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Chapter 1
Introduction
In today’s world, we are becoming increasingly dependent on equipment that is controlled
by software, and it seems that in the near future it will become an ever more indispensable
part of our day-to-day routines. Such equipment is prevalent in so many important areas
of our lives that we can hardly get through the day without it. Consequently, it is crucial
for such equipment to be dependable, especially in critical environments such as hospitals,
aeronautics, the automotive and railway industries etc.

Software programs which control such equipment are now widely used and play a very
important role. Therefore, low-quality software is simply not acceptable.

In order to provide the high-quality software needed to meet such demanding standards, a
great effort has been put into software verification and validation, similar to other engineering
disciplines. Despite this effort, the most commonly used method of increasing the quality of
industrial programs is that of testing. However, it is not an adequate method of excluding
errors from a program ("Program testing can be a very effective way to show the presence of
bugs, but it is hopelessly inadequate for showing their absence" [37]). It is no wonder then,
that even systems which have been extensively tested can fail, sometimes leading to financial
or, in the worst case, loss of human life. [129, 7]. To address this potential failure, many
tools based on formal methods have emerged to support the automatic or semi-automatic
verification of industrial programs. [1, 108, 26, 2, 30]. Over the past few years, some of these
tools have registered a significant increase in their quality [18, 6], and are therefore used with
some success in the industry. Despite their maturity, these tools do have some shortcomings.
Firstly, they are designed as a means of developing software from scratch, rather than as a
support for assisting the maintenance of existing safety-critical programs, written in general
purpose imperative languages. Moreover, they are developed to model programs which are
executed sequentially, without support in designing concurrent asynchronous software.

More precisely, these tools do not target the verification of wide-area distributed systems
software, which have become a significant part of modern programming, and in general,
are still written within traditional programming languages in the industry. Furthermore,
distribution problems are often modelled as informal specifications and design patterns, with
minimal or no support for formal verification. The problem becomes even more serious if
we consider that software products which control large safety critical infrastructures (for
example: electricity and gas distribution systems, telecommunication infrastructures and
systems that control and monitor railway interlocking systems) have been mainly developed
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in simple imperative languages, built for sequential architectures without mechanisms to
exhaustively verify their safety properties.

Considering all of the above problems, we can conclude that providing a useful formal
method for the verification of railway interlocking systems for our partner - (Railway Au-
tomation Division of Siemens) - is very challenging, and even more so if we consider the
verification of geographic railway interlocking systems. These systems, which in general
must be concurrent, distributed and be able to control large infrastructures ( for example
the railway infrastructure of a country), are controlled by programs which are not directly
targeted by the previously mentioned industrial tools. The formal verification of these pro-
grams hides some unexpected challenges which are not immediately obvious: Firstly, it is
very difficult to specify global constraints in such huge systems. Secondly, assuming that
these previously mentioned constraints are specified, it would be very challenging to verify
them because of the abstract and incomplete nature of the software specification.

Analysing current industrial practices, along with the state of the art programming lan-
guages and tools for developing distributed railway interlocking software, we have concluded
the following: Without a means of routinely and reliably building concurrent and distributed
systems - following some correct-by-construction principles - the technical progress of these
systems will cease. Furthermore, the price of such systems - considering the development
and maintenance costs - remains high [47]. On the other hand, trying to follow the functional
development principle of railway interlocking software [14, 5] and to explore the state space
of such a system seems also to be generally impossible [5]. Verification generally leads to
state explosion, therefore a new methodology of verifying interlocking software precision
would be highly welcome.

Considering the above problems of formal verification of distributed system software
which comprises the verification of geographic railway interlocking 1, and with the success of
tools like [1], [108] and [26] for the development and verification of non-concurrent software,
there is now a deeper desire for similar tools for concurrent software. So, the communication
requirement - ubiquitous in software systems for information exchange between software
entities and the communication of these systems with their environments - must be properly
verified to affirm the system’s precision.

1We consider geographic railway interlocking as particular case of the previously mentioned distributed
systems
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1.1 Goals and Hypothesis

The general aim of this thesis is to contribute to the scientific foundations of the verification
of safety-critical concurrent programs. Since the safety of a distributed system depends upon
the correct execution of its concurrent program, our particular goal is to provide an automatic
verification technique which is based on a theoretically well-founded formal method for
supporting the verification of asynchronous concurrent programs. An additional goal of this
thesis is to provide a set of case studies and development methods based on the previous
formalism, to encourage the application of this technique in the railway industry, especially
in the verification of geographic interlocking and train control systems.

Due to its importance, a number of researchers have, over the past few decades, focused
on the problems of ensuring safe communication.

CSP (Communicating Sequential Processes) [21] and CCS (Calculus of Communicating
Systems) [90] are among the earliest theories to address the communication problems. The
most recent extensions for these works are based on session types, and their derivatives, such
as contracts [117]. In the last decade, session types have been integrated into a number of
programming languages and process calculi, including functional languages [105, 33], object-
oriented languages [52, 36], calculi of mobile processes [51], and higher-order processes [96].
Recently, session types have also been extended with logic [13] to act as a contract between
the communication entities. This extension allows a more precise verification of the involved
parties by enabling a concise specification of the transmitted messages that one party must
ensure, and upon which the other party can rely. There was also a proposal for multi-party
session logic [12], but this logic tries to also summarise the effects of processes involved in
the protocol.

Although, these theories are very promising, their results are currently impracticable in
the industry for several reasons: Firstly, these verifications require a syntactic correspondence
between primitives of the programming language and primitives of the protocol specification
language. Additionally, the majority of these mechanisms also require some restrictions on
reference aliasing, to enable a precise tracking of channel endpoints.

Therefore, our hypothesis is that there exists an extension of separation logic which
allows the verification of mainstream programming languages and focuses entirely on the
communication patterns, while the effects of the associated processes are summarized directly
in each thread’s pre- and postcondition.
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1.2 Contributions

Unlike previous approaches, we propose a session logic with a novel (and natural) use of
disjunction to specify and verify the implementation of communication protocols. Even
though the currently proposed logic is based on two-party channel sessions, it can also handle
delegation through the use of higher-order channels. Unlike past solutions on delegation
[36], our proposal uses the same send/receive channel methods for sending values, data
structures, and channels. For example, [36] requires a separate set of send/receive methods
to support higher-order channels. Furthermore, due to our use of disjunctions to model
both internal and external choices, we need only use conventional conditional statements to
support both kinds of choices. In contrast, past proposals typically require the host languages
to be extended with a set of specialised switch constructs to model both internal and external
choices. Additionally, our proposal is based on an extension of separation logic, and thus
it supports heap-manipulating programs and copyless message passing. Lately, Villard et
al. [87] have designed a logic for copyless message passing communication. Their logic
relies on state-based global contracts while our more general logic of session is built as an
extension of separation logic with disjunction to support communication choices. Their
logical formulae on protocols can also be localised to each channel and may be freely passed
through procedural boundaries, but similar to session types, their logic requires a special
primitive for external choice and additionally does not support the verification of optimal
protocols without labels.

Furthermore, as channels can support a variety of messages, we can treat the read
content as dynamically typed where conditionals are dispatched based on the received types.
Alternatively, we may also guarantee type-safe casting via verification of communication
safety. Furthermore we can go beyond such cast safety by ensuring that heap memory
and properties of values passed into the channels are suitably captured. Lastly by using a
subsumption relation on our communication proposal, we allow specifications on channels
to differ between threads, yet ensure that they remain compatible at each join point so
as to prevent intra-channel deadlocks. More realistically, we also assume the presence of
asynchronous communication protocols, where send commands are non-blocking.

In what follows we will summarize our contribution:

• Session Logic: In chapter 3 in accordance with our hypothesis we presented a novel
session logic with disjunctions to specify and verify the implementation of the commu-
nication protocols. This work was presented in [29, 70] and is being implemented on
top of the HIP/SLEEK system [26]
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• Soundness proof: In chapter 4 we proved the soundness of our theory.

• Automatic verification tool: In chapter 5 we presented our SESSION-HIP-SLEEK
toolchain, developed during the course of the PhD. The toolchain is implemented
in Objective Caml (OCaml) and consists of two parts an entailment proofer, namely
SESSION-SLEEK and the verification tool, namely SESSION-HIP. The tools are
built on top of the HIP-SLEEK toolchain, and it facilitates the automatic reasoning
concerning the correctness of programs that use pointers and which communicate with
other programs via channels.

• Comparison with other approaches: In chapter 6, we presented the six most com-
petitive tools for the verification of protocols using session types. We have compared
each of these tools with our tool, by giving a set of actual examples and pointing out
the most significant differences.

• Application in the railway industry: In chapter 7, we have presented two possibilities
for using our Session Logic in the railway software development industry. Firstly, we
presented a complete development and verification method for the development of
interlocking software using the geographical interlocking approach. The method of
encoding the interlocking requirements and projection to the entities were presented
in [71, 69]. Additionally, we present the applicability of our theory in the software
development of automatic train protection systems. For demonstration purposes, we
encoded into Session Logic a set of requirement from the TBL1+ specification provided
by Siemens, and also three specifications from the OpenETCS.

In this thesis, we argue strongly for the simplicity, expressiveness and applicability of our
logic by demonstrating it through a number of examples.

1.3 Related Works

Our work features an enforcement of protocol specification, via verification in a general
purpose imperative programming language which fits into the protocols verification theory.
We have identified three main research directions in order to address the challenge: automated
model extraction, automated code generation and automated code verification.

The first method begins with the protocol code and extracts an abstract model on which
the protocol properties can be verified [77, 3]. In the case of an error, the approach provides
an abstract model for developers to identify the problem, but in general this model is too
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complex hence difficult to understand. Therefore the usability of such a verification is
restricted to small problems where the model can be easily understood.

The second approach suggests a development method which, starting from a verified
abstract model of protocol, generates a correct but incomplete implementation of the protocol
[63, 99]. On the other hand, it is common for even the best programmers to make simple
mistakes, and an extension which seems safe can still contain bugs, and in such cases the
correctness of the protocol implementation cannot be ensured.

Our work adheres to the automatic code verification direction. Due to the huge amount
of work in this direction, we focus on the key differences between related works on static
verification of high order protocols.

First of all we consider session types, which is a typing discipline for ensuring the
communication safety of distributed programs, originally developed in the π-calculus [113,
24] and later extended to functional and object-oriented languages [60, 105]. The main idea of
session types is that applications are built starting from units of design called session models.
Existing implementations of session types [60, 105] are focused on static type checking of
endpoint processes against these local session type specifications. The direct application
of the theoretical session type techniques to the current practice, however, presents a few
obstacles. First, the existing type systems are targeted at calculi and programming languages
with first class primitives for linear communication channels and communication-oriented
control flows.

For example, the work in [36] proposes a type discipline to prove the correctness of
session types in an object oriented programming language, but their type system requires
a programming language with a set of communication primitives, as:send, receive, sendIf,
receiveIf. Trying to eliminate sendIf, receiveIf from their formal language makes their theory
unsound. Other works such as [52, 62, 35, 100, 86] suffer from the same problem. The
main problem with this theory is the limited applicability caused by the session types control
flows, which has been identified in several works [63, 97]. Having a verification method
which targets languages with such primitives is not so useful from an industrial point of
view. The reason these languages have such primitives is presented in several works [31, 60].
These type systems address specific forms of programming language which were directly
built with the scope of implementing distributed systems; our more general approach aims at
ensuring the correct behaviour of mainstream programming languages with respect to a more
expressive session logic specification, through static verification of these languages.

Because of the limitations of these type systems, there are several works [23, 25, 11, 88,
98, 59] which enforce the session types specification by dynamic verification. The work in
[23] presents a monitor-based information-flow analysis in multi-party sessions. An informal
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approach to monitoring based on multi-party session types, and an outline of monitors are
presented in [25]. These works address the dynamic verification of the protocol specifications
but their verification is not exhaustive and can not be applied at an early stage of development.

The relation between the π-calculus and separation logic is studied in [111] and [57], but
their work provides a treatment of the π-calculus based on the semantic theory of separation
logic, without concentrating on protocol verification. The same idea was studied also in
Hoare logic in [89].

From the perspective of other protocol specification languages, there is one work [74]
which attempts to encode the CSP (communicating process algebra) into Hoare Logic, but
they have encoded only the send and receive commands without the branching, and without
handling aliases and method calls.

Additionally, [12] suggests a logic to extend multi-party session specifications, by en-
riching the assertion language studied in [13] with the capability of referring to virtual states
local to each network principal. Lately, Villard et al. [87, 123] have been developing a logic
relying on state-based global contracts, while our more general logic of session is built as an
extension of separation logic with disjunction to support communication choices.

From the tool perspective, other session-based tools, such as MOOL [115], MOOSE
[95], Bica [114], SessionJava [60] based on type-states and SessionC [100], ParTypes [116]
based on indexed dependent types for parallel programs also require syntax extensions or
annotations to be implemented as static typing for most mainstream languages.

In summary, compared to these related works, our contribution focuses on the enforcement
of global safety, by verifying the source code correctness with respect to its protocol in a
general purpose imperative language.

From the railway industry perspective, there are several works which attempt to apply
process calculi as CSP [94, 93, 66, 92, 109, 126] for modelling and verifying some aspects
of railway interlocking systems. For example, [66, 93] proposes a technique to generate
a CSP || B model from an interlocking scheme plane with their OnTrack tool, which can
be verified with the ProB model checker. [126] also proposes a modelling technique based
on CSP to verify whether the functional specification of a track layout which is given in a
control table respects all the signalling principles or not. Despite this interesting approach,
their mode-checker does not scale-up sufficiently for actual systems. Additionally, none of
the previous verification methods target the verification of the final source code, and do not
scale up sufficiently for realistic systems. Therefore, the problem of verifying large-scale
interlocking is considered to be a real problem which must be solved [124, 47].
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With this in mind, the second goal of this thesis is to address the above issues by enabling
the static verification of communicating behaviour of geographic interlocking entities via our
session logic predicate.

The aim of our work is to capture the verification of railway protocols in mainstream
imperative languages, providing better support for heterogeneous distributed systems, and to
achieve this by allowing components to be independently verified statically, while retaining
the strong global safety properties of a verified homogeneous system. Our framework is
based on the idea that, if each endpoint is independently verified statically to conform to their
local protocols, then the global protocol is respected as a whole.

1.4 Structure of the Thesis

1.5 Publications



Chapter 2
Background
2.1 π-calculus

2.2 Session Types

2.3 Separation Logic

2.3.1 Hoare Logic

Soundness proof for Hoare Logic

2.3.2 Sequential Separation Logic

2.3.3 Concurrent Separation Logic

2.4 Summary

In this chapter we introduce the basic theories required for the understanding of this thesis.
Firstly, we present π-calculus, a modern concept for modelling concurrent processes mathe-
matically. Then the notion of session types is presented, this is a type discipline for regulating
the communication behaviour of processes. Finally, we present separation logic, which is a
new theory for the verification of sequential and concurrent programs with mutable states
and aliasing.



Chapter 3
Session Logic
We introduce our session logic-based approach by using a simple business protocol example
between Buyer and Seller. From the beginning, the Buyer sends the product name as a
String object to the Seller. The Seller replies by sending the product’s price as an int. If
the Buyer is satisfied with the price, she sends the address as an object of type Addr and the
Seller sends back the delivery date as an object of type Date. Otherwise, the Buyer quits
the conversation. This example is modelled as a 2-party session in Fig. 3.1. In a 2-party
session, one channel is typically sufficient for communication between two parties. We can
summarize this Buyer-Seller protocol by using the following session type to represent the
Buyer’s communication pattern:

Fig. 3.1 Sequence diagram for an item purchasing

buyer_ty ≡ begin; !String; ?int;
!{ok :!Addr; ?Date; !int;end, quit : end}

The dual (or complement) of the above session type corresponds to the Seller’s communi-
cation pattern, namely:

seller_ty ≡ ∼buyer_ty
≡ begin; ?String; !int;

?{ok :?Addr; !Date; !int;end, quit : end}
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In the above, !t denotes the output of a value of type t, dually for ?t which denotes
input instead. The type !{ok : ..., quit : ...} denotes an internal choice (decision based on
local values) of the options, while the type ?{ok : ..., quit : ...} denotes an external choice
(decision based on received labels) of the options. The options are represented by different
labels which are sent/received over the channel. The type begin represents the beginning
of the conversation, while the type end represents the termination of the conversation for a
given channel. Traditionally, a program that implements the above protocol uses specialized
switch constructs [60] like outbranch and inbranch to model the internal and external
choices respectively:

void buyer(buyer_ty c,String p) void seller(seller_ty c)
{ send(c,p); { String p = receive(c);
Double price = receive(c); send(c,getPrice(p));
Double budget = ...; inbranch(c) {
if price <= budget then{ case ok : {
outbranch(c,ok){ Addr a = receive(c);
Addr a = ...; ShipDate sd = ...;
send(c,a); send(c,sd);
ShipDate sd = receive(c); int qty = receive(c);
send(c,3); }
}} else outbranch(c,quit){} case quit : { }

} } }

For our session logic-based approach, the above communication patterns for Buyer and
Seller could be represented, as follows:

buyer_ch ≡ !String; ?int;((!1; !Addr; ?Date; !int)∨!0)
seller_ch ≡ ∼buyer_ch

≡ ?String; !int;((?1; ?Addr; !Date; ?int)∨?0)

Superficially, this logical specification looks similar to session type; however, there are
several notable differences. Firstly, there is no need for any begin/end declarations since
our protocol is expected to be locally captured after creation (without restriction). Secondly,
we make use of disjunction1 instead of some specialized notations for internal and external
choices. Thirdly, instead of message labels (such as ok and quit), we may just use values
(such as 1 or 0) or even types themselves to capture the distinct scenarios for internal and
external choices. This allows us to directly use conditionals to support choices which are
naturally modelled by disjunctive formulae during program reasoning. Most importantly,

1To support unambiguous channel communication, the disjunction by receiver must have some disjoint
conditions, so that we may guarantee its synchronization with the sender.
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instead of types or values, we allow more general properties (including ghost properties) to
be passed into the channel to facilitate the verification of functional correctness properties,
which can go beyond communication safety. This also includes the use of higher-order
channels to model delegation, where channels and their expected specifications are passed as
messages.

As a simple illustration, we may strengthen channel specification by using positive
integers instead of merely integer prices. This change is captured by the following modified
channel specification for Buyer.

buyer_chan ≡ !String; ?r:int ·r>0;((!1; !Addr; ?Date; !int)∨!0)
seller_chan ≡ ∼buyer_chan

Note that our channel specification uses several abbreviated notations. ?1 is a short-hand
for ?r ·r:int∧r=1, while !String is a shorthand for !r ·r:String∧true. The specification
seller_chan is the dual specification of buyer_chan. Such dual specification are obtained
by inverting the polarity of messages, where input is converted to output and vice-versa. We
can also support separation formulae for pointer-based message passing for shared memory
implementation. When separation formula is emp we use abbreviated notations, such as
?r:int ·r>1 as a short-hand for ?r ·emp∧r:int∧r>1. Another issue worth noting is that
thread specification and channel specification need not be identical. As an example, let us
provide a stronger specification for the seller’s communication with the protocol, by insisting
that price of products sold by this seller is at least 10 units, as follows:

seller_sp ≡ ?String; !r:int ·r>10;((?1; ?Addr; !Date; !int)∨?0)

With this change, we can write a program that implements the above protocol, as shown
below. Note that we can directly use conditionals instead of the specialized switch constructs.

The channel is opened in the main process by open which takes as argument the channel
specification. One alias of the opened channel with the specification buyer_chan is passed
to the thread buyer while the other alias with its dual specification seller_chan is passed
to the process seller. The two processes are running in parallel. Each process can have its
own separate protocol specification which differs, while being consistent with the channel’s
specification. The seller process specification seller_sp imposes a stronger property
over the sent price, using r>10 instead of r>0 that was captured in the channel specification



13

seller_chan.

open(c) with buyer_chan;
(buyer(c,prod) || seller(c));
close(c);

void buyer(Chan c,String p) void seller(Chan c)

requires C (c,buyer_chan) requires C (c,seller_sp)
ensures C (c,emp) ensures C (c,emp)

{ send(c,p); { String p = receive(c);
Double price = receive(c); send(c,getPrice(p));
Double budget = ...; int usr_opt= receive(c);
if (price <= budget) then{ if (usr_opt==1){
send(c,1); Addr a = receive(c);
Addr a = ...; ShipDate sd = ...;
send(c,a); send(c,sd);
ShipDate sd = receive(c); int qty = receive(c);
send(c,3); } else

} else send(c,0); assert usr_opt = 0;
} }

When a channel is passed into a thread, we will need to ensure that the channel’s specification
subsume that specified in the thread’s specification. For the buyer thread in our example, this
means that C (c,buyer_chan) ⊢ C (c,buyer_chan) which trivially succeeds. For the seller
process, we would require C (c,seller_chan) ⊢ C (c,seller_sp). This second entailment
also succeeds because the subsumption for sending operation is contravariant, as illustrated
below.

r>10 ⊢ r>0

!r ·r>0 ⊢ !r ·r>10
seller_chan ⊢ seller_sp

C (c,seller_chan) ⊢ C (c,seller_sp)

Before a channel is used, it must first be opened by open(c) together with an appropriate
channel specification. In contrast to previous work (such as [123] where two ends of a single
channel are explicitly created, we only use a single channel name but allow aliases, so that
complementary operations using send and receive can be communicated over its opened
channel. In the end, the main process is allowed to destroy the created channel. Note that
the function int getPrice(String) specifies in its postcondition that its result is always
greater than 10. With this, the verification of the bodies of both processes succeeds.
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3.1 A Process Model for Sessions Logic

3.1.1 Asynchronous Session π-calculus with Assertion

3.2 SESSION-HIP

In order to prove our theory, we provide an imperative programming language: SESSION-
HIP, which, while suited to the level of programmers, is simple enough to allow the proving
of its properties.

3.2.1 SESSION-HIP Syntax

We formalize our approach on a concurrent imperative language enhanced with communi-
cation primitives. The syntax of the language is presented in Fig.3.2. Our language is an
extension of the sequential language from [27]. A program Prog written in this language
consists of declarations tdecl, which can be data type declarations datat, predicate definitions
spred as well as method declarations meth. The definitions for spred and mspec are given
in Fig. 3.5. Our language is expression-oriented, and thus the body of a method (e) is an
expression formed by program constructors. The language allows both call-by-value and
call-by-reference method parameters. These parameters allow each iterative loop to be
directly converted to an equivalent tail-recursive method, where mutations on parameters
are made visible to the caller via pass-by-reference. This technique of translating away
iterative loops is standard and is helpful in further minimizing our core language. The
language allows the creation of parallel processes by using the operator ||. The processes
can communicate through channels. A channel is created by new Chan() but cannot be used
until is has been opened. Each channel is given an alias that can be freely passed. There
are two possible kinds of channels, monolithic vs double-ended. Monolithic channel allow
an alias to used by multiple parties. Double-ended channel splits a channel into two ends
that are to be later used by two parties. Our language uses the more general monolithic
channels, but our reasoning system can support either model by simply using a different
set of specifications for double-ended channels. We use the same verification rules as in
HIP/SLEEK , but for the processes and the channel operations we provide specifications in
term of pre and post-conditions.

A channel can be opened by open with some channel specification S. After opening we
have two aliases of the same channel, one having the specification S and the other one having
the complimentary specification ∼S as follows:
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void open(Chan c) with S
requires emp

ensures C (c,S) ∗ C (c,∼S)

A channel can be closed (or destroyed) only when both aliases are available, and both
have consumed their specifications, as follows:

void close(Chan c)

requires C (c,emp) ∗ C (c,emp)

ensures emp

In contrast to session types, we need only rely on two communication operations over
a channel: send and receive. The specifications of the operations are given below. Note
that res is a reserved word denoting the result returned by receive while L(x) is a session
logical formula about x.

t receive(Chan c)

requires C (c,?r:t ·L(r);rest)
ensures L(res) ∗ C (c,rest)

void send(Chan c, t x)

requires C (c, !x:t ·L(x);rest) ∗ L(x)

ensures C (c,rest)

In a 2-party session, one channel is typically sufficient for communication between
the two parties. Let us denote the two parties by two processes P(c) and Q(c), where c is
the communication channel. Apart from the communication channel specification we can
also have a communication specification for each party, P_sp and Q_sp. In general, the
specifications of the processes can be written as follows:

t P(Chan c)

requires C (c,P_sp) ∗ Pre1
ensures C (c,R1) ∗ Post1

t Q(Chan c)

requires C (c,Q_sp) ∗ Pre2
ensures C (c,R2) ∗ Post2

Operation close must ensure that the communication has been completed and it is empty.
In the following example close fails since the communication is not empty. The example
uses a recursive session specification S2.



16 Session Logic

program de f inition Prog ::= tdecl∗ meth∗

type declaration tdecl ::= datat | spred

data type datat ::= data c { (t v)∗ }

types t ::= c | prim | Chan | dyn

primitive types prim ::= int | bool | void

method de f inition meth ::= t mn (ref (t v)∗,(t x)∗) mspec {e}

enpoint che N | D
expressions e ::= null | kprim | v | v. f | v := e | v1. f := v2 | e1;e2

| if (v)then e1 else e2| t v; e | mn(v∗;x∗)
| new c(v∗) | free(v)
| (v∗l ,(vcl = red cl che)∗){e1}||(v∗r ,(vcr = red cr che)∗){e2}
| open(c1,c2) with spred | close(c1,c2)
| send(c,v) | receive(c)

Fig. 3.2 A Concurrent imperative language with sessions.

S2 ≡ !String;S2
open(c) with S2;
//C (c,S2) ∗ C (c,∼S2)
//C (c,S2) //C (c,∼S2)
for(i= 1 to 5) for(i= 1 to 10)

send(c,i); int x= receive(c);
//C (c,S2) ∗ C (c,∼S2)
close(c);//FAILS!

The channel can be dynamically typed. Dynamic types in our language are denoted by
Dyn. For instance the type signature of send and receive are essentially dynamically typed:

void send(Chan c,Dyn val){...}
Dyn receive(Chan c){...}

send(c,3); send(c,“...”);
int r = (int) receive(c);
String r = (String) receive(c);

Our automated verification rules help guarantee communication safety via type-safe
casting. We can support dynamic type values by using a specialized switch construct, as
follows:
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Dyn t = receive(c);
switch t with {
v1 : int → ...

v2 : String → ...

}

Alternatively, we may also support it via type testing with conditional constructs, as
follows:

Dyn t = receive(c)

if (type(t) = int) {v1= (int)t; ...}
else if (type(t) = String) {v2= (String)t; ...}
else {assert false;}

Using dynamic testing of types a recursive channel specification can be written as:

S3 ≡ !Object;(S3 ∨ !0)

However, using only type-safe casting without run-time type testing, our channel spec-
ification would have to be written as follows where each disjunct starts with the same
type:

S4 ≡ !Object;(!1;S4 ∨ !0)

Let now define the operational semantics of this language.

3.2.2 Operational Semantic

In this section we present an execution environment based on a small-step operational
semantic for our language given as follows:

State ∧
= Stack x Heap x CHeap Stack ∧

=Var →Val ∪Cell

CHeap ∧
= End point fin

⇀ MQueue x MQueue Heap ∧
=Cell fin

⇀Val

MQueue ∧
= QueueId fin

⇀Val∗
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The machine current state is represented by a tuple ⟨e,s,h,c⟩ where e denotes the com-
mand, s denotes the stack, h denotes the heap, and c denotes the current endpoint heap. The
endpoint heap is unconventional compared to usual models of separation logic, therefore we
will examine it in greater depth.

In our system, each channel has two endpoints which are owned in general by two
different threads. The communication between two endpoints is modelled with a pair of
queues which plays different roles for the two endpoints. The first endpoint considers the
first queue as an input queue, while the second endpoint considers as an output queue, and
vice versa for the second queue. This model offers an intuitive environment for the analyzes
of communication between processes. As a consequence, the role of this heap is to store
references to these queues. As a matter of fact, we want to remark that the separation of the
standard heap from this heap is not necessary, but helps in the presentation of the semantic
and simplifies the demonstration of the soundness theorem.

In the next we will present informally the operational semantics of SESSION-HIP for the
standard commands.

Having the configuration ⟨e,s,h,c⟩ as a representative of the actual state of a machine,
then the reduction steps can be formalized as a transition of the form: valid(s1,h1,c1)

⟨e1,s1,h1,c1⟩↪→⟨e2,s2,h2,c2⟩ .
The reduction can be interpreted like this: if a machine has a state ⟨e1,s1,h1,c1⟩, the state of
⟨s1,h1,c1⟩ fulfill the valid specification and we execute the expression e1 then the machine
will change its state to ⟨e2,s2,h2,c2⟩. On top of that reduction semantic, we present some
notations, which are important to understand the semantic.

Notations 3.2.1. We introduced skip to denote the empty expression and s[v 7→ υ ] to denote
a variable v which maps to a value υ . Additionally, ⊥ to denote an undefined or unknown
value, k to denote a constant and ret(v∗,e) to model the outcome of call invocation, where e
represents the residual code of the call. The operation s · [v 7→ υ ] adds the variable v to stack
with the value υ . The operation s1 = s2 − s3 is a shorthand for s2 = s1 · s3 and removes stack
s3 from the stack s2.

Additionally, next, we will give a list of formal definitions for the non-standard operators.
They plays an important role in proving the correctness of our verification rules.
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Definition 3.2.1. (Disjoint union) The disjoint union of two partial functions f and g with
the same co-domain D is:

dom( f ) ·dom(g) fin
⇀ D

( f ·g)(x) ::=

 f (x) if x ∈ dom( f )

g(x) if x ∈ dom(g)

Definition 3.2.2. (Disjoint sub-states) Two states ⟨s1,h1,c1⟩, ⟨s2,h2,c2⟩ are disjoint sub-
states of ⟨s,h,c⟩ denoted ⟨s1,h1,c1⟩#⟨s2,h2,c2⟩, if the following conditions hold:

1. dom(s1)∪dom(s2)⊆ dom(s)∧dom(s1)∩dom(s2) = /0

2. dom(h1) =
⋃

vi∈dom(s1) part(vi,h) dom(h2) =
⋃

v j∈dom(s2) part(v j,h)
dom(h1)∪dom(h2)⊆ dom(h)∧dom(h1)∩dom(h2) = /0

3. dom(c1) =
⋃

vi∈dom(s1) part(vi,c) dom(c2) =
⋃

v j∈dom(s2) part(v j,c)
dom(c1)∪dom(c2)⊆ dom(c)∧dom(c1)∩dom(c2) = /0

Now, after we have defined the union of two mappings in definition 3.2.1 and the notion
of disjoint and thread compatible sub-states in definitions 3.2.2 and ??, we will provide our
extension of the concurrent HIP operational semantic in Fig.3.3.

First, before providing other details about the language, let’s go over these rules in an
informal way:

• command open(f) creates a communication environment by allocating the necessary resources and
connecting them properly. More precisely, it allocates two endpoints l1, l2 and two empty queues q1,q2,
and associates q1 as input queue, q2 as output queue to l1, and vice versa for l2. The execution of this
command is possible only if l1, l2,q1,q2 are not allocated.

• close(f) removes the endpoints and queues of channel f from the channel heap, if parameter f is a
properly defined empty channel (it means that the endpoints must be duals and the queues must be
empties).

• send(f,v) moves the resources referenced by v from the heap and channel heap into the output message
queue, and removes v from the stack.

• receive(f) extracts the first variable from the queue and adds the resources corresponding to this variable
into the standard heap and channel’s heap.

• red ch {L,D} is a helper function which can be used to extract the endpoint from a channel variable.
This function only helps the thread function to extract the endpoints, and cannot be used for other
purpose.

• (v∗l ,(chl = red c L)∗){e1}||(v∗r ,(chr = red c D)∗){e2} has one of the most complex operational se-
mantic. The specification creates two scopes for the two threads, therefore the race free execution of



20 Session Logic

the threads is explicit and can be simply verified by analyzing the parameters of the two threads. If the
parameters of the two threads are race free then the threads are race free. In additional, the channels
passed to the two threads must be pairs, where each thread owns one endpoint of the channel. If all the
previous specifications are fulfilled, the two threads are reduces independently.

3.3 Verification Principle

Our verification mechanism, based on abstract interpretation, is an extension of the Hoare-
style forward verification, more precisely it is an extension of the separation logic from
[27].

A schematic overview of our verification mechanism is shown in Fig.3.4. The system
requires as input a set of functions with pre- and post-conditions, and additionally the
predicates which are required by the previously mentioned pre- and post-conditions. The
predicates can be of two types, session logic predicates and separation logic predicates.
Provided that the above-mentioned requirements are met, we can verify that the source
code of each function meets its specification or not. The verification is done systematically
for each expression using the corresponding verification rules from subsection 3.3.2. An
expression is considered to be correct if and only if its precondition can be met by the current
symbolic state. In this case, the precondition is removed and the post condition is added
to the current state. The proof obligations generated by software verification systems are
discharged by the SESSION-SLEEK theorem prover.

This theorem prover plays an important role in the automatic verification but can be
omitted for simplicity from the soundness proof, because its extension was minimal and its
correctness is proven in the thesis. We will return to this theorem prover in the implementation
chapter, but for now, we omit them. Next, we present our specification language.

3.3.1 Specification Language

We develop our session specification language on top of the specification language (in
Fig. 3.5) from [27]. The language allows (user-defined) shape predicates spred to specify
program properties in a combined domain. Note that such predicates are constructed with
disjunctive constraints Φ.

A session specification for channel v is represented by C (v,S) where S can denote a
sending communication, a receiving communication, a sequence of communication opera-
tions and a choice of communication operations. S can also capture pure (e.g. type) or heap
properties of the exchanged messages. A conjunctive abstract program state σ has mainly
two parts: the heap (shape) part κ in the separation domain and the pure part π in convex
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l1, l2,q1,q2 /∈ dom(c)
⟨open( fc),s[ fc 7→⊥],h,c⟩ ↪→
⟨skip,s[ fc 7→ υ(C ,((υ1(C , l1),υ2(C , l2)))],h,
c · [l1 7→ (q1,q2), l2 7→ (q2,q1),q1 7→ /0,q2 7→ /0]⟩

⟨close( fc),s[ fc 7→ υ(C ,((υ(C , l1),υ(C , l2)))],h,
c · [l1 7→ (q1,q2), l2 7→ (q2,q1),q1 7→ /0,q2 7→ /0]⟩ ↪→
⟨skip,s[ f 7→⊥],h,c⟩

v, f ∈ dom(s) s(v) = υt(H ,_)∨ s(v) = υt(C ,_)
(ht ,ct) = part(v,h) h1 = h−ht c1 = c− ct s1 = s− [v]
s( f ) = υ(H , l) l /∈ dom(ct)

⟨send( f ,v),s,h,c · [l 7→ (q1,q2),q1 7→ m1,q2 7→ m2]⟩ ↪→
⟨skip,s1,h1,c1 · [l 7→ (q1,q2),q1 7→ m1,q2 7→ m2 ⊕ (υt ,ht ,ct)]⟩

v, f ∈ dom(s) s(v) = υt(K ,_) s1 = s− [v] s( f ) = υ(H , l)
⟨send( f ,v),s,h,c · [l 7→ (q1,q2),q1 7→ m1,q2 7→ m2]⟩ ↪→
⟨skip,s1,h,c · [l 7→ (q1,q2),q1 7→ m1,q2 7→ m2 ⊕ (υt , /0, /0)]⟩

s( f ) = υ(H , l) c1 = c · ct h1 = h ·ht υt(H ,_)∨υt(C ,_)
⟨receive( f ),s,h,c · [l 7→ (q1,q2),q1 7→ (υt ,ht ,ct)⊕m1]⟩ ↪→
⟨υt ,s,h1,c1 ⊕ [l 7→ (q1,q2),q1 7→ m1]⟩

s( f ) = υ(H , l) υt(K ,_)
⟨receive( f ),s,h,c · [l1 7→ (q1,q2),q1 7→ (υt ,ht ,ct)⊕m1]⟩ ↪→
⟨υt ,s,h1,c1 · [l1 7→ (q1,q2),q1 7→ m1]⟩

ch ∈ dom(s) ch 7→ υ(C ,(υ(C , l1),υ(C , l2)) l1 ∈ dom(c) l1 = (q1,q2)

⟨red ch N,s,h,c⟩ ↪→ ⟨υ(C , l1),s,h,c⟩

ch ∈ dom(s) ch 7→ υ(C ,(υ(C , l1),υ(C , l2)) l2 ∈ dom(c) l2 = (q1,q2)

⟨red ch N,s,h,c⟩ ↪→ ⟨υ(C , l2),s,h,c⟩

Fig. 3.3 Operational semantics of communication commands

Fig. 3.4 SESSION-HIP-SLEEK verification principle

polyhedral domain and bag (multi-set) domain, where π consists of γ , φ and ϕ as aliasing,
numerical and multi-set information, respectively. kint is an integer constant. The square
symbols like @, ⊑, ⊔ and ⊓ are multi-set operators. During the symbolic execution, the
abstract program state at each program point will be a disjunction of σ ’s, denoted by ∆. An
abstract state ∆ can be normalized to the Φ form [27].
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Shape predicate spred ::= p(root,v∗) ≡ Φ

Formula Φ ::=
∨

σ∗

σ ::= ∃ v∗·κ∧π

Method speci f ication mspec ::= requires Φpr ensures Φpo

Session f ormula S ::= emp | ?r ·Φ | !r ·Φ | ∼S | S1;S2 | S1 ∨S2

Heap f ormula ∆ ::= Φ | ∆1∨∆2 | ∆∧π | ∆1∗∆2 | ∃v·∆

κ ::= emp | v 7→c(v∗) | p(v∗) | κ1 ∗κ2 | C (v,S)

π ::= γ ∧φ

γ ::= v1=v2 | v=null | v1 ̸=v2 | v ̸=null | γ1∧γ2

Pure f ormula φ ::= r : t | ϕ | b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v ·φ | ∀v ·φ

b ::= true | false | v | b1=b2

a ::= s1=s2 | s1≤s2

Presburger arithmetic s ::= kint | v | kint×s | s1+s2
| −s | max(s1,s2) | min(s1,s2) | |B|

ϕ ::= v∈B | B1=B2 | B1@B2 | B1⊑B2 | ∀v∈B·φ | ∃v∈B·φ

Bag constraint B ::= B1⊔B2| B1⊓B2 | B1−B2 | /0 | {v}

Fig. 3.5 The specification language.

The semantic of this specification language is given in definition 3.3.1, in which the model
relation (s,h,c)|= Φ denotes that the formula Φ evaluates to true in (s,h,c). In order to avoid
confusion, we must mention that s1#s2 denotes a stack where s1 and s2 are domain-disjoint.
Additionally s1 · s2 indicates the union of two disjoint stacks s1 and s2. The operations # and
· can be applied on the standard heap and channel heap with the same meaning.

Next, let us present this definition informally. The rule s,h,c |= Φ1 ∨Φ2 says that at least
one from formulas Φ1 and Φ2 must be fulfilled by the state. s,h,c |= ∃v1...n ·κ∧π indicates
the fact that the stack must fulfill π (the pure part of a formula) and the stack and heap must
fulfill κ (the standard heap formula and channel heap formula). s,h,c |= κ1∗κ2 points out
that exists two disjointed heap parts h1, c1 and h2, c2, such that h1, c1 implies κ1 and h2, c2

implies κ2. s,h,c |= emp supposes an empty heap. s,h,c |= p 7→C(v1..n) states that C must
be a definition of a data structure, and p must indicate to a heap location, wherein the fields
of C are stored. Finally, s,h,c |= C (v,S) describes a channel heap location s(v) = l which
stores an input queue, an output queue and a session specification.
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Definition 3.3.1. (Model of Separation Constraint)

s,h,c |= Φ1 ∨Φ2 if s,h,c |= Φ1 ∨ s,h,c |= Φ2

s,h,c |= ∃v1...n ·κ∧π if ∃v1...n,s = [v1 7→ v1, ...,vn 7→ vn] ∧ s |= π ∧ s,h,c |= κ

s,h,c |= κ1∗κ2
if ∃h1,h2,c1,c2, h1#h2 ∧h1 ·h2 = h ∧ c1#c2 ∧ c1 · c2 = c
s,h1,c1 |= κ1 ∧ s,h2,c2 |= κ2

s,h,c |= emp if dom(h) = /0 ∧ dom(c) = /0

s,h,c |= p 7→C(v1..n) if ∃l, f1, ..., fn s(p) = l data C{t1 f1, ..., tn fn} ∈ P
∧ h[l 7→C[ f1 7→ s(v1), ..., fn 7→ s(vn)]]

s,h,c |= C (v,S) if ∃l,qi,qo s(v) = l ∧ c[l 7→ (qi,qo)]

We are now ready to present our verification rules.

3.3.2 Verification Rules

In the next we will present, the verification rules of our concurrent separation logic. The
fundamental notion of our verification mechanism is the Hoare triple. A triple {∆1}e{∆2}
from Fig.3.6 describes how the execution of an expression e changes a logical state which
corresponds to ∆1 into a logical state which corresponds to ∆2. In order to define our
verification rules, we need the following notations:

Notations 3.3.1. We use e to denote an expression. Additionally, we use ⊢ {∆1}e{∆2} to
denote a standard Hoare triple, where ∆1 is the precondition and ∆2 is the post-condition.

After we have all the ingredients, we will provide an informal description of our formal
verification rules to help the reader to understand it without difficulties.

Let us focus on communication rules from Fig. 3.6:

• [OPEN] According to this rule, the function open allocates two endpoint locations, and
associates them with two session logic specifications. More precisely, the original protocol
specification which decorates the open will be associated to the first endpoint while the dual of
the previous specification will be associated to the second endpoint.

• [CLOSE] The rule verifies that the variable which is given as an argument to the close function
indicates to a tuple which has two references which point to two different endpoints. The
session specification of these endpoints must indicate an empty protocol, which is a necessary
requirement according to our process algebra. If the previous conditions hold, than the channel
is deallocated, and it is removed from the heap.

• [SEND] The precondition of this rule requires that the endpoint and the message corresponding
to variables f and v to be present in the current state. Moreover, the transmission of this
message must be the next expected step according to the protocol specification of this endpoint.
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[SEND]

Φv = reach(v,∆1)
∆1 = ∆∗C ( f ,

∨
i∈I!r ·Φi;Si)∗Φv

∃ j ∈ I Φv ⊢ [v/r]Φ j ∆2 = ∆∗C ( f ,S j)

⊢ {∆1}send( f ,v){∆2}

[RECEIVE]

∆1 = ∆∗C ( f ,
∨

i∈I?r ·Φi;Si)
∆2 =

∨
j∈I ∆∗C ( f ,S j)∗ [res/r]Φ j

⊢ {∆1}receive( f ){∆2}

[OPEN]

∆1 = ∆∗C (p1,S)∗C (p2,∼ S)∧ f = (p1, p2)

⊢ {∆}open( f ) with S{∆1}

[CLOSE]

∆1 = ∆∗C (p1,semp)∗C (p2,semp)∧ f = (p1, p2)

⊢ {∆1}close( f ){∆}

Fig. 3.6 Session Logic primitives verification rules

This also means that the message must be compliant with one of the logical specification
required by the protocol. As can be anticipated, the access to the transmitted data is lost after
sending, and the protocol specification of the endpoint is changed according to the labelled
transition semantics. As a consequence, a program which was considered to be correct after a
verification cannot access the resources attached to a message after it has been sent; only the
recipient of the message will be able to further access it, once it has received the message.

• [RECEIVE] In contrast with send the receive rule is more simple, and requires only a protocol
specification which starts with a set of receive operations. If this precondition is fulfilled, for
the endpoint pointed by f , then the receive operation is valid and the symbolic state can be
changed. The change itself consists of consuming all the aforementioned receive specifications
from the protocol and adding their logical specifications as a disjunction to the current state.
By this adding, we have covered all possible receive actions.

From a sequential execution aspect, the send operation can be seen as a complex disposal,
which can be executed only if the memory location fulfils some logical criteria, whereas the
receive can be seen as a bulk allocation where the allocated memory holds some previously
specified logical specification.



Chapter 4
Soundness Proof
4.1 Concurrent Operational Semantics

4.2 Contract Obedience Proof

4.3 Soundness Proof

4.4 Summary

In this chapter we extend the operational semantic from chapter 2, in order to provide an
adequate framework for proving the correctness of our verification mechanism. Then, we
will provide the necessary properties in the form of theorems to prove the correctness of our
verification. Finally, we will provide a proof of soundness for our verification.



Chapter 5
SESSION-HIP-SLEEK
In this chapter we present our SESSION-HIP-SLEEK toolchain, developed during the course
of the thesis. The toolchain is implemented in Objective Caml (OCaml) and consists of
two parts an entailment proofer, namely SESSION-SLEEK and the verification tool, namely
SESSION-HIP. The tools are built on top of the HIP-SLEEK toolchain, and it facilitates the
automatic reasoning concerning the correctness of programs that use pointers and which
communicate with other programs via channels. These tools accept as an input a file name
and a set of options and it produces a textual output. More precisely the SESSION-SLEEK
tool accepts as input a file with the extension slk and a set of options. The file can contain
a set of protocol specifications, a set of separation logic predicate and a set of entailment
checks requirements. For this file, the SESSION-SLEEK can produce a parser error or a set of
result for each entailment. If the entailment is valid it produces an OK message, otherwise, it
shows the entailment which can not be proved. The tool allows us to have special instructions
in the file for displaying more detail about a proof. The SESSION-HIP tool requires as
input a file with the extension ss and also a set of options. The file should contain a set of
separation logic predicates, a set of protocol specifications and a set of function with pre-
and post-conditions written using the syntax of SESSION-HIP. If the syntax is correct then
the tool produces for each function an output. The output can be a SUCCESS message if the
function is correct according to its pre and post-conditions or an error message if the function
has an error. The error message gives the necessary information as the line of code and the
entailment rule which cannot be proven, to help the developer to debug the program. Next,
we will present this tools in more detail.

5.1 SESSION-SLEEK Entailment Prover

This section is dedicated to present our SESSION-SLEEK theorem prover. As can be seen
in Fig.5.1, the role of this tool is to discharge obligations generated by SESSION-HIP
software verification systems. SESSION-HIP generates formulas which are a combination of
session logic, separation logic, and first order logic. As can be expected, none of the existing
provers can handle such formulas. To prove this, SESSION-SLEEK uses also a set of on the
shelf theorem provers in the background, but it has also a set of own proving mechanisms
implemented in it. A formula generated by SESSION-HIP it looks like bellow:

∆′ ⊢κ
V ∆∗R (1)

κ ∗∆′ ⊢ ∃V · (κ ∗∆)∗R (2)
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Fig. 5.1 SESSION-SLEEK

According to the previous rule (1) 1, the proving process of the heap entailment consists
of checking that the antecedent specification ∆′ is enough accurate to meet the consequence ∆

and to infer the frame context R. Note that, V stores a set of existentially quantified variables,
and k stores heap locations from the antecedent, which are used to connect the heap locations
in the consequence. We also want to mention, that since the SLEEK prover is not complete,
exists cases when an entailment is possible but it can not be proved by this prover.

Since there are a lot of entailment rules in the SLEEK, and because the presentation
of this rules can not contribute significantly to the understanding of this thesis, and being
presented very well in several articles as [32, 27], we omit to present them here in detail.

5.1.1 Entailment of the Send and Receive

In the next we will present our entailment rules. In our work we extend the separation
logic prover SLEEK [27] to prove whether one session logic formula ∆′ in the combined
abstract domain entails another one ∆:∆′⊢∆∗R. R is called the frame which is useful to support
sub-structural reasoning rules of separation logic. We extended the SLEEK rules to support
entailment over the session logic formulae (see Fig. 5.2). The subsumption of the session
formulae which correspond to send operations is contravariant while the subsumption of the
session formulae corresponding to receiving operations is covariant.

We also need to be able to check the entailment rules coming from the compatibility of
two session logic specifications. The rules are given in Fig. 5.3.

The session formula corresponding to sending subsumes the session formula correspond-
ing to receiving. In case of the disjunctions the sending part can have fewer disjunctions
than the receiving part. This follows naturally from the behaviour of disjunction during
entailment.

1Note, that (1) is an alternative to more simple representation of (2)
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[OUTPUT]
∆2 ⊢ ∆1

!r ·∆1 ⊢!r ·∆2

[INPUT]
∆1 ⊢ ∆2

?r ·∆1 ⊢?r ·∆2

[SEQ-CHAN]
e1 ⊢ e2

rest1 ⊢ rest2
e1;rest1 ⊢ e2;rest2

[MATCH-CHAN]
S1 ⊢ S2

C (c,S1) ⊢ C (c,S2)

Fig. 5.2 Entailment rules for session logic.

[OUTPUT-OR]
∆2 ⊢ ∆1 ¬(∆3 ∧∆1)

!r1 ·∆1∨!r2 ·∆3 ⊢!r1 ·∆2

[INPUT-OR]
∆1 ⊢ ∆2 ¬(∆3 ∧∆2)

?r1 ·∆1 ⊢?r1 ·∆2∨?r2 ·∆3

Fig. 5.3 Entailment rules for session logic disjunction.

Fig. 5.4 Simple business protocol

We present out entailment rules by using a simple business protocol example between
Buyer and Seller. From the beginning, the Buyer sends the product name as a String object
to the Seller. The Seller replies by sending the product’s price as an int. If Buyer is satisfied
with the price, she sends an accept message and Seller sends back the delivery date as an
object of type Date. Otherwise, the Buyer quits the conversation. This example is modelled
as 2-party session in Fig. 5.4.

We can summarize this Buyer-Seller protocol by using the following session logic
specifications:

buyer_chan ≡ !String; ?r:int ·r>5;((!1; ?Date)∨!0)
seller_chan ≡ ∼buyer_chan
buyer_chan ≡ ?String; !r:int ·r>5;((?1; !Date)∨?0)

As an example, let us specify a stronger specification for seller’s communication with the
protocol, by insisting that price of products sold by this seller is at least 10 units, as follows:

seller_sp ≡ ?String; !r:int ·r>10;((?1; !Date)∨?0)
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and let us consider the implementation from Fig.5.5.

open(c) with buyer_chan;
(buyer(c,prod) || seller(c));
close(c);

void buyer(Chan c,String p) void seller(Chan c)
requires C (c,buyer_sp) requires C (c,seller_sp)
ensures C (c,emp) ensures C (c,emp)

{ send(c,p); { String p = receive(c);
Double price = receive(c); send(c,getPrice(p));
Double budget = getBudget(); int usr_opt= receive(c);
if (price <= budget) then{ if (usr_opt==1){
send(c,1); ShipDate sd = getDate(p);
ShipDate sd = receive(c); send(c,sd);
} else send(c,0); } else

} assert usr_opt = 0;
}

Fig. 5.5 Simple business protocol implementation.
In this application, the channel is opened in the main process by open which takes as

argument the channel initial specification buyer_chan. One alias of the opened channel
with the specification buyer_chan is passed to the thread buyer while the other alias with
its dual specification seller_chan is passed to the process seller. The two processes
are running in parallel. Each process can have its own separate protocol specification
which differs, while being consistent with the channel’s specification. The seller process
specification seller_sp imposes a stronger property over the sent price, using r>10 instead
of r>5 that was captured in the channel specification seller_chan. When a channel
is passed into a thread, we will need to ensure that the channel’s specification subsume
that specified in the thread’s specification. For the seller thread in our example, this
means that C (c,seller_chan) ⊢ C (c,seller_sp). This relation can be proven by the
SESSION-SLEEK using our (OUT PUT ) entailment rule as can be seen below:

...

((?1; !Date)∨?0) ⊢ ((?1; !Date)∨?0)
[OUTPUT]

r>10 ⊢ r>5

!r ·r>5 ⊢ !r ·r>10
!r:int ·r>5;((?1; !Date)∨?0) ⊢ !r:int ·r>10;((?1; !Date)∨?0)

[INPUT]
?String; !r:int ·r>5;((?1; !Date)∨?0) ⊢ ?String; !r:int ·r>10;((?1; !Date)∨?0)

[FOLD]
?String; !r:int ·r>5;((?1; !Date)∨?0) ⊢ seller_sp

[UNFOLD]
seller_chan ⊢ seller_sp

[MATCH-CHAN]
C (c,seller_chan) ⊢ C (c,seller_sp)
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The entailment process should be read from bottom to top. The first rule [MATCH −
CHAN] from Fig.5.2 tries to successively match channels that can be proven to be same. In
our case, by applying this rule we find that C (c,seller_chan) and C (c,seller_sp) are the
same, therefore, the entailment process can be reduced to seller_chan ⊢ seller_sp. Next,
by applying the rule of [UNFOLD] from [27], we replace the seller_chan predicate name
by its definition. In the same way we replace seller_ch with its definition, and continues
entailment checking. Additionally, by applying the rule of [INPUT ] from Fig.5.2, we can
reduce the protocol specification by consuming the ?String term from the protocol. The
[OUT PUT ] from Fig.5.2 entailment also succeeds because the subsumption for sending
operation is contravariant. The rest of the entailment succeeds, because the left and right part
of the entailment is identical.

On the other hand, if we consider the following buyer process specification:

buyer_sp ≡ !String; ?r:int ·r>10;((!1; ?Date)∨!0)

then we can observe, that it imposes a weaker property over the receive price, using r>0

instead of r>5 that was captured in the channel specification buyer_chan. For the buyer
thread in our example, this means that C (c,buyer_chan) ⊢ C (c,buyer_sp). This relation
can also be proven by the SESSION-SLEEK using our (INPUT ) entailment rule as below:

...

((!1; ?Date)∨!0) ⊢ ((!1; ?Date)∨!0)
[INPUT]

r>5 ⊢ r>0

?r ·r>5 ⊢ ?r ·r>0
?r:int ·r>5;((!1; ?Date)∨!0) ⊢ ?r:int ·r>0;((!1; ?Date)∨!0)

[OUTPUT]
!String; ?r:int ·r>5;((!1; ?Date)∨!0) ⊢ !String; ?r:int ·r>0;((!1; ?Date)∨!0)

[FOLD]
!String; ?r:int ·r>5;((!1; ?Date)∨!0) ⊢ seller_sp

[UNFOLD]
buyer_chan ⊢ buyer_sp

[MATCH-CHAN]
C (c,buyer_chan) ⊢ C (c,buyer_sp)

The entailment process is very similar to the previous one, therefore, we explain only the
[OUT PUT ] entailment, which enforces for the logical restriction to be covariant, so the
entailment ?r ·r>5 ⊢ ?r ·r>0 can be simply proven.
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5.1.2 Entailment of the Internal and External Choices
Outside of these four entailment rules, we have two rules in Fig.5.3 which are coming from
the compatibility rules. To illustrate these rules we provide an implementation in Fig.5.6,
wherein the buyer_spc and the seller_spc can be defined as below:

buyer_spc ≡ !String; ?r:int ·r>5; !1; ?Date
seller_spc ≡ ?String; !r:int ·r>5;((?1; !Date)∨ (?2; !int)∨?0)

These two protocols are compatible, according to the compatibility rules, therefore, our
SESSION −SLEEK tool provides the necessary entailment rules (Fig.5.3) to prove that the
specifications of channels subsume the specifications of the threads.

The buyer process specification buyer_spc imposes a stronger protocol, using !1; ?Date
instead of (!1; ?Date)∨!0. This means that the entailment C (c,buyer_chan)⊢C (c,buyer_spc)
must be proven, by the SESSION-SLEEK using our (OUT PUT −OR) entailment rule as
can be seen below:

...

!1; ?Date ⊢ !1; ?Date
[OUTPUT-OR]

((!1; ?Date)∨!0) ⊢ !1; ?Date
[INPUT]

!r:int ·r>5;((!1; ?Date)∨!0) ⊢ ?r:int ·r>0!1; ?Date
[OUTPUT]

!String; ?r:int ·r>5;((!1; ?Date)∨!0) ⊢ !String; ?r:int ·r>0!1; ?Date
[FOLD]

!String; ?r:int ·r>5;((!1; ?Date)∨!0) ⊢ seller_spc
[UNFOLD]

buyer_chan ⊢ buyer_spc
[MATCH-CHAN]

C (c,buyer_chan) ⊢ C (c,buyer_spc)

The entailment process is very similar to the previous ones, therefore, we explain only
the [OUT PUT −OR] entailment, which permits for the internal choice to have less branches
as was originally specified, so the entailment ((!1;?Date)∨!0) ⊢ !1;?Date can be easily
proven to be correct.

Finally, if we consider the seller protocol specification from Fig.5.6 then we can
observe, that it imposes for the external choice to have more branches as was originally
specified, so the entailment can be easily proven, as can be seen below:
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void buyer(Chan c,String p) void seller(Chan c)
requires C (c,buyer_spc) requires C (c,seller_spc)
ensures C (c,emp) ensures C (c,emp)

{ send(c,p); { String p = receive(c);
Double price = receive(c); send(c,getPrice(p));
send(c,1); int usr_opt= receive(c);
ShipDate sd = receive(c); if (usr_opt==1){
} ShipDate sd = getDate(p);

send(c,sd);
} else if (usr_opt==2){
send(c,5);
} else
assert usr_opt = 0;

}

Fig. 5.6 Compatible session logic processes.

...

?1; !Date ⊢ ?1; !Date
[INPUT-OR]

((?1; !Date)∨?0) ⊢ ?1; !Date
[OUTPUT]

!r:int ·r>5;((?1; !Date)∨?0) ⊢ !r:int ·r>5; ?1; !Date
[INPUT]

?String; !r:int ·r>5;((?1; !Date)∨?0) ⊢ ?String; !r:int ·r>5; ?1; !Date
[FOLD]

?String; !r:int ·r>5;((?1; !Date)∨?0) ⊢ seller_spc
[UNFOLD]

seller_chan ⊢ seller_spc
[MATCH-CHAN]

C (c,seller_chan) ⊢ C (c,seller_spc)

5.2 SESSION-HIP

5.2.1 Full Expressivity of Separation Logic

5.2.2 Higher-Order Session Logic



Chapter 6
Comparison of Session Logic with Other
Similar Approaches
6.1 SESSION-HIP-SLEEK vs Heap-Hop

6.2 SESSION-HIP-SLEEK vs Session C

6.3 SESSION-HIP-SLEEK vs ParTypes

6.4 SESSION-HIP-SLEEK vs Session Types Type-state Tools

6.4.1 SESSION-HIP-SLEEK vs MOOSE

6.4.2 SESSION-HIP-SLEEK vs Session Java

6.4.3 SESSION-HIP-SLEEK vs BICA

6.5 Summary

In this chapter, we presented the most competitive six tools for the verification of protocols
using session types. We have compared each of these tools with our tool, by giving a set of
actual examples and pointing out the most significant differences. In order to summarise the
comparisons, we will present the most important differences into the Tables 6.1, 6.2.

The table 6.1 can be interpreted as follows:

• The first column contains the name of the tools.

• The second column of the table contains a tick (X) if the tool has support for delegation
or cross ( ) if has no support

• The third column contains a tick (X) if the tool has support for internal and external
choice or a cross ( ) if it has no support

• The fourth column contains a tick (X) if the tool has support for loop or a cross ( ) if
it has no support

• The penultimate column of the table contains a tick (X) if the tool requires some
special primitives for the internal or external choices or cross ( ) if such primitives
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Table 6.1 Tool support 1

Tool Delegation Internal Loop Require Copyless
External Special Message
Choice Primitives Passing

SESSION-HIP-SLEEK X X X X
Heap-Hop X X X X
Session C X X X
ParType X X
MOOSE X X X X
Session Java X X X X
Bica X X X

Table 6.2 Tool support 2

Tool Type Logic Data Support Support
Constraint Constraint Shape Broadcast Aliasing

on Data Predicate

SESSION-HIP-SLEEK X X X X
Heap-Hop X X
Session C X X
ParType X X
MOOSE X
Session Java X
Bica X

are not needed. (Note that if the verification tool requires these primitives then the
language must have them, otherwise the verification does not work. So it is better if
the tool does not require primitives.)

• The last column of the table contains a tick (X) if the tool has support for the verification
of copyless message passing or cross ( ) if has no support

The table 6.2 can be interpreted as follows:

• The first column contains the name of the tools.

• The second column of the table contains a tick (X) if the tool has support for type
checking or cross ( ) if has no support

• The third column contains a tick (X) if the tool has support for logical constraint on
the transmitted data or a cross ( ) if it has no support
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• The fourth column contains a tick (X) if the tool has support for using separation logic
shape predicates to constraint the transmitted data or cross ( ) if it has no support

• The penultimate column of the table contains a tick (X) if the tool has support for
broadcasting or cross ( ) if it has no support

• The last column of the table contains a tick (X) if the tool has support for the verification
of programs with aliases or cross ( ) if has no support

Unlike previous approaches, we developed a tool based on session logic with a natural
use of disjunction to specify and verify the implementation of communication protocols.
Even though the logic used by the tool is based on two-party channel sessions, it can also
handle delegation through the use of higher-order channels. Different from the tools from
subsections 6.4.1, 6.4.2, 6.4.3, our proposal uses the same send/receive channel methods for
sending values, data structures, and channels. Furthermore, due to our use of disjunctions
to model both internal and external choices, we need only use conventional conditional
statements to support both kinds of choices. In contrast, all of the previously presented
solutions require the host languages to be extended with a set of specialised switch constructs
to model both internal and external choices. As a consequence, all of the previous approaches
were restricted to languages with such control flows, which has reduced their applicability
drastically. Additionally, our specification language is based on an extension of separation
logic, and thus it supports heap-manipulating programs and copyless message passing.
Comparing with the tool from subsection 6.1 we can observe, that their tool relies on state-
based global contracts while our more general tool relies on a logic of session and it is built
as an extension of separation logic with disjunction to support the standard control flows.
In our case the logical formulae on protocols can also be localised to each channel and
may be freely passed through procedural boundaries. Moreover, we may also guarantee
type-safe casting via verifying communication safety. We can also go beyond such cast
safety by ensuring that heap memory and properties of values passed into the channels are
suitably captured. Lastly by using a subsumption relation on our communication proposal,
we allow specification on channels to differ between threads but would ensure that they
remain compatible at each join point, in order to prevent intra-channel deadlocks. More
realistically, we also assume the presence of asynchronous communication protocols, where
send commands are non-blocking.



Chapter 7
Application in the Railway Industry
7.1 Interlocking Modelling and Verification with Session

Logic

7.1.1 Introduction

7.1.2 An illustrative Example

7.1.3 Encoding of the Requirements in Session Logic

7.1.4 Protocol Verification

7.1.5 Experimental Results

7.1.6 Conclusion

7.2 Automatic Train Protection Software Verification

7.2.1 Experimental Results

7.3 Summary

In this chapter, we have presented two possibilities for using our Session Logic in the railway
software development industry. In the first case, we presented a complete development and
verification method for the development of interlocking software using the geographical
interlocking approach. The method of encoding the interlocking requirements and the
projection to the entities were presented in [71, 69]. The verification of the source code and
the experimental results are new. The result showed that the efficiency of our verification
method is adequate for use in the railway industry. In the second use-case, we present the
applicability of our theory in the software development of automatic train protection systems.
For demonstration purposes, we encoded into Session Logic a set of requirement from the
TBL1+ specification provided by Siemens, and also three specifications from the OpenETCS.
We have implemented the corresponding source codes and the results have shown that this
verification method is adequate for the verification of such source codes.



Chapter 8
Conclusion and Future Directions
With the explosive growth of wide area network infrastructures (such as the internet, GSM,
etc.) in the last two decades, the development of distributed programs has increased dramat-
ically, and these are used nowadays in nearly all domains: financial services, commercial
services, entertainment, health care, telecommunication, defence, industrial automation etc.

On the other hand, the design and develop of these programs is quit difficult. The difficul-
ties arise both in ensuring the safety correctness, as well as in obtaining high performance.
From the safety perspective, we have to take into account a set of new issues, for example
the sharing of common resources, or the synchronisation of these processes.

Despite these safety issues, these distributed programs are widely used in safety critical
systems in industries such as flight control, air traffic control, industrial automation, automo-
tive and railway industry, because of the separation concept which can increase reliability
and scalability of these systems. As a result a modern car features more than 70 electronics
control units [22] connected at least via 5 different bus systems, or a modern aircraft uses at
least seven computers only for the fly-by-wire systems [19].

In this thesis, we addressed this problem of verifying distributed programs in safety
critical environments, by encoding the communication behaviour of these systems into our
protocol specification language, (session logic), and verifying automatically the source code
correctness in accordance with these specifications.In what follows, we will detail the main
contributions of this thesis. The contributions are highlighted in the following:

• Session Logic: In chapter 3 in accordance with our hypothesis we presented a novel session
logic with disjunctions to specify and verify the implementation of the communication protocols.
Our current logic is based on only two-party channel sessions, but it is capable of naturally
handling delegation through the use of higher-order channels. Due to our use of disjunctions to
model both internal and external choices, we can use only conditional statements to support
such choices, as opposed to specialized switch constructs in prior proposals. As our proposal
is based on an extension of separation logic, we can support heap-manipulating program
and copyless message passing. Our session logic was presented in [29, 70] and it is being
implemented on top of the HIP/SLEEK system [26]

• Soundness proof: After defining our session logic, in chapter 4 we proved the soundness
of our theory. For this purpose we define more precise operational semantics for our actual
programming language. This semantic is strongly related to the initial one but it lets us explore
the link between the programming language and its protocol specification. By offering this
proof, we guarantee for the users of our tool a program which was verified by our tool in
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accordance with our theory, it respects for sure the session logic protocols associated to this
program. This is an important step, allowing us to guarantee the reliability of our tool and
theory.

• Automatic verification tool: In chapter 5 we presented our SESSION-HIP-SLEEK toolchain,
developed during the course of the PhD. The toolchain is implemented in Objective Caml
(OCaml) and consists of two parts an entailment proofer, namely SESSION-SLEEK and the
verification tool, namely SESSION-HIP. The tools are built on top of the HIP-SLEEK toolchain,
and it facilitates the automatic reasoning concerning the correctness of programs that use
pointers and which communicate with other programs via channels. These tools accept as an
input a file name and a set of options and it produces a textual output. More precisely the
SESSION-SLEEK tool accepts as input a file with the extension slk and a set of options. The
file can contain a set of protocol specifications, a set of separation logic predicate and a set of
entailment checks requirements. For this file, the SESSION-SLEEK can produce a parser error
or a set of result for each entailment. If the entailment is valid it produces an OK message,
otherwise, it shows the entailment which can not be proved. The tool allows us to have special
instructions in the file for displaying more detail about a proof. The SESSION-HIP tool requires
as input a file with the extension ss and also a set of options. The file should contain a set of
separation logic predicates, a set of protocol specifications and a set of function with pre- and
post-conditions written using the syntax of SESSION-HIP. If the syntax is correct then the tool
produces for each function an output. The output can be a SUCCESS message if the function is
correct according to its pre and post-conditions or an error message if the function has an error.
The error message gives the necessary information as the line of code and the entailment rule
which cannot be proven, to help the developer to debug the program.

• Application in the railway industry: In chapter 7, we have presented two possibilities for
using our Session Logic in the railway software development industry. In the first case, we
presented a complete development and verification method for the development of interlocking
software using the geographical interlocking approach. The method of encoding the interlock-
ing requirements and the projection to the entities were presented in [71, 69]. The verification
of the source code and the experimental results are new. The result showed that the efficiency of
our verification method is adequate for use in the railway industry. In the second use-case, we
present the applicability of our theory in the software development of automatic train protection
systems. For demonstration purposes, we encoded into Session Logic a set of requirement
from the TBL1+ specification provided by Siemens, and also three specifications from the
OpenETCS. We have implemented the corresponding source codes and the results have shown
that this verification method is adequate for the verification of such source codes. Of course,
the applicability of our theory is not limited to these use-cases, and can be applied whenever
the correctness of the communication must be checked. A potential application could be also
the verification of the CBTC protocols implementation.
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• Comparison with other approaches: In chapter 6, we presented the most competitive six
tools for the verification of protocols using session types. We have compared each of these
tools with our tool, by giving a set of actual examples and pointing out the most significant
differences.

Unlike previous approaches, we developed a tool based on session logic with a natural use of
disjunction to specify and verify the implementation of communication protocols. Even though
the logic used by the tool is based on two-party channel sessions, it can also handle delegation
through the use of higher-order channels. Different from the tools from subsections 6.4.1,
6.4.2, 6.4.3, our proposal uses the same send/receive channel methods for sending values, data
structures, and channels. Furthermore, due to our use of disjunctions to model both internal and
external choices, we need only use conventional conditional statements to support both kinds of
choices. In contrast, all of the previously presented solutions require the host languages to be
extended with a set of specialised switch constructs to model both internal and external choices.
As a consequence, all of the previous approaches were restricted to languages with such control
flows, which has reduced their applicability drastically. Additionally, our specification language
is based on an extension of separation logic, and thus it supports heap-manipulating programs
and copyless message passing. Comparing with the tool from subsection 6.1 we can observe,
that their tool relies on state-based global contracts while our more general tool relies on a
logic of session and it is built as an extension of separation logic with disjunction to support the
standard control flows. In our case the logical formulae on protocols can also be localised to
each channel and may be freely passed through procedural boundaries. Moreover, we may also
guarantee type-safe casting via verifying communication safety. We can also go beyond such
cast safety by ensuring that heap memory and properties of values passed into the channels are
suitably captured. Lastly by using a subsumption relation on our communication proposal, we
allow specification on channels to differ between threads but would ensure that they remain
compatible at each join point, in order to prevent intra-channel deadlocks. More realistically,
we also assume the presence of asynchronous communication protocols, where send commands
are non-blocking. This work was partially presented in [68].

8.1 Future Directions

Having these results, we can think on several directions for further research in verifying parallel
programs which uses message passing for synchronization and data exchange. A very interesting
research direction would be to extend our session logic to multi-party and multi-channel specification.
As can be observed, a simple encoding of multi-party communication into our session logic specifica-
tion language is trivial, and it simply can be done by using a data structure wherein one field plays
the role of a channel. The problem is that the API-s of the operation systems are a little bit different.
For example the connection to the different communication parties must be done sequentially, or we



40 Conclusion and Future Directions

can not wait for messages on different channels by using the standard "read" in a single thread. For
this reason the API-s provides a set of special functions. For example in a Linux we have: "select",
"pselect" [85], "poll", "ppoll" [84] and "epoll" [83] . Therefore, in order to have support for these
API-s, our session logic must be extended in this sense. An additional interesting topic in this area
would be to investigate the possible combining of our session logic with [12]. Their logic tries to
summarize the effects of processes involved in the protocol, and to enforce it in a refined version of
the multiparty session π-calculus. We think that it would be interesting to investigate the verification
of these specification in a more realistic programming language as for example "SESSION-HIP".

Another interesting research topic would be to investigate the applicability of our theory in the
object oriented programming paradigm. For example, we can investigate the encoding and verification
of the calling order of methods in classes, similar as in [52]. The benefit of this verification would be
the applicability of this theory for mainstream object oriented programming languages.

As a technical research topic we suggest the development of an IDE (integrated development
environment) for the railway industry. These should provide a user friendly specification method
for the encoding of session logic specification (For example in form of sequence diagrams with
annotations), and also support for the development and verification of geographic interlocking
software. This should be based on our theory and tools. For the interlocking software development
we suggest a domain specific language as EURIS or LARIS [50]. The verification should be done
automatically using our verification tool from chapter 5, and following our verification mechanism
presented in section 7.1.

Another interesting topic would be the verification of a large set of linux drivers which control
some peripheral units using a set of messages transmitted via the front side bus (FSB) or nowadays
via the Platform Controller Hub in case of an Intel architecture or via SPI or I2C or other peripheral
buses in other RISC architectures( [78–82]) .

The combination of two state of the art theory, namely separation logic and session types into our
coherent session logic framework has opened too many possibilities to be enumerated here, so we
let the reader to discover and explore the rest of the possibilities by itself. In order to help the reader
to discover these opportunists, we would like to close this section with a suggestion: In informatics,
the communication can be found approximately everywhere just we need to look at the problem
carefully.
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