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Introduction

Since the discovery of nuclear fission great attempts have been made in
order to understand it from an energetic point of view. In all models, the
calculation of the potential energy surfaces (PES) is rather crucial, as all
experimental observables are notoriously susceptible to them. Because the
PES depends on the collective degrees of freedom, the choice of the rel-
evant collective coordinates is a challenge in itself, as a large number of
coordinates rapidly leads to unnecessary complications and parameteriza-
tions without any physical meaning, while a small number of coordinates
does not depict the entire process, and can hide some of the finer features
of the fission process.

The present work aims to provide a simple, clear and concise description
of the fission process by employing an improved version of the scission-
point model, the DNS model, which is under constant development. The
author points out that the present prescription lacks any adjustable or free
parameters, and the model starts from experimentally controllable quanti-
ties, such as mass, charge and kinetic energies of the target and projectile,
and ends up giving measurable results: mass/charge-, TKE- and isotopic-
distributions and neutron and gamma multiplicities.

In the second Chapter a detailed description of the model is presented,
starting from the concept of a di-nuclear system (DNS). The most part of
this Chapter is dedicated to the calculation of the total energy of the fis-
sioning system. The starting point is the geometrical description of the
system, and the definition of the number of parameters needed for its de-
scription. The interaction potential is then tackled, giving a greater atten-
tion to it’s analysis, analysis that allows us to greatly reduce the number of
coordinates. Then, the method of calculation of the binding energies of the
nuclei is presented. The Liquid Drop Model (LDM) terms are treated as a
function of the nuclei’s isotopic components and their deformation. To the
macroscopic part, the shell correction terms are added, using the Strutin-
ski method and the two-center shell model. The excitation energy and it’s
effect on the binding energy is discussed later. At the end of the chapter,
the statistical model is described.

1



The third Chapter is dedicated to the results obtained by deploying the
model discussed in the previous Chapter. The theoretical charge, mass
and isotopic distributions are presented and compared with the existing
experimental data for a large number of fissioning nuclei at fixed energy.
The transition from the symmetric fission to the asymmetric one is ad-
dressed. The evolution of these distributions with increasing excitation
energy makes the subject of the next part of the study. The agreement with
the experimental data is very good. For fissioning Th isotopes large asym-
metric modes are predicted, as opposed with the existing models. Further-
more, our model predicts the existence of isotonic nuclei (N ∼ 136), for
which the asymmetric fission component bears equal weight to the sym-
metric one. In the last part of the Chapter the Total Kinetic Energy (TKE)
distribution of fission fragments are presented for a series of reactions at
different energy. Once again, the comparison with the experimental data
shows a good agreement. The author hopes that the presented results pre-
sented here will open the doors for new experiments, to prove, or disprove
the validity of the results.

The theoretical description of heavy-ion collisions are the subject of the
fourth Chapter. The main goal is the calculation of the angular momenta
of the fission fragments. Here, the author identifies two sources for the
intrinsic spin of the fragments: an orbital component, which is responsi-
ble for the transfer of the initial angular momentum of the system to the
fission fragments, and a collective component, which is the result of the
thermal excitation of rotational-vibrational modes of the scission configu-
ration. The last part of this Chapter is dedicated to the fluctuations of the
absolute values of the angular momentum around the average value.

In the fifth Chapter the theoretical calculations are compared with ex-
perimental data. The importance of employing the DNS model is high-
lighted. Next, the role of the entrance channel is discussed by studying
the effect of the bombarding energy and the mass asymmetry on the spin
distribution. The author predicts here a saturation of the orbital angular
momentum at large bombarding energies. Once again, excellent results
are obtained.

The final Chapter is dedicated to the final conclusions based on the re-
sults in this work.
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Theoretical framework

2.1 The concept of a dinuclear system
One of the main challenges in the theoretical study of fission is the de-

scription of the transition from a mono-nucleus configuration towards a
configuration with two (or more) individualized, separate nuclei (di-nuclear
system or DNS). With the advent of the two-center shell model (described
in Chapter 2.2.4), the single-particle structure of a scission configuration
(with or without the existence of a "neck") could be calculated. It was soon
found out ( [1], [2]) that the single particle spectra of the scission config-
uration resembles the single particle levels of the individual nascent frag-
ments directly after scission (the so-called "separability principle"). The
author will note here that this is a far-reaching conclusion, as it implies that
the primary fragment is almost completely indifferent about the way it is
formed. In other words, a 112Pd nucleus has the same properties, regardless
if it’s formed in the fission of U or Th (it retains, of course, a "memory" of
the initial system, such as the total energy and angular momentum, due to
conservation laws). This, in turn, allows for a straight-forward description
of the scission configuration: two individualized fragments which inter-
act via long-distance Coulomb forces and short-distance nuclear forces - a
dinuclear system (DNS).

With the intention of still remaining model-independent at this point and
without going into technical details, a few properties of the DNS are worth
mentioning:

1. The DNS is formed in the last stages of the fission procces. The
two fragments are well individualized, separated by a small distance
(there is no overlap between their nuclear densities), but they mutu-
ally interact. The individuality of the fragments can be understood
on the basis that the the wave functions describing the two nuclei are
essentially localized and "walled in" in two distinct potential wells.

2. The DNS is an unstable configuration. Its motion takes place across
several coordinates:
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(a) the inter-nuclear distance: the two nuclei can drift apart, which
results in fission;

(b) the mass and charge coordinates: the nuclei can exchange the
weakly bound nucleons of the upper shells [3]

(c) the deformation coordinates: the Coulomb forces, which tend
to push the nuclei apart, compete with the short-range nuclear
forces, which tend to pull them together; the resulting push-pull
interaction tends to elongate both nuclei;

(d) the rotational coordinates: in the case of off-center heavy-ion
collision there is a certain amount of angular momentum in-
jected to the system, and the entire DNS will rotate around its
center of mass due to the angular momentum conservation law.
Furthermore, due to the excitation energy accumulated by the
system, the angular-momentum-bearing modes are thermally
activated, thus the individual fragments can rotate around all
three axis, with the condition that the total angular momentum
is conserved.

3. The motion of the system in all coordinates is governed by the po-
tential energy of the system.

4. Due to a fast establishing of thermal equilibrium the motion of the
system in the mass and charge coordinate is statistical in nature.

2.2 The potential energy

2.2.1 Geometry of the system
The system is modeled as two axially symmetric deformed ellipsoids.

The parameters which describe the DNS are the mass and charge numbers
Ai, Zi, deformation parameters βi and their relative distance d between the
surfaces. The index i = L,H designates the light (L) or heavy (H) nuclei.

Before neutron evaporation, the following relations hold: AL+AH = AC.N.
and ZL + ZH = ZC.N.. From here on the acronym "C.N." designates the
Compound Nucleus, i.e. the initial fissioning system. It is customary that
the number of neutrons to be denoted by N and it is linked to the mass and
charge number by Ni = Ai − Zi.

The deformations of the two fragments is depicted by the parameter βi.
In the current work, the deformation parameter is defined as the ratio be-
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Figure 2.1: Schematic drawing of the DNS in which both fragments have
the same orientation angle θL = θH = θ.

tween the major (ci) and minor (ai) semiaxis of the nuclei βi = ci/ai. This
definition is suitable up to an axis ratio of ∼ 2.1.

The radius of the nucleus is determined by the mass number, and the
nucleon radius r0 by the relationship R0 = r0A1/3. For all the nuclei with
Z > 10, r0 = 1.16 fm; for nuclei with Z = 2..10 we use r0 = 1.01..1.15 fm.
Considering volume conservation the semiaxis are linked to β by:

ci = r0iA
1/3
i β2/3

i

ai = r0iA
1/3
i β−1/3

i . (2.1)

2.2.2 The interaction energy
Now that we have the means necessary to describe the geometrical prop-

erties of the system, we can begin discussing the physical interactions
which take place between the two nuclei. Regardless of the approaches
or approximations employed, knowledge of the total energy of the system
is paramount. The interaction potential of the system is the sum of the
Coulomb and nuclear potential and the rotational energy of the system :

V int(Ai,Zi, βi, θi,R) = VC(Ai,Zi, βL, βH, θL, θH,R) +

VN(Ai,Zi, βL, βH, θL, θH,R) +

VRot(Ai,Zi, βL, βH, θL, θH,R, l) (2.2)

For the nuclear part the the double folding potential form is used with
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Skyrme-type density dependent nucleon forces [5]:

VN =

∫
ρ1(r1)ρ2(R − r2)F(r1 − r2)dr1dr2, (2.3)

where F (r1 − r2) describes the effective nucleon-nucleon interaction and
ρi are the nuclear densities (the index i = 1, 2 designates the fragments).

For the Coulomb part of the interaction potential Wong’s formula [6] is
used, and the centrifugal potential will be introduced in Chapter 4.

Analysis of the interaction potential

From an energetic point of view, the minimum of the interaction poten-
tial as a function of the orientation of the two fragments is attained for the
pole-to-pole orientation. For this reason the azimuthal angles can be ig-
nored, while the polar orientation angles are "frozen" in the pole-to-pole
orientation. This configuration greatly simplifies the calculations.

The Coulomb (a-top), nuclear (b-middle) and the total interaction poten-
tial (c-bottom) are shown in Figure 2.2 for the nuclear pair 106Mo + 146Ba.
The total potential exhibits a local minimum at dm ∼ 0.5 ± 0.15 fm (we
will refer to this minimum as a "potential pocket") and a local maximum
at dB ∼ 1.5 − 2 fm, depending on the mass and charge numbers of the
two fragments. The difference between the potential at dB and dm is called
the quasifission barrier, Bq f and it’s an external barrier which hinders the
motion of the system in the R coordinates. This allows the system to live
in the potential pocket for a sufficiently long time so that statistical equi-
librium is achieved. For this reason, the configuration of the system at dm
determines all the important observables: the mass, charge, isotopic and
TKE distribution, as well as the spin-, neutron-, and γ-ray multiplicities.
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Figure 2.2: The Coulomb (a-top) and the nuclear (b-middle) components
of the nuclear potential, and the total interaction potential V int = VC + VN
calculated for the 106Mo + 146Ba pair. For the sake of simplicity, spherical
fragments were considered (βL = βH = 1). The distance d is the distance
between the nuclear surfaces of the two fragments.
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2.2.3 The Liquid Drop energies
The macroscopic part of the binding energy is calculated within the Liq-

uid Drop Model. The main terms are: the surface U sur f , Coulomb UCoul

and the asymmetry terms.

The surface energy with variable surface tension

The surface energy is proportional to the surface area of each fragment:

US ur f = σiS i, (2.4)

where σi is the surface tension coefficient and S i is the area of the nucleus
i.

In order to tackle the problem of deformed nuclei it is usefull to introduce
the adimensional parameter BS , defined by the ratio between the surface
the deformed spheriod and the surface of the equvalent sphere [7]::

BS =
S i

S 0
i

. (2.5)

Restricting ourselves to axially symmetric nucleisimplifies our work, re-
ducing it to the calculation of BS , which is given by:

BS =
1
2
η

2
3

(
1 +

ArcS in (ε)
ηε

)
. (2.6)

In Equation(2.6) η = a
c is the inverse of the deformation parameter β de-

fined in Chapter 2.2.1, and ε =
(
1 − η2

)1/2
is the eccentricity. [7] .

If one uses a constant value for σ, then the moments of inertia of fis-
sioning nuclei are larger than the experimental one [3]. Here we avoid
this drawback, while remaining within the LDM, by using a deformation
dependent surface tension coefficient σi = σi(β):

σi(βi) = σ0,i(1 + ki(βi − β
g.s.
i )2) (2.7)

with [9]:

σ0,i = 0.9517(1 − 1.7826((Ni − Zi)2)/Ai)2), (2.8)
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and βg.s. are the ground state deformations, taken from refs.[10, 11, 12].
The surface tension coefficient is taken as:

ki =
1

1 + Exp [−0.063(Cvib(Zi, Ai) − 67)]
, (2.9)

where Cvib, in units of MeV, is the stiffness of the nucleus [13]. The stiff-
ness parameter was determined in [4]:

Cvib(Ai,Zi) =
~ωi

vib

(
3ZieR2

0,i/ (4π)
)

2B (E2)i
vib

(2.10)

where:

2B (E2)i
vib '

Ei
2+

B(E2)i
rot

~ωi
vib

(2.11)

Ei
2+

is the energy of the fist 2+ state. The 2+ states are assumed to be
vibrational ones.

The Liquid-Drop Coulomb and symmetry energy

The Coulomb energy of a uniformly charged (q = Ze) sphere of radius
R0 can be written [7]:

UCoul,0
i =

3e2

5r0

Z2
i

A1/3
i

. (2.12)

Using the same logic as in the deduction of the surface energy, we can
define a deformation Coulomb energy as the ratio between the energy of a
uniformly charged spheroid and that of a sphere [7]:

BC =
1
2
η

2
3

ε
ln

(
1 + ε

1 − ε

)
. (2.13)

The parameters ε and η have the same meaning as in Equation(2.6). The
symmetry energy is taken as:

U sym
i = 27.612

(Ai − 2Zi)2

Ai
. (2.14)
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2.2.4 Shell corrections
In [15, 16, 17] Strutinski approximates the influence of the shell struc-

ture on the binding energy as a small deviation from a uniform nucleon
distribution. Under these circumstances the shell corrections are defined
as:

δU =
∑
ν

Eν − Ũ, (2.15)

where Eν are the nucleon energies calculated within a shell-model and Ũ
is:

Ũ =

∫ λ̃

−∞

Eg̃(E)dE, (2.16)

where g̃ is called the uniform distribution function.
The Strutinski prescription allows total freedom upon which single-particle

model is to be used. In the current work we use the two-center shell model
of [19, 9]. More details are given in the Thesis and in the reference [19].

2.3 The potential energy surface (PES)
We now have all the ingredients necessary to calculate the total potential

energy of the system, which takes the form:

U(Ai,Zi, βi,R) = ULD
L (AL,ZL, βL, E∗L) + δU shell

L (AL,ZL, βL, E∗L)
+ ULD

H (AH,ZH, βH, E∗H) + δU shell
H (AH,ZH, βH, E∗H)

+ VC(Ai,Zi, βi,Rm) + VN(Ai,Zi, βi,Rm). (2.17)

In the above equation

ULD
i (Ai,Zi, βi) = U sym

i (Ai,Zi) + UC
i (Ai,Zi, βi) + US ur f

i (Ai,Zi, βi) (2.18)

is the sum of the the LDM energies (i.e. the binding energy), δU shell
i is the

shell correction of the fragment i, VC + VN is the interaction energy and E∗

is the excitation energy.
It is easy to see that, even though we were able to reduce the number of

variables, U still remains a complex function. The variation of the total en-
ergy of the system with the mass, charge and deformation parameters is of
the utmost importance, as it describes the evolution of the system. For us it
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is convenient to calculate the PES as a function of the deformation param-
eters β1 and β2, because it gives a visual representation of the configuration
of the system at the moment of scission.
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Figure 2.3: Potential energy sufraces for the symmetric DNS 108Ru+108Ru,
without shell corrections (top) and with shell corrections (bottom). The
excitation energy of the system is zero. The values are in units of MeV.
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Such a PES is shown in Figure (2.3), without the shell corrections (a)-top)
and with the shell corrections (b)-bottom). In the upper part of the figure
one can see that a relatively wide minimum appears at large deformations.
The minimum appears as the result of two competing energies - the inter-
action potential, which decreases fast with increasing deformation, and the
LDM energies, or more exactly, the surface energy, which increases with
deformation. The position of the minimum in the PES points to the most
favourable deformations at the moment of scission. One can easily notice
that these deformations are much larger than the ground-state ones. Also
it is easily observable that the shell corrections can bring major changes
to the PES, by shrinking or "moving" the minima, or can even lead to the
formation of secondary minima.

2.3.1 The excitation energy and its effects
A mononucleus can spontaneously undergo fission if, and only if, the

energy of the scission configuration is smaller than the energy of the initial
CN. Due to the conservation laws, the system accumulates a considerable
amount of excitation excitation E∗ energy on its way to the fission path.

The excitation energy is calculated, based on the conservation of energy,
as the sum of the initial excitation energy of the nucleus E∗0 = En,γ + Qn
plus the difference between the potential energies of the fissioning nucleus
UC.N.(A,Z, β) and the dinuclear system at the scission point U(Ai,Zi, βi,Rm)
[8]:

E∗(Ai,Zi, βi,Rm) = E∗0 + Q − V int
({

Ai,Zi, β
g.s.
i

}
,Rm

)
+

[
U ({Ai,Zi, βi} ,Rm, E∗) − U

({
Ai,Zi, β

g.s.
i

}
,Rm, E∗

)]
. (2.19)

The term En,γ is the energy of the bombarding neutron (gamma quanta) in
the case of neutron (photo) induced fission and Qn is the reaction heat. In
the case of spontaneous fission E∗0 = 0, in the case of the electromagnetic
induced fission it is equal to the energy of the γ cuanta (E∗C.N. = Eγ), and
in the case of thermal neutron induced fission E∗0 ∼ 6 − 8 MeV.

Because of the intimate connection between the excitation energy and
the total potential energy of the system, E∗ varies with deformation.The
excitation energy has a maximal value at the deepest point of the PES.

Typical values are E∗ = 10 − 15 MeV for the spontaneous fission of ac-
tinides and E∗ = 15− 25 MeV for the neutron induced fission of actinides.
For such high energies the shell structure of the nucleus is disrupted, and
the shell correction to the binding energy needs to be dampened. In [20] a
phenomenological expression was used:
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δU shell
i (Ai,Zi, βi, E∗i ) = δU shell

i (Ai,Zi, βi, E∗i = 0) exp[−E∗i /ED], (2.20)

with ED = 18.5 MeV. In Equation(2.20) E∗i is the excitation energy of the
ith fragment. The excitation energy of the system is assumed to be shared
between the fragments proportional to

E∗i = E∗
Ai

ACN
. (2.21)

On the basis of a Hartree-Fock method, [25] the Coulomb, surface, and
symmetry LDM terms were found to exhibit a temperature dependence as
well. We use the same dependence type as in [25], but with a different set
of parameters:

U sym
i (Ai,Zi, E∗) = U sym

i (Ai,Zi,T = 0)(1 + 6 × 10−4E∗i /Ai),

UCoul
i (Ai,Zi, βi, E∗) = UC

i (Ai,Zi, βi,T = 0)(1 − 0.12E∗i /Ai),

US ur f
i (Ai,Zi, βi, E∗) = US ur f

i (Ai,Zi, βi,T = 0)(1 + 0.102E∗i /Ai). (2.22)

r0(E∗i ) = r0(E∗i = 0)
(
1 + 5.04 × 10−3E∗i /Ai

)
. (2.23)

The Equation (2.23) describes the expansion of the nuclear matter, and
it simultaneously explains the increase in the surface energy through the
increase of the area, and the decrease of the Coulomb energy through the
increase of the volume of the nuclei.

The damping of the stiffness parameter with excitation energy E∗i is in-
troduced as:

ki(E∗i ) = ki ∗ exp
[
−E∗i /Ek

]
, (2.24)

with Ek = 3.7 MeV.
The temperature of the decaying system is related to the excitation energy

by:

T =
√

E∗/a, (2.25)

where a is the level density parameter in the Fermi-gas model. For the
present calculations we chose the value a = A/12 MeV −1 which was used
for the description of fusion [42, 43, 44, 45, 46].
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2.4 The statistical scission-point model
In an ample study [26], it was proven that the relative formation proba-

bility of the DNS with particular masses, can be calculated as:

W(Ai,Zi, βi, E∗) = N0 exp
[
−

U ({Ai,Zi, βi} ,Rm)
T

]
, (2.26)

where N0 is a normalization factor. The same conclusion can be achieved
within a transport model. For example, Kalandarov et. al. [27, 28, 29] cal-
culated the time dependence of the probability PZ,A(t) of finding a system
at the moment t in a state with the mass and charge number Z and A by
starting from a master equation:

d
dt

PZ,A(t) = ∆
(−,0)
Z+1,A+1PZ+1,A+1(t) + ∆

(+,0)
Z−1,A−1PZ−1,A−1(t)

+ ∆
(0,−)
Z,A+1PZ,A+1(t) + ∆

(0,+)
Z,A−1PZ,A−1(t)

−
[
∆

(0,−)
Z,A + ∆

(0,+)
Z,A + ∆

(−,0)
Z,A + ∆

(+,0)
Z,A

]
PZA(t), (2.27)

with the innitial condition PZA(t = 0) = δZ,ZC.N.δA,AC.N.. The terms ∆(±,0)

characterize the proton transport rates while ∆(0,±) describes the neutron
transport rates. The transport coefficients are time independent, which
guarantees the existence of a stationary solution PZ,A(t → ∞) = PZ,A(E∗).

We have stated earlier that the system is trapped inside the potential
pocket, where it lives for a sufficiently long time. The probability that
the system thermally overcomes the quasifission barrier Bq f is taken from
the transition state theory [30] in the limit of high temperature:

Pdecay
Zi,Ai,βi,R

∼ exp
[
−

Bq. f . ({Ai,Zi, βi} ,R)
T

]
. (2.28)

In this sense, the binary decay can be seen as a two-step process. At first
the system undergoes a motion in the mass and charge coordinates, under
the influence of the potential U ({Ai,Zi, βi} ,Rm) -hence the name "driving
potential"; the newly-formed DNS, settles into the potential pocket, and its
isotopic composition is fully described by Equation(2.26). The second step
is a large amplitude motion in the disintegration coordinate R. It can only
take place if the excitation energy of the DNS is large enough to overcome
the barrier. Thus, we can write the total emission probability as the product
of the formation and decay probabilities:

w(Ai,Zi, βi, E∗) = N0 exp
[
−

U(Ai,Zi, βi,Rm) + Bq f (Ai,Zi, βi)
T

]
. (2.29)
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In order to obtain the mass-charge distribution of fission fragments, one
should integrate (2.29) over βL and βH:

Y(Ai,Zi, E∗) = N0

∫
dβLdβHw(Ai,Zi, βi, E∗). (2.30)

To obtain the mass (charge) distribution one should sum over the charge
(mass) numbers of the fragments:

Y(Ai) = N0

∑
Zi

∫ ∫
w(Ai,Zi, β1, β2, E∗) dβ1dβ2, (2.31)

Y(Zi) = N0

∑
Ai

∫ ∫
w(Ai,Zi, β1, β2, E∗) dβ1dβ2, (2.32)

The statistical model, in the form presented so far, predicts a high max-
ima of the mass/charge distribution at symmetry in the cases of 235U(n,f)
and 239Pu(n,f), as opposed to the experimental data. To overcome this, the
author proposes a restriction on the integration limit in Equations (2.31)
and (2.32) as described below [21]-[24]. Practically speaking, above a cer-
tain deformation, the quasifission barrier diminishes considerably and can
not contain the system. In this work are taken into account only those con-
figurations for which Bq f > 0.7 − 1 MeV depending on the charge number
of the fissioning nucleus. These values provide a good description with the
experimental data as we will show [21]-[24]. .

Due to the excitation energy of system, the fission fragments can evapo-
rate several prompt neutrons. This does not change the charge distribution,
but it changes the mass number of the final fragments. Thus, in order to
compare the experimental mass or isotopic distributions with the calculated
ones, one needs to correct the theoretical results by subtracting the num-
ber of emitted neutrons from the initial masses. To calculate the neutron
multiplicity distributions the following expression was used:

< ni >=
E
′∗
i

Bni + 2Ti
. (2.33)

The term Bni is the separation energy of the first neutron, and the term 2Ti is
included to describe the kinetic energy of the evaporated neutron [3]. Since
the fragments are deformed at scission, the relaxation of the deformations
to the ground state values increases the excitation energy of the nucleus by
an amount equal to the deformation energy:

E
′∗
i = E∗

Ai

A1 + A2
+ Ede f

i , (2.34)
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where Ede f
i =

(
ULD

i (βi) + δUi(βi)
)
−

(
ULD

i (βg.s.
i ) + δUi(β

g.s.
i )

)
.

Another important characteristic of fission is the total kinetic energy
T KE = VC + VN of the final fragments. Within the statistical model,
we can write the TKE as a function of the mass number as:

<T KE > (Ai) =

=

∑
Zi

T KE(Ai,Zi, β
min
1 , βmin

2 ) w(Ai,Zi, β
min
1 , βmin

2 , E∗)∑
Zi

w(Ai,Zi, β
min
1 , βmin

2 , E∗)
. (2.35)

or as function of the charge number:

<T KE > (Zi) =

=

∑
Ai

T KE(Ai,Zi, β
min
1 , βmin

2 ) w(Ai,Zi, β
min
1 , βmin

2 , E∗)∑
Ai

w(Ai,Zi, β
min
1 , βmin

2 , E∗)
. (2.36)

The average value of TKE of the fission fragments can be found by ave-
raging over all binary systems:

T KE =
∑
Zi,Ai

T KE(Ai,Zi)Y(Ai,Zi, E∗). (2.37)
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Results: the mass, charge, isotopic and
TKE distributions

3.1 The charge and mass distributions at fixed
energies

In Figures (3.1) – (3.4) the theoretical charge distributions (solid lines)
[21] are compared with the experimental data of [32] (solid symbols) for
the electromagnetic induced fission (Eγ = 11 MeV) of the indicated nuclei.
The calculations are done for even-even pair of nuclei. Although in some
cases the eve-odd effects are noticeably present, they can not change the
shape of the distribution in any significant way. Also for the majority of
the reactions studied in this work, the number of pre-scission neutrons is
∼ 0, and their effect is safely neglected.

As can be seen, our model is well suited for the description of both sym-
metric and asymmetric description, showing a very good agreement with
the experimental data. For the induced fission of Rn, Ra and 218−222Th nu-
clei, the distribution is symmetrical, with a single prominent peak around
ZC.N./2. In the case of A = 224 thorium, the distribution exhibits the start
of the formation of asymmetric maxima, and for the A = 226 the yields
of Kr–Sr, and of their complementary fragments, are equal to those of Pd–
Ru. As the mass number increases, the asymmetric fission mode becomes
dominant. The author points-out that the central maximum doesn’t imme-
diately disappear; it still exists, although it’s 2-3 times smaller than the
asymmetric ones. In the case of 230U (Figure 3.4), there are no clear signs
of a central maximum, although the odd-even effects are strong at sym-
metry. For the uranium isotopes with A ≥ 232 the symmetric yields are
almost zero, and the asymmetric nature of the distribution is evident.
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Figure 3.1: The calculated charge distributions (lines) for electro-
magnetic-induced fission of the indicated radon and uranium isotopes at
11 MeV excitation energy are compared with the experimental data [32]
(symbols). The lines connect the calculated points for even-even fission
fragments.
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Figure 3.3: The same as in Figure 3.1, but for the indicated thorium iso-
topes.
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Figure 3.4: The same as in Figure 3.1, but for the indicated uranium iso-
topes.

3.2 The evolution of the charge and mass dis-
tributions with excitation energy

In Ref. [34], the competition between symmetric and asymmetric fission
was suggested to be related to the shell effects in the deformed fissioning
nucleus. With increasing energythe shell effects are supposed to be washed
out, leaving the nucleus with a dominant symmetric mode of fission. The
new experimental data regarding 180Hg [35, 36], however, show that the
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asymmetric mass distribution can not be explain by the microscopic effects
alone.
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Figure 3.5: The calculated mass distributions (solid lines) for fission of
235U by neutrons with incident energies 6 MeV (a) and 14 MeV (b). The
experimental data (symbols) are from Ref.[38].
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Figure 3.6: The calculated fragment mass distribution (solid lines) is com-
pared with the experimental data [37] for the 238U(n,f) reaction at indicated
incident neutron energies 32.8 (a), 45.3 (b), and 59.9 (c) MeV.

The fission-fragment mass yields for the neutron-induced fission of 232Th
and 238U at high energies (En > 30 MeV) have been recently measured.
The experimental results [37] demonstrated that the probability of sym-
metric fission increases with incident neutron energy for both nuclei, but
the distribution maintains it’s a asymmetric shape.
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The theoretical mass distribution in the case of 6 and 14 MeV neutron in-
duced fission of 235U is compared with experimental data [22] and shown
in Figure 3.5, while in Figure 3.6, the calculated and experimental results
of the 32.8, 45.3 and 59.9 MeV neutron induced fission of 238U are pre-
sented.
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Figure 3.7: The calculated fragment mass (a) and charge (b) distributions
in the 235U(n,f) reaction at the incident neutron energies indicated. The
calculations were performed for even-Zi fragments. The calculations were
performed for even-Zi fragments.
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To study the influence of the bombarding energy on the isotopic, mass
and charge distributions the reaction 235U(n,f), En = 14, 20, 40 s, i 55 MeV
(Figure 3.7) was considered. The conservation of the asymmetric shape is
predicted.
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Figure 3.9: The calculated isotopic trends for the nuclei Kr (a), Sr (b), Zr
(c), s, i Mo (d) in the reaction 235U(n,f) at the indicated neutron energies.
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The results point out to the fact that the structures present in the PEs gov-
ern the emission of the fission fragments. The excitation energy reduces
the shell effects and the rigidity of the nuclear surface, which leads to a
widening of the minima in the deformation plane (Figure 3.8).

In Figure 3.9 is predicted the isotopic distribution of the fragments Z =

36, 38, 40, 42 at different bombarding energies. The only notable changes
are the shifting of the maxima towards smaller neutron number. This fact is
easily explainable on the basis that at larger excitation energies the number
of the primary emitted neutrons is larger.

3.2.1 Unexpected charge asymmetry of thorium isotopes
at high excitation energies

In Figure 3.10 we predict the charge distributions of fissioning nuclei
222,224,226,228Th at excitation energies of 35 and 60 MeV. The distributions
widen with excitation energies; the explanation is the same as for the U(n,
f) case (Chapter 3.2). For the 222,224Th isotopes (Figures 3.10 -a and -b),
the central peak recedes and two asymmetric peaks appear, suppressing the
symmetric mode. The charge distributions of 226,228Th at higher excitation
energies (Figures 3.10 -c and -d) emphasize the asymmetric aspect of the
distribution, making the symmetric peak smaller and narrower, and the
asymmetric maxima wider and taller.

The average potential energy

〈U(Zi)〉 =

∑
Ai

∫
dβLdβHU(Ai,Zi, βi,Rm)w(Ai,Zi, βi, E∗)∑

Ai

∫
dβLdβHw(Ai,Zi, βi, E∗)

, (3.1)

displayed in Figure 3.11, explains the unexpected evolution of the distribu-
tions, by presenting asymmetric minimas. These minima are the result of
the damping of the surface stiffness coefficient, which leads to a widening
of the minima in the deformation plane, and to the enhanced asymmetric
emissions.
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Figure 3.10: The predicted charge distributions for 222,224,226,228Th isotopes
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The lines connect the calculated yields of even-even fission fragmenta-
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Figure 3.11: The calculated driving potentials 〈U(Zi)〉 averaged over the
mass number and deformations [Eq. (3.1)] at 60 MeV (solid lines) exci-
tation energy of the initial compound nucleus for indicated fissioning tho-
rium isotopes. The potentials are normalized to the energy 〈U(ZL = 44)〉 =

0 MeV. The lines connect the points corresponding to the even-even fission
fragments.

3.2.2 The fission of N ∼ 136 nuclei

It is known from the experimental data that the electromagnetic induced
fission of 226Pa shows a three-peaked distribution, and the charge distribu-
tions of fissioning 224−228Pa nuclei present a similar pattern as in the case
of Th isotopes. The evolution of the same experimental distributions with
increasing neutron number in the case of 223−225Ac isotopes also display
similar features (see Ref. [32], for example). One cannot help but won-
der if a similar behavior exists for other elements with neutron number
N ∼ 136. To give an answer to this question we calculated the charge
distributions of several even-even Ra isotopes, shown in Figure 3.12. Our
model predicts an analogous evolution to that of the Thorium nuclei.
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citation energies of the initial compound nuclei. The lines connect the
calculated points for even-even fission-fragments.

3.3 The Total Kinetic Energy (TKE)
After the system decays and the two fragments become separated in the R

coordinate, the interaction energy of the system at the scission point trans-
forms into kinetic energy. The mean total kinetic energy of the system is
an important fission characteristic, as it represents most of the released en-
ergy of the reaction. For the current study, the TKE distribution represents
a mean to check if our calculated potential energy surfaces are realistic.

In Figure 3.13 [22] the TKE dependency on the mass number of the
heavy fragment in the case of neutron induced fission of 239Pu is shown. It
is worth mentioning the fact that the experimental data represent fragment
measurement after the primary neutron emission, and the present calcula-
tions are done for the primary fragments, so the theoretical values are a
couple of MeV over the experimental values. The pre-neutron TKE distri-
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bution was calculated by a Monte-Carlo method in [31]. It was concluded
that the neutron emission lowers the TKE values by approximately 7 MeV.

In Figure (3.14) the variation of the average total kinetic energy< T KE >
(Equation 2.37) with bombarding energy En is presented. Qualitatively,
the general trend of the evolution is well reproduced, even though there is
a systematic ∼ 6 MeV overestimation.
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Figure 3.13: The calculated (solid line) fragment mass distribution in the
239Pu(nth,f) reaction is compared with the experimental data (symbols)
from Ref.[33].

The explanation for the decrease of < T KE > with increasing neutron
energy, once again relies in the shell damping and surface rigidity "soft-
ening" at large excitation energies, which cause the minima in the PES to
migrate to more deformed configurations. Still the variations are somewhat
modest - 5-6 MeV for a 50 MeV increase of bombarding energy.
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Heavy-ion reactions

4.1 Introduction

In the previous Chapters, the main focus was given to the spontaneous,
electromagnetic and neutron induced fission. In all cases the the rotation
energy of the system is practically zero. However there is no reason why
one can not freely take into account the angular momentum. In Chapter the
focus is shifted towards the question "What is the angular momentum of
the fission fragments?". Te studies about the spin distributions offer valu-
able information about the transfer mechanism of the angular momentum
from the orbital motion of the system to the intrinsic fission fragment an-
gular momenta, as well as information about the excitation of the collective
degrees of motion.

In the classical picture the two nuclei are assumed to be two rigid spheres
rotating around a common center (Refs. [41, 40], for example). As the nu-
clei interact trough long-range repulsive Coulomb forces and short-range
attractive nuclear forces, torques are generated upon the two nuclei caus-
ing their intrinsic rotation at the expense of relative angular momentum. If
the condition of long interaction times is satisfied, the system attains equi-
librium which corresponds to rigid rotation, characterized by matching the
orbital and intrinsic angular velocities. The angular momenta of one of the
nuclei after break-up is given by:

< Ii >=
=i

=1 + =2 + µR2
m

J, (4.1)

are the angular momentum and moment of inertia of the fragment i, µR2
m

is the relative moment of inertia and J is the angular momentum of the
system.

In an experiment, the measurement of γ-ray multiplicities and alignment
of the fragment spins provides insight to the process of angular momentum
transfer. An often used relationship between γ-ray multiplicity Mγ and
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angular momentum I is given in literature as:

< IT
Z,A >= 2[Mγ(Z, A) − aγ], (4.2)

where aγ is a constant between 1 and 6 and is the number of statistical
transitions that can be inferred from the γ−spectrum and that are weakly
related to the collective spin.

4.2 Transfer of orbital angular momentum to
the fission fragments.
The orbital component

The centrifugal potential can be written as:

VR(R,Z, A, β1, β2) =
~2J(J + 1)

2=(R, A, β1, β2)
+ Ebm, (4.3)

where the moment of inertia of the DNS is =DNS (A,R, βH, βL) = =H +

=L + µR2 and the moments of inertia of the nuclei i = H, L are calculated
as [28]:

=i =
1
5

m0r2
0A

5
3 (a2

i + b2
i ),

ai =

1 − β2
i

4π

 1 +

√
5

4π
βi

 ,
bi =

1 − β2
i

4π

 1 −
√

5
16π

βi

 . (4.4)

Taking into account the angular momentum, the quasifission barrier be-
comes:

Bq f
R (Z, A, J) = V(Rb,Z, A, β1, β2, J) − V(Rm,Z, A, β1, β2, J). (4.5)

In the first stage of heavy ion collision, if the incoming nucleus has
enough kinetic energy to overcome the Coulomb barrier, it is captured
by the target nucleus. The kinetic energy of the projectile Ec.m. and the
angular momentum J of the relative motion is transformed into excitation
energy and angular momentum of the DNS. The partial capture cross sec-
tion which characterizes the formation of the initial DNS is:

σcap(Ec.m., J) = πo2(2J + 1)Pcap(Ec.m., J). (4.6)

34



In the above equation, o2 = ~2/2µEc.m. is the reduced de Broglie wave-
length, and the capture probability Pcap(Ec.m., J) is given by the Hill-Wheeler
formula. [27]. The total capture cross section is given by:

σcap(Ec.m.) =

Jmax∑
J=0

σcap(Ec.m., J). (4.7)
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Figure 4.1: The nucleus-nucleus interaction potential for the 40Ar + 58Ni
reaction at J = 0 and J = Jcr = 68.

The maximum value for the angular momentum Jmax is limited by the
value of the critical (the value of J for which the potential pocket disap-
pears) or of the kinematic angular momentum
Jkin =

√
2µ[Ec.m. − V(Rb,Zi, Ai, J = 0)]Rb/~, depending on which one is

smaller Jmax = min[Jkin, Jcr].

The evolution of the system in mass and charge coordinate is completely
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determined by the driving potential, defined as [5]:

U = V(R,Z, A, J, β1, β2) + B1 + B2 − BCN − Erot
CN(J), (4.8)

where BCN s, i Erot
CN(J) = ~2l(l + 1)/2=CN are the mass excess (taken from

ref.[47, 48]) and rotational energy of the CN, respectively, and B1,2 are the
mass excesses of the fragments.

Taking into account the angular momentum, the excitation energy E∗ of
the CN is calculated with the formula:

E∗CN(J) = Ec.m. + B1 + B2 − BCN − Erot
CN(J), (4.9)

where B1 + B2− BCN is the reaction Q value. The rotational energy Erot
CN(J)

is not available for internal excitation. The excitation energy of the scission
configuration can now be written as: E∗DNS = E∗CN(J) − U(Rm,Z, A, J).

The probability of the DNS formation, decay and total emission proba-
bilities are given by Equations (2.26, 2.28) and (2.29). For a nucleus with
a given charge Z and mass number A, the production cross section is cal-
culated as:

σZ,A(Ec.m.) =

Jmax∑
J=0

σZ,A(Ec.m., J) =

=

Jmax∑
J=0

σcap(Ec.m., J)WZ,A(E∗CN , J). (4.10)

Replacing I0 in Equation (4.1) with the average value < J >Zi,Ai we obtain
the angular momentum of the fragment (Zi, Ai):

IZi,Ai =
=i

=1 + =2 + µR2
m

Jmax∑
J=0

JσZi,Ai(Ec.m., J)

Jmax∑
J=0

σZi,Ai(Ec.m., J)

. (4.11)

The angular momenta as a function of the mass or charge numbers IZi and
IAi are obtained by summing over the relevant numbers.

4.2.1 The angular momentum bearing modes
The orbital motion of the system is not the only source of intrinsic spin of

the fragments. Collective angular oscillations are also generated by ther-
mal excitation of the pre-scission DNS. These modes (bending, wriggling,
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tilting and twisting) contribute to the angular momenta and rotational en-
ergy of the fission fragments. These degrees of freedom can be easily
identified. Let us fix a reference frame with the y axis coincident with the
line of centers and the x and z axes perpendicular to it. The two bending
modes correspond to a rotation of one fragment parallel to the x or z axis
associated with an opposite rotation of the other fragment. The twisting
modes correspond to a rotation of one fragment about the y axis associated
with an opposite rotation of the other fragment. The two wriggling modes
are rotations of both fragments parallel to the x or z axis compensated by a
counter-rotation of the system as a whole about the same axis. Finally the
tilting mode describes the inclination angle of the total angular momentum
with respect to the y axis. In general, since these collective modes are not
exactly normal but are weakly coupled to the intrinsic modes, they can be
thermally excited.

Taking into account the angular momentum bearing modes, the average
angular momentum of the fragment can be written as:

< IZ,A >=

∑Jmax
J=0 IT

Z,A(J)σZ,A(Ec.m., J)∑Jmax
J=0 σZ,A(Ec.m., J)

, (4.12)

where:

IT
Z,A(J) = IRigid

Z,A (J) + IBearing
Z,A (J)

= IRigid
Z,A (J) + ITw

Z,A(J) + ITi
Z,A(J) + IB

Z,A(J) + IW
Z,A(J) (4.13)

IW
i . is the sum of the pure orbital IRigid

i , twisting ITw
i , tilting ITi

Z,A, bending
IB
i , and wriggling IW

i spin components of the fragment.
In Ref.[52] the wriggling mode, consisting of the rotation of both frag-

ments in the same direction (the light nucleus carries the bulk of the spin)
and the rotation of the whole system in the opposite direction is also de-
scribed. Although this motion is possible in the classical description, quan-
tum mechanical calculations show that the energy needed to activate this
mode is much higher than the energy needed for the twisting, tilting and
bending modes. In the fact, it is energetically costly to impart spin to the
light fragment. In comparison, for the bending and tilting modes, the heavy
fragment bears most of spin in the asymmetric DNS and for the twisting
mode, both fragments carry equal spins for any DNS.
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4.2.2 Widths
The standard deviation of the fragment (Zi, Ai), i = 1, 2 is:

σZi,Ai =
=i

=1 + =2 + µR2
m

√
< J2 >Zi,Ai − < J >2

Zi,Ai
. (4.14)

The total fluctuation that originates from orbital motion is then:

σOrbital =

√
σ2

Z1,A1
+ σ2

Z2,A2
(4.15)

The large dispersion in the spin distribution of the fragments can not be
explained only by the contribution from the width of the orbital angular
momentum distribution. As was shown in ref.[52] the contribution from
the bending and twisting modes must be taken into account.

The expressions for the variances arising from bending and twisting modes
are [52]:

σ2
Bending = (|a1B| + a2B)2τ, (4.16)

σ2
iTwisting = a2

iTw

(
1 −

2
π

)
τ. (4.17)

In the above equations τ is the average temperature of the DNS:

τ =

Jmax∑
J=0

TDNS (J)σZ,A(Ec.m.)

Jmax∑
J=0

σZ,A(Ec.m.)
(4.18)
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The spin distribution of the fission frag-
ments

As a first example we show the calculated results for the 166 MeV 20Ne+63Cu
reaction leading to the CN 83Y(E∗CN(J = 0) = 125MeV). The maximum
angular momentum is Jmax = 51.
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Figure 5.1: Driving potential for the 20Ne+63Cu system at different angular
momenta.

In Figure 5.1 the driving potential of the system 20Ne+63Cu is presented
at different values of the angular momentum J, normalized to the value of
the rotating compound nucleus. One can notice that above a certain value
of J, U becomes negative, i.e. from an energetic point of view, the DNS
configuration is more favourable than the CN one. This indicates that the
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complete fusion is energetically forbiden, and the quasi-fission is the main
reaction mechanism.

With the help of Equation (4.2) and (4.12) one can calculate the average
γ-ray multiplicity from the sum of the spins < IT

Z1
> + < IT

Z2
> of the two

fragments (Figure 5.2)..
By using Equations (4.14-4.17) the widths of the spin distribution can be

calculated (Figure 5.3). By adding the contribution from the orbital mo-
tion to the contributions from the angular momentum bearing modes, the
total width remains approximately constant, in agreement with experimen-
tal data.
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Figure 5.2: The calculated (solid line) gamma-ray multiplicities (aγ = 0)
deduced from the calculated sum of the fragment spins as a function of
charge number of one of the fragments in the 20Ne(166 MeV)+63Cu re-
action. The contribution from the bending mode is shown by dashed line.
The results of calculations with Eq. (4.1) and J = Jcr, Jcr/

√
2 are indicated

by dotted lines The experimental data (open triangles) are from Ref. [51].

To emphasize the role of our model, the angular momenta of the two
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fragments is calculated with Equation (4.1) and is shown (Figure 5.2) for
two values of I0, I0 = Jcr and I0 = Jcr/

√
2. While this simple formula can

describe the experimental data for symmetric fragmentation of the CN, it
fails to give an accurate result as one goes to large asymmetries.
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Figure 5.3: The calculated root of the total widths (solid line) of the
spin distributions versus the charge number of the light fragment in the
20Ne(166 MeV) + 63Cu reaction. The contributions from the orbital mo-
tion (dash-dotted line), bending (dashed line), twisting (dotted line) modes
are shown. The experimental data (open circles) are from Ref. [51].

5.1 Role of formation and decay probabilities.
Comparison with other models

In Figure 5.4 the average γ-ray multiplicities are calculated for the 175
MeV 20Ne+Ag reaction which leads to the CN 127La (E∗CN(J = 0) =

128MeV). The value of the maximum angular momentum is set to Jcr =

63. To emphasize the role of the formation and decay probabilities even
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further in Equation (4.11) we show for comparison the case where WZ,A(Ec.m., J) =

1 for all nuclei, i.e. all fragmentations are equally possible.
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Figure 5.4: The calculated sum of the average fragment spins with (solid
line) and without (dotted line) considering the fragment deformations in
the 20Ne(175 MeV)+natAg reaction. The results calculated with Eq. (??)
(dash-dotted line) and with the CN decay model of Ref. [50] (dashed line)
are also plotted. The conversion from the gamma-ray multiplicities to the
fragment spins is performed with Eq. (4.2) and aγ = 1.

For comparison we also present the results of the calculations without
taking into account the effect of deformations (dotted line). One can see
that the dependence on deformations is rather weak. Also, the results of
using a CN decay model is also used[50].
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5.2 Role of the entrance channel

5.2.1 Role of the center of mass energy
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Figure 5.5: (a) The average angular momentum of the fission fragment due
to the orbital motion and (b)average temperature of the DNS. The panels
(c), (d) and (e) are the spin components arising from the excitation of the
bending, twisting and tilting modes, respectively, of the fragments with
Zt − Z =33 (circles), 40 (squares), and 51 (triangles) as a function of the
center of mass energy in the 40Ar+89Y reaction.

44



An important parameter which governs the nucleus-nucleus collisions is
the kinetic energy of the incident projectile, which determines key aspects
of the reaction, such as: the fusion cross section, the angular momentum
injected into the system, etc..

In Figure 5.5 the evolution of the different components of the spin are dis-
played as a function of the bombarding energy in the reaction 40Ar+89Y.
The most important aspect is the predicted saturation of the orbital compo-
nent of the angular momentum above a certain value of the kinetic energy.

5.2.2 Role of mass asymmetry in the entrance channel
To investigate the influence of the mass asymmetry in the entrance chan-

nel on spin distribution we chose the reactions [49] 48Ca+86Kr (5.5 MeV/nucleon,
Jmax = 88) and 12C+122Sn (12 MeV/nucleon, Jmax = 47) [49]. Both
reactions lead to the same CN, 134Ba, with the same excitation energy
E∗CN(J = 0) = 130 MeV. For these reactions J0 = 70, which means that
for the asymmetric 12C+122Sn system the fragments are produced by CN
decay. For the 48Ca+86Kr system, when J > J0 the symmetric DNS con-
figuration becomes energetically favorable.
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Figure 5.6: Average angular momentum of the heavy fragment as a func-
tion of the atomic number of the light fragment for the 5.5 MeV 48Ca+86Kr
(solid line) and 12 MeV 12C+122Sn (dashed line) reactions.
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Conclusions

In the current work the DNS model was employed for the description of
the fission process. The theoretical results were compared with the exper-
imental data, and excellent results were obtained. The main ingredient of
our model is the calculation of the potential energy surfaces (PES). One
of the contributions brought to the model is the restriction of the number
of the allowed configurations by limiting the minimum value of the quasi-
fission barrier. This simple restriction excludes the strongly deformed and
unrealistic configurations at the scission point. Also, this restriction "sim-
ulates" some dynamical effects, while still retaining all of the features of
the statistical model.

Another important contribution is the inclusion of temperature depen-
dent terms in the total energy, as well as the introduction of a temperature
dependent surface stiffness coefficient. Together with the well-known ex-
citation dependence of the shell corrections, these improvements allow the
model to describe a large collection of experimental data, such as: the
mass-, charge-, isotopic-, TKE-,and spin-distributions, and neutron mul-
tiplicities. In the case of the reactions presented, the evolution of these
observables with increasing excitation energy (up to 60 MeV) was studied.
The changes observed are shown to be related to the energy-dependent
structures in the PES.

In the case of the charge (mass) distributions, the main result is the con-
servation of the asymmetric shapes in the fission of U and Pu isotopes,
in agreement with the experimental data. Furthermore, the model predicts
strong asymmetric modes in the case of fissioning thorium isotopes at large
excitation energies. Charge distributions with equal asymmetric and sym-
metric components were predicted for several isotones.

When it comes to heavy-ion collisions, the formalism developed in the
DNS model allows for a correlation between the fission-fragment angular
momenta and the other fission observables such as the mass and charge of
the fission fragments, production cross-sections, and, more importantly, to
the entrance channel. The comparisons with the experimental data show
an excellent agreement for both the average values as well as for the widths
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of the distributions. The collective angular momentum bearing modes are
incorporated into our model in a natural way. One of the main results is the
saturation of the orbital component of the fission fragment’s spin. The dis-
tinction between the compound nucleus decay and the cvasifission channel
is given, based on the shape of the spin distributions. The saturation of the
orbital component of the fragment’s intrinsic spin is predicted.
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[24] H. Paşca, A.V. Andreev, G.G. Adamian, and N.V. Antonenko, Eur.
Phys. J. A 52, 369 (2016)

[25] G. Sauer, H. Chandra, and U. Mosel, Nucl. Phys. A264, 221 (1976).

[26] B.D. Wilkins, E. Steinberg, R. Chasman, Phys. Rev. C 14, 1832
(1976)

[27] Sh.A. Kalandarov, G.G. Adamian, N.V. Antonenko, and W. Scheid,
Phys. Rev. C 82, 044603 (2010);

[28] Sh.A. Kalandarov, G.G. Adamian, N.V. Antonenko, and
W. Scheid,Phys. Rev. C 83, 054611 (2011);

50



[29] Sh.A. Kalandarov, G.G. Adamian, N.V. Antonenko, W. Scheid, and
J.P. Wieleczko, Phys. Rev. C 84, 064601 (2011)

Jolos, Phys. Part. Nuclei 25, 583 (1994);

Antonenko, R. V. Jolos, and A. K. Nasirov, Nucl. Phys. A 551, 321
(1993)

[30] A.J. Cole, Statistical models for nuclear decay: from evaporation to
vaporization, (Institute of Physics Publishing, Bristol, UK, 2000)

[31] W. Lang, H. G. Clerc, H. Wohlfarth, H. Schrader, and K. H. Schmidt,
Nucl. Phys. A 345, 34 (1980)

[32] K.-H. Schmidt et al., Nucl. Phys. A 665, 221 (2000).

[33] C. Wagemans, E. Allaert, A. Deruytter, R. Barthelemy, and P. Schille-
beeckx, Phys. Rev. C 30, 218 (1984).

[34] U. Brosa, S. Grossmann, and A. Müller, Phys. Rep. 197, 167 (1990).

[35] A.N. Andreyev, M. Huyse, and P. Van Duppen, Rev. Mod. Phys. 85,
1541 (2013).

[36] A.N. Andreyev et al., Phys. Rev. Lett. 105, 252502 (2010).

Nucl. Phys. A462, 85 (1987); F.-J. Hambsch, H.-H. Knitter, and C.
Budtz-Jorgensen, Nucl. Phys. A491, 56 (1989).

[37] I.V. Ryzhov et. al., Phys. Rev. C 83, 054603 (2011).

[38] J. Benlliure et al., Nucl. Phys. A628, 458 (1998).

[39] R. Yanez, L. Yao, J. King, and W. Loveland, Phys. Rev. C 89,
051604(R) (2014).

[40] L.G. Moretto, R.P. Schmitt, Phys. Rev. C 21 (1980) p. 204

[41] A. Gobbi, W. Norenberg, Heavy Ion Collisions vol. II (North-
Holland, 1980), Ch.3, p.226-230

[42] V.V. Volkov, Izv. AN SSSR ser. fiz. 50, 1879 (1986);

[43] G.G. Adamian, N.V. Antonenko, and W. Scheid, Nucl. Phys. A618,
176 (1997);

51



[44] G.G. Adamian, N.V. Antonenko, W. Scheid, and V.V. Volkov, Nucl.
Phys. A627, 361 (1997);

[45] G.G. Adamian, N.V. Antonenko, W. Scheid, and V.V. Volkov, Nucl.
Phys. A633, 409 (1998);

[46] G.G. Adamian, N.V. Antonenko, and W. Scheid, Phys. Rev. C 68,
034601 (2003).

[47] G. Audi, A. M. Wapstra, and C. Thibault, Nucl. Phys. A 729,

[48] P. Möller et al., At. Data Nucl. Data Tables 59, 185 (1995).

[49] Sh. A. Kalandarov, G.G. Adamian, N.V. Antonenko, W. Scheid, P.
Wieleczko, Phys. Rev. C 00, 004600 (2011)

[50] L.G. Moretto, G.F. Peaslee, G.J. Wozniak, Nucl.Phys. A502, 453c-
472c (1989)

[51] R.A. Dayaras, R.G. Stokstad, D.C. Hensley, M.L. Halbert, D.G.
Sarantites, L. Westberg, J.H. Barker, Phys.Rev. C22, 1485 (1980)

[52] R.P.Schmitt, A.J.Pacheco, Nucl.Phys. A379, 313 (1982)

52



Scientific activity and notable results

Published articles
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