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ABSTRACT

In the present Thesis two major topics are investigated. In the first part we will introduce an analog
computer model which is capable of solving Boolean satisfiability problems, while in the second part
we present a continuous-time dynamical system which can predict the global optimum energy of an
NP-hard problem.

After the introductory notions in Chapter 1, which discusses the history of analog computing and
introduces the concept of the Cellular Neural Network (CNN) computer model ®® we present a conti-
nuous-time dynamical system for solving Boolean satisfiability problems™ (£-SAT) on which our
novel model is based.

In Chapter 2 our Asymmetric Cellular Neural Network model is presented which in contrast to
the original dynamical system" is implementation friendly (through analog circuits) preserving, nev-
ertheless, the most important properties of the original SAT-solver dynamics. In this Chapter we
provide also proof of three fundamental theorems which underpin our model: 1) the variables remain
bounded; 2) every SAT solution has a corresponding stable fixed point; 3) a stable fixed point always
corresponds to a solution. Our numerical results are presented in Chapter 3 where we discuss the
chaotic behavior of the system and we demonstrate that there is an optimal range of interpretation for
the main two parameters of our system, which is fairly independent of the size and complexity of the
problem. We will also show that, however limit cycles are possible the proper choice for the param-
eters help to avoid these type of attractors. We have also developed a real-time limit cycle detection
algorithm, which is described in this Chapter as well.

If talking about physical implementation of a device it is fundamental to discuss the effect of differ-
ent noise types on the system. In Chapter 4 we bring proof that our system tolerates very well different
kind of noises that can appear in electronic devices up to a magnitude around three times higher than
the highest possible noise intensity allowed in this type of devices. We studied three types of noise:
white noise, colored noise and connection weight errors, the latter simulating the imperfections of
electronic connections and/or circuit elements.

Finally, in the last Chapter we introduce a continuous-time dynamical system, and we show that
using its chaotic properties we can predict the global optimum of an NP-hard problem long before
reaching it. We have tested our system on the Maximum Satisfiability Problem (max-SAT), which is
the NP-hard version of #-SAT. The main advantage of this algorithm lies in its capability of properly
approximating the global optimum of the max-SAT problem in a very short period of time and giving
an estimation how trustworthy this prediction is, providing at the same time a rough estimation on
how much time would it need to reach that state. From these results and simulations one can see that
the information hidden within the chaotic behavior can predict useful information.
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Introduction

MANY SYSTEMS CAN BE DESCRIBED USING LOGICAL MODELS, LIKE CONSTRAINT SATISFIABILITY
PROBLEMS (CSP). In this study two SAT problems were considered: 1) Boolean Satisfiability Problem
(k-SAT) and 2) Maximum Satisfiability Problem (7ax-SAT). Boolean Satisfiability Problems (such as
k-SAT) constitute one of the hardest classes of constraint satisfaction problems lying at the basis of
many decision, scheduling, error-correction and bio-computational applications. Being classified as
NP-complete means that every NP problem can be transformed into this form in polynomial time™.
If one can solve £-SAT problems optimally, in relative short time than it means that the whole family of
these problems can be solved. NP-complete problems are efficiently (in polynomial time) checkable,
but the worst case complexity of finding a solution on Turing-machines is exponential*°. Because
these problems are predominating fields such as science and technology it is more pressing to develop
efficient solvers for NP-complete problems.

The development of CMOS technology presents a exponential growth and trends towards satura-
tion**"” due to the approach of the atomiclevel. As of this trend of CMOS technology more and more
interest is given to the analog computers and analog dynamical systems, which are designed in such
way that the attractors of these dynamical systems represent the output of the computation. ©#+35, As

lately the engineers designed analog devices imitating the nervous system, such as the Cellular Neu-



ral/Nonlinear Networks (CNN)##°, or analog VLSI devices* to solve technological problems, in-
cluding in robotics and sensory computing (vision, hearing). The question of whether technologies
based on continuous-time dynamical systems can be used in solving NP-hard problems was raised.
This Thesis is organized in 5 chapters as follows: in Chapter 1 the basics of analog computing is
discussed and an introduction to CNN computational systems in general is given. In Chapter 2 the
basics of Boolean Satisfiability problems are discussed followed by the presentation of the proposed
CNN model for solving #-SAT problems. Simulation results are presented in Chapter 3. In Chapter
4 the effects of different kind of noise types on the functioning and behavior of the CNN model are
presented. Finally in Chapter 5 the max-SAT problem is discussed, together with their solvability
using the proposed novel algorithm. Finally at the end of this Thesis some of the visions about future
research in this field and how the findings presented in this present Thesis can be considered as basis

for application purposes are discussed.



Music is the one incorporeal entrance into the bigher world
of knowledge which comprebends mankind bur which

mankind cannot comprebend.

Ludwig van Beethoven

Basics of analog computing

CNN computers in general

THE ANALOG COMPUTER IS A FORM OF COMPUTATION which in contrary to digital computers does
not operate on discreet values like 0 and 1, but it operates on continuous values of a physical phenom-
ena or a particular signal such as mechanical, electrical or hydraulic quantities. Due to this nature of

analog computers measurements or calculations cannot be exactly reproduced in a later time, unlike



on Turing machines. In this Chapter a brief introduction in the world of analog computers in general
is given, followed by a detailed presentation of the theory and main principals of CNN computers.
Asdigital computers appeared they gained huge popularity due their capabilities of being easily pro-
grammable, however analog computational devices still remained in use for specific tasks. This thread
was picked up by Leon O. Chua and Lin Yang®® in 1988 in Berkeley when they introduced a revo-
lutionary analog computing device called CNN computer, which is a cellular wave computer®. The
core of the CNN computer is a Cellular Neural/Nonlinear Network (CNN), an array of analog dy-
namic processors, so called cells. The revolutionary nature of the CNN computers consists in the high
resemblance to the real-life neural networks: it is capable of processing multiple signals in parallel and
it features a continuous-time dynamics allowing real-time signal processing. The roots of these kind
of analog computers are in the bio-inspired information technology. The host processors of the CNN
computer are generating and obtaining as input analog signals on which they operate in continuous
time. In general they mimic the anatomy and behavior of some sensory and processing organ, like the
retina in the eyes. The computer implementation of the Cellular Neural Networks is the CNN Uni-
versal Machine (CNN-UM) #>7 which is available commercially in various forms of implementation.
If the CNN-UM is implemented on a CMOS chip itis a fully programmable stored-program dynamic
array computer. The CNN Universal Machine is not only universal in the Turing sense, but also on
analog array signals. Since 2003, the International Technology Roadmap for Semiconductors (ITRS,
published biannually) considers CNN technology as one of the major emerging architectures.” The
implementation of CNN computers can be easily differentiated based on the tasks for which they are
built: mixed-mode CMOS, emulated digital CMOS, FPGA, oprtical solutions, image processing, cel-
lular automata models or to solve partial differential equations*®. The most promising out of the
previously given implementation forms is the image processing and other optical solutions in robotics
or in sensory computing®. This defined the main path in the practical development which had as prin-
cipal aim the development of a visual microprocessor™. As one of the latest achievements we would

like to highlight is the Bi-i V301HD chip manufactured by Analogic Computers, which is capable of



processing optical data up to the FullHD resolution scale. An other area of image processing is the
high speed cameras: some of the CNN computer specially built for this purpose can capture r0000fps
up to 100000fps. The basics of these systems is the following: the optical sensors of the CNN chip can
record motion picture up to 100000fps, which is passed over to the digital computers and played back
with a normal 29-30/ps so very detailed investigations can be conducted about such high speed events,
which are otherwise impossible to investigate. Many control devices use CNN computers attached
to digital computers such as registration plate identification systems. The operating mechanism of
these devices is the following: the optical sensors of CNN computer capture the image of a passing
car, which is processed instantly by the chip. The single dynamic process on the chip identifies the

letters from the obtained image and the result is instantly passed over to the digital computer.






Inspiration is a guest that does not willingly visit the lazy.

Pyotr Ilyich Tchaikovsky

CNN model for solving £-SAT

IN ORDER TO FACE THE COMPUTATIONAL CHALLENGES of our modern world there was a need to
rethink the structure and purpose of computers. On can already see that it is not enough just to use
the common digital computers in our everyday life, nor in scientific research. The fast saturation of
the CMOS technology** forced scientists to search for alternative solutions.

In this chapter the preliminary research results are presented on which our novel CNN model is

based*??. After a brief introduction of the Constraint Satisfaction Problem (CSP) in general and of



the Boolean Satisfiability Problem (4-SAT) in particular, we are going to discuss a continuous-time
dynamical approach to constraint satisfaction problem, which was introduced by Ercsey-Ravasz and
Toroczkai in a recent paper”. Finally Cellular Neural/Nonlinear Network model is introduced and
its main properties and principles presented®*°. In this Chapter three Theorems and their proofs are

discussed, which lay the basis of our novel model®>**:
* Variables remain bounded
* Every £-SAT solution has a corresponding stable fixed point
* A stable fixed point always corresponds to a solution.

In this Chapter a novel Asymmetric Cellular Neural Network (ACNN) was presented with the possi-
bility of applications in analog computation. This presented model is based on the continuous-time
dynamical system introduced by Ercsey-Ravasz and Toroczkai' and is designed to solve Boolean sat-
isfiability problems, which is one of the most fundamental constraint satisfaction problem. Realized
on an analog device it would take only a single operation to find the optimal solution. The connection
weights (template) are based on the matrix elements of the given 4-SAT instance. The system is started
from any initial condition and it converges into a solution, without the need of further intervention.
In contrast with the original model we are not able to exclude limit cycles. We have shown that the
fixed points of the system are only the solutions, but this does not guarantee that there no limit cycles
in the system. In the next Chapter we will show that limit cycles are in fact possible. This is a drawback
compared to the original system but a major region of the possible values of the main parameters elim-
inate the limit cycles, as we will see later, and it will not constitute a problem. As expected from the
similarity with the original dynamical system this model also exhibits chaotic behavior especially in
the hard-SAT phase (see numerical evidence in the next Chapter) reinforcing the equivalence between

optimization hardness and chaotic behavior present in analog search algorithms.



Beware of missing chances; otherwise it may be altogether

too late some day.

Franz Liszt

Numerical results

THE NOVEL ASYMMETRIC CELLULAR NEURAL NETWORK MODEL presented in the previous Chapter
together with the three Theorems laying at the basis of this model, they guarantee that all stable fixed
points of the dynamical system correspond to #-SAT solutions. Although the theory presented in the
previous Chapter indicates that we have a robust system, there is no guarantee that there are no other
attractors in our system. These other types of attractors can either be limit cycles or other chaotic

attractors. However, the existence or non-existence of such kind of attractors is very hard to show



with analytical methods, but the computer simulation results indicate that these kind of attractors do
existin our system. This property is another major difference between the original dynamical system ™
and our novel SAT solver®??. But also the simulation results indicate that there is a robust optimal
region of parameters (A, B) fairly independent of the properties of the problem, where the dynamics
avoids getting trapped in limit cycles and converges into a £-SAT solution.

We realized that it is hardly possible to specify a fixed value for the main parameters, rather we have
to search for and define an optimal region for these parameters. To answer this question we tested the
behavior of our system on the whole interpretation interval of the main parameters 4 and B. Color
maps were realized for different system sizes (changing the constraint density ) and also varying the 4.
Changing the constraint density v implies a change in the complexity and hardness of the problem. In
the first row of Figure 3.1 the maps for a series of 3-SAT problems are drawn having a system size fixed
at N = 40 and the constraint density varying & = 3.5,4, 4.25 (from left to right). The last figure
in the first row shows the frames of the optimal regions of the three maps placed on the top of each
other. This figure shows an excellent match meaning that this region is also independent of the typical
hardnesses of the problems. This investigation was conducted in case of 4-SAT, second row of Figure
3.1and in case of 5-SAT problems, third row of Figure 3.1. In both of the higher £-order cases problems
with NV = 20 variables were considered. In case of the 4-SAT the o values were set to the following
values: 8.5,9,9.25 (from left to right), respectively the 5-SAT instances had the o = 15,18,20.55
constraint densities. One can see that in all three cases we have a fairly consistent match in considering
the optimal regions for A4, B, the optimal parameter region stays in the same section for all different

values of 4 and different system sizes (/V) or the typical hardnesses (o) of the problems.
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Figure 3.1: Parameter dependence of dynamics in 3-SAT, 4-SAT and 5-SAT problems with fixed size and varying constraint density. For each (A, B) on the map 100
randomly chosen satisfiable instances are solved. The color indicates the fraction of solved problems (see color bar). Simulations were performed on 3-SAT problems (first
row) with NV = 40 and constraint densities &« = 3.5, 4.0, 4.25 (left to right), 4-SAT (second row) with V = 20 and o = 8.5,9.0,9.55, and 5-SAT (third row) with
N = 20and a = 15,18, 20.80. The optimal parameter regions are shown with orange squares on the color maps. In the last column the optimal regions of the three
maps are compared in each particular row (black, red, green from left to right), by drawing the frames of these regions (see legends)






Those who bave achieved all their aims probably set them

too low.

Herbert von Karajan

Noise on CNN

To PHYSICALLY IMPLEMENT A SYSTEM it is essential that a deep study of the effects of different kind
of noises to be conducted. In the previous Chapters we have presented the Cellular Neural Network
model for solving the Boolean satisfiability (#-SAT) problem. We saw that when using ACNN for
solving these hard problems the system exhibits a transiently chaotic behavior in its dynamics. This
raises the question of viability of this novel analog system in presence of noise, which is unavoidable

during the implementation (e.g. electric circuits) and use of analog devices. In the current Chapter

3



the robustness of our system against white and colored (1//) noises was tested. We have also tested
the system for potential errors in connection weights would influence its operation #%%°.

In real-life systems there can be several types of noises present, like shot, thermal, burst, flicker,
avalanche noise, etc.*. To conduct an extensive study of these effects we modelled the most commonly

occurring noises in electronic circuits with the following three types 46,30,
+ white noise: uncorrelated in time
» colored noise: correlated in time, 1// type noise

* small random errors in connection weights: constant in time, modelling imperfections of elec-

tronic junctions or circuit elements.

Noise is a fundamental characteristic of all electronic circuits. It is caused by small fluctuations in
the current or the voltage, imperfections of the circuit elements, etc. The presence of noise until the
last couple of years was considered as a bad, unwanted effect which needs to be eliminated. Fortu-
nately recently more and more systems were built which actually benefit from the presence of noise.
We show in the current Chapter how the efficiency of our CNN system improves from the presence
of noise. During the circuit implementations of CNN models another high concern is the precision
of the connection weights. When producing circuit elements, like resistors, capacitors, etc. the pa-
rameters of these elements will show small variations compared to the theoretically proposed values.
These fluctuations can also be called a type of noise in the system. The connection weight errors were
introduced in equations and therefore in the simulations as a small random value, which is constant
in time, and it is randomly added or subtracted from the connection weights in this way simulating
the implementation errors.

Itis interesting to notice that the presence of noise can improve the performance of our dynamical
system, especially when the values of the two main parameters A, B are not from the optimal parame-
ter region. This is shown on Figure 4.1in case of a small 3-SAT instance with /V = 20 in the hard-SAT

phase, having a constraint density of v = 4.25. On the left-hand side of Figure 4.1 the fraction of
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Figure 4.1: Color map on a small system to map the A, B parameter region in presence of colored noise. For each
A € [1,2),B € [1,3) on the map there are 100 randomly chosen satisfiable 3-SAT instances with N = 20, =
4.25, t,ee = 5000 solved. The color represents the fraction of solved problem (see color bars): a) without noise, b)
with colored noise (T = 1,7/ = 0.01)

solved problems is shown in the original case, when no noise is present in the system. The same prob-
lem, from the same initial conditions was studied and plotted on the right-hand side of Figure 4.1 but
in the presence of correlated colored noise with an intensity of / = 0.01 and correlation time 7 = 1.
One can see that the presence of noise enlarges the optimal region for the two optimal parameters
(A, B). This underlies our initial assumptions, that these parameters do not need careful tuning in
order for the system to function properly. The tolerated large noise intensity levels promise the pos-

sibility for highly robust and efficient physical implementations of the system.
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Melodic invention is one of the surest signs of Divine giff.

Gustav Mahler

Continuous-time dynamics for predicting

global optimum of NP-hard problems

MANY REAL-LIFE PROBLEMS ARE IN FACT FALLING IN THE CATEGORY OF NP-HARD PROBLEMS,
while the #-SAT system we have presented and investigated earlier in this Thesis is NP-complete. NP-
hard problems lie at the basis of many optimization, decision making, error correction, etc. problems.

There are two major classes of algorithm for solving NP-hard problems: exact solvers are extremely

7



inefficient and slow, while heuristic methods can be efficient in finding good approximations, but
they are unable to provide information about the correctness of the calculated optimum. This means
that they could find the global minimum of the system, but they could also easily be trapped in local
minima and the user is not provided with a feedback about the true nature of the found optimum.
Many real-life problems can be easily translated into Constraint Satisfaction Problems such as max-
SAT. From spin-glasses, through protein folding to Sudoku-puzzles™ and various industrial applica-
tions all can be written mathematically in the form of max-SAT. It is a fundamental problem which
lies at the basis of real-life problems also, like the ground-state problem of Ising spin-glasses® from
statistical physics, the travelling salesman problem™, protein folding in bioinformatics#, industry ap-
plications such as scheduling 48 design debugging#', FPGA routing’®, probabilistic reasoning*. The
max-SAT designation comes from the maximum satisfiability and it is the generalized form of the
Boolean Satisfiability (4-SAT) problem.

Our novel max-SAT solver algorithm is based on the original continuous-time dynamical system
presented by Ercsey-Ravasz and Toroczkai”7. The greatest advantage of this model comprises in the
one-to-one correspondence between the stable attractors of the system and the SAT solutions. Start-
ing the dynamics from any initial condition the algorithm will converge into a solution without any
further need of an input from the user. In the hard-SAT phase the dynamics becomes transiently
chaotic leading to interesting conclusions about the relation between chaos and optimization hard-
ness. However, in case of max-SAT problems when there is no solution satisfying all constraints at the
same time it means that the global attractor of the system is not a stable attractor anymore.

The algorithm is illustrated on a very hard benchmark problem taken from a set of benchmark
instances listed on a SAT problem solving competition website SAT In order to test our algorithm we
solved a set of benchmark problems, which were very useful because the real minimum energy level
was known, so we could compare our results with the available data. We have chosen this particular
instance for illustration because it seems to be an extremely hard problem having NV = 250 variables

and a typical hardness a = 4.0. We used the complete algorithm named maxsatz, 2627 which won

18



the 2006, 2007 and 2013 max-SAT solving competitions for testing the correctness of our max-SAT
solver. The maxsatz algorithm has been running for 5.5 weeks (!) working on this extremely hard
benchmark problem and the smallest energy found was £ = 9. Our algorithm finds an energy level
E = 5at P = 189562 running around only 20 hours, but even better: it convincingly predicts this

global optimum even starting from P = 7000. On Figure 5.1 we presented the performance of the
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Figure 5.1: Performance of the algorithm illustrated on an extremely hard benchmark problem having N = 250 vari-
ables and a typical hardness o« = 4.0, the maximum time set for z,,,, = 50 and & = 0.002375. a) P - number of
trajectories, £, - the lowest energy found until that point, n(ES) - the number of times this minimum was found, £ - the

parameter obtained by fitting and predicting Ef;fjand estimating P””d(Ex — 1) - the number of trajectories needed to
find a lower energy. The algorithm estimates the escape rate and performs a prediction at each P shown in the table,
for the lines outlined with bold and colored we show the fit in b). c) The relevant parameter £ is shown as function
of P. It heavily fluctuates at the beginning when the statistics is small, but as the statistics increases it stabilizes in the
Ey € [4, 5) interval, convincingly predicting Ef::: = 5 already after P = 7000 up until the point when it finds this
energy at P = 189562. At this point we do not have a precise estimation for r(5) because it has been found only once
(n(5) = 1), but the estimation JzA

min
further.

ec
min

remains the same, convincing the algorithm to accept = 5 and stop searching
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algorithm.

Based on the presented chaotic dynamics we designed a novel algorithm, which is capable of efhi-
ciently predicting the global minimum of NP-hard problems, using many short dynamical trajectories
started from different initial conditions, and more importantly it can provide an estimate for the time
needed to find the next lower energy level. This feature of providing feedback on how close one is to
find the global optimum of the system is unique. None of the existing algorithm have even a com-
parable feature. This can become very useful especially in solving extremely hard problems. In this
Chapter our main goal was to introduce this novel algorithm, but its details can be further improved.
One can redefine the rules that decide when the prediction should be performed, as well as redefine
the stopping conditions. We would like to emphasize that the stopping conditions can be further im-
proved. In this Chapter we have also shown that prediction errors mainly occur only in easy problems,
but as these easy problems are almost easy enough to be solved with exact solver the main goal is not
to apply this method to these problem, but to the hard problems. The power of the algorithm lies in
the prediction of global optimum in very hard problems, where it can also provide information about
how close it is to finding the global optimum, and it can become more time efficient than exact solvers
(as we saw in case of extremely hard problems).

The energy based escape rate is the generalized form of the escape rate used in transient chaos the-
ory*»*7. We have also shown that the scaling of this new measure reveals crucial information about
the structure of state space: the lowest energy level, probabilities of finding lower energy levels, etc.
Despite one can never predict the route of a single chaotic trajectory, the statistical properties of the
system are robust and can be used to obtain useful information about the system. This could become
anovel approach in studying other chaotic dynamical systems and certainly provides an intriguing as-

pect of the predicting power of chaos. Nevertheless, opens new doors of studying NP-hard problems.
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Conclusion

The world of analog computing has not reached the end of the road, but rather every day there are
emerging new technologies and ideas which prove the viability of this kind of calculating machines.
Our results, presented in this Thesis support this idea by bringing examples and showing new ways
how these systems can be improved and on how they can be applied in solving complex problems.
In the current Thesis we have introduced a novel analog computer design based on the CNN model
introduced by Leon O. Chua and Lin Yang®?®, as well as on the continuous-time dynamical system

introduced by Mdria Ercsey-Ravasz and Zoltin Toroczkai to solve Boolean satisfiability problems (4-
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SAT)"Y. Our revolutionary asymmetric cellular neural network model is implementation-friendly,
while preserving the main advantages of the original SAT-solver dynamics”. The biggest advantage
of the CNN architecture lies in its high processing capability this justifying the choice of the imple-
mentation model. By design it is very complicated to implement the dynamical system introduced
by Ercsey-Ravasz and Toroczkai in physical form due to the use of the auxiliary variables associated
to each constraint in the £-SAT problem. These auxiliary variables are unbounded so their value can
increase to infinity in order to prevent the system getting trapped in local minima. If realized on an
analog device it would only take a single operation to find the optimal solution. The main advantage
of the system is that starting from any initial condition it converges into a solution without further in-
terventions. In contrast to the original dynamical system one cannot exclude limit cycles, but we have
shown that the only fixed points of the problem are the solutions, although this does not guarantee
that there are no limit cycles in the system, as we also demonstrated their existence. This is a drawback
compared to the original system but as one can see a major region of the two main parameters (4 and
B) govern the system on such trajectories which omit the limit cycles and therefore this will not con-
stitute a significant problem. In order to simulate the system more efficiently we needed a method
to detect whether the system will be trapped in a limit cycle so we can stop the simulation and restart
it from different initial conditions. Since there is no known algorithm which can detect in real-time
(without using the whole data-series already generated ahead) if a trajectory follows a path leading to a
limit cycle, we have developed a new algorithm for this task. Measured the efficiency of the algorithm
we found the prediction to be correct in ~ 96% of the cases.

Since physical implementations are usually different from the idealistic environment of models, the
presence of different types of noise is inevitable and it is a fundamental question to study their effects
on the system. How do they affect the behavior and efficiency of the system? We have presented a
detailed study on the effects of typical noise types that are present in analog circuits: white noise (un-
correlated in time), colored noise (correlated in time) and small errors in connection weights (constant

in time, modelling imperfections of electronic junctions and/or circuit elements). A series of extensive
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simulations were run for different system sizes and constraint densities using different noise types. We
have shown that the presence of noise in the system does not have a negative influence on the opera-
tion of the system, in fact it helps to avoid more easily the limit cycles by widening the optimal range
of the main parameters (4, B). We have also shown that our system can tolerate noise intensities up to
I =102, which is three magnitude higher than the allowed maximum noise intensities in a physical
device (/ < 1.6 x 107°).

The concept of the asymmetric cellular neural network model was welcomed by the engineers as
well. This model can be considered one of the first attempts to generalize the applications of the CNN
computers, which nowadays are mainly used in visual processing applications. An engineering group
from the Faculty of Information Technology and Bionics of the Pdzmany Péter Catholic University
(Budapest, HU) were the first who started to work on a physical realization of our model. The work
was started by Prof. Tamds Roska and now continued by his students. After several test circuit imple-
mentations they have also realized a 10 4 20 cell system (s-type, respectively a-type cells) on printed
circuit boards (PCB). One of these PCBs is shown on Figure 6.1 (work in progress). Another research
group from the Department of Electrical Engineering and Computer Science from the University of
Tennessee (Knoxville, TN, USA) lead by David Basford independently started to work on the CNN
implementation of our model . A research group lead by Prof. X. Sharon Hu from the University of
Notre Dame (Notre Dame, IN, USA) started to work on the implementation of the original dynam-
ical system with small modifications that apply boundaries on the -type variables®.

Finally we have introduced a modified version of the original dynamical system 7 in order to be used
for predicting the global optimum of NP-hard problems. Many real-life problems fall in this category,
which cannot be solved efficiently by any algorithm. In many cases NP-hard problems lack a complete
(null-energy) solution but the question is still valid: what is the lowest possible energy level in this
system? We studied the NP-hard problems through the maximum satisfiabiliry problem (max-SAT).
The novel algorithm introduced in this Thesis can predict the number of unsatisfied clauses in the

global optimum long before reaching these states and provides information on how much time would
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Figure 6.1: Asymmetric Cellular Neural Network on printed circuit board. Printed circuit board realization of our Asym-
metric Cellular Neural Network model, created by Andras Horvath and Déra Babicz from the Faculty of Information
Technology and Bionics of the Pazmany Péter Catholic University (Budapest, HU)
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it take or how many different trajectories should be run in order to reach that state. We preserved all
the advantages of the original dynamical algorithm and we have added a few enhancements so it can
efficiently operate in the new environment of NP-hard problems. We have also shown that this novel
algorithm can predict the global optimum of a max-SAT problems and can provide information about
the trustworthiness of the prediction it made.

One can see that these studies opened the possibilities to study optimization problems in new ways.
Furthermore based on our model a completely new direction of the analog computer development is
emerging. The algorithm presented at the end of this Thesis gives a trustworthy prediction of global
minima in the majority of NP-hard problems in relatively short time which is an unmatched advantage
compared to any known algorithm. We are currently using it to study the Ramsey problem and to
predict further values of Ramsey-numbers**". Even more, we are now working on an update to the
algorithm which can predict not only the lowest energy level but a solution (an assignment of Boolean
variables if considering a 7max-SAT problem) which can correspond to that level. There are endless
possibilities of application so for the asymmetric cellular neural networks as for the global optimum
predictor in various arias where optimization problems occur.

All these continuous-time dynamical systems show that hardness of optimization problems corre-
sponds to chaotic dynamics in physical systems. It is fascinating that in spite of the unpredictability
of individual chaotic trajectories, physical properties of chaotic dynamics can predict properties of the

global energy landscape.
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