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1.1.3 Krasnosel’skĭı’s fixed point theorem in cones . . . . . . . . . . . . . . . . . . 11

1.2 A comparison result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 An auxiliary existence and uniqueness result . . . . . . . . . . . . . . . . . . . . . . 12

2 Positive solutions for some classes of nonlinear equations 14

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 First order differential equations with nonlocal conditions . . . . . . . . . . . . . . 14

2.2.1 Existence and localization results . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 A multiplicity result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 The Dirichlet-Neumann BVP for φ-Laplace equations . . . . . . . . . . . . . . . . 17

2.3.1 Existence and localization results . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 A multiplicity result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 The Dirichlet BVP for φ-Laplace equations . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Existence and localization results . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 A multiplicity result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 The Neumann-Robin BVP for φ-Laplace equations . . . . . . . . . . . . . . . . . . 23

2.5.1 Existence and localization results . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.2 A multiplicity result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.3 Some particular cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Positive solutions for some classes of nonlinear systems 29

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 First order differential systems with nonlocal conditions . . . . . . . . . . . . . . . 29

3.2.1 Existence and localization results . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 A multiplicity result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



Contents ii

3.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 The Dirichlet-Neumann BVP for φ-Laplace systems . . . . . . . . . . . . . . . . . 34

3.3.1 Existence and localization results . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 A multiplicity result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 The Dirichlet BVP for φ-Laplace systems . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 The Neumann-Robin BVP for φ-Laplace systems . . . . . . . . . . . . . . . . . . . 37

4 Abstract theory 39

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 The case of equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Existence and localization results . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 A multiplicity result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 The case of systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography 43



1

Introduction

The purpose of the present thesis is to emphasize the role of Harnack type inequalities for the

existence, localization and multiplicity of positive solutions for some classes of nonlinear equations

and systems.

Krasnosel’skĭı’s fixed point theorem in cones

In the center of this thesis is Krasnosel’skĭı’s compression-expansion theorem (i.e. Kras-

nosel’skĭı’s fixed point theorem in cones), which helps us to obtain existence, localization and

multiplicity results of solutions in a conical shell of a Banach space (see M. A. Krasnosel’skĭı

[51, 52]).

The idea is to find solutions of an operator equation of the form u = N(u), in a cone K of

a normed linear space (X, ‖ · ‖), with r ≤ ‖u‖ ≤ R, where r and R are two positive numbers

0 < r < R. If such an existence result can be established, then we immediately obtain multiple

solutions in K provided that the assumptions of the existence theorem are satisfied for several

pairs of numbers (r,R). Thus we can obtain several solutions u1, u2, ..., uk in K, localized as

ri ≤ ‖ui‖ ≤ Ri, i = 1, 2, ..., k. The solutions are distinct if r1 < R1 < r2 < R2 < ... < rk < Rk.

Similarly we may obtain infinite sequences of solutions.

The fundamental existence result which allows to apply the above strategy is Krasnosel’skĭı’s

compression-expansion theorem.

Theorem (Krasnosel’skĭı) Let (X, ‖.‖) be a normed linear space; K ⊂ X a cone; r,R ∈ R+,

0 < r < R; Kr,R = {u ∈ K : r ≤ ‖u‖ ≤ R}, and let N : Kr,R → K be a compact map. Assume

that one of the following conditions is satisfied:

(a) N(u) ≮ u if ‖u‖ = r, and N(u) ≯ u if ‖u‖ = R;

(b) N(u) ≯ u if ‖u‖ = r, and N(u) ≮ u if ‖u‖ = R.

Then N has a fixed point u in K with r ≤ ‖u‖ ≤ R.
Note that the condition (a) expresses a property of the operator N , of compressing the conical

shell Kr,R, while the condition (b) expresses the expansion property.

The previous strategy described for the case of an equation, can be extended to systems in a

component-wise manner. Thus, for a system of two equationsu1 = N1(u1, u2)

u2 = N2(u1, u2)

we could be interested to find solutions (u1, u2), where u1 belongs to a cone K1, u2 belongs to a
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cone K2 and each one of them is localized as follows

r1 ≤ ‖u1‖ ≤ R1, r2 ≤ ‖u2‖ ≤ R2.

Hence, in this case, two conical shells appear. The idea is to allow N1 and N2 to satisfy either the

compression condition, or the expansion condition, individually. Thus, three cases are possible:

(1) Both operators N1, N2 are compressive;

(2) Both operators N1, N2 are expansive;

(3) One of the operators N1, N2 is compressive, while the other one is expansive.

The fundamental existence result which makes possible the above strategy for systems is the

following vector version of Krasnosel’skĭı’s theorem that is presented for a general system of n

equations.

Theorem([78]) Let (X, ‖.‖) be a normed linear space; K1,K2, ...,Kn ⊂ X cones; K := K1 ×
K2 × ... × Kn; r,R ∈ Rn+, r = (r1, r2, ..., rn), R = (R1, R2, ..., Rn) with 0 < ri < Ri for all i,

Kr,R = {u ∈ K : ri ≤ ‖ui‖ ≤ Ri, i = 1, 2, ..., n}, and let N : Kr,R → K, N = (N1, N2, ..., Nn) be

a compact map. Assume that for each i = 1, 2, ..., n, one of the following conditions is satisfied in

Kr,R :

(a) Ni(u) ≮ ui if ‖ui‖ = ri, and Ni(u) ≯ ui if ‖ui‖ = Ri;

(b) Ni(u) ≯ ui if ‖ui‖ = ri, and Ni(u) ≮ ui if ‖ui‖ = Ri.

Then N has a fixed point u = (u1, u2, ..., un) in K with ri ≤ ‖ui‖ ≤ Ri for i = 1, 2, ..., n.

For some applications of compression-expansion principles to integral and differential equations

and systems we refer to R. P. Agarwal, M. Meehan, D. O’Regan and R. Precup [2], R. P. Agarwal,

D. O’Regan and P. J. Y. Wong [4], S. Budisan [15], A. Cabada and J. A. Cid [17], L. H. Erbe, S.

Hu and H. Wang [24], S. Li [55], W.-C. Lian, F.-H. Wong and C.-C. Yeh [58], B. Liu and J. Zhang

[60], M. Meehan and D. O’Regan [64], R. Precup [79, 80, 83], Y. N. Raffoul [87], W. Sun, S. Chen,

Q. Zhang and C. Wang [89], P. J. Torres [92], F. Wang and F. Zhang [93], J. R. L. Webb [97].

In [54] R. W. Leggett and L. R. Williams obtained a remarkable generalization of Krasnosel’skĭı’s

original result and applied their fixed point theorem to the nonlinear equation modelling certain

infectious diseases.

In applications, the technique based on the Krasnosel’skĭı’s theorem requires the construction

of a suitable cone of functions for which the compression and expansion conditions can be satisfied.

To this end, in the case of most boundary value problems, the corresponding Green’s functions

and their properties play an important role (see for example A. Boucherif [13], F. Haddouchi and

S. Benaicha [31], J. R. L. Webb [96]).

Green’s functions are named after the British mathematician George Green, who first developed

the concept in the 1830s. A Green’s function is the impulse response of an ordinary differential

equation defined on a domain, with specified initial conditions or boundary conditions. According

to D. G. Duffy [23], the application of Green’s functions to ordinary differential equations involving

boundary value problems began with the work of Burkhardt(1861-1914). Later on, Bôcher (1867-

1918) extended these results to nth order boundary value problems.

In the paper R. Precup [85] it was noticed that in the case of many problems for which Green’s
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functions are not known, or their properties are not good enough, one can use instead, weak

Harnack type inequalities associated to the differential operators and the boundary conditions

(see also R. Precup [79, 83]). This type of inequalities helps to obtain lower estimations that are

useful in order to achieve the compression-expansion condition. In some cases, such inequalities

arise as a consequence of the concavity of the positive solutions.

The paper M. Kassmann [50] presents an introduction to certain inequalities named after Carl

Gustav Axel von Harnack. These inequalities were originally defined for harmonic functions in the

plane. Much later J. Serrin [88] and J. Moser [65] generalized Harnack’s inequality to solutions

of elliptic or parabolic partial differential equations. Many other authors have proved such type

of inequalities for different problems (see W. Hebisch and L. Saloff-Coste [37], T. Kuusi [53], R.

Precup [85], R. Zacher [102]).

The role of Harnack type inequalities

Harnack type inequalities are stated in connection with a given ordered Banach space (X,≤)

with monotone norm, and a given operator L : D(L) ⊂ X → X.

We say that a Harnack type inequality holds for L if there is some nonzero element ϕ in the

positive cone K ⊂ X such that

u ≥ ‖u‖ϕ,

for every positive supersolution of the equation Lu = 0, i.e. u ∈ D(L) with u ≥ 0 and Lu ≥ 0.

This inequality is accompanied by a reverse one, namely

u ≤ ‖u‖ψ,

where ψ ≥ 0 and ψ 6= 0, which in applications to function spaces is trivially satisfied, for example

with ψ ≡ 1.

We shortly explain the use of Harnack type inequalities in guaranteeing the condition

N(u) ≮ u if u ∈ K and ‖u‖ = r

required by Krasnosel’skĭı’s theorem, in case of an equation of the form Lu = F (u), where N =

L−1F .

Assuming that the operator N is positive and increasing with respect to the ordering ≤, the

proof goes as follows:

We assume the contrary, that is

N(u) < u for some u ∈ K with ‖u‖ = r.

From the Harnack inequality

u ≥ ‖u‖ϕ = rϕ,

using the fact that N is increasing, we obtain

N(u) ≥ N(rϕ).
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On the other hand, from u ≤ ‖u‖ψ and N(u) < u, we have

rψ ≥ u > N(u).

Then rψ > N(rϕ), and since the norm is monotone, we deduce that r‖ψ‖ ≥ ‖N(rϕ)‖ and a

contradiction arises if we ask as a hypothesis that

r‖ψ‖ < ‖N(rϕ)‖.

More details about the use of Harnack inequalities in connection with Krasnosel’skĭı’s theorem,

in an abstract setting, are given in the last chapter of the thesis.

Structure of the thesis

The thesis is divided into four chapters, each chapter being organized in several sections and

subsections, an Introduction and a list of References.

Chapter 1 is entirely dedicated in presenting some preliminary notions, results and notations

that we use throughout this work. Here, in Section 1.1 we introduce the concepts of an ordered

Banach space, of a compact and completely continuous operator and we recall an important tool

for our investigation, namely the well known Krasnosel’skĭı’s fixed point theorem in cones. In

Section 1.2 we present a comparison result for Dirichlet boundary value problems, while Section

1.3 deals with an auxiliary existence and uniqueness result.

In Chapter 2 we discuss four classes of nonlinear differential equations with different boundary

conditions, motivated by some nonlinear problems that arise from mathematical modeling of real

processes from engineering, mechanics, physics, economics and so on.

Section 2.1 contains a short overview of the chapter, where we explain the contents of the next

sections and we present the main tools and methods that are used.

In Section 2.2 we present new existence, localization and multiplicity results for positive solu-

tions of nonlocal boundary value problems for first order differential equations of the formu′ = f(t, u)

u(0)− au(1) = g[u].

Here g is a bounded linear functional on C[0, 1]. Two cases are included: the discrete one, when

g[u] =

m∑
k=1

aku(tk),

and the continuous case when g is given by a Stieltjes integral,

g[u] =

∫ 1

0

u(s) dγ(s).

Notice that, in particular, when a = 1 and g[u] = 0 we have the periodicity condition u(0) =

u(1).
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Nonlocal problems for different classes of differential equations and systems have been inten-

sively studied in the literature (see, for example, A. Boucherif [13], A. Boucherif and R. Precup

[14], L. Byszewski [16], G. Infante [45], O. Nica [67, 68], O. Nica and R. Precup [69] for multi-point

nonlocal conditions; R. Precup and D. Trif [86], J. R. L. Webb and G. Infante [99] for nonlocal

conditions given by Stieltjes integrals).

We also mention some other papers on nonlocal problems for several classes of differential

equations and systems: O.-M. Bolojan [12], X. Hao, L. Liu and Y. Wu [35], G. Infante [46], J. R.

L. Webb and G. Infante [98].

The main results in this section are: Theorem 2.2.1, Theorem 2.2.2 and Theorem 2.2.3.

These results are part of the work D.-R. Herlea [40].

In Section 2.3 we study the existence, localization and multiplicity of positive solutions of the

Dirichlet-Neumann boundary value problem{
(φ (u′))

′
+ f (t, u) = 0, 0 < t < 1

u′ (0) = u (1) = 0,

where φ : (−a, a)→ (−b, b) , 0 < a, b ≤ ∞, is a homeomorphism such that φ (0) = 0.

The study of the φ-Laplace equations and systems is a classical topic that has attracted the

attention of many experts because of its interest in applications (see for example R. P. Agarwal,

D. O’Regan and S. Stanek [3]). These problems, with different boundary conditions have been

studied in a large number of papers using fixed point methods, degree theory, upper and lower

solution techniques and variational methods. We refer to the papers C. Bereanu and J. Mawhin

[8], C. Bereanu, P. Jebelean and J. Mawhin [10, 11], A. Cabada and R. L. Pouso [18], H. Dang and

S. F. Oppenheimer [21], P. Drábek and J. Hernández [22], M. Garćıa-Huidobro and P. Ubilla [26],

M. Garćıa-Huidobro, R. Manásevich and J. R. Ward [27], D. D. Hai and K. Schmitt [32], D. D.

Hai and R. Shivaji [33], D. D. Hai and H. Wang [34], J. Henderson and H. Wang [39], P. Jebelean

and C. Popa [47], P. Jebelean, C. Popa and C. Şerban [48], J. Marcos do Ó and P. Ubilla [61], J.

Mawhin [62], D. O’Regan [70]-[72], D. O’Regan and R. Precup [73], I. Peral [75], V. Polášek and

I. Rach̊unková [76, 77], W. Sun and W. Ge [90], C. Şerban [91], J. Y. Wang [94], Z. Wang and J.

Zhang [95], Z. Yang [100], Z. Yang and D. O’Regan [101], to the survey work J. Mawhin [63], and

the bibliographies therein.

Contrary to the above papers, our aproach is based on a weak Harnack inequality associated

to the problem, namely the following result:

Lemma 2.3.1 For each c ∈ (0, 1), and any u ∈ C1[0, 1] ∩ C ([0, 1] ;R+) with u′ (0) = u (1) = 0,

u′ (t) ∈ (−a, a) for every t ∈ [0, 1] , φ ◦ u′ ∈W 1,1(0, 1) and (φ(u′))′ ≤ 0 on [0, 1], one has

u(t) ≥ (1− c)‖u‖∞, for all t ∈ [0, c].

The main results in this section are: Lemma 2.3.1, Theorem 2.3.2, Theorem 2.3.3 and

Theorem 2.3.4; Example 2.3.5, Example 2.3.6, Example 2.3.7 and Example 2.3.8 that present

some numerical applications. Most part of these results can be found in the paper D.-R. Herlea

and R. Precup [43].

Section 2.4 is devoted to the study of ordinary differential equations of the same form as in
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the previous section, but this time with Dirichlet boundary conditions{
(φ (u′))

′
+ f (t, u) = 0, 0 < t < 1

u (0) = u (1) = 0.

Here φ is a homeomorphism from (−a, a) to R, 0 < a ≤ ∞ and the useful weak Harnack inequality

is given by the following Lemma:

Lemma 2.4.2 For each t0, t1 ∈ (0, 1) with t0 < t1, and any u ∈ C1[0, 1] ∩ C ([0, 1] ;R+) with

u (0) = u (1) = 0, u′ (t) ∈ (−a, a) for every t ∈ [0, 1] , φ ◦ u′ ∈ W 1,1(0, 1) and (φ(u′))′ ≤ 0 a.e. on

[0, 1], one has

u(t) ≥ γ(t)‖u‖∞, for all t ∈ [0, 1],

where

γ(t) =

min{t0, 1− t1}, for all t ∈ [t0, t1]

0, otherwise.

The most relevant results in this section are: Lemma 2.4.1, Theorem 2.4.2, Theorem 2.4.3

and Theorem 2.4.4. These contributions can be found in the paper D.-R. Herlea [41].

In Section 2.5 we discuss φ-Laplace equations with Neumann-Robin boundary conditions


(φ (u′))

′
+ f (t, u) = 0, 0 < t < 1

u (0)− au′ (0) = 0,

u′ (1) = 0,

where a > 0 and φ is a homeomorphism from R to (−b, b), 0 < b ≤ ∞. Problems with general

Robin conditions

α1u(0)− β1u
′(0) = 0 = α2u(1) + β2u

′(1),

were studied by many authors in order to obtain the existence of positive solutions (see L. H. Erbe

and H. Wang [25], W. G. Ge and J. Ren [28]). Some other authors worked with special cases.

For example A. Benmezäı, S. Djebali and T. Moussaoui [5], W. G. Ge and J. Ren [29] and D.-R.

Herlea [41] studied the case β1 = β2 = 0 and α1 = α2 = 1, while D.-R. Herlea and R. Precup [43]

discussed the case α1 = β2 = 0, α2 = 1 and β1 = −1.

In order to apply Krasnosel’skĭı’s technique to our problem we first establish a weak Harnack

inequality:

Lemma 2.5.1 For each d ∈ (0, 1), and any u ∈ C1[0, 1] ∩ C ([0, 1] ;R+) with u (0) − au′ (0) =

u′ (1) = 0, φ ◦ u′ ∈W 1,1(0, 1) and (φ(u′))′ ≤ 0 a.e. on [0, 1], one has

u(t) ≥ γ(t)‖u‖∞, for all t ∈ [0, 1],

where

γ(t) =


a+ d

a+ 1
, for t ∈ [d, 1]

0, for t ∈ [0, d).
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The main results in this section are: Lemma 2.5.1, Theorem 2.5.2, Theorem 2.5.3 and Theo-

rem 2.5.4; Example 2.5.5, Example 2.5.6, Example 2.5.8 and Example 2.5.7, numerical applications

of the theoretical results. The results from this section have been published in the paper D.-R.

Herlea [42].

Chapter 3 extends to the general case of systems the results from Chapter 2, using this time

the vector version of Krasnosel’skĭı’s fixed point theorem. After an overview on the problems

and the contents of the chapter given in Section 3.1, in Section 3.2 we present some existence,

localization and multiplicity results for a system of two first order differential equations with

nonlocal conditions 

u′1 = f1(t, u1, u2)

u′2 = f2(t, u1, u2)

u1(0)− a1u1(1) = g1[u1]

u2(0)− a2u2(1) = g2[u2].

where g1, g2 are bounded linear functionals on C[0, 1]. The theoretical results are then illustrated

by some relevant examples.

The aim of Section 3.3 is to illustrate the applicability of the vector version of Krasnosel’skĭı’s

theorem to the Dirichlet-Neumann boundary value problem for the φ-Laplace system{
(φi (u′i))

′
+ fi (t, u1, u2, ..., un) = 0, 0 < t < 1

u′i (0) = ui (1) = 0 (i = 1, 2, ..., n) .

where φi are different homeomorphisms from (−ai, ai) to (−bi, bi), 0 < ai, bi ≤ ∞.

Section 3.4 is devoted to the study of the φ-Laplace system with Dirichlet conditions

{
(φi (u′i))

′
+ fi (t, u1, u2, ..., un) = 0, 0 < t < 1

ui (0) = ui (1) = 0 (i = 1, 2, ..., n) .

where φi are different homeomorphisms from (−ai, ai) to R, 0 < ai ≤ ∞.

In Section 3.5 we present some existence and localization results for positive solutions of the

Neumann-Robin boundary value problem
(φi (u′i))

′
+ fi (t, u1, u2, ..., un) = 0, 0 < t < 1

ui (0)− aiu′i (0) = 0

u′i (1) = 0 (i = 1, 2, ..., n) ,

where ai > 0, φi are different homeomorphisms from R to (−bi, bi), 0 < bi ≤ ∞.

The most relevant results in this chapter are: Theorem 3.2.1, Theorem 3.2.2, Theorem

3.3.1, Theorem 3.3.2, Theorem 3.4.1 and Theorem 3.5.1; Example 3.2.3 and Example 3.2.5 that

present two numerical applications. These results appear in the papers D.-R. Herlea [40]-[42],

D.-R. Herlea and R. Precup [43].

The purpose of Chapter 4 is to give an abstract theory. After a short overview given by
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Section 4.1, in Section 4.2 we shall concentrate on the abstract problem for a single equationLu = F (u)

u ∈ B,

in a Banach space (X, ‖ · ‖), where L : D(L) ⊂ X → X and F : X → X are two given operators

and B ⊂ X.

Then, in Section 4.3, we shall extend the results to the case of systemsLiui = Fi(u1, u2, ..., un)

ui ∈ Bi (i = 1, 2, ..., n).

The theory uses Krasnosel’skĭı’s technique and is based on an abstract Harnack type inequality

which is now assumed as hypothesis.

The main contributions here are as follows: Theorem 4.2.2, Theorem 4.2.3, Theorem 4.2.4

and Theorem 4.3.1. The results from this chapter will appear in the paper D.-R. Herlea and R.

Precup [44].

As above mentioned in the summary of each chapter, most of the results presented in this

thesis are part of the following publications:

• D.-R. Herlea, Existence and localization of positive solutions to first order differential systems

with nonlocal conditions, Studia Univ. Babeş-Bolyai Math., 59(2014), 221-231.

• D.-R. Herlea, Positive solutions for second-order boundary-value problems with φ-Laplacian,

Electron. J. Differential Equations, 2016(2016), 1-8.

• D.-R. Herlea and R. Precup, Existence, localization and multiplicity of positive solutions to

φ-Laplace equations and systems, Taiwanese J. Math., 20(2016), 77-89.

• D.-R. Herlea, Existence, localization and multiplicity of positive solutions for the Dirichlet

BVP with φ-Laplacian, Fixed Point Theory, to appear.

• D.-R. Herlea and R. Precup, Abstract weak Harnack type inequalities and multiple positive

solutions of nonlinear problems, submitted.

Some ideas for further work

The method that we have used throughout the thesis can be applied to other classes of prob-

lems, for instance, to equations and systems of higher order with different boundary conditions, to

functional-differential equations and partial differential equations. Some advances in this direction

are due to A. Cabada, R. Precup, L. Saavedra and S. Tersian [19], Y. Li [56], H. Lian, J. Zhao

and R. P. Agarwal [59], M. Naceri, R. P. Agarwal, E. Çetin and A. El-Haffaf [66].

Another idea is to study positive radial solutions for some classes of boundary value problems

which introduce singularities in equations (for problems on radial solutions we refer to the papers
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C. Bereanu, P. Jebelean and J. Mawhin [11], D. D. Hai and K. Schmitt [32], X. He [36], D. Jiang

and H. Liu [49]).

Another direction is to use Harnack type inequalities together with some principles from critical

point theory as already suggested in R. Precup [81].

Keywords

Weak Harnack type inequalities, positive solutions, Krasnosel’skĭı’s fixed point theorem, cone,

nonlinear equations and systems, φ-Laplacian.
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Chapter 1

Preliminaries

In this chapter we list some notions and results that we use throughout the Ph.D. thesis. Ordered

Banach spaces, compactness and completely continuous operators and Krasnosel’skĭı’s fixed point

theorems in cones are the main tools in our work.

1.1 Basic notions and results

1.1.1 Ordered Banach spaces

Definition 1.1.1 Let X be a real linear space. By a cone K of X we understand a closed convex

subset of X such that λK ⊂ K for all λ ∈ R+ and K ∩ (−K) = {0}.

Proposition 1.1.2 Let X be a linear space and K ⊂ X be a cone. The relation ≤K on X defined

by

u ≤K v if and only if v − u ∈ K,

is an order (reflexive, antisymmetric and transitive) relation on X (called the order relation in-

duced by K), compatible with the linear structure of X, i.e., whenever ui, vi ∈ X, ui ≤K vi,

i = 1, 2, and λ ∈ R+, we have

u1 + u2 ≤K v1 + v2, λu1 ≤K λv1.

Conversely, if ≤ is an order relation on X compatible with the linear structure of X, then the set

K+ = {u ∈ X : 0 ≤ u}

is a cone (called the positive cone) and ≤=≤K+ .

A Banach space endowed with a cone, equivalently with an order relation compatible with

linear structure is called an ordered Banach space.
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1.1.2 Compactness and completely continuous operators

Definition 1.1.3 A metric space (X, d) is said to be compact if every sequence of elements of X

has a convergent subsequence in X.

Let (X, d) be a compact metric space and C(X;R) be the Banach space of all continuous

functions from X to R under the norm ‖ · ‖∞.

Theorem 1.1.4 (Ascoli-Arzela) A subset Y of C(X;R) is relatively compact if and only if the

following conditions are satisfied:

(i) Y is bounded, i.e., there exists a constant C > 0 such that

‖u(x)‖ ≤ C,

for all x ∈ X and u ∈ Y .

(ii) Y is equicontinuous, i.e., for every ε > 0 there exists a δ > 0 such that for all u ∈ Y ,

‖u(x1)− u(x2)‖ < ε,

whenever x1, x2 ∈ X and d(x1, x2) < δ.

Definition 1.1.5 Let X,Y be Banach spaces and T : D ⊂ X → Y .

(a) The operator T is said to be bounded if it maps any bounded subset of D into a bounded

subset of Y .

(b) The operator T is said to be completely continuous if it is continuous and maps any bounded

subset of D into a relatively compact subset of Y .

(c) The operator T is said to be compact if it is continuous and T (D) is relatively compact.

1.1.3 Krasnosel’skĭı’s fixed point theorem in cones

Theorem 1.1.6 (Krasnosel’skĭı) Let (X, ‖.‖) be a normed linear space; K ⊂ X a cone; r,R ∈
R+, 0 < r < R; Kr,R = {u ∈ K : r ≤ ‖u‖ ≤ R}, and let N : Kr,R → K be a compact map.

Assume that one of the following conditions is satisfied:

(a) N(u) ≮ u if ‖u‖ = r, and N(u) ≯ u if ‖u‖ = R;

(b) N(u) ≯ u if ‖u‖ = r, and N(u) ≮ u if ‖u‖ = R.

Then N has a fixed point u in K with r ≤ ‖u‖ ≤ R.

Theorem 1.1.7 ([78]) Let (X, ‖.‖) be a normed linear space; K1,K2, ...,Kn ⊂ X cones; K :=

K1 ×K2 × ...×Kn; r,R ∈ Rn+, r = (r1, r2, ..., rn), R = (R1, R2, ..., Rn) with 0 < ri < Ri for all i,

Kr,R = {u ∈ K : ri ≤ ‖ui‖ ≤ Ri, i = 1, 2, ..., n}, and let N : Kr,R → K, N = (N1, N2, ..., Nn) be

a compact map. Assume that for each i = 1, 2, ..., n, one of the following conditions is satisfied in

Kr,R :

(a) Ni(u) ≮ ui if ‖ui‖ = ri, and Ni(u) ≯ ui if ‖ui‖ = Ri;

(b) Ni(u) ≯ ui if ‖ui‖ = ri, and Ni(u) ≮ ui if ‖ui‖ = Ri.

Then N has a fixed point u = (u1, u2, ..., un) in K with ri ≤ ‖ui‖ ≤ Ri for i = 1, 2, ..., n.
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1.2 A comparison result

Let the intervals I0 and J = [t0, t1], the functions φ : J × I0 → R and q : J × R2 → R and the

differential operator A be defined by

Au(t) := − d

dt
φ (t, u′(t))− q(t, u(t), u′(t)), t ∈ J,

u ∈ Y := {u ∈ C1(J)| u′[J ] ⊆ I0 and φ(·, u′(·)) ∈ AC(J)}.
(1.2.1)

Theorem 1.2.1 ([38]) Let the functions q : J × R2 → R and φ : J × I0 → R have the following

properties

(φ0) φ(t, z) < φ(t, y) whenever t ∈ J , y, z ∈ I0 and z < y;

(q1) q(t, x, z) ≤ q(t, y, z) for a.a. t ∈ J and for all x, y, z ∈ R, x ≥ y;

(q2) q(t, x, z) − q(t, x, y) ≤ h(t, φ(t, y) − φ(t, z)) for a.a. t ∈ J and for all x ∈ R, y, z ∈ I0,

y > z, 0 < φ(t, y)−φ(t, z) ≤ r, where r > 0, h : J × [0, r]→ R+, and x(t) ≡ 0 is the only function

in AC(J) which satisfies

x′(t) ≤ h(t, x(t)) a.e. in J, x(t0) = 0.

Assume that u,w ∈ Y satisfy

Au(t) ≤ Aw(t) a.e. in J, u(t0) ≤ w(t0), u(t1) ≤ w(t1).

Then u(t) ≤ w(t) for each t ∈ J . In particular, under the conditions on q and φ, the Dirichlet

problem  −
d

dt
φ (t, u′(t)) = q(t, u(t), u′(t)) a.e. in J

u (t0) = c0, u (t1) = c1

has at most one solution.

1.3 An auxiliary existence and uniqueness result

Let us assume that

(HΦ) φ : (−a, a) → R, 0 < a ≤ ∞ is a homeomorphism such that φ(0) = 0, φ = ∇Φ, with

Φ : (−a, a)→ (−∞, 0] of class C1, and strictly convex.

So, φ is strictly monotone on (−a, a).

If Φ∗ : R→ R is the Legendre-Fenchel transform of Φ defined by

Φ∗(v) = 〈φ−1(v), v〉 − Φ[φ−1(v)] = sup
u∈(−a,a)

{〈u, v〉 − Φ(u)},

then Φ∗ is also strictly convex and

Φ∗(v) ≤ a|v| − inf
|v|<a

Φ ◦ φ−1 =: a|v|+ d. (1.3.2)

Now, using the nonnegativity of Φ,
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Φ∗(v) ≥ sup
u∈(−a,a)

〈v, u〉 = a|v|, (1.3.3)

we have that Φ∗ is coercive on R. Also Φ∗ is of class C1. Hence

φ−1 = ∇Φ∗,

so that

v = ∇Φ(u) = φ(u), u ∈ (−a, a)⇔ u = φ−1(v) = ∇Φ∗(v), v ∈ R.

Given h,H ∈ C[0, 1], H :=
∫ t

0
h(s) ds and b ∈ R, we define

G(b;H) =

∫ 1

0

φ−1[b−H(t)] dt =

∫ 1

0

∇bΦ∗[b−H(t)] dt

= ∇b
∫ 1

0

Φ∗[b−H(t)] dt = ∇bg(b;H),

where

g(b;H) =

∫ 1

0

Φ∗[b−H(t)] dt.

Lemma 1.3.1 ([7]) If φ = ∇Φ, with Φ satisfying assumption (HΦ), then, for each H ∈ C[0, 1],

the equation ∫ 1

0

φ−1[b−H(t)] dt = 0 (1.3.4)

has a unique solution b := Qφ(H). Moreover, Qφ : C[0, 1] → R is continuous and takes bounded

subsets of C[0, 1] into bounded subsets of R.
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Chapter 2

Positive solutions for some classes

of nonlinear equations

2.1 Overview

This chapter is devoted to existence, localization and multiplicity of positive solutions for some

boundary value problems.

2.2 First order differential equations with nonlocal condi-

tions

We present existence, localization and multiplicity results for positive solutions of the problemu′ = f(t, u)

u(0)− au(1) = g[u]
(2.2.1)

where f ∈ C([0, 1]× R+;R+); g : C[0, 1]→ R is a linear functional given by

g[u] =

∫ 1

0

u(s) dγ(s), (2.2.2)

with g[1] < 1; γ ∈ C1[0, 1] increasing and 0 < a < 1− g[1].

We seek nonnegative solutions u on [0, 1]. The problem (2.2.1) is equivalent to the following

integral equation

u(t) =

∫ t

0

[c(γ(1)− γ(s) + a) + 1]h(s) ds+

∫ 1

t

c(γ(1)− γ(s) + a)h(s) ds, (2.2.3)

where c := 1/(1 − g[1] − a), c > 0. If now, to the nonlocal condition u(0) − au(1) = g[u], we
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associate the Green’s function

G(t, s) =

c[γ(1)− γ(s) + a] + 1 for 0 ≤ s ≤ t ≤ 1

c[γ(1)− γ(s) + a] for 0 ≤ t < s ≤ 1,
(2.2.4)

then (2.2.3) can be written as

u(t) =

∫ 1

0

G(t, s)h(s) ds. (2.2.5)

Thus we have obtained the inverse of the operator L, L−1 : C[0, 1]→ C[0, 1],

(L−1h)(t) =

∫ 1

0

G(t, s)h(s) ds.

The following properties are essential for the applicability of Krasnosel’skĭı’s technique:

1) G(t, s) ≤ H(s), for all t, s ∈ [0, 1], where

H(s) = c[γ(1)− γ(s) + a] + 1

2) δH(s) ≤ G(t, s) for all t, s ∈ [0, 1], where

δ = min
s∈[0,1]

c[γ(1)− γ(s) + a]

c[γ(1)− γ(s) + a] + 1
.

Notice that δ > 0 since a, c > 0 and γ(1) ≥ γ(s), for all s ∈ [0, 1]. Also, it is clear that δ < 1.

Let N : C([0, 1];R+)→ C([0, 1];R+) be defined by

N(u)(t) =

∫ 1

0

G(t, s)f(s, u(s)) ds.

The above properties of the Green’s functions imply that for any t, t∗ ∈ [0, 1], one has:

N(u)(t) ≥ δN(u)(t∗). (2.2.6)

If t∗ is such that N(u)(t∗) = ‖N(u)‖∞, then (2.2.6) shows that

N(u)(t) ≥ δ‖N(u)‖∞ for all t ∈ [0, 1] (2.2.7)

and any nonnegative function u ∈ C[0, 1].

Based on these estimations we define the cone

K = {u ∈ C[0, 1] : u(t) ≥ δ‖u‖∞, for all t ∈ [0, 1]}. (2.2.8)

Due to (2.2.7) we have the invariance property N(K) ⊂ K. Therefore, the problem of nonnegative

solutions of (2.2.1) is equivalent to the fixed point problem u = Nu, u ∈ K, for the self-mapping

N of K. Note that the continuity of f implies the complete continuity of N by standard arguments

based on Ascoli-Arzela’s theorem.

Notice that (2.2.7) represents a weak Harnack type inequality for the nonnegative super

solutions of the problem (2.2.1).
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2.2.1 Existence and localization results

Theorem 2.2.1 Assume that there exist α, β > 0 with α 6= β, such that

Aλ > α, BΛ < β, (2.2.9)

where

A =

∫ 1

0

G(t∗, s) ds, for a chosen point t∗ ∈ [0, 1],

B = max
0≤t≤1

∫ 1

0

G(t, s) ds,

λ = min{f(t, u) : 0 ≤ t ≤ 1, δα ≤ u ≤ α},

Λ = max{f(t, u) : 0 ≤ t ≤ 1, δβ ≤ u ≤ β},

Then (2.2.1) has at least one positive solution u with r ≤ ‖u‖∞ ≤ R, where r = min{α, β},
R = max{α, β}.

The next theorem is about the existence of at least one pair α, β satisfying the conditions from

(2.2.9).

Theorem 2.2.2 Let f be a nondecreasing function with f = f(u). Assume that one of the

following conditions is satisfied:

(i) limx→∞
f(x)

x
=∞ and limx→0

f(x)

x
= 0;

(ii) limx→0
f(x)

x
=∞ and limx→∞

f(x)

x
= 0.

Then (2.2.1) has at least one positive solution.

2.2.2 A multiplicity result

Theorem 2.2.1 guarantees the existence of solutions in an annular set. Clearly, if the assumptions

of Theorem 2.2.1 are satisfied for several disjoint annular sets, then multiple solutions are obtained.

Theorem 2.2.3 Let f be a nondecreasing function with f = f(u). If the condition

(iii) lim supx→∞
f(x)

x
>

1

δA
and lim infx→∞

f(x)

x
<

1

B

holds, then (2.2.1) has a sequence of positive solutions (un)n≥1 such that ‖un‖∞ →∞ as n→∞.
If the condition

(iv) lim supx→0

f(x)

x
>

1

δA
and lim infx→0

f(x)

x
<

1

B

holds, then (2.2.1) has a sequence of positive solutions (un)n≥1 such that ‖un‖∞ → 0 as n→∞.
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2.3 The Dirichlet-Neumann BVP for φ-Laplace equations

We present existence, localization and multiplicity results for positive solutions of the two-point

boundary value problem {
(φ (u′))

′
+ f (t, u) = 0, 0 < t < 1

u′ (0) = u (1) = 0.
(2.3.10)

Important motivations for this study are the cases of the equations with p-Laplacian and

curvature operators in Euclidian and Minkowski spaces, for which problem (2.3.10) respectively

becomes 
(
|u′|p−2

u′
)′

+ f (t, u) = 0, 0 < t < 1

u′ (0) = u (1) = 0,
(2.3.11)


(

u′√
1 + u′2

)′
+ f (t, u) = 0, 0 < t < 1

u′ (0) = u (1) = 0,

(2.3.12)


(

u′√
1− u′2

)′
+ f (t, u) = 0, 0 < t < 1

u′ (0) = u (1) = 0.

(2.3.13)

Inspired by these three typical examples, in the literature, the cases of homeomorphisms of

R, φ : R→ R; of homeomorphisms with bounded range, φ : R→ (−b, b) ; and of homeomorphisms

with bounded domain, φ : (−a, a)→ R, have been discussed separately. In this section, these three

cases will be treated unitarily by assuming that φ is a homeomorphism from (−a, a) to (−b, b) ,
and 0 < a, b ≤ ∞.

2.3.1 Existence and localization results

This section deals with positive solutions for the problem (2.3.10). We make the following assump-

tions: φ : (−a, a)→ (−b, b), 0 < a, b ≤ ∞ is an increasing homeomorphism such that φ(0) = 0 and

f : [0, 1]× R+ → R+ is a continuous function with f(t, x) < b.

First we obtain the equivalent integral equation to the problem (2.3.10)

u(t) = −
∫ 1

t

φ−1

(
−
∫ τ

0

f(s, u(s)) ds

)
dτ. (2.3.14)

Conversely, if a function u ∈ C ([0, 1] ;R+) satisfies (2.3.14), which implicitly means that∫ τ

0

f(s, u(s)) ds < b

for all τ ∈ [0, 1] , then u is a positive solution of the problem (2.3.10).

Next, assuming in addition that f (t, x) < b for all t ∈ [0, 1] and x ∈ R+, we may define the
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integral operator N : C([0, 1];R+)→ C([0, 1];R+) by

N(u)(t) = −
∫ 1

t

φ−1

(
−
∫ τ

0

f(s, u(s)) ds

)
dτ, (2.3.15)

and thus, finding positive solutions to (2.3.10) is equivalent to the fixed point problem for the

operator N on C([0, 1];R+). Note that by standard arguments based on Ascoli-Arzela’s theorem,

N is completely continuous. Let ‖.‖∞ denote the max norm on C [0, 1] .

In order to apply Krasnosel’skĭı’s fixed point theorem in cones we need a weak Harnack type

inequality for the differential operator Lu := −(φ(u′))′ and the boundary conditions u′ (0) =

u (1) = 0.

Lemma 2.3.1 For each c ∈ (0, 1), and any u ∈ C1[0, 1] ∩ C ([0, 1] ;R+) with u′ (0) = u (1) = 0,

u′ (t) ∈ (−a, a) for every t ∈ [0, 1] , φ ◦ u′ ∈W 1,1(0, 1) and (φ(u′))′ ≤ 0 on [0, 1], one has

u(t) ≥ (1− c)‖u‖∞, for all t ∈ [0, c]. (2.3.16)

For our first result we make the following assumptions:

(A1) φ : (−a, a)→ (−b, b), 0 < a, b ≤ ∞ is an increasing homeomorphism such that φ(0) = 0;

(A2) f : [0, 1] × R+ → R+ is continuous, f(t, .) is nondecreasing on R+ for each t ∈ [0, 1], and

f (t, x) < b for all t ∈ [0, 1] and x ∈ R+.

Theorem 2.3.2 Let the conditions (A1) and (A2) hold and assume that there exist c, α, β > 0

with c < 1 and α 6= β such that

Φ(α) := −
∫ c

0

φ−1

(
−
∫ τ

0

f(s, (1− c)α) ds

)
dτ > α, (2.3.17)

Ψ(β) := −
∫ 1

0

φ−1

(
−
∫ τ

0

f(s, β) ds

)
dτ < β. (2.3.18)

Then (2.3.10) has at least one positive solution u with r ≤ ‖u‖∞ ≤ R, where r = min{α, β},
R = max{α, β}.

The next result is about the existence of at least one pair of numbers (α, β).

Theorem 2.3.3 Let (A1) and (A2) hold and assume that one of the following conditions is

satisfied:

(i) lim supλ→∞
Φ(λ)

λ
> 1 and lim infλ→0

Ψ(λ)

λ
< 1;

(ii) lim supλ→0

Φ(λ)

λ
> 1 and lim infλ→∞

Ψ(λ)

λ
< 1.

Then (2.3.10) has at least one positive solution.
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2.3.2 A multiplicity result

The next result is about a sequence of positive solutions of the problem 2.3.10, whose existence is

guaranteed by the oscillations of f towards infinity or zero.

Theorem 2.3.4 Let (A1) and (A2) hold. If the condition

(iii) lim supλ→∞
Φ(λ)

λ
> 1 and lim infλ→∞

Ψ(λ)

λ
< 1

holds, then (2.3.10) has a sequence of positive solutions (un)n≥1 such that ‖un‖∞ → ∞ as

n→∞.
If the condition

(iv) lim supλ→0

Φ(λ)

λ
> 1 and lim infλ→0

Ψ(λ)

λ
< 1

holds, then (2.3.10) has a sequence of positive solutions (un)n≥1 such that ‖un‖∞ → 0 as

n→∞.

2.3.3 Examples

Example 2.3.5 Consider the problem (2.3.12) where

f : [0, 1]× R+ → R+, f(t, x) =
γx

x+ δ
(2.3.19)

and γ, δ > 0. In this case a = ∞, b = 1 and one can easily check that the condition (A2),

particularly, the inequality f (t, x) < 1, holds if and only if γ ≤ 1. Direct computation shows that

Φ(α) =
1−
√

1−A2c2

A
, Ψ (β) =

1−
√

1−B2

B
,

where

A =
γ (1− c)α

(1− c)α+ δ
, B =

γβ

β + δ
. (2.3.20)

Now it is easy to see that

lim
λ→0

Φ(λ)

λ
=
γ(1− c)c2

2δ
and lim

λ→∞

Ψ(λ)

λ
= 0. (2.3.21)

Hence the condition (ii) from Theorem 2.3.3 is satisfied if [γ(1− c)c2]/2δ > 1. Thus, if

δ < γ
(1− c)c2

2
and γ ≤ 1,

then the problem (2.3.12) has at least one positive solution.

Example 2.3.6 Consider the problem (2.3.13) for the same function (2.3.19). In this case a = 1,

b =∞ and the condition (A2) holds for any γ, δ > 0. We have

Φ(α) =

√
1 +A2c2 − 1

A
, Ψ (β) =

√
1 +B2 − 1

B
,
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where A,B are given by (2.3.20), and the limits (2.3.21) also hold. Thus, if

δ < γ
(1− c)c2

2
and γ > 0,

then the problem (2.3.13) has at least one positive solution.

Example 2.3.7 Consider the problem (2.3.12) where, this time

f : [0, 1]× R+ → R+, f(t, x) =
γ
√
x

δ +
√
x

(2.3.22)

and γ, δ > 0. In this case a = ∞, b = 1 and one can easily check that the condition (A2),

particularly, the inequality f (t, x) < 1, holds if and only if γ ≤ 1. Direct computation shows that

Φ(α) =
1−
√

1−A2c2

A
, Ψ (β) =

1−
√

1−B2c2

B
,

where

A =
γ
√

(1− c)α√
(1− c)α+ δ

, B =
γ
√
β√

β + δ
. (2.3.23)

Now it is easy to see that

lim
λ→0

Φ(λ)

λ
=∞ and lim

λ→∞

Ψ(λ)

λ
= 0. (2.3.24)

Hence the condition (ii) from Theorem 2.3.3 is satisfied. Thus the problem (2.3.12) has at least

one positive solution.

Example 2.3.8 Consider the problem (2.3.13) for the same function (2.3.22). In this case a = 1,

b =∞ and the condition (A2) holds for any γ, δ > 0. We have

Φ(α) =

√
1 +A2c2 − 1

A
, Ψ (β) =

√
1 +B2c2 − 1

B
,

where A,B are given by (2.3.23), and the limits (2.3.24) also hold. Thus the problem (2.3.13) has

at least one positive solution.

2.4 The Dirichlet BVP for φ-Laplace equations

In this section, we focus on the existence, localization and multiplicity of positive solutions for the

following Dirichlet boundary value problem{
(φ (u′))

′
+ f (t, u) = 0, 0 < t < 1

u (0) = u (1) = 0,
(2.4.25)

where φ is a homeomorphism from (−a, a) to R, 0 < a ≤ ∞.
Under these assumptions there are two basic models (see C. Bereanu, P. Jebelean and J.

Mawhin [11], S.-S. Chen and Z.-H. Ma [20]):
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(1) For a =∞ we have the p-Laplacian operator,

φ(u) = |u|p−2u, with p > 1.

(2) For a = 1 we have the curvature operator in Minkowski space,

φ(u) =
u√

1− u2
.

2.4.1 Existence and localization results

In this subsection, we prove existence of positive solutions for the problem (2.4.25). We make the

following assumptions: φ : (−a, a) → R, 0 < a ≤ ∞ is an increasing homeomorphism such that

φ(0) = 0 and f : [0, 1]× R+ → R+ is a continuous function.

In order to obtain the equivalent integral equation to the problem (2.4.25), let us first consider

the problem: {
(φ (u′))

′
+ h (t) = 0, 0 < t < 1

u (0) = u (1) = 0,
(2.4.26)

where h ∈ C[0, 1]. The integral equation equivalent to the problem (2.4.26) is

u(t) =

∫ t

0

φ−1

(
b−

∫ τ

0

h(s) ds

)
dτ, (2.4.27)

where b = φ(u′(0)). According to Lemma 1.3.1 (given by C. Bereanu and J. Mawhin [7]), there

exists a unique b = b(h). In addition, the mapping b : C[0, 1]→ R is continuous and takes bounded

sets into bounded sets.

Taking this into account, for all t ∈ [0, 1] we may define the integral operator S : L1[0, 1] →
C1[0, 1] by

(Sh)(t) =

∫ t

0

φ−1

(
b(h)−

∫ τ

0

h(s) ds

)
dτ, (2.4.28)

which has the following properties:

(a) For each h ≥ 0, Sh ≥ 0;

(b) If h1 ≥ h2 ≥ 0 then Sh1 ≥ Sh2.

Now, returning to our problem (2.4.25), we have its equivalence to the integral equation

u = S ◦ F (u), (2.4.29)

where F (u) = f(·, u).

Next, we may define the integral operator N : C([0, 1];R+)→ C([0, 1];R+) by

N(u)(t) =

∫ t

0

φ−1

(
b−

∫ τ

0

f(s, u(s)) ds

)
dτ, (2.4.30)

where b = b(f(·, u(·))). Thus, finding positive solutions to (2.4.25) is equivalent to the fixed point

problem for the operator N on C([0, 1];R+). Note that standard arguments based on Ascoli-

Arzela’s theorem, guarantee that N is completely continuous.
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In order to apply Krasnosel’skĭı’s fixed point theorem in cones we need a weak Harnack type

inequality for the differential operator Lu := −(φ(u′))′.

Lemma 2.4.1 For each t0, t1 ∈ (0, 1) with t0 < t1, and any u ∈ C1[0, 1] ∩ C ([0, 1] ;R+) with

u (0) = u (1) = 0, u′ (t) ∈ (−a, a) for every t ∈ [0, 1] , φ ◦ u′ ∈ W 1,1(0, 1) and (φ(u′))′ ≤ 0 a.e. on

[0, 1], one has

u(t) ≥ γ(t)‖u‖∞, for all t ∈ [0, 1], (2.4.31)

where

γ(t) =

min{t0, 1− t1}, for all t ∈ [t0, t1]

0, otherwise.

For our following results we make the assumptions:

(B1) φ : (−a, a)→ R, 0 < a ≤ ∞ is an increasing homeomorphism such that φ(0) = 0;

(B2) f : [0, 1]× R+ → R+ is continuous, f(t, .) is nondecreasing on R+ for each t ∈ [0, 1].

Theorem 2.4.2 Let (B1) and (B2) hold and assume that there exist α, β > 0 with α 6= β such

that

‖Sf(·, γ(·)α)‖∞ > α, (2.4.32)

‖Sf(·, β)‖∞ < β. (2.4.33)

Then (2.4.25) has at least one positive solution u with r ≤ ‖u‖∞ ≤ R, where r = min{α, β},
R = max{α, β}.

The next theorem is about the existence of at least one pair α, β satisfying the conditions

(2.4.32), (2.4.33).

Theorem 2.4.3 Let (B1) and (B2) hold and assume that one of the following conditions is

satisfied:

(i) lim supλ→∞
‖Sf (·, γ(·)λ) ‖∞

λ
> 1 and lim infλ→0

‖Sf (·, λ) ‖∞
λ

< 1;

(ii) lim supλ→0

‖Sf (·, γ(·)λ) ‖∞
λ

> 1 and lim infλ→∞
‖Sf(·, λ)‖∞

λ
< 1.

Then (2.4.25) has at least one positive solution.

2.4.2 A multiplicity result

Theorem 2.4.4 Let (B1) and (B2) hold. If the condition

(iii) lim supλ→∞
‖Sf (·, γ(·)λ) ‖∞

λ
> 1 and lim infλ→∞

‖Sf(·, λ)‖∞
λ

< 1

holds, then (2.4.25) has a sequence of positive solutions (un)n≥1 such that ‖un‖∞ →∞ as n→∞.
If the condition

(iv) lim supλ→0

‖Sf (·, γ(·)λ) ‖∞
λ

> 1 and lim infλ→0
‖Sf(·, λ)‖∞

λ
< 1

holds, then (2.4.25) has a sequence of positive solutions (un)n≥1 such that ‖un‖∞ → 0 as n→∞.
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2.5 The Neumann-Robin BVP for φ-Laplace equations

The aim of this section is to present some new results regarding the existence, localization and

multiplicity of positive solutions to the following problem
(φ (u′))

′
+ f (t, u) = 0, 0 < t < 1

u (0)− au′ (0) = 0

u′ (1) = 0,

(2.5.34)

where a > 0, φ is a homeomorphism from R to (−b, b) and 0 < b ≤ ∞.
According to the related literature C. Bereanu and J. Mawhin [9], C. Bereanu, P. Jebelean

and J. Mawhin [11], A. Cabada and R. L. Pouso [18], S.-S. Chen and Z.-H. Ma [20], there are two

remarkable models in this context:

(1) The p-Laplacian operator, where b =∞ and

φ(u) = |u|p−2u, with p > 1. (2.5.35)

(2) The curvature operator, where b <∞ and

φ(u) =
u√

1 + u2
. (2.5.36)

2.5.1 Existence and localization results

We make the following assumptions: φ : R→ (−b, b), 0 < b ≤ ∞ is an increasing homeomorphism

such that φ(0) = 0 and f : [0, 1]× R+ → R+ is a continuous function with f(t, x) < b.

First we obtain the equivalent integral equation to the problem (2.5.34)

u(t) = aφ−1

(∫ 1

0

f(s, u(s)) ds

)
+

∫ t

0

φ−1

(∫ 1

τ

f(s, u(s)) ds

)
dτ. (2.5.37)

Next, assuming in addition that f (t, x) < b for all t ∈ [0, 1] and x ∈ R+, we may define the

integral operator N : C([0, 1];R+)→ C([0, 1];R+) by

N(u)(t) = aφ−1

(∫ 1

0

f(s, u(s)) ds

)
+

∫ t

0

φ−1

(∫ 1

τ

f(s, u(s)) ds

)
dτ, (2.5.38)

and thus, finding positive solutions to (2.5.34) is equivalent to the fixed point problem for the

operator N on C([0, 1];R+). Note that by standard arguments, N is completely continuous. Let

‖.‖∞ denotes the max norm on C [0, 1] .

In order to apply Krasnosel’skĭı’s fixed point theorem in cones we need a weak Harnack type

inequality for the differential operator Lu := −(φ(u′))′ subjected to the boundary conditions.

Lemma 2.5.1 For each d ∈ (0, 1), and any u ∈ C1[0, 1] ∩ C ([0, 1] ;R+) with u (0) − au′ (0) =

u′ (1) = 0, φ ◦ u′ ∈W 1,1(0, 1) and (φ(u′))′ ≤ 0 a.e. on [0, 1], one has

u(t) ≥ γ(t)‖u‖∞, for all t ∈ [0, 1], (2.5.39)
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where

γ(t) =


a+ d

a+ 1
, for t ∈ [d, 1]

0, for t ∈ [0, d).

For our first result we make the following assumptions:

(C1) φ : R→ (−b, b), 0 < b ≤ ∞ is an increasing homeomorphism such that φ(0) = 0;

(C2) f : [0, 1] × R+ → R+ is continuous, f(t, .) is nondecreasing on R+ for each t ∈ [0, 1] and

f (t, x) < b for all t ∈ [0, 1] and x ∈ R+.

Theorem 2.5.2 Let (C1) and (C2) hold and assume that there exist α, β > 0 with α 6= β such

that

Φ(α) := aφ−1

(∫ 1

0

f(s, γ(s)α) ds

)
+

∫ 1

0

φ−1

(∫ 1

τ

f(s, γ(s)α) ds

)
dτ > α, (2.5.40)

Ψ(β) := aφ−1

(∫ 1

0

f(s, β) ds

)
+

∫ 1

0

φ−1

(∫ 1

τ

f(s, β) ds

)
dτ < β. (2.5.41)

Then (2.5.34) has at least one positive solution u with r ≤ ‖u‖∞ ≤ R, where r = min{α, β},
R = max{α, β}.

Theorem 2.5.3 Let (C1) and (C2) hold and assume that one of the following conditions is

satisfied:

(i) lim supλ→∞
Φ(λ)

λ
> 1 and lim infλ→0

Ψ(λ)

λ
< 1;

(ii) lim supλ→0

Φ(λ)

λ
> 1 and lim infλ→∞

Ψ(λ)

λ
< 1.

Then (2.5.34) has at least one positive solution.

2.5.2 A multiplicity result

The next theorem guarantees the existence of a sequence of positive solutions of the problem

(2.5.34).

Theorem 2.5.4 Let (C1) and (C2) hold. If the condition

(iii) lim supλ→∞
Φ(λ)

λ
> 1 and lim infλ→∞

Ψ(λ)

λ
< 1

holds, then (2.5.34) has a sequence of positive solutions (un)n≥1 such that ‖un‖∞ →∞ as n→∞.
If the condition

(iv) lim supλ→0

Φ(λ)

λ
> 1 and lim infλ→0

Ψ(λ)

λ
< 1

holds, then (2.5.34) has a sequence of positive solutions (un)n≥1 such that ‖un‖∞ → 0 as n→∞.
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2.5.3 Some particular cases

In this subsection, we shall take into consideration some particular cases of the problem (2.5.34).

First, we consider the remarkable model with the p-Laplacian operator (2.5.35). Then problem

(2.5.34) becomes 
(
|u′|p−2

u′
)′

+ f (t, u) = 0, 0 < t < 1

u(0)− au′ (0) = 0

u′ (1) = 0.

(2.5.42)

Now, we shall take into consideration the model with the curvature operator (2.5.36). Then

problem (2.5.34) becomes 

(
u′√

1 + u′2

)′
+ f (t, u) = 0, 0 < t < 1

u(0)− au′ (0) = 0

u′ (1) = 0.

(2.5.43)

2.5.4 Examples

Example 2.5.5 (on (ii), case b <∞) We consider the problem (2.5.43) where

f : [0, 1]× R+ → R+, f(t, x) = f(x) =
x

x+ 1
. (2.5.44)

In this case b = 1 and one can easily check that the condition (C2), particularly, the inequality

f (t, x) < 1 holds. Direct computation shows that

Φ(λ) = A

(
a+ d√
1−A2

+
1− d

1 +
√

1−A2

)
, Ψ (λ) = B

(
a√

1−B2
+

1

1 +
√

1−B2

)
,

where

A =
λ(a+ d)(1− d)

λ(a+ d) + (a+ 1)
, and B =

λ

λ+ 1
. (2.5.45)

Now it is easy to see that

lim
λ→0

Φ(λ)

λ
=

(a+ d)(1− d)(2a+ d+ 1)

2(a+ 1)
and lim

λ→∞

Ψ(λ)

λ
= 0. (2.5.46)

Hence the condition (ii) from Theorem 2.5.3 is satisfied if

C :=
2(a+ 1)

(a+ d)(1− d)(2a+ d+ 1)
< 1,

which holds for sufficiently large a. For example we can choose a = 7 and d = 0.5.

Example 2.5.6 (on (iii), case b =∞) If in (2.5.34) we let φ(u) = u then the conditions (2.5.40)

and (2.5.41) become

Φ(λ) = f

(
a+ d

a+ 1
λ

)(
(1− c)(2a+ d+ 1)

2

)
, Ψ(λ) = f(λ)

(
2a+ 1

2

)
.
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Consider
f : [0, 1]× R+ → R+, f(t, x) = f(x) = mx+ nx sin(p ln(x+ 1)).

In this case b =∞ and the condition (C2) holds if

m ≥ n(p+ 1). (2.5.47)

Now it is easy to see that

lim sup
λ→∞

Φ(λ)

λ
= (m+ n)

(a+ d)(1− d)(2a+ d+ 1)

2(a+ 1)

and

lim inf
λ→∞

Ψ(λ)

λ
= (m− n)

2a+ 1

2
.

Hence the condition (iii) from Theorem 2.5.4 is satisfied if

m+ n > A and m− n < B, (2.5.48)

where

A =
2(a+ 1)

(a+ d)(1− d)(2a+ d+ 1)
and B =

2

2a+ 1
.

For example, conditions (2.5.47) and (2.5.48) hold for

a = 2.5, d = 0.3 m = 0.46, n = 0.15, p = 2.

Example 2.5.7 (on (iv), case b <∞) Consider

φ(u) =
u√

1 + u2

and the function f(t, x) = f(x) which is defined on a small interval (0, ε) by

f(x) = mx+ nx sin

(
p ln

1

x

)
.

Here ε > 0 is chosen such that f(x) < 1 on (0, ε). The function is increasing on (0, ε) if

m ≥ n(p+ 1). (2.5.49)

Here

Φ(λ) = (a+ d)φ−1

(
(1− d)f

(
a+ d

a+ 1
λ

))
+

∫ 1

d

φ−1

(
(1− τ)f

(
a+ d

a+ 1
λ

))
dτ.

Since ∫ 1

d

φ−1

(
(1− τ)f

(
a+ d

a+ 1
λ

))
dτ ≥ 0,

a sufficient condition for Φ(λ) > λ to hold is



2.5. The Neumann-Robin BVP for φ-Laplace equations 27

φ−1

(
(1− d)f

(
a+ d

a+ 1
λ

))
>

λ

a+ d
,

or equivalently

(1− d)f

(
a+ d

a+ 1
λ

)
> φ

(
λ

a+ d

)
.

This gives the condition

f

(
a+ d

a+ 1
λ

)
a+ d

a+ 1
λ

>
a+ 1

(a+ d)2(1− d)

√
1 +

(
λ

a+ d

)2
.

Letting λ→ 0 yields

m+ n >
a+ 1

(a+ d)2(1− d)
.

Also

Ψ(λ) = aφ−1 (f(λ)) +

∫ 1

0

φ−1 ((1− τ)f (λ)) dτ,

and since ∫ 1

0

φ−1 ((1− τ)f (λ)) dτ ≤ φ−1 (f (λ)) ,

a sufficient condition for Ψ(λ) < λ to hold is

φ−1 (f (λ)) <
λ

a+ 1
,

or equivalently

f (λ) < φ

(
λ

a+ 1

)
.

This gives the condition
f (λ)

λ
<

1

(a+ 1)

√
1 +

(
λ

a+ 1

)2
,

which letting λ→ 0 yields

m− n < 1

a+ 1
.

Hence the condition (iv) from Theorem 2.5.4 is satisfied if

m+ n > A and m− n < B, (2.5.50)

where

A =
a+ 1

(a+ d)2(1− d)
and B =

1

a+ 1
,

For example conditions (2.5.49) and (2.5.50) hold for

a = 2.5, d = 0.1, m = 0.43, n = 0.17, p = 1.5.
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Example 2.5.8 (on (iv), case b =∞) We consider φ(u) = u and the function

f : [0, 1]× R+ → R+, f(t, x) = f(x) = mx+ nx sin

(
p ln

1

x

)
,

for x > 0 and f(0) = 0. In this case b =∞ and the condition (C2) holds if

m ≥ n(p+ 1). (2.5.51)

Now it is easy to see that

lim sup
λ→0

Φ(λ)

λ
= (m+ n)

(a+ c)(1− c)(2a+ c+ 1)

2(a+ 1)

and

lim inf
λ→0

Ψ(λ)

λ
= (m− n)

2a+ 1

2
.

Hence the condition (iv) from Theorem 2.5.4 is satisfied if

m+ n > A and m− n < B, (2.5.52)

where

A =
2(a+ 1)

(a+ c)(1− c)(2a+ c+ 1)
and B =

2

2a+ 1
.

For example, conditions (2.5.51) and (2.5.52) hold for

a = 2, d = 0.2, m = 0.54, n = 0.16, p = 2.
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Chapter 3

Positive solutions for some classes

of nonlinear systems

3.1 Overview

Having in mind the problems and techniques that have been considered in Chapter 2, in this

chapter we extend the results from the equations to the general case of systems. The approach is

based on the vector version of Krasnosel’skĭı’s theorem given in R. Precup [78].

3.2 First order differential systems with nonlocal conditions

In this section we consider the following first order differential system with nonlocal boundary

conditions given by linear functionals:

u′1 = f1(t, u1, u2)

u′2 = f2(t, u1, u2)

u1(0)− a1u1(1) = g1[u1]

u2(0)− a2u2(1) = g2[u2]

(3.2.1)

where f1, f2 ∈ C([0, 1]× R2
+;R+); g1, g2 : C[0, 1]→ R are two linear functionals given by

gi[u] =

∫ 1

0

u(s) dγi(s), (3.2.2)

with gi[1] < 1; γi ∈ C1[0, 1] increasing and 0 < ai < 1− gi[1] (i = 1, 2).

We seek nonnegative solutions (u1, u2), u1 ≥ 0, u2 ≥ 0 on [0, 1]. Based on (2.2.5), the problem
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of nonnegative solutions of (3.2.1) is equivalent to the integral system:
u1(t) =

∫ 1

0

G1(t, s)f1(s, u1(s), u2(s)) ds

u2(t) =

∫ 1

0

G2(t, s)f2(s, u1(s), u2(s)) ds,

(3.2.3)

where G1(t, s) and G2(t, s) are the Green’s functions corresponding to the two nonlocal conditions,

Gi(t, s) =

ci[γi(1)− γi(s) + ai] + 1 for 0 ≤ s ≤ t ≤ 1

ci[γi(1)− γi(s) + ai] for 0 ≤ t < s ≤ 1,

where

ci =
1

1− gi[1]− ai
(i = 1, 2).

The following properties are essential for the applicability of Krasnosel’skĭı’s technique:

1) Gi(t, s) ≤ Hi(s), for all t, s ∈ [0, 1], where

Hi(s) = ci[γi(1)− γi(s) + ai] + 1 (i = 1, 2)

2) δiHi(s) ≤ Gi(t, s) for all t, s ∈ [0, 1], where

δi = min
s∈[0,1]

ci[γi(1)− γi(s) + ai]

ci[γi(1)− γi(s) + ai] + 1
(i = 1, 2).

Notice that δi > 0 and δi < 1. Now let N : C([0, 1];R2
+) → C([0, 1];R2

+), N = (N1, N2) be

defined by

Ni(u1, u2)(t) =

∫ 1

0

Gi(t, s)fi(s, u1(s), u2(s)) ds (i = 1, 2).

The above properties of the Green’s functions imply that for any t, t∗ ∈ [0, 1], one has:

Ni(u1, u2)(t) ≥ δiNi(u1, u2)(t∗).

This yields the estimation from below

Ni(u1, u2)(t) ≥ δi‖Ni(u1, u2)‖∞ for all t ∈ [0, 1] (i = 1, 2) (3.2.4)

and any nonnegative functions u1, u2 ∈ C[0, 1].

Based on these estimations we define the cones

Ki = {ui ∈ C[0, 1] : ui(t) ≥ δi‖ui‖∞, for all t ∈ [0, 1]} (i = 1, 2), (3.2.5)

and the product cone K := K1 × K2 in C([0, 1];R2). Due to (3.2.4) we have the invariance

property N(K) ⊂ K.

Therefore, the problem of nonnegative solutions of (3.2.1) is equivalent to the fixed point problem

u = Nu, u ∈ K, for the self-mapping N of K. Note that the continuity of f1, f2 implies the

complete continuity of N by standard arguments based on Ascoli-Arzela’s theorem.

Notice that (3.2.4) represents a weak Harnack type inequality for the nonnegative super

solutions of the problem (3.2.1).
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3.2.1 Existence and localization results

Theorem 3.2.1 Assume that there exist αi, βi > 0 with αi 6= βi, i = 1, 2, such that

A1λ1 > α1, B1Λ1 < β1,

A2λ2 > α2, B2Λ2 < β2,
(3.2.6)

where

Ai =

∫ 1

0

Gi(t
∗, s) ds, for a chosen point t∗ ∈ [0, 1],

Bi = max
0≤t≤1

∫ 1

0

Gi(t, s) ds,

λ1 = min{f1(t, u1, u2) : 0 ≤ t ≤ 1, δ1α1 ≤ u1 ≤ α1, δ2r2 ≤ u2 ≤ R2},

λ2 = min{f2(t, u1, u2) : 0 ≤ t ≤ 1, δ1r1 ≤ u1 ≤ R1, δ2α2 ≤ u2 ≤ α2},

Λ1 = max{f1(t, u1, u2) : 0 ≤ t ≤ 1, δ1β1 ≤ u1 ≤ β1, δ2r2 ≤ u2 ≤ R2},

Λ2 = max{f2(t, u1, u2) : 0 ≤ t ≤ 1, δ1r1 ≤ u1 ≤ R1, δ2β2 ≤ u2 ≤ β2},

and ri = min{αi, βi}, Ri = max{αi, βi} (i = 1, 2). Then (3.2.1) has at least one positive solution

u = (u1, u2) with ri ≤ ‖ui‖∞ ≤ Ri (i = 1, 2).

In particular, if f1 and f2 do not depend on t, i.e., f1 = f1(u1, u2) and f2 = f2(u1, u2), and

f1, f2 have some monotonicity properties in u1 and u2, then we can specify the numbers λ1, λ2,

Λ1, Λ2 and the conditions (3.2.6) are expressed by values of f1, f2 on only four points. There are

sixteen possible cases.

3.2.2 A multiplicity result

Theorem 3.2.1 guarantees the existence of solutions in an annular set. Clearly, if the assumptions

of Theorem 3.2.1 are satisfied for several disjoint annular sets, then finitely or infinitely many

solutions are obtained (see R. Precup [79]).

Theorem 3.2.2 (A) Let (rj)1≤j≤k, (Rj)1≤j≤k (k ≤ ∞) be increasing finite or infinite sequence

in R2
+, with 0 ≤ rj < Rj and Rj < rj+1 for all j. If the assumptions of Theorem 3.2.1 are satisfied

for each couple (rj , Rj), then (3.2.1) has k (respectively, when k = ∞, an infinite sequence of)

distinct positive solutions.

(B) Let (rj)j≥1, (Rj)j≥1 be decreasing infinite sequence with 0 < rj < Rj and Rj < rj+1 for

all j. If the assumptions of Theorem 3.2.1 are satisfied for each couple (rj , Rj), then (3.2.1) has

an infinite sequence of distinct positive solutions.

3.2.3 Examples

Example 3.2.3 Let

fi(u1, u2) =
1

15

√
u1 + u2 + 1, (i = 1, 2),
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and

γ1(t) =
1

2
t, γ2(t) =

3

4
t, a1 =

1

4
, a2 =

1

8
.

Then (3.2.1) becomes 

u′1 =
1

15

√
u1 + u2 + 1

u′2 =
1

15

√
u1 + u2 + 1

u1(0)− 1

4
u1(1) =

1

2

∫ 1

0

u1(t) dt

u2(0)− 1

8
u2(1) =

3

4

∫ 1

0

u2(t) dt,

(3.2.7)

or equivalently 
u1(t) =

1

15

∫ 1

0

G1(t, s)
√
u1(s) + u2(s) + 1 ds

u2(t) =
1

15

∫ 1

0

G2(t, s)
√
u1(s) + u2(s) + 1 ds,

(3.2.8)

where G1(t, s) and G2(t, s) are the Green’s functions

G1(t, s) =

6− 4s for 0 ≤ s ≤ t ≤ 1

5− 4s for 0 ≤ t < s ≤ 1
, G2(t, s) =

10− 8s for 0 ≤ s ≤ t ≤ 1

9− 8s for 0 ≤ t < s ≤ 1.

In this case, the constants δ1, δ2 > 0 are δ1 = δ2 =
1

2
=: δ. Now we have to determine Ai and Bi

for i ∈ {1, 2}. We have

A1 =

∫ 1

0

G1(t∗, s) ds =

∫ t∗

0

(6− 4s) ds+

∫ 1

t∗
(5− 4s) ds = t∗ + 3.

If we choose t∗ = 0, then A1 = 3. Also

A2 =

∫ 1

0

G2(t∗, s) ds =

∫ t∗

0

(10− 8s) ds+

∫ 1

t∗
(9− 8s) ds = t∗ + 5,

and if we choose t∗ = 0, then A2 = 5. In addition

B1 = max
0≤t≤1

∫ 1

0

G1(t, s) ds = 4 and B2 = max
0≤t≤1

∫ 1

0

G2(t, s) ds = 6.

In this case f1(u1, u2) and f2(u1, u2) are both nondecreasing in u1 and u2 for u1, u2 ∈ R+. We

choose α1 = α2 =: α, β1 = β2 =: β, with α < β, then r1 = r2 = α, R1 = R2 = β and

λ1 = f1(δα, δα), Λ1 = f1(β, β), λ2 = f2(δα, δα), Λ2 = f2(β, β). The values of α and β will be

precised in what follows. Since

lim
x→∞

fi(x, x)

x
= 0 and lim

x→0

fi(x, x)

x
=∞,
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we may find α small enough and β large enough such that the conditions

fi(δα, δα)

δα
>

1

δAi
,
fi(β, β)

β
<

1

Bi
(i = 1, 2)

are satisfied. For instance, we can choose α = 0, 2 and β = 0, 7.

Hence the following result holds.

Theorem 3.2.4 Under the above assumptions, the system (3.2.7) has at least one positive solution

u = (u1, u2) with 0, 2 < ‖ui‖∞ < 0, 7 (i = 1, 2).

Example 3.2.5 Let

f1(u1, u2) =
1

15

√
u1 + u2 + 1, f2(u1, u2) =

1

(2 + u2
1)(4 + u2

2)
,

and

γ1(t) =
1

2
t, γ2(t) =

3

4
t, a1 =

1

4
, a2 =

1

8
.

Then (3.2.1) becomes 

u′1 =
1

15

√
u1 + u2 + 1

u′2 =
1

(2 + u2
1)(4 + u2

2)

u1(0)− 1

4
u1(1) =

1

2

∫ 1

0

u1(t) dt

u2(0)− 1

8
u2(1) =

3

4

∫ 1

0

u2(t) dt,

(3.2.9)

or equivalently 
u1(t) =

1

15

∫ 1

0

G1(t, s)
√
u1(s) + u2(s) + 1 ds

u2(t) =

∫ 1

0

G2(t, s)
1

(2 + u1(s)2)(4 + u2(s)2)
ds.

(3.2.10)

The Green’s functions Gi(t, s) and the values of δi, Ai, Bi (i = 1, 2) are the same from the Example

3.2.3. In this case f1(u1, u2) is nondecreasing in u1 and u2, while f2(u1, u2) is nonincreasing in u1

and u2, for u1, u2 ∈ R+. We choose α1 = α2 =: α, β1 = β2 =: β, with α < β. Then r1 = r2 = α,

R1 = R2 = β and λ1 = f1(δα, δα), Λ1 = f1(β, β), λ2 = f2(β, α), Λ2 = f2(δα, δβ), where α and β

will be precised in what follows. Since

lim
y→∞

f1(y, y)

y
= 0 and lim

y→∞

f2(x, y)

y
= 0,

uniformly in x ≥ 0, we may find β > 0 large enough such that

f1(β, β)

β
<

1

B1
,
f2(δα, δβ)

δβ
<

1

δB2
.
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And since

lim
x→0

f1(x, x)

x
=∞ and lim

x→0

f2(y, x)

x
= 0,

with β fixed as above, we choose α small enough such that

f1(δα, δα)

δα
>

1

δA1
,
f2(β, α)

α
>

1

A2
.

For example, we can choose β = 0, 9 and α = 0, 2.

Hence the following result holds.

Theorem 3.2.6 Under the above assumptions, the system (3.2.9) has at least one positive solution

u = (u1, u2) with 0, 2 < ‖ui‖∞ < 0, 9 (i = 1, 2).

3.3 The Dirichlet-Neumann BVP for φ-Laplace systems

The problem (2.3.10) can be considered as a particular case, as n = 1, of the corresponding

problem for an n-dimensional system,{
(φi (u′i))

′
+ fi (t, u1, u2, ..., un) = 0, 0 < t < 1

u′i (0) = ui (1) = 0 (i = 1, 2, ..., n) .
(3.3.11)

For any index i ∈ {1, 2, ..., n} , we shall say that the homeomorphism φi : (−ai, ai)→ (−bi, bi)
satisfies (A1) if φi is increasing and φi(0) = 0, and that the continuous function fi : [0, 1]×Rn+ →
R+ satisfies (A2) if for each t ∈ [0, 1] , fi(t, x1, ..., xn) is nondecreasing on R+ with respect to any

variable xj , j = 1, 2, ..., n, and fi (t, x) < bi for all t ∈ [0, 1] and x ∈ Rn+.
Under these assumptions problem (3.3.11) is equivalent to the integral system

ui(t) = −
∫ 1

t

φ−1
i

[
−
∫ τ

0

fi(s, u(s)) ds

]
dτ (i = 1, 2, ..., n) ,

where u = (u1, u2, ..., un) .

According to Lemma 2.3.1, for each i and any constant ci ∈ (0, 1) , a weak Harnack type

inequality holds for the differential operator Liv := −(φi(v
′))′ and the boundary conditions

v′ (0) = v (1) = 0. Based on this we define the cones

Ki = {ui ∈ C([0, 1];R+) : ui(t) ≥ (1− ci)‖ui‖∞, for all t ∈ [0, ci]}, (3.3.12)

for i = 1, 2, ..., n, and take the product cone

K := K1 ×K2 × ...×Kn

in C([0, 1];Rn).
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Let N : C([0, 1];Rn+)→ C([0, 1];Rn+), N = (N1, N2, ..., Nn) be defined by

Ni(u)(t) = −
∫ 1

t

φ−1
i

[
−
∫ τ

0

fi(s, u(s)) ds

]
dτ (i = 1, 2, ..., n) .

If uj ∈ Kj for each j, then fi(s, u(s)) ≥ 0 and from Lemma 2.3.1, one has Ni(u) ∈ Ki. Thus the

cone K is invariant by N. Moreover, the operator N is completely continuous since, by standard

arguments, the components Ni are completely continuous.

3.3.1 Existence and localization results

The following result is a generalization of Theorem 2.3.2.

Theorem 3.3.1 Let φi, fi satisfy (A1) and (A2) for i = 1, 2, ..., n. Assume that there exist ci,

αi, βi > 0 with ci < 1 and αi 6= βi such that

Φi(α) := −
∫ ci

0

φ−1
i

(
−
∫ τ

0

fi(s, (1− c1)α1, ..., (1− cn)αn) ds

)
dτ > αi, (3.3.13)

Ψi(β) := −
∫ 1

0

φ−1
i

(
−
∫ τ

0

fi(s, β) ds

)
dτ < βi, (3.3.14)

for i = 1, 2, ..., n, where α = (α1, α2, ..., αn) and β = (β1, β2, ..., βn) . Then (3.3.11) has at

least one positive solution u = (u1, u2, ..., un) with ri ≤ ‖ui‖∞ ≤ Ri, where ri = min{αi, βi},
Ri = max{αi, βi}, i = 1, 2, ..., n.

We shall say that for a given index i, the condition (i) from Theorem 2.3.3 holds if for every

λ1, λ2, ..., λi−1 > 0,

lim sup
λi→∞

Φi(λ)

λi
> 1 and lim inf

λi→0

Ψi(λ)

λi
< 1,

uniformly with respect to λi+1, λi+2, ..., λn ∈ (0,∞) . Here by λ we mean (λ1, λ2,...,λn). We shall

understand the condition (ii) in a similar manner. Analogously, we say that condition (iii) from

Theorem 2.3.4 holds for some index i, if for every λ1, λ2, ..., λi−1 > 0,

lim sup
λi→∞

Φi(λ)

λi
> 1 and lim inf

λi→∞

Ψi(λ)

λi
< 1,

uniformly with respect to λi+1, λi+2, ..., λn ∈ (0,∞) . The condition (iv) is understood in a similar

manner.

3.3.2 A multiplicity result

In this subsection we give the following theorem regarding the existence of a sequence of positive

solutions to the problem (3.3.11).

Theorem 3.3.2 Let φi, fi satisfy (A1) and (A2) for every i = 1, 2, ..., n. Assume that the set of

indices I = {1, 2, ..., n} admits the partition I = I1 ∪ I2 ∪ I3 ∪ I4, Ij ∩ Ik = ∅ for j 6= k, such
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that condition (i) holds for every i ∈ I1, condition (ii) holds for every i ∈ I2, condition (iii) holds

for every i ∈ I3, and condition (iv) holds for every i ∈ I4. If I3 6= ∅ or I4 6= ∅, then the problem

(3.3.11) has a sequence of positive solutions.

3.4 The Dirichlet BVP for φ-Laplace systems

In this section we study the following problem for an n-dimensional system,{
(φi (u′i))

′
+ fi (t, u1, u2, ..., un) = 0, 0 < t < 1

ui (0) = ui (1) = 0 (i = 1, 2, ..., n) .
(3.4.15)

We shall allow the homeomorphisms φi have different domains, namely φi : (−ai, ai) → R,
0 < ai ≤ ∞ and we shall say that (B1) holds if φi is increasing and φi(0) = 0. The continuous

function fi : [0, 1]× Rn+ → R+ satisfies (B2) if for each t ∈ [0, 1] , fi(t, x1, ..., xn) is nondecreasing

on R+ with respect to any variable xj , j = 1, 2, ..., n.

Under these assumptions, problem (3.4.15) is equivalent to the integral system

ui(t) =

∫ t

0

φ−1
i

(
bi −

∫ τ

0

fi(s, u(s)) ds

)
dτ (i = 1, 2, ..., n) ,

where u = (u1, u2, ..., un) and bi = bi(fi(·, u(·))).
According to Lemma 2.4.1, for each i a weak Harnack type inequality holds for the differential

operator Liv := −(φi(v
′))′ and the boundary conditions v (0) = v (1) = 0. Based on this we define

the cones

Ki ={ui ∈ C([0, 1];R+) : ui(0) = ui(1) = 0 and ui(t) ≥ γi(t)‖ui‖∞,

for all t ∈ [0, 1]},
(3.4.16)

for i = 1, 2, ..., n. We note that the functions γi are given by Lemma 2.4.1 for possibly different

subintervals [t0, t1]. Now we consider the product cone

K := K1 ×K2 × ...×Kn

in C([0, 1];Rn).

Let N : C([0, 1];Rn+)→ C([0, 1];Rn+), N = (N1, N2, ..., Nn) be defined by

Ni(u)(t) =

∫ t

0

φ−1
i

(
bi −

∫ τ

0

fi(s, u(s)) ds

)
dτ (i = 1, 2, ..., n) .

If uj ∈ Kj for each j, then fi(s, u(s)) ≥ 0 and from Lemma 2.4.1, one has Ni(u) ∈ Ki. Thus the

cone K is invariant by N.
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Existence and localization results

The following result guarantees the existence of positive solutions to the problem (3.4.15) and

their component-wise localization.

Theorem 3.4.1 Let φi, fi satisfy (B1) and (B2) for i = 1, 2, ..., n. Assume that there exist αi,

βi > 0 with αi 6= βi such that

‖Sfi(·, γ1(·)α1, ..., γn(·)αn)‖∞ > αi, (3.4.17)

‖Sfi(·, β)‖∞ < βi, (3.4.18)

for i = 1, 2, ..., n, where α = (α1, α2, ..., αn), β = (β1, β2, ..., βn) and S is given by (2.4.28).

Then (3.4.15) has at least one positive solution u = (u1, u2, ..., un) with ri ≤ ‖ui‖∞ ≤ Ri, where

ri = min{αi, βi}, Ri = max{αi, βi}, i = 1, 2, ..., n.

3.5 The Neumann-Robin BVP for φ-Laplace systems

This section deals with the following problem for an n-dimensional system
(φi (u′i))

′
+ fi (t, u1, u2, ..., un) = 0, 0 < t < 1

ui (0)− aiu′i (0) = 0

u′i (1) = 0 (i = 1, 2, ..., n) ,

(3.5.19)

where ai > 0. For any index i ∈ {1, 2, ..., n} , we shall say that the homeomorphism φi : R →
(−bi, bi) satisfies (C1) if φi is increasing and φi(0) = 0, and that the continuous function fi :

[0, 1]× Rn+ → R+ satisfies (C2) if for each t ∈ [0, 1] , fi(t, x1, ..., xn) is nondecreasing on R+ with

respect to any variable xj , j = 1, 2, ..., n, and fi(t, x) < bi for all t ∈ [0, 1] and x ∈ Rn+.

Under these assumptions problem (3.5.19) is equivalent to the integral system

ui(t) = aiφ
−1
i

(∫ 1

0

fi(s, u(s)) ds

)
+

∫ t

0

φ−1
i

(∫ 1

τ

fi(s, u(s)) ds

)
dτ,

for i = 1, 2, ..., n and u = (u1, u2, ..., un).

According to Lemma 2.5.1, for each i and any constant di ∈ (0, 1) , a weak Harnack type

inequality holds for the differential operator Liv := −(φi(v
′))′ and the boundary conditions v (0)−

av′ (0) = v′ (1) = 0. Based on this result we define the cones

Ki ={ui ∈ C([0, 1];R+) : ui (0)− aiu′i (0) = u′i (1) = 0 and ui(t) ≥ γi(t)‖ui‖∞,

for all t ∈ [0, 1]},

for i = 1, 2, ..., n. We note that the functions γi are given by Lemma 2.5.1 for possibly different di

and ai. Now we consider the product cone K := K1 ×K2 × ...×Kn in C([0, 1];Rn).
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Let N : C([0, 1];Rn+)→ C([0, 1];Rn+), N = (N1, N2, ..., Nn) be defined by

Ni(u)(t) = aiφ
−1
i

(∫ 1

0

fi(s, u(s)) ds

)
+

∫ t

0

φ−1
i

(∫ 1

τ

fi(s, u(s)) ds

)
dτ,

for i = 1, 2, ..., n.

If uj ∈ Kj for each j, then fi(s, u(s)) ≥ 0 and from Lemma 2.5.1, one has Ni(u) ∈ Ki. Thus the

cone K is invariant by N. Moreover, the operator N is completely continuous since, by standard

arguments, the components Ni are completely continuous.

Existence and localization results

Theorem 3.5.1 Let φi, fi satisfy (C1) and (C2) for i = 1, 2, ..., n. Assume that there exist ai,

αi, βi > 0 and αi 6= βi such that

Φi(α) := aiφ
−1
i

(∫ 1

0

fi(s, γ1(s)α1, ..., γn(s)αn) ds

)
+

∫ 1

0

φ−1
i

(∫ 1

τ

fi(s, γ1(s)α1, ..., γn(s)αn) ds

)
dτ > αi,

Ψi(β) := aiφ
−1
i

(∫ 1

0

fi(s, β) ds

)
+

∫ 1

0

φ−1
i

(∫ 1

τ

fi(s, β) ds

)
dτ < βi,

for i = 1, 2, ..., n, where α = (α1, α2, ..., αn) and β = (β1, β2, ..., βn) . Then (3.5.19) has at

least one positive solution u = (u1, u2, ..., un) with ri ≤ ‖ui‖∞ ≤ Ri, where ri = min{αi, βi},
Ri = max{αi, βi}, i = 1, 2, ..., n.
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Chapter 4

Abstract theory

4.1 Overview

In this chapter we present an abstract theory regarding equations and systems. We study existence,

localization and multiplicity of positive solutions using Krasnosel’skĭı’s fixed point theorem in

cones.

4.2 The case of equations

We consider the abstract problem Lu = F (u)

u ∈ B,
(4.2.1)

where (X, ‖ · ‖) is a Banach space, L : D(L) ⊂ X → X; F : X → X and B ⊂ X. By a solution

of (4.2.1) we mean an element u ∈ D(L) ∩ B for which Lu = F (u). Next we assume that L is

invertible, i.e., for every v ∈ X there is a unique u ∈ D(L) ∩ B with Lu = v. Then we write the

equivalent equation to the problem (4.2.1),

u = L−1F (u), u ∈ X. (4.2.2)

We look for solutions u in a cone K0 ⊂ X. In what follows we shall call such solutions positive

solutions. To this aim we shall require some additional conditions:

(D1) F is positive and increasing with respect to the ordering induced by K0, i.e.

0 ≤ u ≤ v implies 0 ≤ F (u) ≤ F (v); (4.2.3)

(D2) L is invertible and

0 ≤ u ≤ v implies 0 ≤ L−1u ≤ L−1v; (4.2.4)
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(D3) There exists ψ ∈ K0 − {0}, such that for each u ∈ K0 we have

u ≤ ‖u‖ψ; (4.2.5)

(D4) There exists ϕ ∈ K0 − {0} with ‖ϕ‖ ≤ 1, such that for each u ≥ 0 satisfying Lu ≥ 0, we

have

u ≥ ‖u‖ϕ. (4.2.6)

Note that the symbol ≤ from (4.2.3), (4.2.4), (4.2.5) and (4.2.6) is used to denote the ordering

induced by the cone K0, i.e., u ≤ v if v − u ∈ K0.

Based on the estimates from (D3), (D4) we define a smaller cone:

K = {u ∈ K0 : u ≥ ‖u‖ϕ}. (4.2.7)

Let N : X → X be defined by

N(u) = L−1F (u), (4.2.8)

and thus finding positive solutions in K0 to (4.2.1) is equivalent to the fixed point problem in K0

for the operator N . In what follows the operator N is assumed to be completely continuous.

The following lemma gives the invariance property of N that we need.

Lemma 4.2.1 Assume that the conditions (D1)-(D4) hold. Then N(K) ⊂ K.

4.2.1 Existence and localization results

Theorem 4.2.2 Let the conditions (D1)-(D4) hold and assume that the norm ‖ · ‖ is monotone

with respect to K0, i.e, from 0 ≤ u ≤ v one has ‖u‖ ≤ ‖v‖. Assume, in addition, that there exist

α, β > 0 with α 6= β, such that

‖N(αϕ)‖ > α, (4.2.9)

‖N(βψ)‖ < β. (4.2.10)

Then (4.2.1) has at least one positive solution with r ≤ ‖u‖ ≤ R, where r = min{α, β}, R =

max{α, β}.

Theorem 4.2.3 Let (D1)-(D4) hold and assume that one of the following conditions is satisfied:

(i) lim supλ→∞
‖N(λϕ)‖

λ
> 1 and lim infλ→0

‖N(λψ)‖
λ

< 1;

(ii) lim supλ→0

‖N(λϕ)‖
λ

> 1 and lim infλ→∞
‖N(λψ)‖

λ
< 1.

Then (4.2.1) has at least one positive solution.

4.2.2 A multiplicity result

Theorem 4.2.4 Let (D1)-(D4) hold. If the condition

(iii) lim supλ→∞
‖N(λϕ)‖

λ
> 1 and lim infλ→∞

‖N(λψ)‖
λ

< 1;
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holds, then (4.2.1) has a sequence of positive solutions (un)n≥1 such that ‖un‖ → ∞ as n→∞.
If the condition

(iv) lim supλ→0

‖N(λϕ)‖
λ

> 1 and lim infλ→0
‖N(λψ)‖

λ
< 1;

holds, then (4.2.1) has a sequence of positive solutions (un)n≥1 such that ‖un‖ → 0 as n→∞.

4.3 The case of systems

In this section we study the problem for the n-dimensional systemLiui = Fi(u1, u2, ..., un)

ui ∈ Bi (i = 1, 2, ..., n).
(4.3.11)

We shall assume that for any index i ∈ {1, 2, ..., n}, (Xi, ‖ · ‖i) are Banach spaces, Li : D(Li) ⊂
Xi → Xi, Fi : X → Xi, Bi ⊂ Xi, where X = X1 ×X2 × ... ×Xn. Next we assume that Li are

invertible (i = 1, 2, ..., n). Then we write the equivalent system to the problem (4.3.11)

ui = L−1
i Fi(u), ui ∈ Xi, (4.3.12)

for i = 1, 2, ..., n, where u = (u1, u2, ..., un).

We shall look for solutions u = (u1, u2, ..., un) with ui in a cone Ki
0 ⊂ Xi. To this aim we shall

require some additional conditions:

(D1’) Fi are positive and increasing, i.e.

0 ≤ ui ≤ vi, i = 1, 2, ..., n implies 0 ≤ Fj(u) ≤ Fj(v),

for j = 1, 2, ..., n.

(D2’) Li are invertible and

0 ≤ ui ≤ vi, i = 1, 2, ..., n implies 0 ≤ L−1
i ui ≤ L−1

i vi,

for i = 1, 2, ..., n.

(D3’) There exists ψi ∈ Ki
0 − {0}, such that for each ui ∈ Ki

0 we have

ui ≤ ‖ui‖iψi,

for i = 1, 2, ..., n.

(D4’) There exists ϕi ∈ Ki
0−{0}, with ‖ϕi‖ ≤ 1, such that for each ui ≥ 0 satisfying Liui ≥ 0,

we have

ui ≥ ‖ui‖iϕi,

for i = 1, 2, ..., n.
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Based on these conditions we define the cones

Ki = {v ∈ Ki
0 : v ≥ ‖v‖iϕi}. (4.3.13)

for i = 1, 2, ..., n, and we consider the product cone K := K1 ×K2 × ...×Kn.

Let Ni : X → Xi be defined by

Ni(u) = L−1
i Fi(u), (4.3.14)

for i = 1, 2, ..., n and u = (u1, u2, ..., un). Similarly to Lemma 4.2.1, one can show that the cone

K is invariant by N . In what follows, the operators Ni are assumed to be completely continuous,

which guarantees that N = (N1, N2, ..., Nn) is completely continuous.

Existence and localization results

Theorem 4.3.1 Let the conditions (D1’)-(D4’) hold and assume that the norms ‖ · ‖i are mono-

tone with respect to Ki
0 (i = 1, 2, ..., n). Assume, in addition, that there exist αi, βi > 0 with

αi 6= βi, such that

‖Ni(α1ϕ1, α2ϕ2, ..., αnϕn)‖i > αi (4.3.15)

‖Ni(β1ψ1, β2ψ2, ..., βnψn)‖i < βi, (4.3.16)

for i = 1, 2, ..., n. Then (4.3.11) has at least one solution u = (u1, u2, ..., un) with ui ∈ Ki
0 and

ri ≤ ‖ui‖i ≤ Ri, where ri = min{αi, βi}, Ri = max{αi, βi}, i = 1, 2, ..., n.

We shall say that for a given index i, the condition (i) from Theorem 4.2.3 holds if for every

λ1, λ2, ..., λi−1 > 0,

lim sup
λi→∞

‖Ni(α1ϕ1, α2ϕ2, ..., αnϕn)‖i
λi

> 1

uniformly with respect to λi+1, λi+2, ..., λn ∈ (0, 1), and

lim inf
λi→0

‖Ni(β1ψ1, β2ψ2, ..., βnψn)‖i
λi

< 1,

uniformly with respect to λi+1, λi+2, ..., λn ∈ (0,∞) .

We shall understand the condition (ii) in a similar manner. Analogously, we say that (iii) from

Theorem 4.2.4 holds for some index i, if for every λ1, λ2, ..., λi−1 > 0,

lim sup
λi→∞

‖Ni(α1ϕ1, α2ϕ2, ..., αnϕn)‖i
λi

> 1

and

lim inf
λi→∞

‖Ni(β1ψ1, β2ψ2, ..., βnψn)‖i
λi

< 1,

uniformly with respect to λi+1, λi+2, ..., λn ∈ (0,∞) . The condition (iv) is understood in a similar

manner. Under such type of conditions we may obtain analogous results to Theorems 4.2.3 and

4.2.4, and as consequences, existence and multiplicity results for the system (4.3.11).
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