squares regression: a tutorial. Anal Chim Acta 185:1-17.
- Goldberg M (1979) Convex polyhedral space-fillers of more than twelve faces. Geom Dedicata 8: 491-500
- Grünbaum B (2003) Convex Polytopes, Graduate Texts in Mathematics (2nd ed.), Springer.
- Hafner I, Zitko T (2002a) Introduction to golden rhombic polyhedra. Visual Mathematics 4(2):2(3)
- Hafner I, Zitko T (2002b) Relations among rhombic, Platonic and Archimedean solids. *Visual Mathematics* 4(2):2(4)
- Hansch C, Leo A (1985) Exploring QSAR. Washington, DC: American Chemical Society.
- Jäntschi L (2005) LOO Analysis (LOO: leave one out), AcademicDirect Library of software, Available at: http://l.academicdirect.org/Chemistry/SARs/SARs/loo/
- Johnson NW (1966) The Theory of Uniform Polytopes and Honeycombs, Ph. D. Dissertation, University of Toronto.
- Katz MH (2006) *Multivariable Analysis A Practical Guide for Clinicians*. 2nd Edition. Cambridge University Press.
- Kooperazan-Moftakhar F, Pârvan-Moldovan A, Diudea MV (2015) Topological symmetry of multi-shell octahedral clusters. *Int J Chem Model* (accepted).
- Kubinyi H (1993) "*QSAR: Hansch analysis and related approaches*", R. Mannhold, Krogsgaard-Larsen P., Timmerman H. (Eds.), VCH Publishers, New York, 1993.
- McMullen P, Schulte E (2002) Abstract Regular Polytopes, 1st ed., Cambridge Univ. Press, Cambridge.
- Moldovan DC, Costescu A, Katona G, Diudea MV (2008) MATCH Commun. Math. Comput. Chem., 60, 977.
- Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J.Comput.Chem. (16):2785-91.
- Nagy CL, Diudea MV (2005) JSChem, Univ Babes-Bolyai, Cluj
- Nagy CL, Diudea MV (2009) Nano Studio sofrware program. Babes-Bolyai University, Cluj.
- Nagy CL, Diudea MV (2017) Ring signature index. MATCH Commun Math Comput Chem 77(2): 479-492.
- Pârvan-Moldovan A, Diudea MV (2015a) Cell@cell higher dimensional structures. *Studia Univ Babes-Bolyai*", *Chemia* 60 (2):379–388.
- Pârvan-Moldovan A, Diudea MV (2015b) Hyper-tubes of hyper-cubes, Iran. J. Math. Chem., 6, 163-168.
- Pârvan-Moldovan A, Kooperazan-Moftakhar F, Diudea MV (2014) Topological symmetry of multi-shell icosahedral clusters. *Studia Univ "Babes-Bolyai"*, *Chemia* 59(3):103–108.
- Paşca RD, Moldovan A, Horovitz O, Lupan A (2017) Thermodynamic investigation of tautomerism in triazine oximes, *JOMC* (sent).
- Pîrvan-Moldovan A, Diudea MV (2016) Euler's characteristic in polyhedral graphs transforming, *Croat Chem. Acta*, 89(4) DOI: 10.5562/cca300.
- Pîrvan-Moldovan A, Ersali S (2016) QSAR study on phenothiazines, *Studia Univ. Babes-Bolyai*", *Chemia*, 61 (1), 305-315.

Randić M (1990) The nature of chemical structure. J Math Chem, 4:157-84.

- Randić M (1993) Novel molecular description for structure-property studies. Chem Phys Lett 211:478-483
- Randić M, Razinger M (1997) On characterization of 3D molecular structure. In: Balaban AT (ed.): From chemical topology to three dimensional geometry. New York: Plenum Press.
- Schulte E (1985) Regular incidence-polytopes with Euclidean or toroidal faces and vertex-figures, *J. Combin. Theory, Series A* 40 305–330.
- Stefu M, Diudea MV (2005) CageVersatile_CVNET software program, Babeş-Bolyai University, Cluj.
- Stefu M, Pârvan-Moldovan A, Kooperazan-Moftakhar F, Diudea MV (2015) Topological symmetry of C₆₀-related multi-shell clusters. *MATCH Commun. Math. Comput. Chem.*, 74, 273-284.
- The GAP Team, GAP Groups, Algorithms, Programming a System for Computational Discrete Algebra, GAP 4.7.5 release. http://www.gap-system.org.
- Topliss JG, Costello RJ (1972) Change correlations in structure-activity studies using multiple regression analysis, *J. Med. Chem.*, *15*, 1066.
- Toropov AA, Toropova AP (2001) Modeling of lipophilicity by means of correlation weighting of local graph invariants, *J. Mol. Struct. (Theochem)*, 538, 197.

Ursu O, Diudea MV (2005) TOPOCLUJ software program, Babes-Bolyai University, Cluj.

- Wald A (1939) Contributions to the Theory of Statistical Estimation and Testing Hypotheses, *Ann. Math. Statist.* 10, *4*, 299-326.
- Wiberg KB, Walker FH (1982) [1.1.1]Propellane, J. Am. Chem. Soc., 1982, 104 (19), 5239–5240.

Willett P, Barnard JM, Downs GM (1998) Chemical Similarity Searching J. Chem. Inf. Comput. Sci., 38(6), 983.

https://pubchem.ncbi.nlm.nih.gov/ (last accessed February 2017)

https://www.drugbank.ca/ (last accessed February 2017)