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• A. Băicoianu, S. Dumitrescu: Data mining meets Economic Analysis: Opportu-
nities and Challenges, Bulletin of the Transilvania University of Braşov, 2010.
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Resume

In the context of the current problems of discrete optimization research, our aim
is to study various types of discrete optimization problems which also apply in practice.
Solving this particular set of problems involves searching for the optimal solution among
a finite or countably infinite array of potential solutions.

This thesis includes information obtained from the authors own research work and
results thus provided were achieved either individually or in collaboration with other
researchers. Such research areas include concrete problems specific to various discrete
optimization fields, such as rectangular two dimensional cutting problems area, three
dimensional bin packing problems area, data mining area and some other further related
areas. Also, the LAD methodology is compared in this thesis with five classification
algorithms used in the machine learning literature, and their implementation in WEKA
and OCTAVE. The comparison aims at exhibiting the fact that LAD is a classification
methodology absolutely comparable with other well-known algorithms in the field of
data mining, which have had even more satisfactory results in some particular cases.

The thesis comprises five chapters, a bibliographical reference (which includes 85 ti-
tles, out of which 17 were written by the author) and three appendices. These appendices
are meant to highlight and sustain the results from chapter four.

Chapter 1. This chapter serves as introduction to this thesis. The aim of this section
of the thesis is to inform the reader on the issues to be assessed within the content section
of the thesis, as well as to provide the necessary documentation for the results obtained
by the author within the covered areas. Furthermore, the introduction will also present
the main contributions of the present research in the field of discrete optimization.

Chapter 2. It contains newly found theoretical results, which have led to the genera-
tion of a set of algorithms: algorithm for solving two dimensional cutting stock problems
by means of the Euclid’s algorithm, algorithm for checking guillotine type restrictions by
means of the decomposition of a graph in connected components, algorithm for checking
guillotine type restrictions when gaps are allowed.

In the first section, we begin our exposure by explaining what the cutting and cover-
ing (packing) problems are and we analyzed the two dimensional cutting stock problem.
We defined one special case of the general two dimensional problem in which all cuts
must go from one edge of the rectangle to be cut to the opposite edge, which is a guillo-
tine type.
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In the second section, our objective was to define some receipts for solving the cut-
ting and covering problem, using a polynomial method based on Euclid’s algorithm for
the greatest common divisor. We improve the complexity by a Greedy variant. The com-
plexity of this method is based on Euclid’s algorithm and Lamé’s theorem. We define
the properties for our algorithm, we construct the set of receipts and we establish that the
construction in one direction of the cutting-covering receipt is a geometrical construction
of Euclid’s algorithm, see Theorems 1 and 2. We were able to conclude the complexity
of the new method based on the number of divisions in Euclid’s algorithm using Lamé’s
theorem. The novelty of this solution is given by using Euclid’s algorithm for solving
this kind of problems. The results within this section can be found in the paper [34].

In the third section, we emphasize the cutting and covering problems with guillotine
restrictions. It is possible to use an analytic method to verify if the obtained pattern is
with guillotine restrictions or not [45]. This method is not so easy to use because the cut-
ting pattern is represented as an array model, that means a large matrix representation.
Using the graph representation of the cutting or covering pattern we give in this section
another analytic method for testing of the guillotine restriction based on the decompo-
sition of a graph in connected components. In [51] we used the graph representation
of the cutting and covering pattern to prove the connection between guillotine and the
connected components of the graph. We started from this connection and we present in
this section an algorithm which can be used to verify the guillotine restrictions in a two
dimensional covering model. We introduced the notions of rectangular covering model,
”guillotine restrictions”, ”downward adjacency”, ”rightward adjacency” and we consid-
ered the graph of downward adjacency and graph of rightward adjacency for defining
the cuts for the rectangular cutting and covering problem. The results from Theorems
13 and 14 suggest an algorithm for the verification of the guillotine restrictions, using
the decomposition of graphs G′d or G′r defined in [44] in connected components. The
novelty for this section is given by the manner of defining the cuts used to pronounce the
algorithm. The correctness of the algorithm follows from the Theorems 13 and 14, that
make the connection between a guillotine cut and the decomposition of the graph G′d or
G′r in connected components. For the determination of the Polish notation we preserve
only one connected component from this decomposition. The algorithm for determina-
tion of the connected components has the complexity O(m), where m is the number of
the arches of the graph attached to the model. So the complexity of V-CUT or H-CUT
procedures defined is also O(m). It follows that the complexity of PREORDER proce-
dure for a rectangular covering model of k items with guillotine restrictions is O(km).
Using the decomposition of graphsG′d orG′r in connected components and the algorithm
defined in [47] we present an extended example for a practical situation.

In the last section, we consider a two dimensional rectangular cutting stock problem
in case of a cutting pattern with gaps. First we present two new graph representations
of the cutting pattern, weighted graph of downward adjacency and weighted graph of
rightward adjacency. Using this kind of representation we propose a method to verify
guillotine restrictions of the pattern which can be applied for cutting-stock pattern with
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gaps but also for the covering pattern without gaps and overlapping. The results from
the Theorem 22 suggest an algorithm for the verification of the guillotine restrictions,
in case of a cutting-stock pattern with gaps. The defined algorithm has as input the
weighted graphs Gd or Gr attached to a rectangular cutting pattern, and the output is the
s-pictural representation of the cutting pattern like a formula in a Polish prefixed form.

The algorithm constructs the syntax tree for the s-pictural representation of the cut-
ting pattern, starting from the root to the leaves procedure PRORD. For every vertex of
the tree it verifies if it is possible to make a vertical cut, procedure VCUT or horizon-
tal cut, HCUT procedure, using an algorithm for the decomposition of a graph in two
components. We note that we can apply this algorithm also in the case of a cutting-stock
pattern without gaps and, of course, in the case of covering pattern with or without gaps.
The correctness of the algorithm follows from the Theorem 22, that makes the connec-
tion between a guillotine cut and the decomposition of a graph in two subgraphs. The
procedure PREORD() represents a preorder traversal of a graph, so the complexity is
O(k), where k is the number of the cutting items. Also, in the procedure VCUT, re-
spectively HCUT we traverse a subgraph of the initial graph. So, the complexity of the
algorithm is O(k2).

Chapter 3. The problem addressed in this chapter is that of three dimensional bin
packing problem and solutions. We consider the rectangular three dimensional bin pack-
ing problem with one finite bin, where the bin is packed with a set of rectangular boxes,
without gaps or overlapping. Starting from a solution of the three dimensional bin pack-
ing model, our objective was to determine an order for the loading the boxes in the bin
so that a box is packed in the bin only if there are no empty spaces down to this box and
the origin of the box is in a fixed position, determinate by the boxes situated in the West
and North neighborhood.

In the first section, there is an introduction to the three dimensional bin packing
problems outlining the presentation of the problem and putting it into context. Before
we proceed with particular algorithms for solving this kind of problems, we gave in this
section some preliminaries definitions and information about the three dimensional bin
packing problem.

Th second section is an extension of one of the previous work regarding the two
dimensional covering problem to a rectangular three dimensional bin packing problem,
where a bin is packed with a set of rectangular boxes, without gaps or overlapping. We
present a kind of topological sorting algorithm for this problem, of linear complexity,
OVERDIAG-3D Algorithm.

By extending the two dimensional covering model, we define in this section three
kinds of adjacency relations, adjacency in the direction of Ox, Oy and Oz, Definitions
23, 25, 27. Starting with these three kinds of adjacency we define three kinds of graphs:
the graph of adjacency in direction Ox, Oy and Oz and we gave a concrete example of
a packing model.

The novelty of this problem is given, on the one hand, by the mathematical models
that we introduce and, on the other hand, by the fact that we use these extended types
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of graphs for this kind of three dimensional bin packing problem. Also, we discovered
some important properties, see Theorems 32, 33. Due the Theorem 33 it is possible to
represent simultaneously these obtained graphs by a single adjacency matrix, a matrix
with elements from the set 0, 1, 2, 3. For any packing model we define a network, a
graph of compound adjacency, Definition 34 and we prove that the graph is acyclic, see
Theorem 35.

To determine a topological order we used a new algorithm, OVERDIAG-3D which is
an extension of a topological sorting algorithm presented in. This algorithm is based on
the particularity of the compound graph defined, respectively on the form of the resulted
matrix, attached to the graph. The authors’ achievements within this section can be
found in paper [56]. It completes the results obtained in [44, 55].

In the third section, we discussed the rectangular three dimensional bin packing
problem, where a bin is loaded with a set of rectangular boxes, without overlapping.
One of the most popular restriction for the solution to the three dimensional bin packing
problem is the guillotine restriction, see Definition 40. Our objective here is to find a
method for verifying if a solution of the bin packing problem has the guillotine con-
strains or not. For this purpose we use a weighed graph representation, Definition 43
of a solution of the problem, the generalization of this kind of representation obtained
by us for two dimensional cutting stock problem in [48, 49, 50]. Theorem 45 introduce
some properties for the weighed graphs attached to the pattern. The results from the
previous theorem suggest an algorithm for the verification of the guillotine restrictions,
in case of the bin-packing pattern with gaps but without overlapping [57]. We remark
that we can apply this algorithm also in case of a cutting-stock pattern without gaps and,
of course, in the case of covering pattern with or without gaps. An extended example is
discussed here and the algorithm iterations are highlighted. The prefix Polish notation
for the resulted syntactic tree is given and the algorithm’s complexity was studied in
[58].

Chapter 4. Our aim for this chapter was to focus on a combinatorial optimization
based data analysis methodology, that is able to perform classification with justification,
Logical Analysis of Data (LAD). The objective is to present this methodology, that is
based on data mining principles, combinatorics, Boolean functions and operational re-
search. In addition, the LAD methodology is compared with the most important classifi-
cation algorithms used in the machine learning literature: C4.5, Random Forest, Support
Vector Machines, Multilayer Perceptron, Logistic regression, and their implementation
in WEKA and OCTAVE, for a greater impact on final results.

In the first section, we briefly presented the LAD methodology, as well as some
basic notions on using WEKA and OCTAVE. Within the same section, we provide general
information on the functions and guiding principles of chosen algorithms, compared to
LAD.

In section ”Computational experiments” we organize the experiments we have achieved,
the steps we followed in doing so together with conclusions we have drawn following
LAD testing and the algorithms: C4.5, Random Forest, Support Vector Machines, Mul-



CONTENTS 10

tilayer Perceptron, Logistic regression represent our original contribution to this thesis.
At the end of this section we will analyze results, while also highlighting the advantages
of the LAD methodology and commenting on its advantages and disadvantages as for
more particular cases. Herein, we investigate the accuracy of LAD and we did some
remarks about its execution time and the quality of the results. We outline the manner
in which this classifying methodology works and we have concluded that it has short-
comings, but also strengths compared to the other methods. Thus, our conclusion is
that, when compared to other classification algorithms, the LAD methodology requires
simple notions of discrete optimization, while providing an accurate classification on
considered situations. A significant contribution of the author in this chapter consists
in providing and evaluating computationally the LAD methodology and making some
comparison with some specific machine learning algorithms. We evaluate the coverage
cases - which percentage of the outcome is covered through a solution - in the case of
LAD and other specialized methodologies, as well. Overall, it is to be noticed that LAD
counts as a highly intelligent method of classification.

The tests that we did with LAD, WEKA and OCTAVE prove that LAD methodology is
used like a great data mining tool for classification, justified by:

• The relatively simple concepts LAD models use → see set covering problem,
Boolean functions, simplification of Boolean functions, partial Boolean functions,
simplex method, etc.;

• The efficiency/quality of LAD patterns→ LAD provides, as any other algorithms,
a set of patterns covering both positive and negative observations, but unlike other
considered algorithms, these patterns are justifiable, which means that positive
patterns cover only those observations ratified as positive, without covering any of
the negative patterns, and the other way round. Since the quality and transparency
of patterns are very important characteristics when applying classification algo-
rithms, LAD provides these two features, enabling professionals within different
fields of application to easily understand them;

• The accuracy provided by LAD→ following experiments achieved by the author,
it has been observed that results provided by means of LAD are more specific and
have a greater degree of accuracy, close to or even exceeding the level of accuracy
of other known classification algorithms;

• Time of execution→when based on the processing of Boolean functions, the gen-
eration of valid patterns is a process characterized by a low degree of complexity;

Amazing results obtained in the field of healthcare and not only have encouraged us
to choose this problem classification methodology. Our aim was to observe whether LAD
is as competitive in other fields of interest as in the field of medicine. In order to better
emphasize the results of the LAD methodology, we have achieved a comparative study
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with more specific data mining algorithms. In order for the comparison to be relevant,
the algorithms were chosen so that they share particular features with LAD. The classical
implementation used for LAD was modified by the author, in order to obtain expected
results earlier. Appendix two includes all these changes. The main reasons for the author
of this paper to have chosen WEKA are its versatility and the authors own wish to test all
considered algorithms within a common environment. The implementations in OCTAVE
represent an additional contribution, meant to strengthen results obtained by means of
WEKA.

In the last section of this chapter we described general conclusions on the whole
chapter and some further directions for development. As a perspective on this presented
data mining tool, we would like to extend our previous work on Haskell [12] to some
pattern mining algorithms. We intend to use specific libraries, like HLearn in some spe-
cific problems of data mining, particullary on LAD. An interesting perspective would be
to find a Haskell alternative solution for practical problems basically solved with LAD
methodology.

Chapter 5. In this chapter we highlight the main conclusions and contributions of
this thesis.

Appendix 1 In order to serve as anchorage for out tests, for some of the considered
data mining algorithms, Logical Regression and Multilayer Perceptron, we also carried
out an OCTAVE implementation, using a purely OCTAVE code, with no external libraries
or plugins. The implementation was modular, so that algorithm testing for the datasets
selected might be less intricate.

Appendix 2 This Appendix is meant to highlight the changes the author underwent
on the existing LAD processing tool. We remind here that the adaptations of the original
application were:

• converting the application in order that it could be used in Windows (the original
application was developed for Linux)

• converting the application so that it becomes a console application, not a command
line application

• the optimal rewriting in C + + of some methods (dynamic allocation instead of
static allocation, we change the parameters of some functions, in those cases where
they had more than four parameters, we changed some structures in classes and
we wrote some Object-oriented programming modules)

• we added some new necessary methods, like the one for calculating standard de-
viation

• additionally, because k-folding method is the most frequently used cross-validation
technique, we evaluate the accuracy of LAD using one random 10-fold cross-
validation.
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Appendix 3 is meant to highlight and sustain the results from chapter four.
The original contributions in this thesis are:
In Chapter 2:

• the algorithm for solving the cutting and covering problem, using a polynomial
method based on Euclid’s algorithm for the greatest common divisor. We improve
the complexity by a Greedy variant. The complexity of this method is based on
Euclid’s algorithm and Lamé’s theorem 1. We define the properties for our algo-
rithm, we construct the set of receipts and we establish that the construction in one
direction of the cutting-covering receipt is a geometrical construction of Euclid’s
algorithm, see Theorems 1 and 2. The novelty of this solution is given by using
Euclid’s algorithm for solving this kind of problems.

• the results from Theorems 13 and 14 suggest an algorithm for the verification of
the guillotine restrictions, using the decomposition of graphs in connected com-
ponents. The novelty for this algorithm is given by the manner of defining the cuts
used to pronounce the algorithm. The correctness of the algorithm follows from
the Theorems 13 and 14, that make the connection between a guillotine cut and
the decomposition of the graphs in connected components.

• the results from the Theorem 22 suggest an algorithm for the verification of the
guillotine restrictions, in case of a cutting-stock pattern with gaps. The defined
algorithm has as input the weighted graphs Gd or Gr attached to a rectangular
cutting pattern, and the output is the s-pictural representation of the cutting pattern
like a formula in a Polish prefixed form. The complexity of the algorithm isO(k2).

In Chapter 3:

• we define three kinds of adjacency relations, adjacency in the direction of Ox, Oy
and Oz, Definitions 23, 25, 27. Starting with these three kinds of adjacency we
define three kinds of graphs: the graph of adjacency in direction Ox, Oy and Oz
and we gave a concrete example of a packing model.

• we introduce new mathematical models, see Theorems 32, 33 and we discovered
some important properties. Due the Theorem 33 it is possible to represent simul-
taneously these obtained graphs by a single adjacency matrix, a matrix with ele-
ments from the set 0, 1, 2, 3. For any packing model we define a network, a graph
of compound adjacency, Definition 34 and we prove that the graph is acyclic, see
Theorem 35.

• to determine a topological order we used a new algorithm, OVERDIAG-3D which
is an extension of a topological sorting algorithm presented in. This algorithm is
based on the particularity of the compound graph defined, respectively on the form
of the resulted matrix, attached to the graph.
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• we use a weighed graph representation, Definition 43 of a solution of the bin
packing problem. Theorem 45 introduce some properties for the weighed graphs
attached to the pattern. The results from the previous theorem suggest an algo-
rithm for the verification of the guillotine restrictions, in case of the bin-packing
pattern with gaps but without overlapping. We remark that we can apply this al-
gorithm also in case of a cutting-stock pattern without gaps and, of course, in the
case of covering pattern with or without gaps. An extended example is discussed
here and the algorithm iterations are highlighted. The prefix Polish notation for
the resulted syntactic tree is given and the algorithm’s complexity was studied.

In Chapter 4, after having achieved a set of changes with the classical implementa-
tion technique used for LAD, a comparative study between LAD and five classification
algorithms, by means of WEKA and OCTAVE. In view of an accurate and complete com-
parison between these algorithms and the LAD methodology, we have taken into consid-
eration two main comparison directions: default parameters, where we compared results
obtained with LAD with those results obtained with WEKA (for C4.5, Multilayer Percep-
tron, Logistic, SMO and Random Forest algorithms) - Explorer and optimal parameters,
WEKA provides a series of means for automating the process of finding optimal param-
eters for a classifier, Experimenter. From the two comparative perspectives, accuracy
and confusion matrices, LAD represents a methodology which allows comparison with
the given algorithms, sometimes with even better results. The comparison directions
together with all tests and conclusions belong entirely to the author.
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[17] E. Ciurea, L. Ciupală: Algoritmi - Introducere ı̂n algoritmica fluxurilor ı̂n reţele,
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[46] D. Marinescu: A s-picture language for a cutting-stock model with guillotine restrictions,
Bulletin of the Transilvania University of Braşov - seria C, Vol XXXIII 1991 pp. 39-45.
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Chapter 1

Introduction

Just as life is about making decisions, most optimization problems require several
objectives to be achieved, and these are generally conflicting. Thus, in order for the
solution to be simpler, these objectives will be regarded as having only one solution to
start with, following that the remaining ones are regarded as constraints.

Operations research, often considered to be a sub field of mathematics, is a discipline
that deals with the application of advanced methods in helping to make better decisions.
It leads to the optimal solutions or near optimal solutions to complex decision-making
problems. It is often concerned with determining the maximum (of profit, performance,
or yield) or minimum (of loss, risk or cost) of some real world objective.

It is well known that the operations research, as it is nowadays, appeared during the
second world war, from the practical necessity to find the more efficient military sources.
We recall that the operations research give a generic answer to the following question: if
we suppose that if the implications of the choice of the elements of a given set is known,
then we should determine the element (better said all the elements) of the set which
satisfies some given conditions such that the result of the above implication is optimal.
Over time, operations research knew a very quick development. Hence, nowadays it has
a lot of branches among which we point out the optimization theory. Optimization theory
includes the calculus of variations, control theory, convex optimization theory, decision
theory, game theory, linear optimization, etc. The study of optimization problems was
closely connected to practical problems.

The scientific results obtained within this thesis were accompanied by a variety of
optimization obstacles, mainly caused by concrete data mining and problem cutting and
covering. It is therefore important to emphasize the justified high ranking of the opti-
mization theory among other mathematical areas, since it provides such impressive array
of applications within more practical fields of science. When confronted with the spe-
cific problem to be solved, we select the method or algorithm which can be used for
solving it, as well as a set of necessary and sufficient conditions for ensuring optimal
solutions for each suggested problem.

20



CHAPTER 1. INTRODUCTION 21

As the title of the thesis indicates, our aim is to study various types of discrete opti-
mization problems which also apply in practice. Solving this particular set of problems
involves searching for the optimal solution among a finite or countably infinite array of
potential solutions. The definition of the theory of optimality considers a set of crite-
rion function meant to be maximized or minimized. All problems studied herein stand
on specific applications to be encountered in real life situations. The solutions may be
combinatorial structures like arrangements, sequences, combinations, choices of objects,
subsets, subgraphs, chains, routes in a network, assignments, schedules of jobs, packing
schemes, etc.

When living in a flat in the city, one of the greatest challenges is finding all the
necessary room for storing various possessions - too many things, too little space. In
the suburbs, this problem is as big of a threat as it is for central city dwellers, since it
is easy to notice that the option of using off-site storage facilities is on a steady rise.
When attempting to summarize this in more metaphorical terms, it would seem that
we are facing an insufficient amount of bins for all storing necessities. Thats where
mathematics comes in to suggest the bin packing problem and its relatives.

The bin packing problem raises the following question: given a finite collection of
n weights w1, w2, w3, ..., wn, and a collection of identical bins with capacity C (which
exceeds the largest of the weights), what is the minimum number k of bins into which
the weights can be placed without exceeding the bin capacity C? Stripped of the math-
ematical formulation, we want to know how few bins are needed to store a collection
of items. This problem, known as the one-dimensional bin packing problem, is one of
many mathematical packing problems which are of both theoretical and applied interest
in mathematics and computer science.

We consider that having the opportunity to study such an impressive field is a real
privilege. This thesis includes information obtained from the authors own research work
and results thus provided were achieved either individually or in collaboration with other
researchers. Such research areas include concrete problems specific to various discrete
optimization fields, such as rectangular two dimensional cutting problems area, three
dimensional bin packing problems area, data mining area and some other further related
areas.

Next, we will refer to the content of this thesis, and we will also provide concise
information about the issues that each of the chapters is to deal with. The thesis consists
of five chapters, the bibliography section and two Appendices. The Appendices are
meant to ensure a deeper understanding of various notions presented in Chapter four,
and to prove the accuracy of different implementations made.

Chapter 1. This chapter serves as introduction to this thesis. The aim of this section
of the thesis is to inform the reader on the issues to be assessed within the content section
of the thesis, as well as to provide the necessary documentation for the results obtained
by the author within the covered areas. Furthermore, the introduction will also present
the main contributions of the present research in the field of discrete optimization.

Chapter 2. This chapter encloses the original results of the authors scientific re-
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search on rectangular two dimensional cutting problems, which can be further referred
to in papers [34, 48, 49, 50, 51, 52, 53].

We begin our exposure by explaining what the cutting and covering (packing) prob-
lems are, according to H. Dyckhoff [24] and we analyzed the two dimensional cutting
stock problem. We defined one special case of the general two dimensional problem in
which all cuts must go from one edge of the rectangle to be cut to the opposite edge,
which is a guillotine type.

In Section ”The generating cutting-covering solutions using Euclid’s algorithm” our
objective was to define some receipts for solving the cutting and covering problem, using
a polynomial method based on Euclid’s algorithm for the greatest common divisor. We
improve the complexity by a Greedy variant. The complexity of this method is based
on Euclid’s algorithm and Lamé’s theorem. We define the properties for our algorithm,
we construct the set of receipts and we establish that the construction in one direction
of the cutting-covering receipt is a geometrical construction of Euclid’s algorithm, see
Theorem 1. We were able to conclude the complexity of the new method based on the
number of divisions in Euclid’s algorithm using Lamé’s theorem.

The novelty of this solution is given by using Euclid’s algorithm for solving this
kind of problems. The results within this section can be found in the paper authored by
P. Iacob, D. Marinescu and A. Băicoianu [34].

In Section ”The determination of the guillotine restrictions for a rectangular covering
model” we emphasize the cutting and covering problems with guillotine restrictions. It
is possible to use an analytic method to verify if the obtained pattern is with guillotine
restrictions or not [45]. This method is not so easy to use because the cutting pattern is
represented as an array model, that means a large matrix representation. Using the graph
representation of the cutting or covering pattern [47, 44] we give in this section another
analytic method for testing of the guillotine restriction based on the decomposition of a
graph in connex components.

In [51] we used the graph representation of the cutting and covering pattern to prove
the connection between guillotine and the connex components of the graph. We started
from this connection and we present in this section an algorithm which can be used to
verify the guillotine restrictions in a two dimensional covering model.

We introduced the notions of rectangular covering model, ”guillotine restrictions”,
”downward adjacency”, ”rightward adjacency” and we considered the graph of down-
ward adjacency and graph of rightward adjacency for defining the cuts for the rectangular
cutting and covering problem. The results from Theorems 13 and 14 suggest an algo-
rithm for the verification of the guillotine restrictions, using the decomposition of graphs
G′d or G′r defined in [44] in connex components. The novelty for this section is given by
the manner of defining the cuts used to pronounce the algorithm. The correctness of the
algorithm follows from the Theorems 13 and 14, that make the connection between a
guillotine cut and the decomposition of the graph G′d or G′r in connex components. For
the determination of the Polish notation we preserve only one connex component from
this decomposition. The algorithm for determination of the connex components has the



CHAPTER 1. INTRODUCTION 23

complexity O(m), where m is the number of the arches [17, 19]. So the complexity
of V-CUT or H-CUT procedures defined is also O(m). It follows that the complexity
of PREORDER procedure for a rectangular covering model of k items with guillotine
restrictions is O(km).

We note that the results obtained within this section complete the results obtained in
[47] and detailed results are found in [51]. Also, the next section completes this section,
giving some extra information about the algorithm and a particular example with all
iterations.

Using the decomposition of graphs G′d or G′r in connex components and the algo-
rithm defined in [47] we present an extended example for a practical situation. The
authors achievements within this section can be found in the paper authored by D. Mari-
nescu, A. Băicoianu [49] and we mention that it completes the results obtained in [47].

In section ”The determination of the guillotine restrictions for a rectangular cutting-
stock pattern” we consider a two dimensional rectangular cutting stock problem in case
of a cutting pattern with gaps. First we present two new graph representations of the cut-
ting pattern, weighted graph of downward adjacency and weighted graph of rightward
adjacency. Using this kind of representation we propose a method to verify guillotine
restrictions of the pattern which can be applied for cutting-stock pattern with gaps but
also for the covering pattern without gaps and overlapping. The results from the Theo-
rem 22 suggest an algorithm for the verification of the guillotine restrictions, in case of
a cutting-stock pattern with gaps.

The defined algorithm has as input the weighted graphs Gd or Gr attached to a
rectangular cutting pattern, and the output is the s-pictural representation of the cutting
pattern like a formula in a Polish prefixed form.

The algorithm constructs the syntax tree for the s-pictural representation of the cut-
ting pattern, starting from the root to the leaves (procedure PRORD). For every vertex
of the tree it verifies if it is possible to make a vertical cut (procedure VCUT) or hori-
zontal cut (HCUT procedure), using an algorithm for the decomposition of a graph in
two components. We note that we can apply this algorithm also in the case of a cutting-
stock pattern without gaps and, of course, in the case of covering pattern with or without
gaps. The correctness of the algorithm follows from the Theorem 22, that makes the
connection between a guillotine cut and the decomposition of a graph in two subgraphs.
The procedure PREORD() represents a preorder traversal of a graph, so the complexity
is O(k) [19], where k is the number of the cutting items. Also, in the procedure VCUT,
respectively HCUT we traverse a subgraph of the initial graph. So, the complexity of
the algorithm is O(k2).

All results revealed within this thesis are fully discussed in the paper written by
D. Marinescu, A. Băicoianu [52]. Using the algorithm presented in [52] we studied a
particular example for which we gave the Polish notation.

Please note that all problems studied within this chapter refer to new approaches
in solving cutting and rectangular problems. In this purpose, we defined various algo-
rithms and we solved a range of specific types of two dimensional rectangular cutting
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and covering problems.
Chapter 3, contains original results of scientific research belonging to the author of

the thesis and can be found in the following papers [56, 59, 57, 58].
The problem addressed in this chapter is that of three dimensional bin packing prob-

lem and solutions. We consider the rectangular three dimensional bin packing problem
with one finite bin, where the bin is packed with a set of rectangular boxes, without gaps
or overlapping. Starting from a solution of the three dimensional bin packing model, our
objective was to determine an order for the loading the boxes in the bin so that a box is
packed in the bin only if there are no empty spaces down to this box and the origin of
the box is in a fixed position, determinate by the boxes situated in the West and North
neighborhood.

In Section ”Background notions concerning three dimensional bin packing prob-
lems” there is an introduction to the three dimensional bin packing problems outlining
the presentation of the problem and putting it into context. Before we proceed with
particular algorithms for solving this kind of problems, we gave in this section some
preliminaries definitions and information about the three dimensional bin packing prob-
lem.

In Section ”A topological order for a rectangular three dimensional bin packing prob-
lem” is an extension of one of the previous work [55] regarding the two dimensional
covering problem to a rectangular three dimensional bin packing problem, where a bin
is packed with a set of rectangular boxes, without gaps or overlapping. We present a kind
of topological sorting algorithm for this problem, of linear complexity, OVERDIAG-3D
Algorithm.

By extending the two dimensional covering model [44], we define in this section
three kinds of adjacency relations, adjacency in the direction of Ox, Oy and Oz, Def-
initions 23, 25, 27. Starting with these three kinds of adjacency we define three kinds
of graphs: the graph of adjacency in direction Ox, Oy and Oz and we gave a concrete
example of a packing model.

The novelty of this problem is given, on the one hand, by the mathematical models
that we introduce and, on the other hand, by the fact that we use these extended types
of graphs for this kind of three dimensional bin packing problem. Also, we discovered
some important properties, see Theorems 32, 33. Due the Theorem 33 it is possible to
represent simultaneously these obtained graphs by a single adjacency matrix, a matrix
with elements from the set 0, 1, 2, 3. For any packing model we define a network, a
graph of compound adjacency, 34 and we prove that the graph is acyclic, see 35.

To determine a topological order we used a new algorithm, OVERDIAG-3D which
is an extension of a topological sorting algorithm presented in [19]. This algorithm is
based on the particularity of the compound graph defined, respectively on the form of
the resulted matrix, attached to the graph. The authors’ achievements within this section
can be found in paper [56]. It completes the results obtained in [44, 55].

In section ”The determination of the guillotine restrictions for a rectangular three
dimensional bin packing pattern” we discussed the rectangular three dimensional bin
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packing problem, where a bin is loaded with a set of rectangular boxes, without over-
lapping. One of the most popular restriction for the solution to the three dimensional
bin packing problem is the guillotine restriction, see 40. Our objective here is to find
a method for verifying if a solution of the bin packing problem has the guillotine con-
strains or not. For this purpose we use a weighed graph representation 43 of a solution of
the problem, the generalization of this kind of representation obtained by us for two di-
mensional cutting stock problem in [48, 49, 50]. Theorem 45 introduce some properties
for the weighed graphs attached to the pattern. The results from the previous theorem
suggest an algorithm for the verification of the guillotine restrictions, in case of the bin-
packing pattern with gaps but without overlapping [57]. We remark that we can apply
this algorithm also in case of a cutting-stock pattern without gaps and, of course, in the
case of covering pattern with or without gaps. An extended example is discussed here
and the algorithm iterations are highlighted. The prefix Polish notation for the resulted
syntactic tree is given and the algorithm’s complexity was studied in [58].

Please note that all results comprised in this chapter are provided in four other aca-
demic papers, the result of either individual or co-authorships. Each of these academic
works advances a series of original perspectives and optimized algorithms for three di-
mensional bin packing problems.

Chapter 4 is concerned with the study of specific methodology in what regards the-
ories such as discrete optimization and data mining, Logical Analysis of Data (LAD).
Our aim was to present a data mining tool, a combinatorial and optimization based data
analysis method, that is able to perform classification. In this chapter we describe and
investigate the performance of novel optimization applications in classification and re-
gression models with LAD. Also, the LAD algorithm is compared in this section with
the main classification algorithms used in the machine learning literature, and their im-
plementation in WEKA [72]. The comparison aims at exhibiting the fact that LAD is a
classification methodology absolutely comparable with other well-known algorithms in
the field of data mining, which have had even more satisfactory results in some particular
cases.

Please note that all statements and results presented herein belong to the author. Part
of them is also to be found in [13] and some in [11].

Finally, in Chapter 5 we highlight the main conclusions and contributions of this
thesis.

The personal contribution of the author in the area of discrete optimization, with ap-
plications in two dimensional cutting problem, three dimensional bin packing problems
and some data mining problems may be highlighted through the following published
papers and a textbook:
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• D. Marinescu, A. Băicoianu: An algorithm for the guillotine restrictions verifica-
tion in a rectangular cutting-stock pattern, WSEAS Transactions on Computers,
Volume 9 Issue 10, Oct. 2010, pp. 1160-1169.
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Chapter 2

Rectangular two dimensional
cutting stock problems

Mathematics applies to real life, for instance when having to study a series of con-
crete and practical aspects from a mathematical standpoint. As already stated in the
introduction to this thesis, the present study was carried out through the analysis of the
cutting stock problem an aspect of utmost importance which bears effects on the profit
of several processing industries.

The cutting stock problem deals with a set of rectangular items and in theory it is
classified as the two dimensional rectangular cutting stock problem. Though having
been widely researched within mathematical programming, the findings of such studies
fail to consider the cutting process in the practical manufacturing phase. Thus, in this
chapter we are to map a set of solutions for the two dimensional rectangular cutting stock
problems, while also considering the constraints of the cutting process.

For the mathematical modeling of the above type of problem and its study we use dif-
ferent mathematical tools and notions. Therefore, for the easier lecturing of the present
thesis, we start by presenting basic notions and results with respect to cutting stock prob-
lems, guillotine cutting patterns, covering models.

2.1 Basic notions concerning cutting and covering problem

Problems of cutting and covering (packing) of concrete or abstract objects appear
under various specifications [24]: cutting-stock problems, knapsack problems, container
and vehicle loading problems, pallet loading, bin-packing, assembly line balancing, etc.

The problem is NP-hard and it generally emerges within disparate production pro-
cesses which spread from home textile to glass, steel, wood or even paper manufacturing
industries. In such cases, rectangular bodies are cut from larger surfaces of bulk mate-
rial. What is more, an increasingly difficult problem can be hence derived - Cutting and
Covering - which involves cutting a larger piece of fabric into several smaller elements

28
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in order to cover a surface without any overlaps or gaps in between.
So far, the cutting stock problem has been a great focus for the fields of computer

science and mathematics, since it enables a wide range of applications in various indus-
tries, as for instance in the case of a managing position within a paper cutting division
in a factory which has to produce rolls of paper of fixed width. How can the manager
tackle the cutting process so that in the end, the last amount of paper goes to waste?
Most definitely, this represents a discrete optimization problem, or more specifically, an
integer linear programming problem, where linear programming is a branch of applied
mathematics which focuses on solving optimization problems.

One such solving method is the simplex method which identifies a basic non optimal
point and gradually advances towards determining increasingly good solutions. When
no further solutions are to be found, the algorithm achieves with the optimal solution.
On the other hand, with the paper roll problem, the issue is to minimize the loss. The
constraints of the problem in this case require that we cut enough rolls of certain dimen-
sions, so as to satisfy the need. First, we should create all possible patterns that might be
cut from a roll. When the orders involve different widths, it is possible that the problem
might include an exponential number of patterns. Consequently, such problem might
prove impossible to formulate, let alone to solve.

Then, a reasonable question to ask is, do we really have to generate all the possible
patterns even before solving the problem? The answer is no. The delayed column gen-
eration method solves the cutting stock problem by starting with just a few patterns. It
generates additional patterns when they are needed. The new patterns are introduced by
solving another optimization problem called the ”knapsack problem”. For solving this
problem, there are numerous methods, among them are branch-and-bound and dynamic
programming. These two problems, the main linear program and the ”knapsack prob-
lem”, are solved in turn until no more patterns can be generated which will reduce the
number of rolls cut.

The two dimensional cutting stock problem requires cutting a plane rectangle into
smaller rectangular pieces of given sizes and values to maximize the sum of the values
of the pieces cut. This version of the problem appears in the problem of cutting steel or
glass plates into required stock sizes to minimize waste. By taking the value of a piece
to be proportional to its area, we can formulate the waste minimization problem as one
of maximizing the value of the pieces cut. The problem also appears in cutting wood
plates to make furniture and paper board to make boxes.

A special case of the general two dimensional cutting problem is one in which all
cuts must go from one edge of the rectangle to be cut to the opposite edge, the cut has
to be of a guillotine type. Some cutting patterns can not be produced by this type of cut.
However, the restriction of guillotine cuts appears very often in practice especially for
cutting of paper and glass.

In practice cutting problems appear in a constrained form, the most usual constraint
being the one that restricts the maximum number of pieces of each type to be cut. In the
one dimensional problem upper bound constraints on the variables can easily be included
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in a dynamic programming algorithm. However, the two dimensional constrained cutting
problem is not amenable to efficient solution by these means.

In what follows, we will study the rectangular two dimensional cutting stock problem
and various solutions for this. We highlight in these next sections the importance of this
practical problem and we present some solutions for it.

The standard formulation for the cutting-stock problem starts with a list ofm orders,
each requiring qj , j = 1, . . . ,m pieces. We then construct a list of all possible com-
binations of cuts, often called patterns, associating with each pattern a positive integer
variable xi representing how many times each pattern is to be used. The linear integer
program is then:

min
n∑

i=1

cixi

s.t.
n∑

i=1

aijxi ≥ qj , ∀j = 1, . . . ,m

xi ≥ 0, integer

where aij is the number of times order j appears in pattern i and ci is the cost ,
often the waste of pattern i. The particular nature of the quantity constraints can lead to
different mathematical characteristics. The above formulation’s quantity constraints are
minimum constraints (at least the given amount of each order must be produced, but pos-
sibly more). When ci = 1 the objective minimizes the number of utilized master items
and, if the constraint for the quantity to be produced is replaced by equality, it is called
the bin packing problem. The most general formulation has two-sided constraints (and
in this case a minimum-waste solution may consume more than the minimum number of
master items):

qj ≤
n∑

i=1

aijxi ≤ Qj , ∀j = 1, . . . ,m

This formulation applies not just to one dimensional problems. Many variations are
possible, including one where the objective is not to minimize the waste, but to maximize
the total value of the produced items, allowing each order to have a different value.

In general, the number of possible patterns grows exponentially as a function of
m, the number of orders. As the number of orders increases, it may therefore become
impractical to enumerate the possible cutting patterns. An alternative approach uses de-
layed column-generation. This method solves the cutting-stock problem by starting with
just a few patterns. It generates additional patterns when they are needed. For the one-
dimensional case, the new patterns are introduced by solving an auxiliary optimization
problem called the knapsack problem, using dual variable information from the linear
programming.
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2.2 The generating cutting-covering solutions using Euclid’s
algorithm

The number of publications in the area of cutting-stock problem has increased con-
siderably over the last two decades. The typology of cutting-stock problems introduced
by H. Dyckhoff [24], 1990 and by P. Sweeney [70], 1992 initially provided an excellent
instrument for the organization and categorization of existing and new literature. These
problems are in fact NP-complete problems. However, over the years some deficien-
cies of this typology have also become evident, which created problems in dealing with
recent developments and prevented it from being accepted more generally.

If we know the dimensions of the pieces then we are dealing with a classical cutting-
stock problem, which can be modeled as a mixed 0 − 1 programming problem [43].
There are also heuristic models, but it is not our study, for details see the papers [18, 69].
Now, if the dimensions of pieces used for covering are unknown then the problem is
more complicated.

Our objective for this section is to present a polynomial method for solving cutting
problems based on Euclid’s algorithm to compute the greatest common divisor. We
improve the complexity by a Greedy variant. The proof of the method’s complexity is
based on Euclid’s algorithm and Lamé’s theorem, see [68], page 228. Using the well-
known Euclid’s algorithm, we gave an original method for extracting the solutions for a
two dimensional problem, namely Euclid’s algorithm.

2.2.1 Problem statement and formulation

Like we mentioned before, the everyday problem that we are taking on here is to
cover a rectangular room with a cover, linoleum or carpet. This material is in a roll of
fixed width and by cutting it with a guillotine we get another rectangle. We want to cover
the room with a minimum number of pieces and to waste a minimum amount of material
(amount of left-overs).

We consider two rectangular surfaces, one of them with the dimensions a, b, the
other one with unknown dimensions, x and y. The optimization problem that we have
here is to obtain the minimum value of y so that we could cover the first rectangle with
smaller pieces from the second one.

2.2.2 Problem solving steps

We want to know how the material with dimensions x and y can be cut to cover a
room of dimensions a and b with the condition (c1):

a ∗ b = x ∗ y.

It is clear that if x = a (or x = b) we have equal rectangles and there is no cutting
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Figure 2.1: Direction of Ox

Figure 2.2: Direction of Oy

problem. Therefore we will assume that we are in the situation:

x < a < b < y.

Practically we may consider only the case where x, a, b, y are integers.
Let m = gcd(a, b, x, y), gcd - greatest common divisor. We may consider the cover

divided in squares of dimension m and any coverage of the room will be a permutation
of these squares. This is a finite number but unacceptably great. We mention that all
these statements can be found in [35].

The method we propose here is based on the following two properties:

1. If we put the cover on the floor overlapping two adjacent sides of the cover over
two adjacent sides of the floor and we cut the remainder of material (that does not
cover the floor), we obtain a new piece of cover and a new piece of floor that have
the same properties described by condition c1.

2. The cover may be put on the floor in two directions (see the example from Figure
2.1 and Figure 2.2).
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Figure 2.3: The obtained binary tree

• A first approach

Keeping the orientation of the pieces in the covering process we have to make a
convention: we shall choose fitting units of lengths on a, b, x, y so:

– the same unit of length on a and x and the same unit of length on b and y;

– the number of units of length on a coincide with the number of units of
length on y and the same condition for b and x;

After we laid out the material in one of the directions, we face the same issue
regarding dimensions smaller than a or b or x or y.

The algorithm (proposed by P. Iacob, D. Marinescu, and C. Luca in [32]) is re-
cursively generating a binary tree: if the initial problem is to cover the rectangle
of dimensions a and b with a cover of dimensions x and y then it is the root
T (a, b, x, y); putting x on a we obtain the right sub-tree with the root T (a −
x, b, x, y− b) and putting x on b we obtain the left sub-tree with the root T (a, b−
x, x, y − a), where a′ = a, b′ = b − x, x′ = x, y′ = y − a, and a′′ = a − x,
b′′ = b, x′′ = x, y′′ = y − b.
But, if a < x then a′′ = a, b′′ = b − y, x′′ = x − a, y′′ = y and if b < x then
a′ = a− x, b′ = b, x′ = x− b and y′ = y.

It is obvious that if a = x or b = x we have already a solution of cutting covering.
As it was shown in [32], the algorithm ends after a finite number of steps. The
cutting design with the smallest number of pieces will be the shortest way from
the root to a leaf. We can detect some situations when growing the y we can cover
the initial rectangle; between them some are Pareto optimum points.

We assume that: R0 = T (a− x, b, x, y − b) and R1 = T (a, b− x, x, y − a). The
zero index means that the material was laid out on the direction of Oy while the
one index 1 value means that material was laid out in the other direction.

Theorem 1. [34] If a > x and b > x then R01 = R10.

Proof. R01 = T (a−x, b−x, x, y−b−a) = T (a−x, b−x, x, y−a−b) = R10.
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Figure 2.4: The solution

So, if a > x and b > x then it doesn’t matter in which of the directions we laid
out the material. Now we are able to give a few cutting and covering solutions on
a O(qa + qb), where a = x ∗ qa + ra and b = x ∗ qb + rb, qa and qb are quotients,
and ra and rb are remainders in these equations.

The construction of the set of solutions:

It is obvious that previous solutions have the same number of pieces, meaning that
we will choose the one corresponding with min(ra, rb). We will proceed in the
same manner with the other solutions having the same number of pieces, choosing
the one with minimal waste (minimal remainder).

We consider the following example, where value of x is given and where we used
the formulas from Figure 2.4

a = 27, b = 16, x = 10.

Taking only the solutions having the same number of pieces and minimal losses
we obtain the solution from Figure 2.6.

In the cases of a < x and b < x we use the algorithm described in [33]. But this
algorithm can also be furthermore optimized. Let us take the following situation
when a

x = 2
3 , then the solution is to divide the cover and the surface into 2 ∗ 3 = 6
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Figure 2.5: Example

Figure 2.6: Some numerical example of solution
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pieces. The solution is obvious. By applying the first method a better solution can
be obtained. We will take the algorithm from [33] and modify it in the following
way:

We choose from table the optimal decomposition of a
x and b

x . For each fraction of
the decomposition the initial step is applied, but the tree is built in one direction,
on the left for the decomposition of a

x , respectively on the right for b
x .

By applying it for our example, we get:
a
x = 27

10 = 5
2 + 1

5 and b
x = 16

10 = 8
5 .

Theorem 2. [34] The construction in one direction of the cutting-covering solu-
tion is a geometrical construction of Euclid’s algorithm for the numbers a and x
where the fraction a

x is irreducible and a < x.

Proof. Let us assume the situation of T (a, b, x). Computing y = a∗b
x , the length

of the cover material, and b′ = y
a = b

x . The surface to cover the material is divided
into rectangles with dimension 1 on the direction of a and b′ on the direction of b
(the material will be laid out with x on a).

The obtained rectangles are aligned in the same direction on the surface to be
covered and on the covering material. We can cut out these rectangles from the
covering material and lay them onto the surface to be covered without any rotation
which would lead us to a solution of a ∗ x pieces and 0 waste according with
[33]. Another solution would be the construction of a binary tree only on the right
side:

The successive dimensions of the covering material and the surface to be covered
are: x, a, r1, r2, , ..., rn, 0, the remainders of the divisions of Euclid’s algorithm.
The number of pieces S =

∑n
i=1 qi will be the sum of the successive quotients

from the same Euclid’s algorithm.

Lemma 3. If a
x is irreductible and a < x then S =

∑n
i=1 qi ≤ a ∗ x+ 1− a2.

Proof. As we showed in the beginning of the previous proof we can have a cutting-
covering solution of a ∗x pieces. If we apply the same method of cutting as in the
previous example - rectangles of dimension 1 respectively b′- but we lay out the
first piece of material without cutting it, remaining of dimension a2, then we will
have a ∗ x + 1 − a2 pieces, and with construction of the binary tree in only one
direction we get the same number of pieces.

• A second approach Uses parts from the first one, taking into account the optimal
decomposition of the fraction a

x . Details in the paper written by P. Iacob, D.
Marinescu, A. Băicoianu [34].
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Figure 2.7: The binary tree, right side

We are now able to conclude the complexity of the new method based on the number
of divisions in Euclid’s algorithm. Lamé’s [68] had found that the complexity is less than
5*(the number of a’s digits). We conclude that the complexity of the new method is:

O(5 ∗MAX(numberOfDigits(ra), numberOfDigits(rb)).

Cutting stock problems have many applications in production processes in paper,
glass, metal and timber cutting industries. There are also unconventional applications,
where covering model is used in the formalization of pattern recognition problems [27].

Finally, our cutting-covering problem is also important for the situations in which
we don’t know the dimensions of the pieces for cutting and covering. For this kind of
problems it is possible to use the second approach which is polynomial and it uses a
small amount of memory for intermediate data storage. It follows that it is faster even
for big integers as input data.

The results within this chapter belong to the author and can be found in the paper
authored by P. Iacob, D. Marinescu and A. Băicoianu, [34].
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2.3 The determination of the guillotine restrictions for a rect-
angular covering model

Many kinds of cutting and covering problems or cutting/covering problems were
considered in the literature with many kinds of constraints depending on technological
restrictions. In the two dimensional or three dimensional applications it is frequently re-
quired that the resulting patterns be guillotine-cuttable, i.e. that the item can be obtained
through a sequence of edge-to-edge cuts parallel to the edges of the support. These kinds
of restrictions are named guillotine restrictions and they are obtained by the technologi-
cal conditions of the cutting or covering process.

For cutting, covering and cutting-covering problems many models and algorithms
are developed such as: formulation as mixed integer programming [37], genetic algo-
rithms [42] or approximation algorithms.

In all of these methods we obtained a pattern or a set of patterns. The guillotine
restrictions are difficult to respect in generating this pattern. So, it is possible to use an
analytic method to verify if the obtained pattern is with guillotine restrictions or not [45].
This method is not so easy to use because the cutting pattern is represented as an array
model, that means a large matrix representation.

Using the graph representation of the cutting or covering pattern [47, 44] we present
here another analytic method for the verification of the guillotine restriction based on the
decomposition of a graph in connex components. Also, starting from this connection,
we propose an algorithm which can be used to verify guillotine restrictions in a two
dimensional covering model.

2.3.1 Problem statement and formulation

Let P , a rectangular plate, characterized by length l and width w. The plate P is
covered with k rectangular items, Ci , i =1, 2, ..., k, from C, the set of the rectangular
items, without gaps or overlapping. An item is characterized by length li and width wi.

Definition 4. A rectangular covering model of P is an arrangement of the k rectangular
items Ci, i =1, 2, ..., k on the supporting plate P , so that P is completely covered by the
components Ci, , i =1, 2, ..., k, without gaps or overlapping.

Let the covering model from Figure 2.8 whereP(340x172), C1(96x47), C2(44x123),
C3(51x59), C4(51x62), C5(110x39), C6(110x59), C7(135x94), C8(72x77), C9(83x77),
C10(89x77).

Definition 5. A rectangular covering model has guillotine restrictions if at every mo-
ment of the cutting process the remaining supporting rectangle is separated in two new
rectangles by a cut from an edge to the opposite edge of the rectangle and the cutting
line is parallel with the two remaining edges.
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Figure 2.8: The rectangular covering model

In the set of the rectangles {C1, C2,. . . , Ck} from the covering model we define a
downwards adjacency relation and a rightwards adjacency relation.

Definition 6. The rectangleCi is downward adjacent with rectangleCj if in the covering
modelCj is to be found downwardCi and their borders have at least two common points.

Definition 7. The rectangleCi is rightward adjacent with rectangleCj if in the covering
model,Cj is to be found rightwardCi and their borders have at least two common points.

Let C = { C1 , C2,..., Ck } and consider Rd, Rr /∈ C, the northern borderline and
the western of the plate P. For any covering model, we can define a graph of downwards
adjacency, Gd, and another one of rightwards adjacency, Gr.

Definition 8. [44] The graph of downward adjacency Gd = (C∪{Rd}, Γd) has as ver-
tices the rectangles C1, C2, ..., Ck and a new vertex Rd symbolizing the northern bor-
derline of the supporting plate P.

The Γd is defined as follows:
Γd(Ci) 3 Cj if Ci is downward adjacent

with Cj

Γd(Rd) 3 Ci if Ci touches the North border
OD of support plate P

Definition 9. [44] The graph of rightward adjacency Gr = (C∪{Rr}, Γr), where Rr

symbolizes the western border.
The Γr is defined as follows:

Γr(Ci) 3 Cj if Ci is rightward adjacent
with Cj

Γr(Rr) 3 Ci if Ci touches the West border
OA of support plate P
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Figure 2.9: The graph Gd corresponding Figure 2.8

Figure 2.10: The graph Gr corresponding Figure 2.8
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Let the covering model from Figure 2.8. The graphs Gd and Gr, are represented in
Figure 2.9 and Figure 2.10.

We remark that in the graphs Gd and Gr the vertex Rd (respectively Rr) is con-
nected by an arch to the vertex Ci if and only if Ci touches the northern (respectively the
western) border of the support P .

Definition 10. [44] Let a covering modelM and the graph of downward adjacencyGd.
We say that the rectangle Ci is situated above the rectangle Cj in the covering modelM
if in the graph of downward adjacency Gd there is a path from Ci to Cj . Similarly, we
say that the rectangle Ci is situated to the left of the rectangle Cj in the covering model
M if in the graph of rightward adjacency Gr there is a path from Ci to Cj .

Remark 11. From [46] it follows that it is possible to represent a rectangular covering
model with guillotine restrictions using an expression with two operations:

1. 	 - the line concatenation, an operation for horizontal cuts;

2. � - the column concatenation, an operation for vertical cuts.

For the rectangular covering model from Example 1 we obtain the following repre-
sentation:

(C1 	 (C2 � (C3 	 C4)))

�

(((C5 	 C6)� C7)	 ((C8 � C9)� C10))

where C1, . . . , C10 are the items from our model.

Remark 12. From the Property 4 from [44] it follows that for two items Ci and Cj from
a covering model there is only one of the following situations:

1. Ci is situated above Cj (there is a path from Ci to Cj in the graph Gd);

2. Cj is situated above Ci (there is a path from Cj to Ci in the graph Gd);

3. Ci is situated to the left of Cj (there is a path from Ci to Cj in the graph Gr);

4. Cj is situated to the left of Ci (there is a path from Cj to Ci in the graph Gr);

5. There is no path between Ci and Cj nor in the graph Gd nor in Gr.
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Figure 2.11: The subgraphs G′d extracted from Gd

2.3.2 Cuts determination

Starting from a rectangular covering model we intend to find a connection between
guillotine restrictions and the two graphs of adjacency, Gd and Gr, attached to the cov-
ering model.

For this purpose we construct two new subgraphs G′d and G′r where:

1. G′d = (C, Γ′d) is obtained from Gd by elimination of the vertex Rd together with
the arches starting from Rd;

2. G′r = (C, Γ′r) is obtained from Gr by elimination of the vertex Rr together with
the arches starting from Rr.

In Figure 2.11 the subgraph G′d for the covering model from 2.8 is presented.
In [47] it is proved that the graph Gd, respectively Gr, is a connex graph. By the

elimination of a vertex together with the arches starting from this vertex it is not sure
that the subgraph G′d, respectively G′r, remain a connex graph.

We will prove that for a model with guillotine restrictions at least one of these sub-
graphs is not a connex graph.

Theorem 13. Let M be a rectangular covering model without gaps and overlapping
and the graph G′d attached toM. In the covering modelM there is a vertical guillotine
cut if and only if in the graph G′d there are at least two connex components.
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Figure 2.12: Particular case

Proof. Necessity. Suppose that the covering modelM has a vertical guillotine cut. That
means the sets of items C can be separated in two subsets, Cl, the set of the vertices
situated to the left of the cut, and Cr, the set of the vertices situated to the right of the
cut.

Let Ci ∈ Cl and Cj ∈ Cr two items situated to the left, respectively to the right of
the cut. Suppose that the graph G′d is connex. It follows that there is a chain between
Ci and Cj in the graph G′d. On this chain there are at least two vertices, Cn, Cm so that
Cn ∈ Cl, Cm ∈ Cr and Cm is downward adjacent with Cn (or Cn is downward adjacent
with Cm), from Definition 7. That means Cm is situated above(downward) Cn and the
items Cm and Cn have at least two common points.

But, in this case, it is impossible to separate Cm from Cn by a vertical cut. So our
supposition that G′d is a connex graph is false.

Sufficiency. Suppose there are two connex components of the graph G′d, Gd1 and
Gd2. Let C1 be the set of the vertices from Gd1 and C2 be the set of the vertices from
Gd2. Let Ci ∈ C1 and Cj ∈ C2 so that Ci is rightward adjacent with Cj . It follows that
there is no chain between Ci and Cj in G′d and of course, no paths.

Suppose that a cut between Ci and Cj intersects an item Ck. This means we have a
situation like in Figure 2.12.

In this case, Ci and Cj are situated above the item Ck in the model M and that
means there are two paths, one path from Ci to Ck and another path from Cj to Ck in
G′d. That means there is a chain between Ci and Cj . But it is impossible because Ci and
Cj belong to two different connex components. It follows that our assumption that a cut
between Ci and Cj intersects an item Ck is false.

So it is possible to separate the modelM in two submodels by a vertical cut.

Theorem 14. LetM be a rectangular covering model and the graphG′r attached toM.
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In the covering modelM there is a horizontal guillotine cut if and only if in the graph
G′r there are at least two connected components.

Proof. The proof is similar with the proof of previous theorem, for vertical cuts.

2.3.3 The algorithm for the verification of the guillotine restrictions

The results from the previous theorems suggest an algorithm for the verification
of the guillotine restrictions, using the decomposition of graphs G′d or G′r in connex
components.

Input data: The graph G′d or G′r attached to a rectangular covering model.
Output data: The s-pictural representation of the covering model like a formula in a

Polish prefixed form.
Method: The algorithm constructs the syntactic tree for the s-pictural representation

of the covering model, defined in Remark 8, starting from the root to the leaves (proce-
dure PREORDER). For every vertex of the tree verifies if it is possible to make a vertical
(procedure V-CUT) or horizontal cut (H-CUT), using an algorithm for the decomposi-
tion of a graph in two components (procedure CONEXCOMP [17], page 36): one is a
connex component and the other is the rest of the graph after extraction of the connex
component. The method ADD() is used for addition of the next member in the Polish
prefixed form.

PROCEDURE PREORDER (G,ADD())
begin

V-CUT(G, err,Gl, Gr);
if err = 0 then

if |G| = 1 then ADD(G);
else ADD(�);

PREORDER(Gl, ADD());
PREORDER(Gr, ADD());

end
else

H-CUT(G, err,Gu, Gd);
if err = 0 then

if |G| = 1 then ADD(G);
else ADD(	);

PREORDER(Gu, ADD());
PREORDER(Gd, ADD());

end
else No guillotine restrictions

end
end
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The procedures for vertical cut and horizontal cut are presented bellow:
PROCEDURE V-CUT(G, err,Gl, Gr)
begin

err = 0;
CONEXCOMP(G, p,Nl, Nr);
if p = 1 then err = 1; ;
else

Gl = Nl;
Gr = Nr;

end
end
PROCEDURE H-CUT(G, err,Gu, Gd)o
begin

err = 0;
CONEXCOMP(G, p,Nu, Nd);
if p = 1 then err = 1; ;
else

Gu = Nu;
Gd = Nd;

end
end
Further, we lay out an example with all iterations for our algorithm. Let us take the

covering model from Figure 2.8 with the extracted subgraphs,G′d andG′r. In Figure 2.13
the first vertical cut of the covering model and the decomposition in two components are
presented: a conex component and the remainder component. In the syntax tree from
Figure 2.14 the conex component is marked by 1, the remainder component is marked by
2 and they are connected using the operation of column concatenation � for the vertical
cut.

Let A = {C1, C2, C3, C4} and B = {C5, C6, C7, C8, C9, C10} be the sets of the
vertices from these two components.

The partial prefix Polish notation for this syntax tree from Figure 2.14 is:

�.

We continue to make vertical or horizontal cuts for the left and right components
from the syntax tree until every components contains only one item from the covering
model.

Using the first component we are doing a horizontal cut in Figure 2.15, so we have
the decomposition of the set A in two sets which are corresponding to the two new
components, one of them contain only the item C1 and another set D = {C2, C3, C4}.
In Figure 2.16 we are adding to the syntax tree the nodes C1 and the component 3 which
are connected using the operation of line concatenation 	 for the horizontal cut.
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Figure 2.13: The first vertical cut

Figure 2.14: The first syntax tree

Figure 2.15: Step2. The first horizontal cut
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Figure 2.16: Step2. The syntax tree

Figure 2.17: Step3. A vertical cut

The partial prefix Polish form for this tree from Figure 2.16 is:

�	 C1.

On the third component we are trying to do a vertical cut, a decomposition of the
set D in 2 sets like in Figure 2.17, so we have other two components. One of these
is a leaf of the syntax tree, C2 and another is the fourth component, let it be the set
E = {C3, C4}, Figure 2.18.

The partial prefix notation associated with the syntax tree from Figure 2.18 is:

�	 C1 � C2.

The last step is the decomposition of the fourth component, the set E in two compo-
nents using a horizontal cut Figure 2.19, C3 and C4, both leaves of the syntax tree from
Figure 2.20.
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Figure 2.18: Step3. The syntax tree

Figure 2.19: Step4. A horizontal cut
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Figure 2.20: Step4. The syntax tree

We determine the all left side of the syntax tree corresponding to our covering model
using the two kinds of cuts. The partial Polish form obtained from the left side of the
syntax tree is:

�	 C1 � C2 	 C3C4.

Let’s consider now the right side of the syntax tree. Using the second component ob-
tained from the first cut that we did at the beginning, we are doing a horizontal cut in
Figure 2.21, so we have the decomposition of the set B in two sets which are corre-
sponding to the two new components, one of them F contains the items C5, C6, C7 and
the other oneG which contains the items C8, C9, C10. For Step 5 we have associated the
syntax tree from Figure 2.22 and the partial Polish notation obtained for this step is:

�	 C1 � C2 	 C3C4 	 .

On the fifth component we are doing a vertical cut, a decomposition of the set F in 2
sets like in Figure 2.23, so we have other two components. One of these is the seventh
component, let it be the set H = {C5, C6} and the other one is a leaf of the syntax tree,
C7, see Figure 2.24. The partial prefix Polish form for the tree from Figure 2.24 is:

�	 C1 � C2 	 C3C4 	�.

Using the seventh component we are trying one horizontal cut, a decomposition of the
setH in two itemsC5 andC6, see Figure 2.25, both leaves of the syntax tree from Figure
2.26. The partial prefix Polish notation till this step is:
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Figure 2.21: Step5. A horizontal cut

Figure 2.22: Step5. The syntax tree
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Figure 2.23: Step6. A vertical cut

Figure 2.24: Step6. The syntax tree
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Figure 2.25: Step7. A horizontal cut

Figure 2.26: Step7. The syntax tree
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Figure 2.27: Step8. A vertical cut

�	 C1 � C2 	 C3C4 	�	 C5C6C7.

Returning to component number 6, we are trying a vertical cut, a decomposition of the
set G in two sets, Figure 2.27 one is I = {C8, C9} and the other one is the item C10,
which is a leaf of the syntax tree from Figure 2.28. Our partial Polish form up to this
step is:

�	 C1 � C2 	 C3C4 	�	 C5C6C7 � .

Using component 8, we are trying a horizontal cut first, but this is impossible so we are
doing a vertical one, and this means the decomposition of set I in two items, C8 and
C9, Figure 2.29, both leaves of the syntax tree. Finally, we obtain the syntax tree from
Figure 2.30, corresponding to the covering model.

The final prefix Polish form, for all the syntax tree is:

�	 C1 � C2 	 C3C4 	�	 C5C6C7 ��C8C9C10.

Guillotine partitions play an important role in many research areas and application
domains, e.g., computational geometry, computer graphics, integrated circuit layout, and
solid modeling.

We mention here that all the results obtained are in [49] and it completes the obtained
results from [48].
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Figure 2.28: Step8. The syntax tree

Figure 2.29: Step9. A vertical cut
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Figure 2.30: The syntax tree

Correctness and complexity

The correctness of the algorithms follows from the Theorems 13 and 14, that make
the connection between a guillotine cut and the decomposition of the graph G′d or G′r
in connex components. For the determining of the Polish notation we preserve only one
connex component from this decomposition.

An algorithm for the determination of the connex components has the complexity
O(m), where m is the number of the arches. So the complexity of V-CUT or H-CUT
is also O(m). It follows that the complexity of PREORDER for a rectangular covering
model of k items with guillotine restrictions is O(km).

The problem, the so-called 2-dimensional guillotine problem, is a constraint on a
complete partition of 2-dimensional space. Guillotine partitions were introduced in
1980s, and they have numerous applications in computational geometry, computer graph-
ics, etc.

The partitioning of 2-dimensional space is a ubiquitous problem in industry. It ap-
pears in many forms from pallet loading to floor tile tessellation. A subset of the prob-
lem, the 2-dimensional guillotine problem, is almost as pervasive. Various aspects of the
problem are found in industries that produce two dimensional sheets of glass, textiles,
paper or other material.

Like the complete partition, the guillotine problem remains NP-hard. For this reason
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it is better to use an algorithm for generating an unconstrained covering model and after
that to use our algorithm for testing the guillotine restrictions of the pattern.

We note that the results obtained within this section complete the results obtained
in [47] and detailed results are found in [51]. Also, all the experimental results are in
[48, 49].

The discrete optimization branch of optimization mathematics deals with problems
which require the operator to choose an optimal solution from a range of finite possible
solutions. The cutting stock problem is a specific example of discrete optimization and
it is formulated as an integer programming problem. In this section our aim was to opti-
mally solve a variety of cutting stock problems and determine a set of optimal algorithms
for this kind of problems. As these are NP-hard problems, it is obvious that solutions
cover a certain class of specific problems.
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2.4 The determination of the guillotine restrictions for a rect-
angular cutting-stock pattern

A frequent constraint in various types of cutting problems, imposed by industrial ap-
plications of the two or three dimensional problem, is the so-called guillotine restriction
which states that the resulting patterns need to be guillotine cuttable. In literature several
techniques that solve the Cutting and Covering problems have been proposed. All these
methods result in a pattern or a set of patterns. They are not adequate for constructing
cutting patterns when the approach is used to solve the guillotine cutting-stock problem.

In [8] a polynomial algorithm was presented for two special cases of guillotine cut-
ting a rectangle into small rectangles. However, the guillotine restrictions are difficult to
respect in the general pattern-generation process. So instead of generating the cutting-
stock pattern with guillotine restrictions it is possible to use an analytic method to verify
if the pattern, obtained by some methods used in case of non-guillotine cutting, is with or
without guillotine restrictions. Nevertheless, the method given in [45] is rather unprac-
tical since the cutting pattern is represented as an array pattern, which implies a large
matrix representation.

Another analytical method, presented in [49], used the graph representation of a
covering pattern without gaps or overlapping. This method developed an algorithm for
guillotine restrictions verification, based on connections between guillotine cut and the
connex components of the graphs. But this algorithm is useless in case of a cutting-stock
pattern with gaps. For this kind of pattern we propose another method based on two new
kinds of graph representations, weighed graph representations, which is more general
comparing with the method presented in [49].

We consider a two dimensional rectangular cutting stock problem in case of a cutting
pattern with gaps. First we present two new graph representations of the cutting pattern,
weighted graph of downward adjacency and weighted graph of rightward adjacency.
Using this kind of representation we propose a method to verify guillotine restrictions
of the pattern which can be applied for cutting-stock pattern with gaps but also for the
covering pattern without gaps and overlapping.

2.4.1 Problem statement and formulation

We consider the rectangular plate P , characterized by length L and width W. From
this we cut k rectangular items, each one is characterized by length li and width wi.

Definition 15. [52] A rectangular cutting-stock pattern is an arrangement of the k rect-
angular items Ci, i =1, 2, ..., k on the supporting plate P , so that the borders of the items
Ci to be parallel with the borders of the plate P .

For this kind of patterns we have presented in [47, 44] two graph representations.
Starting from these representations we complete the graphs by adding a value for each
arc from the two graphs.
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Definition 16. [52] A rectangular cutting pattern has guillotine restrictions if at every
moment of the cutting process the remaining supporting rectangle is separated in two
new rectangles by a cut from an edge to the opposite edge of the rectangle and the
cutting line is parallel with the two remaining edges.

In the set of the rectangles {C1, C2,. . . , Ck} from the covering pattern we define a
downwards adjacency relation and a rightwards adjacency relation.

Definition 17. [52] The rectangle Ci is downward adjacent (rightward adjacent) with
rectangle Cj if in the cutting pattern, Cj is to be found downward (respectively right-
ward) Ci and their borders have at least two common points.

Let C = { C1 , C2,..., Ck } and Rd, Rr /∈ C. For any covering pattern, we defined in
[47, 44], a graph of downwards adjacency and another one of rightwards adjacency. We
define now two new graphs a weighted graph of downwards adjacency, Gd, and another
one of rightwards adjacency, Gr. We will use in these definitions the notation V (X,Y )
for the value of the arc (X,Y )

Definition 18. [52] The weighted graph of downward adjacency Gd = (C∪{Rd}, Γd)
has as vertices the rectangles C1, C2, ..., Ck and a new vertex Rd symbolizing the north-
ern borderline of the supporting plate P. The Γd is defined as follows:

Γd(Ci) 3 Cj if Ci is downward adjacent
with Cj

Γd(Rd) 3 Ci if Ci touches the North border
of the support plate P

V (X,Cj) = wj , ∀X ∈ C ∪Rd and Cj ∈ C

Definition 19. The weighted graph of rightward adjacency Gr = (C∪{Rr}, Γr), where
Rr symbolizes the western border. The Γr is defined as follows:

Γr(Ci) 3 Cj if Ci is rightward adjacent
with Cj

Γr(Rr) 3 Ci if Ci touches the West border
of the support plate P

V (X,Cj) = lj , ∀X ∈ C ∪Rr and Cj ∈ C

Let the cutting-stock pattern from Figure 2.31. The weighted graphs Gd and Gr, are
represented in Figure 2.32 and Figure 2.33.

We remark that in the graphsGd andGr the vertexRd (respectivelyRr) is connected
by an arc to the vertexCi if and only ifCi touches the northern (respectively the western)
border of the support P .

Remark 20. In the following we consider only the rectangular cutting-stock pattern
where the rectangles are not situated under or to the right of an empty spaces. When
it is not true (see Figure 2.34), we can define another pattern (equivalent) by moving
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Figure 2.31: The rectangular cutting-stock pattern

Figure 2.32: The graph Gd

Figure 2.33: The graph Gr
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Figure 2.34: Moving directions

the rectangles (in Figure 2.34 this rectangle is C) down or to the left till they touch the
border of another rectangle. In the sense of the cutting-stock problem with a minimum
rest, for every cutting-stock pattern there is always an equivalent pattern of this form.

From the Remark it results that the weighted graphsGd andGr attached to a cutting-
stock pattern have the following properties [44]: the graphs are quasi strongly connected
and have no circuit.

Let us take a cutting-stock pattern with guillotine restrictions. From [46] it follows
that it is possible to represent a rectangular cutting-stock pattern with guillotine restric-
tions using an expression with two operations:

1. 	 - the s-line concatenation, an operation for horizontal cuts;

2. � - the s-column concatenation, an operation for vertical cuts.

2.4.2 Cuts determination

In previous section in this thesis, we presented an algorithm for cuts determination
in case of a cutting pattern without gaps. But it is not possible to apply this algorithm in
the case of a cutting-stock pattern with gaps.

Starting from a rectangular cutting-stock pattern with gaps we intend to find a con-
nection between guillotine restrictions and the two weighted graphs of adjacency, Gd

and Gr.
For this purpose we will use the notation Lpd(Rd, Ci), respectively Lpr(Rr, Ci) for

the length of the path from Rd to Ci in the graphs Gd, respectively Gr. We remark
that Lpd(Rd, Ci) is the distance from the northern border of the plate P to the southern
border of piece Ci and similarly Lpr(Rr, Ci) represents the distance from the western
border of the plate P to the eastern border of piece Ci.

Remark 21. If a cutting-stock pattern has a horizontal guillotine cut situated at a dis-
tance M from the North border of the supporting plate P then the set of the items, C,
can be separated in two subsets S1, the set of the items situated above this cut, and S2
the set of the items situated below this cut. Of course in the weighted graph Gd we have:

1. Lpd(Rd, Ci) ≤M for every Ci ∈ S1;
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2. Lpd(Rd, Ci) > M for every Ci ∈ S2.

We obtain a similar result if the cutting-stock pattern has a vertical cut.
The two conditions from the above remarks are necessary but are not sufficient be-

cause it is possible for the cut to intersect some items from the set S2. We present in the
following the necessary and sufficient conditions for a guillotine cut.

Theorem 22. [52] Take a rectangular cutting-stock pattern with possible gaps and the
weighted graph Gd attached to the pattern. The cutting-stock pattern has a horizontal
guillotine cut on the distance M from the northern border of the supporting plate if and
only if it is possible to separate the sets of the items, C, in two subsets, S1 and S2 so
that:

1. C = S1 ∪ S2, S1 ∩ S2 = ∅;

2. For every Cj ∈ C so that (Rd, Cj) ∈ Γd it follows that Cj ∈ S1;

3. Lpd(Rd, Ci) ≤M for every Ci ∈ S1;

4. If there is Cj ∈ S1 so that Lpd(Rd, Cj) < M then all direct descender of Cj will
be in S1.

Proof. i. Suppose that the cutting-stock pattern has a vertical guillotine cut. That means
that the sets of items C can be separated in two subsets, S1, the set of the vertices situated
above the cut, and S2, the set of the vertices situated below the cut. From the Remark 21
it follows that conditions 1, 2 and 3 are fulfilled.

Suppose that condition 4 is not fulfilled. That means there are two items Cj ∈ S1
and Ci ∈ S2 so that Lpd(Rd, Cj) < M and the item Ci is a successor of Cj . Because
Ci ∈ S2 it follows that Lpd(Rd, Ci) > M and a horizontal cut situated on the distance
M from the northern border of the supporting plate will intersect the item Ci. It means
that without the condition 4 it is impossible to separate the set of the items by a horizontal
cut. So our supposition that the condition 4 is not fulfilled is false.

ii. Suppose all the conditions 1-4 are fulfilled but it is not possible to make a horizon-
tal cut on the distance M in the cutting-stock pattern. It follows that there is at least item
Ci ∈ S2 which is intersected by such a cut. It means that the distance from the northern
border of the supporting plate to the northern border of the item Ci is less than M and
the distance from the northern border of the supporting plate to the southern border of
the item Ci is greater than M .

But from the Remark 21 it follows that the northern border of the item Ci is identical
with the southern border of some item Cj , situated above Ci. That means (Cj , Ci) ∈ Γd

and Lpd(Rd, Cj) < M and so Cj ∈ S1. From condition 4, because Ci is a successor
of Cj , it follows that Ci must be in S1 in contradiction with our hypothesis. That means
that if the conditions 1-4 are fulfilled then there is a horizontal guillotine cut in the
cutting-stock pattern.

We obtain a similar result if we consider the weighted graph of rightwards adjacency.
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2.4.3 The algorithm for the verification of the guillotine restrictions

The results from the previous theorem suggest an algorithm for the verification of
the guillotine restrictions, in case of a cutting-stock pattern with gaps.

Input data: The weighted graphs Gd or Gr attached to a rectangular cutting pattern.
Output data: The s-pictural representation of the cutting pattern like a formula in a

Polish prefixed form.
Method: The algorithm constructs the syntax tree for the s-pictural representation of

the cutting pattern, starting from the root to the leaves (procedure PRORD). For every
vertex of the tree it verifies if it is possible to make a vertical (procedure VCUT) or
horizontal cut (HCUT procedure), using the algorithm for the decomposition of a graph
in two components, S1 and S2.

We will use the following notations:
- G′r, G

′
d are the subgraphs of Gr|X , respectively Gd|X , where we can add, if it is

necessary, the root Rr(Rd) and the arcs starting from Rr (Rd), like in Definition 18.
- L1(L2) is the weight of the first (second) cutting support which contains all the

items from S1(S2).
- succ(Ci|G) is the set of successors of the item Ci in the graph G.
The ADD() procedure is used for addition of the next member in the Polish prefixed

form.
We remark that we can apply this algoritm also in the case of a cutting-stock pattern

without gaps and, of course, in the case of a covering pattern with or without gaps.
Let us take the cutting-stock pattern from Figure 2.31 with the weighted graphs, Gd

and Gr [53].
For this example L = 8, W = 5, 5, and first we are trying a horizontal cut. We

obtain two sets, one composed from nodes {A,E,B,D,C} and {F,G}, see Figure
2.35, Figure 2.36 .

In the syntactic tree from Figure 2.37 we have 2 components connected using the
operation column concatenation 	 for the horizontal cut. The prefix Polish notation for
this syntactic tree from Figure 2.37 is: 	.

Using the first component we are trying a vertical cut, we have maxM = 2.5. In
Figures 2.38 and 2.39, we have the decomposition in two other sets, one of them contains
the items {A,E}, and the other one {B,D,C}.

In Figure 2.40 we are adding to the syntactic tree the components 3 and 4 which are
connected using the operation of column concatenation � for the vertical cut.

The prefix notation for this tree from Figure 2.40 is:

	� .

We continue to make horizontal or vertical cut for the left and right components
from the syntactic tree until every component contains only one item from the covering
pattern.
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[52] PROCEDURE PRORD(G,C,L,W,ADD())
begin

VCUT(Gr, C, L,W, err, Sl, S2, L1, L2);
if err = 0 then

if |C| = 1 then ADD(C);;
else ADD(�); PRORD(Gd, S1, L1,W,ADD());
PRORD(Gd, S2, L2,W,ADD()); ;

end
else

HCUT(Gd, C, L,W, err, S1, S2,W1,W2);
if err = 0 then

if |C| = 1 then ADD(C);;
else ADD(	); PRORD(Gr, S1, L,W1, ADD());
PRORD(Gr, S2, L,W2, ADD()); ;

end
else No guillotine restrictions;

end
end
PROCEDURE VCUT(Gr, X, L,W, err, S1, S2, L1, L2)
begin

err = 0; CONSTRUCT-SUBGRAPH(Gr, G
′
r, X,Rr);

V :=
⋃
{Ci|Ci ∈ X, (Rr, Ci) ∈ Γr}, where all the elements are unmarked

maxM := max{li|Ci ∈ V }
Pi:= {li|Ci ∈ V }
while ∃Ci ∈ V unmarked element do

mark Ci;
if Pi < maxM then

for Cj ∈ succ(Ci|G′r) do
V := V

⋃
{Cj | where Cj is an unmarked element};

Pj := Pi + lj ;
if Pj > maxM then

MaxM := Pj ;
end

end
end

end
maxM := max{Lpd(Rr, Ci)|Ci ∈ V }
if maxM = L then

err = 1;
end
L1 := maxM ;
L2 := L−maxM ;
S1 := V ;
S2 := X − V ;

end
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Figure 2.35: The first horizontal cut

Figure 2.36: The two sets from the horizontal cut
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Figure 2.37: The first syntactic tree

Figure 2.38: The two sets from the vertical cut
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Figure 2.39: A vertical cut

Figure 2.40: The syntactic tree
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Figure 2.41: One horizontal cut

Figure 2.42: The sets obtained from the previous cut

On the third component we are trying to do a horizontal cut, a decomposition of the
component 3 in two nodes, A and E. Both of them are leaves of the syntactic tree. We
did the horizontal cut in Figure 2.41, and we can see the sets obtained in Figure 2.42.

The syntactic tree associated is presented in Figure 2.43.
The prefixed notation associated to the syntax tree from Figure 2.43 is:

	�	AE.

On the fourth component, we are looking for a horizontal cut, but this is nor possible
so we are doing a vertical one, see Figure 2.44 which divides it in a simple node, C and
a new component, component number 5. In Figure 2.45 we have made the cuts and in
Figure 2.46 we have the syntactic tree, with the leaf of the tree, C.

On the fifth component we are trying a horizontal cut.
We determinate the all left side of the syntactic tree corresponding to our covering

pattern using the two kinds of cuts.
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Figure 2.43: The syntactic tree

Figure 2.44: A vertical cut on the fourth component
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Figure 2.45: The cuts obtained

Figure 2.46: The syntactic tree
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Figure 2.47: The horizontal cut on the second component

Figure 2.48: The syntactic tree

The Polish notation obtained from the left side of the syntax tree is:

	�	AE �	BDC.

Let’s consider now the right side of the syntactic tree. Using the second compo-
nent obtained from the first cut that we did at the beginning, we are trying a horizontal
cut, but it is not possible, so in Figure 2.47 we have the vertical cut, which means the
decomposition of the component 2 in two nodes, F and G.

The syntactic tree derived is in Figure 2.48.
The Polish notation for the tree from Figure 2.48 is [53]:

	�	AE �	BDC � FG.

All the results exposed here are in [52, 53].



CHAPTER 2. RECTANGULAR TWO DIMENSIONAL CUTTING STOCK PROBLEMS 71

Correctness and complexity

The correctness of the algorithm follows from the Theorem 22, that makes the con-
nection between a guillotine cut and the decomposition of a graph in two subgraphs.

The procedure PREORD() represents a preorder traversal of a graph, so the complex-
ity is O(k) [19], where k is the number of the cutting items. Also, into the procedure
VCUT, respectively HCUT we traverse a subgraph of the initial graph. So, the complex-
ity of the algorithm is O(k2).

No matter if it is a guillotine covering [49] or cutting-stock, the problem is a con-
straint on a complete partition of two dimensional space. Guillotine partitions were intro-
duced in 1980ies have numerous applications [27] in computational geometry, computer
graphics, pattern recognition etc.

Various aspects of the problem are found in industries that produce two dimensional
sheets of glass, textiles, paper or other material. A similar problem arises in the design
of layouts for integrated circuits or in the design of an optimal placement of a set of
solar panels. Like the complete partition, the guillotine problem remains NP hard. For
this reason it is better to use an algorithm for generating an unconstrained covering or
cutting-stock pattern and, after that or in each step, to use our algorithms for verifying
the guillotine restrictions of the generated pattern.

Whether it is a guillotine covering [49] or cutting-stock, with gaps or without gaps,
the problem, the so-called two dimensional guillotine problem, is a constraint on a com-
plete partition of two dimensional space. The partitioning of two dimensional space is
a ubiquitous problem in industry. It appears in many forms from pallet loading to floor
tile tessellation.

A subset of the problem, the two dimensional guillotine problem, is almost as perva-
sive. Various aspects of the problem are found in industries that produce two dimensional
sheets of glass, textiles, paper or other material. A similar problem arises in the design
of layouts for integrated circuits, how should the subcircuits the total chip area required
should be arranged to minimize or in the design of an optimal placement of a set of
solar panels. Like the complete partition, the guillotine problem remains NP-hard. For
this reason it is better to use an algorithm for generating an unconstrained covering or
cutting-stock pattern and, after that or in each step, to use our algorithms for verifying
the guillotine restrictions of the generated pattern.

2.5 Contributions and results

We note that all the studied problems within the present chapter point out some new
types of discrete optimization problems which have been studied less so far. The results
from this chapter are included in five papers, individual or in joint works. Each of these
papers presents some original points of view and optimized algorithms on rectangular
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two dimensional cutting problem. The scientific results within this chapter belongs to
the author and can be found in the papers [51, 52, 34, 48, 49, 53, 52].

This chapter dealt with the classical two dimensional covering problem. We came up
with solutions for particular cases within this problem, by closely studying the covering
problem with guillotine cuts limitations. All these problems represent particular cases
of discrete optimization.



Chapter 3

Three dimensional bin packing
problems

Since computer science starting developing over forty years ago, bin packing still
continues to be one of the most difficult problems to deal with today. Scientists in the
fields of computing and discrete mathematics have been relentlessly trying to analyze
and understand this computational puzzle and yet, no algorithm capable of deriving an
optimal solution within a reasonable time limit could be found. But fortunately enough,
no scientist has ever rejected the possibility of such solution to be available.

bin packing problems alongside other seemingly inexplicable problems are generally
classified by theorists as NP-hard and NP-complete problems. So far, there is no optimal
solution to the bin packing problem to be derived by a computer without having to derive
almost all possible solutions. To be more precise, finding the best match solution to
one complex instance of the bin packing problem by means of the highest performance
computer ever would take months, or even years.

Nevertheless, as logicians study, evaluate and experiment, industries depend on solu-
tions for such fine problems, even if they are imperfect solutions. Production industries
make use of bin packing in wide areas from television programming to designing auto-
mobiles and aircrafts. In many such cases, if a computer is capable of revealing a near
to perfect solution within reasonable deadlines, this specific solution will temporarily
meet the needs of the industries concerned. Therefore, theorists and scientists developed
approximation algorithms to bin packing problems, see [62, 18].

This section will specifically show new, original discrete optimization solutions to
the three dimensional version of bin packing. bin packing in three dimensions, or box
packing received significant attention in computer science during the past decade despite
its great importance to industry and computer science.

We consider the rectangular three dimensional bin packing problem with one finite
bin, where the bin is packed with a set of rectangular boxes, without gaps or overlapping.
Starting from a solution of the three dimensional bin packing model, our objective is to

73
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determine an order of the loading the boxes in the bin so that a box is packed in the bin
only if there are no empty spaces down to this box and the origin of the box is in a fixed
position, determinate by the boxes situated in the West and North neighborhood.

3.1 Basic notions concerning three dimensional bin packing
problems

The three dimensional bin packing optimization problem deals with fitting an arbi-
trary number of box-shaped items of various sizes into a box-shaped three dimensional
area, with utmost efficiency. Approximation algorithms are the tool which enables the
user to accommodate as many objects in the least amount of time. Since this is a NP-
hard problem, three dimensional bin packing is an aspect of great academic relevance
for computer scientists worldwide. In the more practical fields of our contemporary
lives, this problem holds a great amount of interest in industrial contexts such as ship-
ping cargo and designing machinery with replaceable parts, such as medical devices or
automobiles. The modern industry continuously relies on algorithms to provide optimal
solutions to such common problems.

bin packing problem has been shown to be NP complete in the strong sense, see
[26]. Various polynomial time approximation algorithms and numerous heuristics have
been designed during the last decades. For example, the First Fit Decreasing algorithm
is a simple greedy strategy that places items one after each other in decreasing order
of their size into the first bin they fit in. FFD has been shown to use not more than
71/60OPT + 1, where OPT is the optimal solution value [26]. There are Asymptotic
Polynomial Time Approximation Schemes which are able to solve bin packing problem
to any fixed percentage of OPT if the input is sufficiently large. As bin packing is
strongly NP-complete, there is no fully polynomial time approximation scheme as long
as P 6= NP .

However, there are some special cases in which bin packing can be solved to op-
timality in polynomial time. For example, if all item sizes are divisible by each other
First Fit Decreasing algorithm was shown to produce optimal packing. If there are only
two item sizes with high multiplicities, there is an O(log2C) algorithm, where C is the
maximum bin capacity. Furthermore, there are polynomial approximation algorithms
for the high-multiplicity case with a small number of distinct item sizes [25].

Countless are the applications for bin packing and manifold the techniques that have
been applied to the problem over the years. Our individual motivation in writing a chap-
ter of this thesis in the area of bin packing has multifaceted character: firstly, we are
particularly interested in efficiently solvable special cases of the problem as solutions
of provable quality can be obtained within polynomial time and secondly, we break out
in the direction of a popular programming paradigm named constraint programming.
Within this scope, we are interested in the applicability and algorithmic evaluation of
bin packing as a constraint. Thirdly, we are driven by the challenge to efficiently solve
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large highlyconstrained bin packing problems arising from practical applications.
This thesis highlights four individual areas of research which are interconnected to

each other by the central issue of Three Dimensional bin packing. It presents novel
theoretical considerations, innovative algorithmic techniques and approaches, a variety
of applications, and different practical examples in the setting of the Three Dimensional
bin packing problem.

3.2 A topological order for a rectangular three dimensional
bin packing problem

This section extends a previous work [55] regarding the two dimensional covering
problem to a rectangular three dimensional bin packing problem, where a bin is packed
with a set of rectangular boxes, without gaps or overlapping.

Our objective here is to determine an order of the loading the boxes in the bin so
that a box is packed in the bin only if there are no empty spaces down to this box and
the origin of the box is in a fixed position. We define a graph representation, of the
packing model in order to obtain an acyclic graph. Starting from this graph it is possible
to obtain a topological order of the boxes. At the end we present a kind of topological
sorting algorithm for this problem, of linear complexity.

The bin packing optimization problem concerns efficiently placing box-shaped ob-
jects of arbitrary size and number into a box-shaped container. Such problems are also
commonly referred to as Cutting and Packing problems in [24].

Many one dimensional, two dimensional and three dimensional bin packing prob-
lems were considered within this approach, altogether with the specific restraints for the
industry concerned. The three dimensional bin packing problems maintain the difficul-
ties of one dimensional and two dimensional bin packing problems, while also priding
on unique and important applications. As already known, each object exists in three
dimensions, representative for three coordinates: width, length and height. Thus, each
of the boxes should efficiently fit into one or several bins.

Like two dimensional bin packing, each box must stay orthogonal, or maintain its
orientation in the packing. If two dimensional bin packing equates to rectangle-to-floor
plan packing [62], three dimensional bin packing equates to box-to-room packing. Three
dimensional bin packing may involve a single bin or multiple bins. The singular bin
packing problem involves only one bin with either definite or infinite volume. Bins
with infinite volume are defined with finite length and width, but with height extending
to infinity. This allows packing solutions to pack until the set of boxes is exhausted.
Solutions dealing with infinitely sized bins generally carry most compressing objects
effectively.

Another way to approach this problem is by considering multiple bins. Each bin has
a definite volume. In this way, if the volume of the objects exceeds the volume of the
room, an algorithm must make choices of which boxes to include in the packing and



CHAPTER 3. THREE DIMENSIONAL BIN PACKING PROBLEMS 76

which to throw away. This approach is good for deterministic approaches to the box
packing problem.

All these problems focus around one question: ”Are the boxes large enough to ac-
commodate these items?” As in all bin packing problems, there are further constraints to
be added to this problem, so as to mimic a real-life situation. For instance, gravity is the
constraint which causes boxes to rest on the floor or on pallets in warehouses. Weight
distribution represents a constraint, as well. As real objects possess mass and weights, a
packing solution may need equal weight distribution within a specific storage area. An
equal distribution of masses instead of bulking all items in a single location would pre-
vent a boat from tipping or a truck from becoming unstable, for instance. At the same
time, it would be unadvisable to place large weight items on top of lighter objects, such
as a one kilo shoe box. Moreover, time might be another constraint when, for instance,
the quicker the packing process, the better. What it is known as the classic bin packing
problem fails to take into consideration all of the above mentioned constraints, since all
these more complex problems allow simplification.

The three dimensional bin packing problem holds importance to many fields. Ship-
ping and moving industries, architecture, engineering, and design are all areas where
three dimensional bin packing could apply. Industry uses bin packing for everything
from scheduling television programming to stacking cargo in a semi-truck to designing
automobiles and airplanes.

Many models and algorithms are developed for bin packing problem such as: formu-
lation as a mixed integer program, which can solve the small sized instance to optimum
value [37], genetic algorithms [42], or approximation algorithms.

While an approximation algorithm become a guide that attempts to place objects
in the least amount of space and time, a mixed integer program gives solution as the
position of the boxes in the bin. For this situation we need a plan for packing the boxes
in the bin. This is our objective, to determine the order of packing the boxes in the bin if
we know the covering solution of the bin.

3.2.1 Problem statement and formulation

Let P be a rectangular bin, characterized by length l, width w, height h. The bin
P is filled with k rectangular boxes C1, C2, . . . , Ck without gaps or overlapping. A box
Ci is characterized by length li , width wi, height hi. We consider a coordinate system
xOyz so that the corner O of the bin is the origin of the coordinate system like in Figure
3.1. We will use the following notations:

- ABCO is the bottom face of the bin

- GDEF is the top face of the bin

- OADG is the West face of the bin

- OCFG is the North face of the bin
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- EBCF is the East face of the bin

- ABDE is the South face of the bin

- O − Ci is the O-corner of the box Ci of coordinates xi, yi, zi

Figure 3.1: The position of box Ci in the bin

By extending the two dimensional covering model [44], we define three kinds of
adjacency relations between the boxesCi andCj from the bin, adjacency in the direction
of Ox, Oy and Oz, Figure 3.1.

Definition 23. [56] The box Ci is adjacent in Ox direction with the box Cj in the bin
P (Figure 3.2) if the South face of Ci and the North face of Cj have three non-collinear
common points, one of which is O − Cj .

Remark 24. From Definition 23 it follows that if Ci is adjacent with Cj in the direction
of Ox we will have:

xi < xj
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Figure 3.2: Adjacency in Ox direction

yi ≤ yj
zi ≤ zj

In Figure 3.3 is one situation when the two boxes are not adjacent in the direction of
Ox.

Figure 3.3: Not adjacency in Ox direction

Definition 25. [56] The box Ci is adjacent in Oy direction with box Cj in the bin P
(Figure 3.4) if the East face of Ci and the West face of Cj have three non-collinear
common points, one of which is O − Cj .

Remark 26. From Definition 25 it follows that if Ci is adjacent with Cj in Oy direction
we will have:

yi < yj
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Figure 3.4: Adjacency in Oy direction

xi ≤ xj
zi ≤ zj

In Figure 3.5 is one situation when the two boxes are not adjacent in the direction of
Oy.

Figure 3.5: Not adjacency in Oy direction

Definition 27. [56] The box Ci is adjacent in Oz direction with box Cj in the bin P
(Figure 3.6) if the North face of Ci and the South face of Cj have three non-collinear
common points.

Remark 28. In Definition 27 it is not necessary for Ci and Cj to have O − Cj as a
common point because our purpose is to give an order of packing and from this point of
view we will pack the box Cj only if all the boxes situated downward Cj were already
packed. For this reason if Ci is adjacent in Oz direction with Cj conclude that zi < zj
and there are no more conditions.
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Figure 3.6: Adjacency in Oz direction

Figure 3.7: Not adjacency in Oz and Oy directions

Figure 3.7 is one situation when the two boxes are not adjacent in the direction of
Oz and Oy.

Starting with these three kinds of adjacency we define three kinds of graphs:

- GOx- the graph of adjacency in direction Ox;

- GOy- the graph of adjacency in direction Oy;

- GOz- the graph of adjacency in direction Oz.

Definition 29. [56] The graph of adjacency in Ox direction is GOx = (C ∪ x,ΓOx).
where the vertices are the boxes from C = (C1, C2, ..., Ck) and X represents the face
GOCF situated on the yOz plane, and
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ΓOx(Ci) 3 Cj if Ci is adjacent in

direction Ox with Cj

ΓOx(X) 3 Ci if the North face of Ci

touches the yOz plan

Definition 30. [56] The graph of adjacency in Oy direction is GOy = (C ∪ y,ΓOy).
where the vertices are the boxes from C = (C1, C2, ..., Ck) and Y represents the face
DAOG situated on the xOz plane, and

ΓOy(Ci) 3 Cj if Ci is adjacent in
direction Oy with Cj

ΓOy(Y ) 3 Ci if the West face of Ci

touches the xOz plan

Definition 31. [56] The graph of adjacency in Oz direction is GOz = (C ∪ z,ΓOz).
where the vertices are the boxes from C = (C1, C2, ..., Ck) and Z represents the face
ABCO situated on the xOy plane, and

ΓOz(Ci) 3 Cj if Ci is adjacent in
direction Oz with Cj

ΓOz(Z) 3 Ci if the bottom face
of Ci touches the xOy plan

Example 1.
Let us consider the packing model from Figure 3.8 and 3.9.
Then the GOx, GOy and GOz are the graphs from Figures 3.10, 3.11, 3.12.

The graphs GOx, GOy and GOz have important proprieties:

Theorem 32. The graphs GOx, GOy and GOz for a packing model are acyclic.

Proof:
We will prove the theorem for GOx graph because for GOy and GOz the proof is

similar.
Let the graphGOx for a packing model of a binP with the boxesC1, C2, ..., Ck. Assume
that the graphGOx is cyclic. That means there is a simple path inGOx which leaves from
an element Ci1 and returns to Ci1 .
Let this path be µ = [Ci1 , Ci2 , . . . , Ci1 ].
From Remark 24 it follows that:

xi1 < xi2 < . . . < xiµ < xi1 ⇒ xi1 < xi1
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Figure 3.8: The Packing model from the Example 1.

This is impossible, so the presumption GOx is cyclic, is false.

Theorem 33. [56] Assume we have the graphsGOx, GOy andGOz for a packing model
of the bin P with boxes C1, C2, . . . , Ck. We have the following properties:

- if Cj ∈ ΓOx(Ci) then Cj /∈ ΓOy(Ci) ∪ ΓOz(Ci)

- if Cj ∈ ΓOy(Ci) then Cj /∈ ΓOx(Ci) ∪ ΓOz(Ci)

- if Cj ∈ ΓOz(Ci) then Cj /∈ ΓOx(Ci) ∪ ΓOy(Ci)

Proof:
Assume that Cj ∈ ΓOx(Ci). It follows that Ci is adjacent with Cj in the Ox direc-

tion. From Definition 23 it follows that the South face of Ci and the North face of Cj

have at least three non-collinear points. Now we can use Remark 28 and it follows is im-
possible for the East face of Ci and the West face of Cj to have also three non-collinear
points. It is impossible also for the top face of Ci and bottom face of Cj to have three
non-collinear points. The results for the other two situations are similar.

3.2.2 The compound graph for the packing problem

Due to Theorem 33 it is possible to represent simultaneously these graphs by single
adjacency matrix T , a matrix with elements from the set 0,1,2,3. So we will use 1 for
GOx, 2 for GOy, 3 for GOz and 0 if there is no adjacency.
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Figure 3.9: The Packing model from the Example 1.

The matrix T is defined like:

Tij =


1, if ΓOx 3 Cj

2, if ΓOy 3 Cj

3, if ΓOz 3 Cj

0, the other cases

Definition 34. For any packing model we define a network, a graph of compound adja-
cency Gc = (C,Γc) where Γc(Ci) 3 Cj if Tij 6= 0. Additionally, the value of the arch
(Ci, Cj) is Tij , if Tij 6= 0.

Exemple 2.
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Figure 3.10: Graph GOx

For the packing model from the Example 1. the matrix T is:

T =



A B C D E F G H

A 0 1 0 1 1 3 0 3
B 0 0 1 3 0 0 0 0
C 0 0 0 0 0 0 3 0
D 0 0 0 0 0 0 0 0
E 0 2 2 2 2 3 0 0
F 0 0 0 0 0 0 2 2
G 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 1 0


and the graph is represented like in

Figure 3.13.
In [55] it is shown that the adjacency relation in one plan which is parallel with xOy
define an acyclic compound graph.

Let’s see the situation when these relations are three dimensional.

Theorem 35. The graph Gc for a packing model of the boxes C1, C2, . . . , Ck in the bin
P is acyclic.

Proof:
(i) Assume that we have a cycle Ci1 , Ci2 , . . . , Cin in the compound graph Gc is

composed only from arches with value 1 and 2. It means that we consider only the
arches from GOx and GOy. From the Remark 24 and the Remark 26 it follows that:
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Figure 3.11: Graph GOy

xi1 ≤ xi2 ≤ . . . ≤ xin
yi1 ≤ yi2 ≤ . . . ≤ yin

and there is at least one index ik so that xik < xik+1
or yik < yik+1

. It follows that
xi1 < xin or yi1 < yin that means Ci1 6= Cin and is impossible to have cycle in the
graph Gc.

(ii) Suppose that we have a cycle Ci1 , Ci2 , . . . , Cin with arches from GOx and from
GOy and there is at least one arch (Cik , Cik+1

) from GOz . From the Remarks 24, 26 and
28 we have that:

zi1 ≤ zi2 ≤ . . . ≤ zik < zik+1
≤ . . . ≤ zin

It folows that:
zi1 < zin

and so Ci1 6= Cin and the path Ci1 , Ci2 , . . . , Cin is not a cycle.

Definition 36. [17] A topological sorting of a directed acyclic graph G = (C, Γ) is a
linear ordering of all its vertices so that, if G contains an arch (Ci, Cj) then Ci appears
in the order before Cj .

Theorem 37. There is a topological order of the vertices from the setC in the compound
Gc.

Proof:
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Figure 3.12: Graph GOz

It results directly from Theorem 35 and from [17] because the compound graph Gc

is acyclic.
From the definition of the compound graph Gc, a topological order of the vertices

from the set C means that if there is an arch from Ci to Cj in Gc (i.e. if Ci is adjacent
with Cj in direction of Ox, Oy or Oz) then Ci must appear before Cj in the topological
order. Overview the significance of the compound graph Gc for the packing model, it
follows that a box Cj is packed only if the corner O − Cj is in a fixed position (with
one neighbor box on the West and one neighbor box on the North side) and all the boxes
situated bellow Cj , which are adjacent with Cj in Oz direction were already packed.
This is a reasonable condition from a practical point of view.

Theorem 38. The compound graph for a rectangular covering model Gc is a particular
network, where there is a single vertex without ascendants.

Proof:
Let S1, S2, . . . , Sk be the topological order of the vertices from the set C. Let Ci so

that O−Ci is O, that means Ci is situated in the corner O of box P . From the definition
of graphs GOx, GOy and GOz it follows that Ci ∈ ΓOx(X) ∩ ΓOy(Y ) ∩ ΓOz(Z). If we
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Figure 3.13: The compound graph Gc

eliminate the vertices X,Y, Z from Gc it follows that Ci is a vertex without ascendants
in the graph Gc. It is evident that S1 = Ci, the first in the topological order. More, for
every Si ∈ C there is a path from S1 to Si.

3.2.3 Topological sorting algorithm

To determine a topological order of the boxes C1, C2, . . . , Ck we can use a topo-
logical sorting algorithm from [19] or a new algorithm, OVERDIAG-3D which is an
extension of previous algorithm from [19]. This algorithm is based on the particularity
of the compound graph Gc, respectively on the form of the matrix T , attached to the
graph Gc.

OVERDIAG-3D Algorithm

From Theorem 37 it follows that there is a topological order in Gc. Then the matrix
T, attached to the compound graphGc, is an over diagonal matrix with the main diagonal
equal to 0, when the vertices are in topological order.

We will base our algorithm on two observations:

1. By changing lines and columns in the adjacency matrix, the number of elements
equal to zero remains unchanged ;

2. We can always find a column with the necessary number of zeroes.

For finding the topological order of the set C we extend our matrix T (k × k) to the
matrix A(k × (k + 1)) by attaching a new column, k + 1, to the columns of T , which
preserve the original number of rows.
Finally this new column, k + 1, of the matrix A represents the topological order of the
set C.
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OVERDIAG-3D(A,n)
for i = 1, n− 1
jc = 0;
jc3 = 0;
jl = 0;
jl3 = 0;
j = 1;

repeat if A(i, j) = 0 then j = j + 1

until (A(i, j) 6= 0 or j = n+ 1)
k = i+ 1

repeat if A(k, j) = 0 then k = k + 1

(test if the column is 0)
until (k = n+ 1 or A(k, j) 6= 0) if num = num + 1

endif
endfor
if (num = k - i + 1) then

jfix = j
break

endfor
{ changing line[jfix] with line[i]

and column[jfix] with column[i] }
for j = i to k

T’[jfix, j]↔ T’[i, j]
endfor
for r = i to k

T’[r, jfix]↔ T’[r, i]
endfor
{ now we have to fix two corners of the rectangle }
T’[jfix, jfix]↔ T’[i, i]

endfor
return

Correctness and complexity

Applying the OVERDIAG-3D algorithm we change the order of the vertices Ci so
that the matrix T for the compound graphGc became an over diagonal matrix. It follows
that Tij = 0 for all i ≥ j and it is possible to have Tij 6= 0 only if i < j.

For the compound graph Gc that means there is an arch from Ci to Cj only if i < j
so Ci appears before Cj in the ordered set C. It follows that C is topologically sorted.

Remark that the OVERDIAG-3D algorithm is linear in k2, the maximal number of
edges in the compound graph Gc.
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The three dimensional bin packing problem holds importance to many fields. Ship-
ping and moving industries, architecture, engineering, and design are all areas where
three dimensional bin packing could apply.

Another application of the three dimensional bin packing problem is for cutting in
the wood industry [61]. Industry uses bin packing for everything from scheduling tele-
vision programming to stacking cargo in a semi-truck to designing automobiles and
airplanes. Recently, the Institute for Algorithms and Scientific Computing in Germany
used three dimensional packing for research in molecular biology and chemistry and
also with automobile design for manufacturer Mercedes-Benz [73].

A problem here, after the the determination of a packing model, is to determine the
order in which the boxes will be packed in the bin, the plan of packing.

This kind of order can be the topological order given by us, where the placement
begins with the northwestern-bottom corner of the bin and it ends with a box situated on
the top of the bin.

We intend to apply these results and previous results [55] in the field of the Renew-
able Energy for determine the optimal placement of the set of photovoltaic cells in a field
of cells.

All results obtained within this section of the research belong to the author and they
can be accessed in [59, 56]. The bin packing problem is a very practical problem, while
its general solution is still a subject of debate. We have focused on a class of problems
which deal with packing smaller containers into one larger container, so that in the end
there is virtually no space left and the setting of the small containers is done according to
dimensions. We will have to take into account the size of the containers because in prac-
tice it is of utmost importance not to place large containers on top of smaller containers
(such as the case when a similar setting would cause damage to containers). The results
thus obtained are satisfactory because while imposing a defined set of conditions for the
containers, we can assign a topological order which satisfies all restrictions imposed.
We also mention the fact that the algorithm was initially implemented for a three dimen-
sional puzzle game, where scores are obtained according to the puzzle pieces loading
efficiency. Our intention is to implement such an algorithm for real-life situations, as
well.
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3.3 The determination of the guillotine restrictions for a rect-
angular three dimensional bin packing pattern

This section deals with to the rectangular three dimensional bin packing problem,
where a bin is loaded with a set of rectangular boxes, without overlapping. One of the
most popular restriction for the solution of the three dimensional bin packing problem is
the guillotine restriction. That means that the packing patterns are so that the boxes can
be obtained by sequential face-to-face cutting plane parallel to a face of the bin.

Our objective is to find a method for verifying if the solution of the three dimensional
bin packing problem has the guillotine constraints or not. For this purpose we use a
weighed graph representation of a solution of the problem, the generalization of this
kind of representation obtained by us for two dimensional cutting stock problem in [48,
49, 50].

From the computational complexity theory point of view, the bin packing problem
is a combinatorial NP-hard problem. In it, box-shaped objects of different sizes must be
placed into a finite number of bins in a way that minimizes the number of bins used. In
[24] many kinds of bin packing problems were presented, one dimensional, two dimen-
sional and three dimensional with many kinds of constraints depending on technological
restrictions. Of course the difficulty of the problem increases in three-dimensional bin
packing problem as compared to the difficulty of fewer dimensional bin packing prob-
lems, but keeps special and important applications.

In the three-dimensional bin packing problem each bin represents triplets contain-
ing three values: width, length, and height. Each box should fit into a bin or bins most
efficiently. Like two dimensional bin packing, each box must stay orthogonal, or main-
tain its orientation in the packing. Like all bin packing problems, extra constraints may
be added to the problem to create a more real-world-like problem. Such constraints are:
gravity, weight distribution or delivery time and so-called guillotine constraint. The guil-
lotine constraint requires that the patterns should be such that the boxes can be obtained
recursively by cutting the bin in two smaller bins, until each bin will contain only one
box and no box has been intersected by a cut.

In [7] the authors solve a general packing problem, where in each step they test for
satisfaction of guillotine constraints. Using some graph representations, defined by us
in [56], we present now another guillotine test for the three dimensional bin packing
patterns, by generalizing the results obtained in [48, 49] for the two dimensional cutting-
stock patterns.

3.3.1 Problem statement and formulation

We consider a three dimensional rectangular bin B, a container with length L, width
W , height H . The bin B is filled with k rectangular boxes, C1, C2, . . . , Ck without
overlapping. Every box Ci has length li, width wi, height hi.
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Definition 39. A rectangular 3D-bin packing pattern is an arrangement of the k rectan-
gular boxes Ci in the container B, so that the faces of the boxes Ci be parallel with the
faces of the container B.

Definition 40. A rectangular bin packing pattern has guillotine restrictions if the bins
can be recursively separated in two new bins by a cutting plane which is parallel with a
face of the original bin, until each bin contains only one box.

We presented in [44, 56] a representation for a bin packing pattern by means of some
graphs of adjacency. Now we complete the graphs of adjacency by adding a value for
each arc of these graphs like in [48, 49].

We consider a bin OABCDEFG and a coordinate system xOyz so that the corner
O is the origin of the coordinate system like in Figure 3.1.

We mention that in Figure 3.1, [AB] is the length L, [BC] is the width W and [AD]
is the height H . We will use the adjacency relations [56] to express the connections
between two boxes Ci and Cj from the bin packing pattern.

Definition 41. The box Ci is adjacent inOx direction with the box Cj in the bin packing
pattern of B (Figure 3.2), if the South face of Ci and the North face of Cj have at least
three non-collinear common points.

Similarly we can define the adjacency relations in the direction Oy and Oz.

Remark 42. In the following we consider only the bin packing pattern where the boxes
are not situated above, to the East directions and to the North directions of an empty
space. That means every boxCj is adjacent with at least three boxes: one situated down,
one to the West and one to the South, or Cj is situated on the down face, respectively
West face, or on the South face of the bin. Otherwise we will push the box S downwards,
either towards the South or the West directions, like in Figure 3.15 until S will satisfy
these conditions.

Figure 3.14: The moving directions

Starting from the three kinds of adjacency we have defined in [56] three kind of
graphs:

1. GOx- the graph of adjacency in direction Ox



CHAPTER 3. THREE DIMENSIONAL BIN PACKING PROBLEMS 92

2. GOy- the graph of adjacency in direction Oy

3. GOz- the graph of adjacency in direction Oz.

Now we complete these graphs by adding the values for every arc from the graphs
which represent a bin packing pattern with respect to the restrictions from Remark 42.

Definition 43. The weighed graph of adjacency in Ox direction for the bin packing pat-
tern isGOx = (C∪RX ,ΓOx), where the vertices are the boxes from C = C1, C2, ...Ck,
RX represents the face GOCF situated on the yOz plane, and

ΓOx(Ci) 3 Cj only if Ci is adjacent in
direction Ox with Cj

ΓOx(X) 3 Ci only if the North face of Ci

touches the yOz plan
V alue(U,Cj) = wj ,∀U ∈ C ∪RX and Cj ∈ C

Similarly we can define a graph of adjacency in Oy direction and another of adja-
cency in Oz direction, using wj respectively hj for the every value of an incoming arc
of Cj .

From the Remark 42 and from [44] it follows that all of the three weighed graphs of
adjacency are strongly quasi connected.

Example 1.
We consider a bin packing pattern described in the Figures 3.15 and 3.16 where the

bin has the dimensions L = 3, W = 3, H = 4 and the boxes are of the dimensions
(li, wi, hi) like in the following:

- the box A of dimension (1, 3, 2)

- the box B of dimension (1, 1, 1)

- the box C of dimension (1, 1, 2)

- the box D of dimension (1, 1, 1)

- the box E of dimension (2, 2, 2)

- the box F of dimension (3, 1.5, 2)

- the box G of dimension (2, 1.5, 2)

- the box H of dimension (1, 1.5, 2)

Then the GOx, GOy and GOz are the weighed graphs from Figures 3.17 and 3.18.
We observe that the bin packing pattern from Figures 3.15 and 3.16 has guillotine

restrictions. Similar with [46] it follows that it is possible to represent a bin packing
pattern with guillotine restrictions using a Polish expression with three operations:

1. ⊕ - the vertical concatenation, an operation for a horizontal cutting plane;
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Figure 3.15: A pattern view from the top-right-front corner for Example 1.

2. 	 - the W-E concatenation, an operation for a vertical cutting plane perpendicular
on Ox;

3. � - the N-S concatenation, an operation for a vertical cutting plane perpendicular
on Oy.

For example, the cutting pattern from Figure 3.15 will be described by the following
Polish expression:

⊕�A	 E �⊕BDC 	 F �HG

.

3.3.2 Cuts determination

In the previous sections we presented two methods for cuts determination in case of
a 2D-cutting pattern without overlapping: one for pattern without gaps [50] and one for
the pattern with gaps [48, 49].

Now we consider the 3D-bin packing pattern without overlapping but with possible
gaps, with respect to the conditions from Remark 42.

Following the way described in [48, 49] we intend to find a connection between
guillotine restrictions and the three weighed graphs of adjacency, GOx, GOy and GOz .

First we will use the notation Lpd(RX , Ci) for the length of the path from RX to
Ci in the graph GOx. Similarly we will use the notations Lpr(RY , Ci) for the length of
the path from RY to Ci in the graph GOy, respectively Lpr(RZ , Ci) for the length of
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Figure 3.16: A pattern view from the bottom-left-back corner for Example 1.

the path from RZ to Ci in the graph GOz . We remark that Lpd(RX , Ci) represents the
distance from the northern face of the bin B to the southern face of box Ci, Lpr(RY , Ci)
represents the distance from the western face of the bin B to the eastern face of box Ci

and Lpr(RZ , Ci) represents the distance from the bottom face of the bin to the top face
of bin Ci.

Remark 44. If a cutting-stock pattern has a horizontal guillotine cutting plane (perpen-
dicular on Oz) situated at a distance M from the down face of the bin B then the set of
items, C, can be separated in two subsets B1, the set of items situated below this cutting
plane, and B2 the set of items situated above this plane. Of course in the weighed graph
GOz we have:

1. Lpd(RZ , Ci) ≤M for every Ci ∈ B1;

2. Lpd(RZ , Ci) > M for every Ci ∈ B2.

We obtain a similar result if the cutting-stock pattern has a vertical cutting plane
perpendicular on Ox or a vertical cutting plane perpendicular on Oy.

The two conditions from the above remark are necessary but are not sufficient, be-
cause it is possible for the cutting plane to intersect some items from the set B2. In the
following we present necessary and sufficient conditions for a guillotine cut.

Theorem 45. Let us consider a 3D-bin packing pattern with possible gaps and the
weighed graph GOz attached to this pattern. The bin packing pattern has a horizon-
tal guillotine cutting plane situated at the distance M from the downwards face of the
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Figure 3.17: Graph GOx for Example 1.

bin if and only if it is possible to separate the sets of the items, C, in two subsets, B1 and
B2 so that:

1. C = B1 ∪B2, B1 ∩B2 = ∅;

2. For every Cj ∈ C so that (RZ , Cj) ∈ Γz it follows that Cj ∈ B1;

3. Lpd(RZ , Ci) ≤M for every Ci ∈ B1;

4. If there is Cj ∈ B1 so that Lpd(RZ , Cj) < M then all direct descendants of Cj

will be in B1.

Proof:
i. Suppose that the bin packing pattern has a horizontal guillotine cutting plane and

let the weighed graph GOz attached to the pattern. That means the sets of items C can
be separated in two subsets, B1, the set of the vertices situated above the cutting plane,
and B2, the set of the vertices situated below the cutting plane. From the Remark 44 it
follows that conditions 1, 2 and 3 are fulfilled.

Suppose that the condition 4 is not fulfilled. That means there are two itemsCj ∈ B1

and Ci ∈ B2 so that Lpd(RZ , Cj) < M the item Ci is a direct successor of Cj and
suppose that Ci ∈ B2. It follows that Lpd(RZ , Ci) > M and a horizontal cutting plane
situated on the distance M from the downwards face of the bin will intersect the box Ci.
It means that without the condition 4 it is impossible to separate the set of items by a
horizontal cutting plane. So our supposition that the condition 4 is not fulfilled is false.

ii. Suppose all the conditions 1-4 are fulfilled but it is not possible to have a hori-
zontal cutting plane at the distance M in the cutting-stock pattern. It follows that there
is at least an item Ci ∈ B2 which is intersected by such a cut. It means that the distance
from the bottom face of the bin to the bottom face of the box Ci is less than M and the
distance from the downwards face of the bin to the top face of box Ci is greater than M .

But from the Remark 44 it follows that the bottom face of box Ci is identical with
the top face of some box Cj , situated downwards Ci. That means (Cj , Ci) ∈ Γz and
Lpd(RZ , Cj) < M and so Cj ∈ B1. From condition 4, because Ci is a direct successor
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Figure 3.18: Graphs GOy, GOz for Example 1.

of Cj , it follows that Ci must be in B1 in contradiction with our hypothesis. That means
that if conditions 1-4 are fulfilled then there is a horizontal guillotine cutting plane in the
bin packing pattern.

We obtain a similar result if we consider the weighed graphs of adjacency in the
directions Ox or Oy.

3.3.3 Verification test for guillotine restrictions

From Theorem 45 [57], we obtained an algorithm for the verification of the guillotine
restrictions, in case of a bin packing pattern with gaps but without overlapping.

Input data: The weighed graphs GOx or GOy or GOz attached to a bin packing
pattern.

Output data: The s-pictural representation of the cutting pattern [46] like a formula
in a Polish prefixed form.

Method: Using a depth-first search method,the algorithm constructs the syntactic
tree for the Polish expression representation of the cutting pattern, starting from the root
to the leaves (procedure PRORD). For every vertex of the tree it verifies if it is possible
to make a guillotine cut by a cutting plane perpendicular on Oz (procedure ZCUT) or
perpendicular on Ox (procedure XCUT) or perpendicular on Oy (procedure YCUT),
using an algorithm for decomposition of a set C of boxes in two subsets, B1 and B2.

We will use for the algorithm the following notations:
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-G′Ox, G
′
Oy, G

′
Oz are the subgraphs ofGOx|U , respectivelyGOy|U andGOz|U where

we can add, if it is necessary, the root RX (RY , RZ) and the arcs starting from RX (RY ,
RZ ).

- succ(Ci|G) is the set of successors of the box Ci in the graph G.
The method ADD() is used for addition of the next member in the Polish prefixed

form.

[58] PROCEDURE PRORD(G,C,L,W,H,ADD()) begin
ZCUT(GOz, C, L,W,H, err,Bl, B2, H1, H2);
if err = 0 then

if |C| = 1 then ;
ADD(C)
else ADD(⊕); PRORD(GOx, B1, L,W,H1, ADD());
PRORD(GOx, B2, L,W,H2, ADD()); ;

end
else

XCUT(GOx, C, L,W,H, err,B1, B2,W1,W2);
if err = 0 then

if |C| = 1 then ;
ADD(C)
else ADD(	); PRORD(GOy, B1, L,W1, H,ADD());
PRORD(GOy, B2, L,W2, H,ADD()); ;

end
else

YCUT(GOy, C, L,W,H, err,B1, B2, L1, L2);
if err = 0 then

if |C| = 1 then ;
ADD(C)
else ADD(�); PRORD(GOz, B1, L1,W,H,ADD());
PRORD(GOz, B2, L2,W,H,ADD()); ;

end
else N;
o guillotine restrictions

end
end

end

The procedures ZCUT, YCUT and XCUT are presented below:
We will consider the covering pattern from Figures 3.15 and 3.16, with the weighed

graphs GOx, GOy, GOz from Figure 3.17 and Figure 3.18. By examining the weighed
graphs we observe that it is possible to make the first horizontal cut by a cutting plane
perpendicular on Oz, procedure ZCUT. In Figure 3.19 this first horizontal cut of the
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PROCEDURE ZCUT(GOz, U, L,W,H, err,B1, B2, H1, H2) begin
err = 0; SUBGRAPH(GOz, G

′
Oz, U,ROz);

V :=
⋃
{Ci|Ci ∈ U, (ROz, Ci) ∈ ΓOz}, where all the elements are unmarked

maxM := max{hi|Ci ∈ V }
Pi:= {hi|Ci ∈ V } while ∃Ci ∈ V unmarked do

mark Ci;
if Pi < maxM then

for Cj ∈ succ(Ci in the graph G′Oz) do
V := V

⋃
{Cj | where Cj is unmarked};

Pj := Pi + hj ;
if Pj > maxM then

maxM := Pj ;
end

end
end

end
maxM := max{Lpd(ROz, Ci)|Ci ∈ V }
if maxM = H then

err = 1;
end
else

H1 := maxM ; H2 := H −maxM ; B1 := V ; B2 := U − V ;
end

end



CHAPTER 3. THREE DIMENSIONAL BIN PACKING PROBLEMS 99

PROCEDURE YCUT(GOy, U, L,W,H, err,B1, B2, L1, L2) begin
err = 0; SUBGRAPH(GOy, G

′
Oy, U,ROy);

V :=
⋃
{Ci|Ci ∈ U, (ROy, Ci) ∈ ΓOy}, where all the elements are unmarked

maxM := max{li|Ci ∈ V }
Pi:= {li|Ci ∈ V } while ∃Ci ∈ V unmarked do

mark Ci;
if Pi < maxM then

for Cj ∈ succ(Ci in the graph G′Oy) do
V := V

⋃
{Cj | where Cj is unmarked};

Pj := Pi + lj ;
if Pj > maxM then

maxM := Pj ;
end

end
end

end
maxM := max{Lpd(ROy, Ci)|Ci ∈ V }
if maxM = L then

err = 1;
end
else

L1 := maxM ; L2 := L−maxM ; B1 := V ; B2 := U − V ;
end

end
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PROCEDURE XCUT(GOx, U, L,W,H, err,B1, B2,W1,W2) begin
err = 0; SUBGRAPH(GOx, G

′
Ox, U,ROx);

V :=
⋃
{Ci|Ci ∈ U, (ROx, Ci) ∈ ΓOx}, where all the elements are unmarked

maxM := max{wi|Ci ∈ V }
Pi:= {wi|Ci ∈ V } while ∃Ci ∈ V unmarked do

mark Ci;
if Pi < maxM then

for Cj ∈ succ(Ci in the graph G′Ox) do
V := V

⋃
{Cj | where Cj is unmarked};

Pj := Pi + wj ;
if Pj > maxM then

maxM := Pj ;
end

end
end

end
maxM := max{Lpd(ROx, Ci)|Ci ∈ V }
if maxM = W then

err = 1;
end
else

W1 := maxM ; W2 := W −maxM ; B1 := V ; B2 := U − V ;
end

end
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packing pattern that separates the set of the boxes in two components it is presented , the
set {A,E,B,C,D} and the other set {H,F,G}. It can be seen that on the graph GOz

we did the cut at distance 2. In the syntactic tree, these components are connected using
the horizontal concatenation ⊕, an operation for a horizontal cutting plane, Figure 3.20.

Figure 3.19: The first vertical cut of the bin packing pattern

Figure 3.20: The first syntactic tree

The prefix Polish notation for this syntactic tree from Figure 3.20 is: ⊕.
We continue to make horizontal, vertical N-S or W-E cuts for the left and right

components from the syntactic tree until every components will contain only one item
from the covering model, considering the extracted subgraphs.

Now considering the component 1, we have the three subgraphsR1X(A,E,B,D,C),
R1Y (A,E,B,D,C) and R1Z(A,E,B,D,C) from Figure 3.21 and Figure 3.22, ob-
tained by extracting only the nodes from the set, {A,E,B,D,C}.

Applying the procedure YCUT we observe that we can make a vertical W-E cut on
R1Y (A,E,B,C,D), by a cutting plane perpendicular on Oy, at distance 1 from top
of the subgraph, Figure 3.22. We extract two sets again, one containing just {A} and
another {E,B,C,D}, named component 3. In the syntactic tree from Figure 3.23 we
see that the operation between box A and this new component, 3, is � the notation for a
cutting plane perpendicular on Oy.

The prefix Polish notation for this syntactic tree from Figure 3.23 is: ⊕�A.
We continue our algorithm using component 3, by extracting the three subgraphs

R3Y (E,B,C,D),R3Z(E,B,C,D) andR3X(E,B,C,D), see Figure 3.24 and Figure
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Figure 3.21: The subgraphs R1X(A,E,B,D,C) and R1Z(A,E,B,D,C) derived
from the first set

Figure 3.22: The subgraph R1Y (A,E,B,D,C) derived from the first set

Figure 3.23: The syntactic tree. Step 2
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3.25.

Figure 3.24: The subgraphs R3Y (E,B,D,C) and R3Z(E,B,D,C) derived from the
third set

Figure 3.25: The subgraph R3X(E,B,D,C) derived from the third set

Now we use the procedure XCUT that makes a vertical N-S cut onR3X(A,E,B,C,D),
at distance 2 from top of the subgraph, see Figure 3.25. We extract two sets, one con-
taining just {E} and another {B,C,D}, named component 4. In the syntactic tree from
Figure 3.26 we have the operation 	 for a vertical cutting plane perpendicular on Ox

between E and component 4.
The prefix Polish notation for this syntactic tree from Figure 3.26 is: ⊕�A	 E.
Using component 4, we extract the three subgraphs R4X(B,C,D), R4Z(B,C,D)

and R4Y (B,C,D), see Figure 3.27 and Figure 3.28.
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Figure 3.26: The syntactic tree. Step 3

Figure 3.27: The subgraphs R4X(B,C,D) and R4Z(B,C,D) derived from the fourth
set

Figure 3.28: The subgraph R4Y (B,C,D) derived from the fourth set
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We can make a cut on R4Y (B,C,D), at distance 1 from top of the subgraph, by a
cutting plane perpendicular on Oy, see Figure 3.28. We extract two sets, one containing
just {C} and another {B,D}, named component 5. In the syntactic tree from Figure
3.29 we have the operation for a vertical cutting plane perpendicular on Oy between C
and component 5.

Figure 3.29: The syntactic tree. Step 4

Making the same steps with component 5, we obtained a vertical cutting plane per-
pendicular on Oz and the syntactic tree from Figure 3.30.

Figure 3.30: The syntactic tree. Step 5

The prefix Polish notation for this syntactic tree from Figure 3.30 is: ⊕� A	 E �
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⊕BDC.
Let’s turn to set number 2, that one composed of {H,F,G}. We have the subgraphs

from Figure 3.31 and Figure 3.32 and we’ve done a cut onR2X(F,H,G), at the distance
1.5, by a cutting plane perpendicular on Ox. The two sets are: {F} and {H,G}.

Figure 3.31: The subgraphs R2Y (F,H,G) and R2Z(F,H,G) derived from the second
set

Figure 3.32: The subgraph R2X(F,H,G) derived from the second set

The syntactic tree from Figure 3.33 has the component 6 connected with F thru a
W-E cut.

Using component 6, we have the last three subgraphs R6X(H,G), R6Z(H,G) and
R6Y (H,G). The final syntactic tree is in Figure 3.34.

This syntactic tree corresponds to the prefix Polish notation:

⊕�A	 E �⊕BDC 	 F �HG,

exactly the one that we considered in previous section. Like we mention before, the
algorithm’s complexity is O(k2) [58].
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Figure 3.33: The syntactic tree. Step 6

Figure 3.34: The final syntactic tree
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Correctness and complexity

The correctness of the algorithm follows from the Theorem 45, that makes the con-
nection between a guillotine cut and the decomposition of a graph in two subgraphs.

The procedure PREORD() represents a preorder traversal of a graph, so the complex-
ity is O(k) [17, 19], where k is the number of the cutting boxes. Also, in the procedure
ZCUT, respectively XCUT and YCUT we traverse a subgraph of the initial graph. So,
the complexity of the algorithm is O(k2).

The three dimensional bin packing problem holds importance to many fields. Ship-
ping and moving industries, architecture, engineering and design are all areas where
three dimensional bin packing could apply. Industry uses bin packing for everything
from scheduling television programming to stacking cargo in a semi-truck to designing
automobiles and airplanes. Many of the applications of the three dimensional bin pack-
ing problem need packing patterns with guillotine restrictions. So a way of solving this
is to use some algorithms for packing patterns determination and to use our algorithm for
verifying if the patterns have guillotine restrictions or not. This guillotine test can also
be used in a constraint programming approach for solving the packing problem. The test
for guillotine restrictions presented in this paper is based on a representation of the bin
packing pattern by three weighed graphs of adjacency. These graphs, introduced first for
the two-dimensional cutting stock problem, were very useful to prove some properties
of a cutting or covering pattern [44] or to find out an order of packing for loading a
container [56].

We remark that we can apply this algorithm for guillotine determination also in case
of a cutting-stock pattern without gaps and, of course, in the case of covering pattern
with or without gaps.

3.4 Contributions and results

In this chapter, we have presented four individual areas of research which are in-
terconnected by the central issue of Three Dimensional bin packing. It presents novel
theoretical considerations, innovative algorithmic techniques and approaches, a variety
of applications, and different practical examples in the setting of the Three Dimensional
bin packing problem. The developed algorithms for these different approaches create
feasible solutions and all the presented algorithms are quite general and thus might be
adapted to a wide variety of three dimensional bin packing problems.

We note that all the results from this chapter are included in four papers, individual
or in joint works. The scientific results within this chapter belongs to the author and can
be found in the papers [56, 59, 57, 58].



Chapter 4

Optimization with Logical Analysis
of Data

Our aim for this chapter is to focus on a combinatorial optimization based data anal-
ysis methodology, that is able to perform classification with justification, Logical Anal-
ysis of Data (LAD). The justified classification is an ideal aimed by many methodologies
within the field of data mining. The justification of a classification algorithm is based on
the idea of using information extracted from an amount of data, so that the classification
of new data can be easily achieved.

If in the first two chapters of this thesis we looked at covering two dimensional
and three dimensional problems, this chapter focuses on variations of the covered topic,
which is the study of a methodology based on discrete optimization fundamentals. The
LAD methodology involves the knowledge of some basic discrete/combinatorial opti-
mization concepts and principals. Herein, we investigate the accuracy of LAD and we
did some remarks about its execution time and the quality of the results. In addition, the
LAD methodology is compared with the most important classification algorithms used
in the machine learning literature, and their implementation in WEKA [72] and OCTAVE
[85], for a greater impact on final results.

We outline the manner in which this classifying methodology works and we have
concluded that it has shortcomings, but also strengths compared to the other methods.
Thus, our conclusion is that, when compared to other classification algorithms, the LAD
methodology requires simple notions of discrete optimization, while providing an accu-
rate classification on considered situations.

A significant contribution of the author in this chapter consists in providing and
evaluating computationally the LAD methodology and making some comparison with
some specific machine learning algorithms. We evaluate the coverage cases - which
percentage of the outcome is covered through a solution - in the case of LAD and other
specialized methodologies, as well. Overall, it is to be noticed that LAD counts as a
highly intelligent method of classification.

109
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It is nevertheless doubtless that in order to achieve classification, we can use any of
the considered algorithms, while the LAD methodology is supported by arguments such
as:

• The relatively simple concepts LAD models use see set covering problem, Boolean
functions, simplification of Boolean functions, partial Boolean functions, simplex
method, etc.;

• The efficiency/quality of LAD patterns - LAD provides, as any other algorithms, a
set of patterns covering both positive and negative observations, but unlike other
considered algorithms, these patterns are justifiable, which means that positive
patterns cover only those observations ratified as positive, without covering any of
the negative patterns, and the other way round. Since the quality and transparency
of patterns are very important characteristics when applying classification algo-
rithms, LAD provides these two features, enabling professionals within different
fields of application to easily understand them;

• The accuracy provided by LAD - following experiments achieved by the author, it
has been observed that results provided by means of LAD are more specific and
have a greater degree of accuracy, close to or even exceeding the level of accuracy
of other known classification algorithms;

• Time of execution when based on the processing of Boolean functions, the gen-
eration of valid patterns is a process characterized by a low degree of complexity;

• Amazing results obtained in the field of healthcare and not only have encouraged
us to choose this problem classification methodology. Our aim was to observe
whether LAD is as competitive in other fields of interest as in the field of medicine.

In order to better emphasize the results of the LAD methodology, we have achieved
a comparative study with more specific data mining algorithms. In order for the com-
parison to be relevant, the algorithms were chosen so that they share particular features
with LAD. The classical implementation used for LAD was modified by the author, in
order to obtain expected results earlier. Appendix two includes all these changes. The
main reasons for the author of this paper to have chosen WEKA are its versatility and the
authors own wish to test all considered algorithms within a common environment. The
implementations in OCTAVE represent an additional contribution, meant to strengthen
results obtained by means of WEKA.

Within section ”Theoretical aspects” we will briefly present the LAD methodology,
as well as some basic notions on using WEKA and OCTAVE. Within the same section,
we will provide general information on the functions and guiding principles of chosen
algorithms, compared to LAD.

In section ”Computational experiments” we organize the experiments we have achieved,
the steps we followed in doing so together with conclusions we have drawn following



CHAPTER 4. OPTIMIZATION WITH LOGICAL ANALYSIS OF DATA 111

LAD testing and the algorithms: C4.5, Random Forest, Support Vector Machines, Mul-
tilayer Perceptron, Logistic regression represent our original contribution to this thesis.
At the end of this section we will analyze results, while also highlighting the advantages
of the LAD methodology and commenting on its advantages and disadvantages as for
more particular cases.

The section ”Summary and future work” includes general conclusions on the whole
chapter and some further directions for development.
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4.1 Theoretical aspects

This section provides an overview of some aspects which are relevant for under-
standing the main issues of this chapter: LAD methodology and its main concepts and
the ”How to use it” principle of C4.5 Algorithm, RF Random Forest Algorithm, SVM
Support Vector Machines Algorithm, MLP Multilayer Perceptron Algorithm, Logistic
regression and WEKA package. We focus on the methodology of LAD and discuss its
main components and functions. Additionally, we shortly outline the ideas of some well
known classification and regression algorithms and present the validation procedures
used to estimate the accuracy in our experiments with WEKA.

LAD is a methodology which achieves generation and analysis of such aggregates
of variables meant to characterize both the positive and negative attributes of specific
observations. This is why this methodology has been so far successfully tested on vari-
ous areas of knowledge like: clinical, sport, computer science, healthcare. A variety of
studies have proved that the accuracy of LAD bears close similarity to some of the best
methods used in data analysis [2], while at times even exceeding results obtained with
methods which are most frequently used.

For the practical part of the LAD we have chosen specifically designed software for
experimentation. In the first part of this chapter we will briefly remind what LAD is,
and then we describe how various experimental components, described in full detail in
[60], are used. Secondly, we will shortly describe some algorithms or methodologies
used in matters of classification. The experiments are done in WEKA. In the end, we can
conclude how efficient LAD is comparative to other methodologies.

A whole set of specialized literature has been published on various aspects con-
cerning classification methods, as well as solving algorithms [30, 31, 20, 22, 64, 65].
Nevertheless, the methodology chosen for this particular thesis holds a great advantage
- that of reasonable, with justification classification, a quite important benefit, especially
when we want the end results to be easily readable by individuals outside the field of
informatics.

4.1.1 Logical Analysis of Data

LAD is an analysis methodology for great amounts of data which are all based on
concepts for optimization criteria, operational research, combinatorics, Boolean func-
tions. It was first introduced in the ’80s in [28] and the basic implementation was
extended to the case of non-binary data, using the binarization process, in which ev-
ery numerical is discretized and replaced by one or more binary variables, bringing the
problem to the usual binary form. In [16] the implementation of a LAD classification
methodology was described and several further developments to the original theories
were proposed. A more recent overview of LAD can be found in [29]. This methodol-
ogy was first applied in medicine in 2002 − 2003 after S. Alexe published reports of a
joint research carried out together with clinicians from an academic medical center [29].
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LAD differentiates itself from other data mining classical methodologies since it is
capable of generating and analyzing a major subset of such sequences of variables de-
scribed as the negative and positive aspects of all observations. It uses discrete opti-
mization techniques to extract models designed with the support of a defined number of
combinatorial patterns - a combination of attributes values appearing together only in
some attributes values from dataset - generated in this way [16]. Among known issues
of classification, a pattern is a pair of variables, where the first is a collection of aspects
and the second is a notion behind the aspect, the name of it. The pattern is as valuable
as it is fit enough for separating/discriminating examples from various classes. Speci-
mens from the same class should have similar values, while those belonging to different
classes, have different values, at times even opposing.

The goal of a classifier is to partition feature space into two or more different deci-
sion regions. Many of the approaches used for classification in traditional data mining
are generally based on statistics, such as clustering, decision trees or association rules.
Still, the novelty of LAD is that it proposes an innovative manner of data analysis by
means of techniques such as combinatorial logic, Boolean functions and discrete op-
timization. The capability of detecting logical combinatorial information about classi-
fied information differentiates LAD from any other traditional data mining technologies.
Many of the techniques used for classification in traditional data mining [65, 21, 66] are
generally based on statistics, such as clustering, decision trees or association rules. Still,
the novelty of LAD is that it proposes an innovative manner of data analysis by means
of techniques such as combinatorial logic, Boolean functions and discrete optimization.
The capability of detecting logical combinatorial information about classified informa-
tion differentiates LAD from any other traditional data mining technologies. The LAD
methodology detects patterns for which all the satisfying observations have a decidedly
higher or reduced show degree than the considered population. From this point of view,
we can see some similarity to algorithms such as C4.5 [67], and rough sets classification
[63, 65].

The most remarkable characteristic of LAD is its capability to identify any hidden
patterns in the information. Since patterns represent sequences of specific features, it
is possible to use them for building decision boundaries which can then serve LADs
classification. This is possible through the provision of essential information which helps
distinguish observations in one class from observations in another. Using patterns could
lead to a more stable performance when challenged with classifying not only negative,
but also positive classes, since they are not prone to measurement errors. One specificity
of LAD is that it favors to select a too larger number of patterns by the provision of
solutions for a set covering problem used in building a classifier. The condition is that
each observation in the set covering problem of LAD is covered by a pattern. This is
regardless of the fact that the specific observation is an outlier.

In this section, the following terminology and notations are extensively used. A
”dataset” is a collection of information in which each information can be represented as
one event and it is characterized by a vector of values. LAD browses the dataset in order
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to determine repetitive collections of conditions on attributes. These are called ”pat-
terns”. The observation/information which satisfies a specific pattern has a much lower
or higher show rate compared to the rest of the population. Consequently, new observa-
tions may be classified in two types - positive/show and negative/no show, depending on
the patterns they predominantly satisfy. Each type has its particular sequence of patterns.
Within those, there are four instances to be noticed: in the first two, the new generated
result achieves only a part of the positive or negative patterns and is thus classified as
positive or negative, in the third, the new result achieves patterns of the two categories
and is consequently classified as either positive or negative, according to the importance
assigned to particular patterns of both types covering the observation. Whereas in the
fourth instance, the result does not achieve any of the patterns expected, and thus cannot
be classified. One of the most worthy of mention practical outcomes of such an approach
is the opportunity of offering reasonable description or meaning for LAD results. An-
other important practical issue is the opportunity to determine brand new categories of
information. After discovering them, the possibility to study their purpose and type is a
real worthy advantage.

Considering these advantages, viewing LAD in economic parameters as in [13] is not
difficult because the performance of this methodology has been so far endorsed through
many successful applications of data analysis problems. Perfect classification perfor-
mance is often impossible, thus it is common to seek minimum error rate classification.
Within this paper we have highlighted the importance of using an efficient methodology
and its cost-effectiveness. The more exact and more error less the classification algo-
rithm is, the quicker and cheaper the solution. This can count as one of the contributions
made in the purpose of developing the array of applicability of the LAD methodology.
The paper referenced herein represents the author’s own contribution and its main benefit
is that of highlighting the economic value of the suggested method.

By means of LAD, it is possible to automatically scan a tremendous amount of highly
complex interactions, while retaining only the most relevant for the matter at hand. It
may be inferred that such benefits of the LAD methodology could inspire research in
view of a deeper understanding of any connected relations of cause and effect. Several
studies also revealed that the discussed LAD rating method is objective, transparent,
while it can be easily generalized and is sustainable through its pertinent model. In
particular, some medical centers are progressively using LAD in the actual process of
clinical investigation for a diversity of affections and their ability to adopt improved
LAD therapies involved a significant cost reduction.

The main objective in LAD is to implement some decomposition/aggregation meth-
ods to some variables of dimension n containing the positive and negative observations
[2]. It is to be acknowledged that numerous mathematical problems necessary for ap-
proaching such steps depend upon the results of a set covering problem. Definitely, it
can be further formulated as an integer linear programming problem [68].

The initial purpose of LAD is to analyze datasets characterized by attributes which
take binary values. The need for a binarization process arose as it was noticed that most
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daily activities are expressed as real, and not binary values. Binarization consists in
the introduction of a set of binarization thresholds [29], based on which each considered
attribute is to be classified as below or above the considered value. Choosing an accurate
binarization threshold is essential for obtaining results in line with the real attributes
considered. This threshold can be interactively chosen or it can be determined by means
of various procedures [15]. Relatively small variations of the value of the binarization
threshold can greatly influence the result of the binarization process. The automatic
choice of a binarization threshold represents a mandatory request in most situations.
Generally, this choice is made based on a set on information previously extracted from
the considered attributes. Nevertheless, there are particular cases when the choice of
the binatization threshold is possible if certain features of the attribute to be elaborated
are known or imposed. It will become clear in subsequent sections that the overall
computational performance of LAD methodology is related to the number of variables
actually tested [2]. In [14] we have the formulation of a set covering problem.

”Several real-life datasets contain variables that are neither binary nor numerical,
but instead assume one of a set of nominal, or categorical, values. Let S = {s1, ..., s|S|}
be the set of possible values that a certain nominal variable xj can assume. In some
cases, there is a total order between the possible values, for instance: low, medium,
and high. In such a case, the binarization of xj can be done by associating a sequence of
[log(|S|−1)]+1 binary variables to it in such a way that each value si of xj is represented
in binarized form simply as the binary representation of the integer i− 1. Alternatively,
or when no total order among the elements of S is available, the binarization of xj can
be accomplished by associating to it a set of |S| binary variables, each one of which
represents a possible value of xj . In the resulting binarized representation of xj exactly
one of the associated indicator variables would have the value 1” [14].

In the case of a binary dataset a pattern ”is simply a homogeneous subcube of
{0, 1}n, i.e., a subcube having the following properties:

• a nonempty intersection with one of the sets Ω+ or Ω−;

• an empty intersection with the other set (Ω− or Ω+, respectively).” [29]

We shall consider the hypothesis that a specific element is positive when covered
only by positive patterns, without being covered by any negative patterns. Consequently,
a given element is negative if it only achieves negative patterns, without achieving any
negative patterns. Note that for a dataset with numerical variables that has been binarized
according to the procedure described in the previous section, the definition of a pattern
can be seen as a set of constraints that are simultaneously imposed on the values of
one or more of the original variables. Indeed, let the j-th binary (indicator) variable be
associated to the k-th original (numerical) variable and with the cutpoint value c. Then,
a pattern requiring that the j-th binary variable equals 1 corresponds to the requirement
that the k-th original variable exceeds the cutpoint c.
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The quality of a pattern is related to its ability to discriminate observations from
different classes. The ”prevalence” of a positive pattern with respect to a given set of
observation is the percentage of positive observations that are covered by the pattern,
while the coverage of a pattern is simply the number of observations covered by the
pattern in the given set. The ”homogeneity” of a positive pattern is the percentage of
positive observations among the set of observations covered by it. These concepts can
be defined for negative patterns in a similar way [14].

Previous implementations of LAD methodology [3, 4, 15, 14] have all relied on some
type of pattern generation procedure that implies the generation of considerable collec-
tions of positive and negative patterns, each encourage some requirements in terms of
prevalence and homogeneity. The notion of pattern is connected with the supposition
that the judgments are accurate. Thus, it is assumed that all measurements of attribute
values are accurate, as are all recorded observations. When applied to real-life situations,
these assumptions do not apply wholly. Such example is the assessment of patterns on a
testing set, which shows that positive patterns largely covered (on training set) not only
cover an important number of positive statements, on the other hand a relatively small
number of negative statements. It is therefore justifiable to permit patterns to cover a
reduced number of observations of the opposite class.

The expected results are that the loosening constraints which define both positive
and negative patterns will lead to an important rise in the coverage of negative/positive
observations. Further on, we shall consider samples not covering the opposite class as
pure or homogenous. In the meanwhile, other existing patterns are sometimes referred
to as non-homogenous.

Therefore, we can say that ”a pattern is a subcube of {0, 1}n with the property that it
covers mostly observations from one of the sets Ω+ or Ω−, covering only a small number
of observations from the other set” [39]. ”A pattern is positive if the percentage of
observations from Ω+ covered by the pattern is larger than the percentage of observations
from Ω− covered by it” [39]. A negative sample is described in a symmetric manner.

More generally, we can construct subcubes that do not necessarily satisfy the con-
ditions for being considered patterns. Let us consider each subcube as described by its
associated Boolean conjunction, where a literal is used whenever the value of the corre-
sponding binary variable is fixed in the subcube. For instance, let n = 5 and C = x1x3.
The conjunction C is associated to the subcube of {0, 1}5 containing all points in which
the first component takes the value 1 and the third component takes the value 0. For the
task of classification we are only interested in those conjunctions having certain values
of prevalence and homogeneity. Indeed, for extracting the information that can be used
to classify unseen observations, we are only interested in finding a conjunction with the
property that the set of observations that it covers has a distribution of points from Ω+

and Ω− that is significantly different from that originally in Ω.
Since the positive and negative patterns were defined according to similarities they

share (symmetric features), the generation procedures obtained will also be symmetric.
By reason of being concise, we shall only refer here to the procedures used in generating
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positive patterns. Similarly, one can follow the same procedure seeing the generation of
negative pattern. The unequivocal approach we have chosen in order to generate patterns
is rooted in the use of combinatorial enumeration techniques.

In view of the existence of various possible measures of quality of any given pattern,
it is important for the pattern generation procedure not to miss any of the best patterns.
These are the patterns that highlighting the most the features of one class. Pattern gen-
eration techniques can follow a top-down or a bottom-up approach, details in [10].

In a nutshell, the top-down design commences when joining all positive consider-
ations to their characteristic terms. These specific terms translate as patterns and even
if particular literals are removed, what hence results is still a pattern. The purpose of
the top-down design is to remove literals until achieving a single remaining pattern. On
the other hand, the bottom-up design begins with one-degree terms which cover a set of
positive observations. In the case when this specific term does not cover any negative
observation whatsoever, it can be called a pattern. Alternatively, literals shall be gradu-
ally added until a pattern has been generated. This method of pattern generation is not
entirely unfamiliar since it has so far been implemented in other machine learning tech-
niques [10]. This type of generation is not entirely new, we can see it in other machine
learning techniques.

This pattern generation process is guided by two natural objectives: ”simplicity prin-
ciple” - it gives preference to the generation of short patterns and ”comprehensiveness
principle” - we attempt to cover every positive observation by at least one pattern. This is
accomplish by a combination bottom-up/top-down technique which favors the bottom-
up strategy. We start by using the bottom-up approach to generate all the patterns of
very small degrees (usually up to four or five) and then use a top-down direction to cover
those positive observations (if any) that remained uncovered after the bottom-up step.

”The bottom-up pattern generation is based on term enumeration. The number of
terms of degree d over n Boolean variables is 2dCd

n. Even for n fixed at a moderate
value (say, for n = 20), this is a very rapidly growing function of d. Therefore, the term
enumeration method used for pattern generation must be extremely selective. One of the
methods used is a breadth-first enumerative technique which produces, at each stage d,
all the positive prime patterns of degree d, as well as the list of the so-called candidate
terms to be examined at stage d+ 1 of the algorithm. A candidate term is any term that
covers at least one negative and at least one positive observation. The terms of degree d
examined by the algorithm at stage d are all those from which one gets a candidate term
of degree d − 1 (generated at stage d − 1) by eliminating any of its literals” [16]. ”The
terms of degree d examined by the algorithm are then partitioned into the following three
sets:

• Pd, consisting of those terms which cover at least one positive and no negative
observations;

• Cd, consisting of those terms which cover at least one positive and at least one
negative observation;
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• Gd, consisting of all the remaining terms.

It is easy to see that the set Pd consists of all positive prime patterns of degree d
and the set Cd consists of all candidate terms of degree d. We note that the set Gd is
eliminated from any further consideration. Additional reductions in the volume of com-
putations are obtained by examining the terms of Cd in the lexicographic order induced
by the linear order

x1 ≺ x1 ≺ x2 ≺ x2 ≺ . . .

of the literals. Since it is sufficient to generate each term only once, the terms of degree
d + 1 are generated from Cd by adding, in all possible ways, to a term T ∈ Cd a literal
which is larger (in this order) than any literal in T . Indeed, let the indices of the literals
in T be i1 < i2 < . . . < id. Suppose that a term T ′ is obtained by adding to T a literal of
index i < id. Let T ′′ be the term whose literals have the indices i1, i2, . . . , i, . . . , id−1.
Clearly, T ′ can also be obtained by adding to T ′′ the literal of index id. If T ′′ /∈ Cd,
T ′ does not have to be examined because the term T ′ is then neither a prime pattern,
nor a candidate term. If T ′′ ∈ Cd, then T ′ was already considered, because T ′′ is
lexicographically smaller than T ” [16]. The data structure used in the implementation
of this algorithm is described in [16].

The generation of patterns starts with the bottom-up stage and proceeds until all pat-
terns of degree up to a certain (problem dependent) D are generated. At that time, those
observations in the archive which are not covered by any patterns generated so far are
extracted and used in a top-down procedure to generate some additional patterns that
cover them. The resulting set of patterns can be further reduced through the exclusion
of the unnecessary/redundant patterns. A pattern is defined as unnecessary or redundant
if all items it covers had already been covered by an alternative pattern, which, more-
over, completes the former by covering an extra array of features. Such computational
experiments prove that this simple procedure leads to radical cuts in the number of valid
patterns.

In many cases, it is important to restrict attention to prime patterns with special
properties. A typical example occurs when reliability considerations require the usage
of only those prime positive/negative patterns that cover at least a certain number of
positive/negative observation points. Additionally, only those prime positive/negative
patterns are to be considered whose appropriately defined distance to the set of nega-
tive/positive observations is large. Let the Hamming distance from [1] between a term
and a point be the number of variables in which they conflict. Then, the distance from a
term to a set of points can be defined as the average of Hamming distances between the
term and individual points.

A particularly significant property of certain datasets that has to bear in mind in
pattern generation consists of the existence of some, commonly named, ”monotone vari-
ables”. Monotone variables appear frequently in real-life problems, being associated
with attributes having a well defined impact on the outcome. It is well-known that the



CHAPTER 4. OPTIMIZATION WITH LOGICAL ANALYSIS OF DATA 119

prime implicants of a Boolean function do not contain the negations of positive vari-
ables, or the non negated forms of negative variables. The pattern generation procedure
described in [16] can be easily modified to prevent the generation of unwanted patterns.
This modification may reduce substantially the number of patterns generated by this
procedure.

Logical Analysis of Data models

We shall consider the hypothesis that a specific element is positive when covered
only by positive patterns, without being covered by any negative patterns. Consequently,
a given element is negative if it only achieves negative patterns, without achieving any
negative patterns. The definitions of a LAD model and discriminant can be found in [5].

Designing a LAD model for a given dataset requires, as a general rule, the creation
of a larger set of patterns, of which a subset, fully compliant with the definition of the
LAD model presented above, shall be selected. Moreover, each pattern in the model
should fulfill specific conditions in what regards the prevalence and homogeneity within
the group.

”Given a LAD model M = M+ ∪M− and a new observation w /∈ Ω, the classifica-
tion ofw is determined by the sign of a so-called discriminant function ∆ : {0, 1}n → R
associated to the given model. LetM+ = {P1, . . . , PM+} andM− = {N1, . . . , NM−},
and let us associate to each positive pattern Pi ∈ M+ a real weight αi and to each neg-
ative pattern Nj ∈ M− a real weight βj . The associated discriminant function on w is
given by:

∆(w) =
∑

Pi∈M+

αiPi(w)−
∑

Ni∈M−
βiNi(w)

where Pi(w) equals 1 if w is covered by Pi, and 0 otherwise (similarly for Ni(w)). The
sign of ∆(w) determines the classification of w. If ∆(w) = 0 the observation is either
left unclassified, or is classified according to the more frequent class” [5].

In most applications of LAD, equal weights are used among the positive patterns of a
LAD model, and also among its negative patterns. A more sophisticated way of selecting
weights is used in [15] and consists of the solution of a linear programming model that
chooses the weights in such a way so as to maximize the separation of the training set in
the so-called pattern-space. The pattern-space representation of an observation w is sim-
ply the characteristic vector of the patterns covering w. Attention that in this approach
the discriminant function is optimized over a given set of patterns that was previously
selected during the pattern generation procedure. Since the number of samples can be
considerable, the use of this approach assumes that a relatively small set of patterns has
been previously identified.
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Accuracy and validation

When designing a classification model it is of utmost importance to always evaluate
the accuracy of the resulting model, expressed as the mean value of correct predictions
from the total amount of predictions made. This process bears the name of classification
accuracy. One of the characteristic component within the study of medical data is the
validation, otherwise called the cross-validation of results obtained. If the initial dataset
is big enough to permit the separation of all subsequent information into a training set
- 70% - and a test set - 30% -, the former is usually used for designing an analytical
pattern for the specific task and draw necessary conclusions, while the latter serves at
validating conclusions hence derived. One of the main difficulties encountered in the
medical field is that when working with large numbers of patients, each affected by
certain conditions, medical datasets consist in observations of poorer quantity. Thus,
within this particular field of science, the most appropriate tool for assessing the quality
of derived conclusions upon the study of clinical data provided is the cross-validation/or
rotation estimation technique.

By ordinary, k-fold cross validation process is used [30]. Unlike the method that
tests a model on one set of testing and reports the performance, k-fold cross validation
method produces k testing steps and so k values of model accuracy. The mean value
of these rates represents the performance estimation pattern. Moreover, in the practical
usage, this represents the preferred methodology for quantifying the quality of a given
pattern and providing relevant comparison with other patterns. The method consists in
the initial division of a bulk of information into a k amount of pieces. The division is
random or it can follow a preset order. One of the k pieces is associated to data testing,
while the other k−1 pieces are kept for training data. The result obtained by the training
of the k − 1 pieces is to be tested on the k-piece parameter. The process shall be further
on repeated k times, and for each of such instances the test bulk together with training
data are to be changed, so that each of the k pieces is a test bulk in turns. The accuracy
of the process is provided by the accuracy average for the amount of k tests.

LAD is making a division, particularly a new applicant can either be positive, nega-
tive or indeterminate. The accuracy is defined like: ”simply the proportion of correctly
classified patients in the test set” [29].

The field of medicine also uses, on quite a frequent basis, two other concepts in the
analysis of samples - the sensitivity and the specificity of the test. Sensitivity is defined as
the fraction of samples classified as being positive within a given set of positive tests (e.g.
From patients known to be ill), while the specificity is the fraction of samples classified
as being negative within a given set of negative tests (e.g. From patients known to be
healthy).

Next, we also mention the importance of the notion ”hazard ratio of a set of tests”
[29] - another testing measure used in medicine - which is the mean fraction of two other
fractions, that is, the fraction of the positive tests and the fraction of positive tests within
a complementary set. Usually, this set is the one foreseen to be positive by LAD or other
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data study method.

The classic Logical Analysis of Data implementation

In order for LAD to be implemented, a set of important parameters controlling the
type of patterns generated and designed needs to be calibrated. Among these usual
parameters relating to general pattern creation procedures, we mention: pattern degree,
pattern family (prime, spanned, strong patterns, or mixed combinations), the minimum
degree of homogeneity of a pattern and its minimum prevalence.

Except for the pattern generation process, the design of models involves other im-
portant decisions, as well. The elaboration of the model and its power reach consensus
when each statement from the training set is covered by the patterns in the model. An-
other essential decision is the discriminant function to be used upon the design stage of
the model. According to general standards, the implementation of LAD is made through
the use of a simple linear function, where all positive and negative patterns hold equal
weights. It follows that the discriminant function generally used in LAD classifies an ob-
servation depending on the percentage of one and the other positive and negative patterns
covering it.

The LAD discriminant data can be regarded as a hyper-plane separation in the pattern
space. It is possible to design various discriminant functions on the same pattern-space
and obtain quite varied classifications veracities. There is also a great chance that a
discriminant function which was cautiously designed might trigger differences in the
resulting accuracy of a model.

While undergoing real-life research, it has been noted that a cautious calibration
of the LAD parameters would grant the design of highly accurate models, which most
frequently end up by outperforming the models designed using more common methods,
such as SVM, decision trees, neural networks, etc. What is more, such LAD models allow
the user to access a deeper understanding of the data analyzed, which would otherwise
be very hard to obtain with the use of a single machine learning/ data mining algorithm.
Among such examples, we mention the relative influence of variables, the automatic de-
tection of outliers and possibly misclassified observations, together with the detection of
representative subgroups of observations within one of the classes analyzed. Neverthe-
less, one of the major drawbacks is that in order to indulge on all the benefits that the
classification power and data mining capabilities of LAD have to offer, one must waste
precious time in order to calibrate all the above mentioned parameters.

Tools for Logical Analysis of Data

As already mentioned, the purpose of LAD is to extract from a set of items sharing a
common feature one or more logical patterns to be satisfied by numerous of the specific
items, so that such logical relations are satisfied by a minimum of the items not sharing
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the particular common feature. These logical relations are thus representative for the
items which share the common feature.

There are several tools designed for working with LAD, most of which have been
developed for research purposes. One of them is the application available for download
at [77]. The wide array of functions which compose this application follow and achieve
all the steps LAD requires, with modularity as a must, so that each stage of LAD can
be easily tested, modified or optimized. In order to develop the application, the authors
have used the C++ language, mainly for its popularity and its reasonably high level of
abstraction. Most methods used therein are easy to read and understand. All aspects
discussed in relation to the description of LAD are necessary for a full understanding
of the code. The application is implemented in such a way that it flawlessly works on
Linux. Since we were looking for an easier operation of such modules, the translation of
the Windows operating system represents a personal contribution of the author. Another
modification to the initial version is that due to the fact that the application developed by
E. Mayoraz worked only for the order line, we considered that using the tool with input
text files would be more helpful. This implementation can be divided into three phases:
binarization, generation of patterns and models. The binarization phase is designed to
handle multiple classes. The other two stages are restricted to problems with two classes.
The author has attempted to generalize the two stages, which should thereafter enable
classification for more classes, but this was achieved only by repeating the steps for two
by two classes. A generalized development of the concept is on the priority shortlist in
the future.

Next, we have chosen three datasets from two different fields, medicine and econ-
omy, and we have proved how optimum the LAD methodology is, when compared with
other methodologies based on the same kind of algorithms. In order to achieve the com-
parative study, we have undergone the following steps:

• we have tested the results obtained by means of LAD in various specialized pa-
pers [40, 29, 28] and we emphasized the fact that LAD really is a top method
for classification, providing as support examples for the datasets: breast-cancer-
wisconsin.arff, diabetes.arff and credit-g.arff;

• we have applied other methods for the correct classification of instances, by choos-
ing one of the most well-known methodologies and algorithms, such as C4.5 Al-
gorithm, RF Random Forest Algorithm, SVM Support Vector Machines Algorithm
or MLP Multilayer Perceptron Algorithm. In order to apply such algorithms we
have used the WEKA package, for its great suitability with the task. Further details
on WEKA are to be found within the following sections.

We have assessed the accuracy of these classification models using the one random
10-fold cross validation method, see section ”Accuracy and Validation”.

There are many methods for conventional data mining classification and most of
them stem from statistics. Such methods include: clustering, decision trees, association
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rules, etc. The difference between these methods and LAD is that not only does LAD
suggest a new mechanism for data analysis by means of combinatorial logic, Boolean
functions and optimization techniques, but it also has the capacity to detect further logi-
cal combinatory information based on the remarks made. Moreover, the LAD method of
classification identifies patterns characterized by satisfying observations of a distinctly
higher or smaller degree than the investigated population. From this perspective, we
can notice some degree of similarity to other algorithms such as C4.5 from [67] and
classifications of rough sets from [63].

Further details on the working principles of the application developed for LAD can
be found in [29]. We also mention that there are other tools for LAD processing, such as
Datascope - package written by S. Alexe for Windows, Ladoscope Gang [41] - a set of
programs written in the language Objective Caml by P. Lemaire, PLAD - written in Perl,
available by request from E. Boros, etc, but the one we have chosen to analyze within
this paper has proved to be of the greatest performance and the easiest to extend. The
results obtained for LAD are remarkable, and that is why we felt the need of comparing
it with some more classical classification tools. All these methodologies/algorithms are
integrated in WEKA. At the same time, the modifications made on the original code
developed by E. Mayoraz are attached in Appendix 2.

4.1.2 Classification algorithms

Within this section we will shortly focus on the analysis and the particular details
of the algorithms we are to use in the next section, in order to assess the quality of
the computational results obtained on LAD. Whenever possible, we will also emphasize
existing connections between specific features of such algorithms and basic concepts of
LAD.

We will discuss the main parameters for each algorithm and we present them based
on their implementation in WEKA package. We remark the fact the ”WEKA’s classify
panel enables the user to apply classification and regression algorithms (called classifiers
in WEKA) to the resulting dataset, to estimate the accuracy of the resulting predictive
model, and to visualize erroneous predictions, ROC curves, etc., or the model itself (if
the model is amenable to visualization like, e.g., a decision tree). [78] The method-
ology used in order to compare obtained remarks along those of methods executed in
WEKA package was the LAD accuracy definition, which has already been presented in
the previous section.

Further on, we will shortly revise some classical algorithms and methods used in
classification. Each of the examples provided are similar to the proposed methodology
of LAD. Detailed mathematical principles about how these algorithms works can be
found in [23].
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C4.5 algorithm

C4.5 is a classification algorithm, which generates a decision tree using the training
data. The approach of information gain is used to build a decision classification tree as
regards a target classification previously chosen. Evidently, the separation of the input
space into subspaces in the decision tree context is closely related to that of patterns in
LAD methodology. We state the fact that in the case of decisions trees the set of patterns
is significantly smaller than that of LAD. Because usually the decision tree models are
simpler classifiers, they are less expensive computationally generated and, if pruned,
are less prone to overfitting the date. What differentiates LAD classifiers from decision
tree models is a higher degree of generalization for the former. The next section will
also allow us to conclude that the results obtained both for LAD and decision trees have
similar values; even if they still remain fundamentally different form other perspectives.

C4.5 works after following principle: for each node it is selected the specific feature
of the data which most adequately divides the set of instances into further subsets en-
riched either in one of the classes. The division criterion in such instance is the normal-
ized information gain (difference in entropy). The feature holding the greatest amount
of normalized information gain will be selected for further decision making. The typical
algorithm used for creating decision trees is to be found in [38].

In the case of all decision tree models, each node generally represents a specific test
which relates to the values of one or more features, while each of its subsequent branches
correlates to one of the possible results of the test. If the specific feature used in the test
predicates nominal or discrete values, it is then possible to achieve tests with a larger
array of results. Thus, in the case of a training dataset, each individual test divides the
observations into one or several subsets.

When applying successively such tests, the user can design a tree like structure which
partitions data into progressively lesser parts of the input space. Normally, this process
is achieved in a greedy manner. By means of the best test that divides training data, the
entire amount of training data is split into one or several subsets, following that each of
the obtained subset is further split in the same manner, until each emerging subset of
observations is homogenous enough in what concerns the set observation classes. The
criterion used for assessing the suitability of a particular test is a quantitative measure,
such as the entropy.

It is obvious that the partition of the input space into subspaces in the decision tree
context is closely related to that of patterns in LAD. The sequence of tests down a path in
a decision tree corresponds to a pattern in LAD, where it defines a subset of the training
observations that satisfies certain conditions of prevalence and homogeneity. But, we
should remark the fact that in the case of decisions trees the set of patterns is signifi-
cantly smaller than that of LAD, since test section is made based on the particular test’s
capacity to provide locally enhanced separation of the set of observations. In the clas-
sic LAD enumeration scheme, all patterns are generated and evaluated, and from this,
a complex way to manipulate them. Since decision tree models are considered to be
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simpler classifiers, they are less expensive to generate. Moreover, by pruning them, the
risk of overfitting data diminishes. On the other hand, LAD classifiers are more general
that decision tree models. We will see in our next section that the obtained results for
LAD and decision tree are close enough, even if they are quite different in some aspects
[11].

Random Forest algorithm

The Online Chemical Modeling Environment has integrated an implementation of
the random forest algorithm by WEKA package. Random forests refers to the com-
bination of learning methods which operates through the design of a great number of
decision trees at training time and the output of the class which is the mechanism of the
classes output by individual trees. As mentioned above while it is quite cheap to build
trees, among the most important benefits of using such simple structures we mention the
high accuracy of results obtained with this particular classification model [9]. Given that
a sufficiently large number of trees is generated, we expect that random forests mod-
els have a very close performance to that of LAD models from [3]. We proved these
theoretical results throw tests, using WEKA.

SVM algorithm

In machine learning, SVM is a supervised learning model that analyze data and rec-
ognize patterns. The typical SVM’s classifier consists of a linear discriminant function
that separates the training data in a very similar way to the LAD. Besides this, the opti-
mization model for optimizing the weights of the discriminant function in LAD is almost
identical with the one utilized in SVM. We will see in the next section, that on the same
dataset, these two algorithms have tight results.

Logistic regression

The method of logistic regression serves at evaluating concepts such as conditional
probability and classification. This model was initially designed to work with two
classes, but it was further enhanced in order to discriminate between several types of
classes. This led to it being also called multinomial logistic regression. We will mention
two reasons why linear regressions are not suitable for the accurate prediction on a given
binary variable:

1. A linear regression will predict values outside the acceptable range;

2. Since the branched experiments can only result in two values, there will be no
distribution of the residuals within the predicted line.
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Alternately, the outcome of any logistic regression is the logistic curve, generally
limited to values between 0 and 1. The only notable difference between the logic re-
gression and the linear regression is that the curve of the former is designed by means
of the natural logarithm of the odds of the variable addressed, rather than by means of
the probability factor. Furthermore, it is not mandatory for predictors to be ordinarily
distributed or for them to be equally variable within each of the groups. Here are some
instances of issues generally encountered with two classes of predictors (seen as logistic
regression): labeling an email as spam or no spam (posing contents, details about the
subject of the email, sender is or not in the list of contacts), classification of tumors as
benign or malignant (following the analysis of results), classification of visuals, such as
the image of fruit as apple and grapes. Other examples of problems include the case
when there are multiple classes of predictors and they are generally encountered in such
instances as classification of emails in terms of typology: news, weather, jobs, family,
spam, etc.; classification of visuals, such as the image of fruit as apple, grapes, cherries
or oranges.

Further on, the experimental section will provide us with evidence that the results
obtained for LAD and this specific algorithm are mostly similar.

Multilayer Perceptron algorithm

A multilayer perceptron (MLP) is a ”feedforward artificial neural network model
that maps sets of input data onto a set of appropriate outputs” [38]. ”A MLP consists
of multiple layers of nodes in a directed graph, with each layer fully connected to the
next one. Except for the input nodes, each node is a neuron (or processing element)
with a nonlinear activation function. MLP utilizes a supervised learning technique called
backpropagation for training the network. The number of nodes in the first layer is
equivalent to the number of input variables in the data, and each of the specific nodes
holds a single input, which corresponds to the correlated input variable. The last layer
consists of a number of nodes which equals that of predictors in the data, but there is no
connection between different nodes. The intermediate layers, where the case, provide
the network with extended flexibility” [38].

We will supplement the description of this algorithm in the experimental section,
where we will analyze the performance of these heuristics in a series of computational
experiments, with different publicly available datasets from WEKA package repository
and UC Irvine repository.



CHAPTER 4. OPTIMIZATION WITH LOGICAL ANALYSIS OF DATA 127

4.2 Computational experiments

In previous section, we summarily define the LAD methodology and we described
some essential classification algorithms. In this section, we discuss the comparative
accuracy of the LAD ”models” and the accuracy and results for these algorithms. We
state that we use the C++ application developed by E. Mayoraz, and modified by the
author for LAD models and WEKA package for all the other algorithms. For all the next
examples, we used 3.9.0 WEKA version [78].

One of the fields of knowledge which ascertained the irrefutable value of LAD in real
life applications is medicine. That is the reason for choosing a dataset from the economic
environment and another two from the medical environment as a means to exemplify the
LAD principles. The LAD methodology has several practical applications, be it in the
medical or the economic fields. One way of emphasizing the importance of using the
LAD methodology within the economic field, as well as highlighting the importance of
this method within various practical aspects, is shown in [13].

The subsection ”Datasets Examples and comparisons” includes the description of
data sets used in comparison, as well as the two main comparison directions suggested
by the author. Within the same section, we remind about the authors original input in
developing suggested algorithms, as well as modifications to the original implementation
purpose of LAD.

The subsection ”Experiments” includes the experiments achieved and it displays
them as comparative tables.

The subsection ”Results and analysis” includes the analysis of obtained results, to-
gether with the advantages LAD provides, suggestions on when it is recommended and
when it should be avoided, as well as which is the status of the specific methodology
compared to considered algorithms.

4.2.1 Datasets - Examples and comparisons

Within this section we would like to compare the LAD methodology with some of
the best-known classification algorithms. The comparison aims at exhibiting the fact
that LAD is a classification methodology absolutely comparable with other well-known
algorithms in the field of data mining, which have had even more satisfactory results in
some particular cases.

Following experiments, it might appear that LAD is regarded as a feasible tool allow-
ing the user to attain superior classification performance at low computational expenses.
The veracity of LAD models are equal to or even exceed the level of accuracy obtained
with models created by means of other algorithms.

For the LAD methodology, we have used an application which was originally de-
signed by E. Mayoraz (a public tool serving research purposes) and was further im-
proved by the author. In order to obtain results with the other algorithm considered, we
used WEKA. In order to serve as anchorage for out tests, for some of the considered data
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mining algorithms we also carried out an OCTAVE implementation, Appendix 1, using a
purely OCTAVE code, with no external libraries or plugins.

In view of an accurate and complete comparison between these algorithms and the
LAD methodology, we have taken into consideration two main comparison directions:

• Comparison 1 - default parameters: where we compared results obtained with
LAD with those results obtained with WEKA (for J48, Multilayer Perceptron, Lo-
gistic, SMO and Random Forest algorithms), with default parameters for each
algorithm. Further on, for all named classifiers, we shall present the values of
used parameters in the experiments;

• Comparison 2 - optimal parameters: while such task as finding optimal parameters
for a classifier could prove to be a dreary practice, WEKA provides a series of
means for automating the process. Meta-classifiers enable the optimization of
specific parameters of base classifiers. These ”meta-classifiers” [79] are:

"weka.classifiers.meta.CVParameterSelection
weka.classifiers.meta.GridSearch
weka.classifiers.meta.MultiSearch (3.7.11+)
Auto-WEKA (3.7.13+)"

For both comparisons, a 10-fold experiment was achieved and it combined all pos-
sible parameters. The final report consists in the maximum average degree of accuracy
obtained.

Datasets description

The first dataset to be considered within the field of medicine:
breast-cancer-wisconsin.arff - 699 instances.
The specialized literature acknowledges that this is a clean dataset - the dataset does

not contain incomplete, incorrect, inaccurate, irrelevant, etc. records - for which a wide
variety of analysis methods offer diagnostic models characterized by a high degree of
accuracy. In the Figure 2 from Appendix 3 we can see how this file looks in WEKA.

It is known from that Breast Cancer Wisconsin is a data file upon which frequent
data studies offer rigorous diagnostic results. Using WEKA graphical user interface we
can see it is a cytological test described by: number of numerical attributes (10), number
of instances (699 total - 458 benign/label ”2”, 241 malignant/label ”4”), name of the
attributes, minimum value, maximum value, etc. WEKA compute some basic statistics
on each attribute, we can easily see: minimum value, maximum value, mean, standard
deviation, etc. The outcome is a binary variable, with values for benign or malignant
nature of the tumor, ”yes” - tested positive, ”no” - tested negative. This dataset is updated
frequently. In our experiments, for abbreviation, we will refer to this dataset like ”b-c-
w”.
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The second dataset is an economic one: credit-g.arff - 1000 instances.
Since the economic relevance of LAD was already mentioned in [13], it should be ob-

vious why the author choose a dataset such as ”credit-g.arff”. It characterize applicants
for credit cards. The output represents the approval or rejection of the request.

As soon as data is loaded from the visualization window, WEKA provides the possi-
bility of determining those attributes that the data set depends on. Alongside visualiza-
tion, WEKA offers a set of basic static elements for each visualized attribute, see Figure
3 from Appendix 3. We can see that from all those 1000 instances, 700 are labeled
”good”/positive and 300 ”bad”/negative.

The third dataset is another medical one: diabetes.arff - 768 instances.
For this dataset, class value 1 (total number of instances 268) is interpreted as ”tested

positive for diabetes” and the rest ”tested negative for diabetes”. We can load data from
WEKA and it admits the attributes, Figure 4 and Figure 5 from Appendix 3.

We have chosen three datasets for the experiments which shall be detailed within
this section. In the case of all these sets, the output has only two possible values -
”yes”/”no”. The reason for choosing such sets is the fact that the LAD methodology is
hence developed so that it can classify certain instances as being part of two appointed
and possible classes. It is most certain that a part of the chosen algorithms offers the
possibility that the output is more generous, but for the sake of making an accurate
comparison by means of LAD, we have chosen those sets which provide a valid solution
of this type.

LAD - C++ application

All results for LAD hence obtained were verified and reconstructed using a modified
version of the application designed by E. Mayoraz [60].

We remind here that the adaptations of the original application were:

• converting the application in order that it could be used in Windows (the original
application was developed for Linux);

• converting the application so that it becomes a console application, not a command
line application;

• the optimal rewriting in C + + of some methods (dynamic allocation instead of
static allocation, we change the parameters of some functions, in those cases where
they had more than four parameters, we changed some structures in classes and
we wrote some Object-oriented programming modules);

• we added some new necessary methods, like the one for calculating standard de-
viation;
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• additionally, because k-folding method is the most frequently used cross-validation
technique, we evaluate the accuracy of LAD using one random 10-fold cross-
validation. For this purpose, we used the methods:

void divide(Matrix<T>& partition, int k)
void setFold(multiDS<T>& data,
const Matrix<T>& partition, const int fold)

The first method constructs a partition of k equal parts of the dataset. For the
purpose of equalize all the parts, the number of elements in two different parts
will never differ from more than 1. The parameters of the method are: the dataset
received like a matrix with different (integer) values, the number of parts (for our
particular case is 10).

The second method take the fold and if this one is greater than 0, we set data to
the fold-th partition of the current object, if fold is less that 0, we set the data
to everything but the fold-th partition of the current object, fold {−k, ...,−1} ∪
{1, ..., k}. The code for these methods is in Appendix 2.

By means of the above mentioned application we will display the results obtained by
means of LAD for all datasets, and we will also carry out a comparative study of these
results with those obtained by means of WEKA algorithms.

4.2.2 Experiments

Comparison 1

Dataset breast-cancer-wisconsin.arff.
In Table 4.1 accuracy is provable by tests of the 10-fold cross validation type. Within

the previous section, we have explained this type of testing. The table shows results
obtained by means of LAD and results obtained by means of considered algorithms. We
use Experimenter Environment from WEKA, we choose the algorithms (J48, Multilayer
Perceptron, Logistic, SMO, Random Forest) and we run all the algorithms in a single
work session, with one repetition and 10-fold cross validation. The results can be seen
in Figure 6 from Appendix 3. This option offered by WEKA is very useful, in case one
wishes to run more algorithms at once.

Note that the WEKA algorithms need some calibration of some parameters. For this
type of comparison we used the default values of the parameters. For instance, in prac-
tice, J48 algorithm takes into account a penalty term, in order to allow some observations
in the training dataset to be incorrectly classified. The so-called C-parameter (default
value - 1.0) imposes the degree of importance the model should allow to the perfect
separation of the training data, compared to maximizing the separation margin of most
observations. An equally important parameter is the kernel function, which refers to the
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feature of the space chosen (in the specific case, the polynomial function). For these
values see the official documentation for WEKA [80].

The classification accuracy of LAD with a 10-fold cross validation for this dataset
is 96.10%. Because the application for LAD did not originally have the calculation of
standard deviation, we add a new method that calculates it. It works out the mean, the
simple average of the tests values, then for each value: subtract the mean and square the
result, then work out the mean of those squared differences and take the square root of
that. In this way, we have a standard deviation of 2.15.

We repeat the experiment for 10 repetition and 10-fold cross validation (10X10 re-
sults). In this experiment, the J48, MultilayerPerceptron, Logistic, SMO, RandomForest
algorithms are run 10 times with 10-fold cross-validation procedure. The next step, each
of the 10 cross-validation folds is averaged. This procedure results in a line for each run
for a summarized 50 result lines. All 500 (10x50) results are sent to the classification. It
is obvious that this type of experiment affects the execution time, but the mean absolute
error is different. The results can be found in Figure 7 from Appendix 3.

The accuracy obtained with LAD methodology are at least comparable to the accu-
racies of the chosen algorithms. LAD stands out as a highly competitive and alternate
method.

Dataset credit-g.arff.
In Table 4.1 we have the results with 10-fold cross validation method for LAD and

the WEKA algorithms. All the results can be found in Appendix 3, Figure 8.

Dataset diabetes.arff.
In Table 4.1 we have the results with 10-fold cross validation method for LAD and

the WEKA algorithms. It informs the comparison of the chosen algorithms from WEKA
and LAD.

Dataset LAD C4.5(J48) SMO(SVM) Random Forest Logistic MLP

b-c-w (ACC) 96.10% 94.56% 96.99% 96.57% 96.57% 95.28%
b-c-w (StdDev) (±2.15) (±3.63) (±2.07) (±2.15) ±2.15) (±2.61)
credit-g (ACC) 83.25% 70.50% 75.10% 76.40% 75.20% 71.50%
credit-g (StdDev) (±4.15) (±3.60) (±3.45) (±3.92) (±3.43) (±2.80)
diabetes (ACC) 76.30% 73.83% 77.34% 75.79% 77.22% 75.40%
diabetes (StdDev) (±3.05) (±5.66) (±4.07) (±3.49) (±4.57) (±4.66)

Table 4.1: Results for datasets

From these tables we can clearly observe that the LAD methodology is one com-
petitive with the other classification algorithms from the analysis of the classification
accuracy. Of course it is important to understand that differences between results are
normal, especially since two different tools were used in order to obtain them. Each
of these tools have different particularities and different advantages. For instance, the
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LAD application has advantages such as: application developed in a quick programing
language (C++), the LAD classifying steps were fully respected, the modules of the ap-
plication have been modified, see Appendix 2, in order to obtain the most efficient local
optimizations, which in turn would lead to the global optimization of the classification.

WEKA combines many classification algorithms into one single application, the im-
plementations for the algorithms being quite efficient. For all the algorithms, we have
chosen to use 10-fold cross-validation in the hopes of obtaining a better classification
percentage. The execution time is not very important, but, even so, we can observe
that from this perspective as well the LAD classification is not less efficient than other
algorithms.

We can easy accept that the capability of LAD is the same as that of Random Forests
and SMO, at the same time having at least the same results as the other algorithms from
WEKA [2]. In correlation with the most frequently used machine learning/data mining
algorithms, the proposed methodology of LAD was shown here that bears comparison to
several other methods used in classification.

All the tests that we did here were with Experimenter Environment, where we can
easily see the values for accuracy and standard deviation. But, if we want to compare
other values for these algorithms, we should use Explorer Environment.

We also compare the confusion matrix [81] for these datasets. Table 4.2 contains
confusion matrix for the above algorithms and for LAD. The confusion matrix is a help-
ful mechanism for analyzing how good our classifiers can recognize observations from
different classes. We state that for breast-cancer-wisconsin.arff, parameter a is for the
class labeled by ”2”, benign and parameter b is for the class labeled by ”4”, malignant.
For credit-g.arff, parameter a - ”good”, parameter b - ”bad” and for diabetes.arff, pa-
rameter a - ”tested negative”, parameter b - ”tested positive”.

From this table we can observe that LAD has at least the same precision like the other
algorithms, sometimes even bigger. In Appendix 3 we have all the results obtained with
WEKA and reported in Table 4.2. From these results we can also report other values like:
”TP Rate”, ”FP rate”, ”Precision - = TP/(TP + FP )”, etc. [80] Obviously, we can
still change some parameters of the algorithms and we can still make some tests with
other algorithms from WEKA, but this is considered a future work in this topic.

Comparison 2

Finding the optimal parameters for a classifier might prove to be laborious. Thus,
WEKA provides a set of solutions for automating the process. There are available four
meta-classifiers that allow you to optimize some parameters of your base classifier. From
these, we choose weka.classifiers.meta.CVParameterSelection for our
tests. We can optimize the C parameter of

weka.classifiers.functions.SMO, but not the C of an
weka.classifiers.functions.SMO
within a weka.classifiers.meta.FilteredClassifier.
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Dataset Algorithm a b

breast-cancer-wisconsin.arff LAD 442 16
8 233

C4.5(J48) 438 20
18 223

SMO(SVM) 446 12
9 232

Random Forest 444 14
10 231

Logistic 446 12
12 229

MLP 440 18
15 226

credit-g.arff LAD 693 95
70 142

C4.5(J48) 588 112
183 117

SMO(SVM) 610 90
159 141

Random Forest 642 58
178 122

Logistic 605 95
153 147

MLP 561 139
146 154

diabetes.arff LAD 420 78
98 172

C4.5(J48) 407 93
108 160

SMO(SVM) 449 51
123 145

Random Forest 418 82
104 164

Logistic 440 60
115 153

MLP 416 84
105 163

Table 4.2: Confusion Matrix for all algorithms
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Shortly, weka.classifiers.meta.CVParameterSelection selects best
value for a parameter, this means that it optimizes performance, using cross-validation
and optimizes accuracy.

For exemplification, we consider two of our algorithms J48 and SMO. J48 has two
parameters, confidenceFactor C and minNumObj M . We enter in the ArrayEditor for
CVParameters the following string: C 0.1 0.5 5. This will test the confidence parameter
from 0.1 to 0.5 with step size 0.1 (= 5 steps). For SMO and it’s complexity parameter C
we enter the following string: C 2 8 4. This will test the complexity parameters 2, 4, 6
and 8 (= 4 steps). In order to report the comparison between these classifiers, we have
to know the symbols: ∗ - significant poor, v - significant better, blank - we can not tell
if significant poor or significant better.

The results for breast-cancer-wisconsin.arff are in Figure 4.1.

Figure 4.1: breast-cancer-wisconsin.arff with meta-classifier CVParameterSelection

We can see that standard deviation is smaller for the same percent for J48 and SMO
is better in correct percent, 96.99% and 96.71%.

The results for credit-g.arff are in Figure 4.2. Here we enter in the ArrayEditor for
CVParameters the following string: C 0.1 0.3 3.0 (for J48), because the dataset has more
instances, according to WEKA [80]. For SMO we enter the following string: C 2.0 6.0
3.0.

The correct percent is slightly better than the percent obtained in previous compar-
ison, this means that CVParameterSelection optimizes the accuracy. The same is for
diabetes.arff.

The results for diabetes.arff are in Figure 4.3.
It is easy to notice that accuracy percentages are higher, but also that the standard

deviation has lower values. Finding optimum parameters and their adequate calibration
is quite a sensitive topic. WEKA provides these meta-classifiers in order to ensure better
results for the data sets chosen. A fairly easy option for finding accurate ranges for the
hyper-parameter of each algorithm is the multiple attempts with the WEKA Explorer.
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Figure 4.2: credit-g.arff with meta-classifier CVParameterSelection

Figure 4.3: diabetes.arff with meta-classifier CVParameterSelection
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Following this, we notice which are the satisfactory values and use the WEKA Exper-
imenter in order to operate a search by means of range. We also mention that these
meta-classifiers are only accessible with newer WEKA versions 3.7.11+.

In order to serve as anchorage for out tests, for some of the considered data mining
algorithms we also carried out an OCTAVE implementation, Appendix 1, using a purely
OCTAVE code, with no external libraries or plugins. We report that the accuracy for
breast-cancer-wisconsin.arff was: Logistic - 97.138%, MLP - 96.566%, credit-g.arff
Logistic - 72.05%, MLP - 70.98% and diabetes.arff Logistic - 74.25%, MLP - 71.80%.

Within this section, we explored the performance of LAD and to evaluated such
characteristics as accuracy. Moreover, we shortly summarized the concept at the basis
of various well-known classification algorithms used as reference and which serve at
evaluating accuracy within the validation procedures of our computational studies.

Though a decade ago research mainly focused on theoretical enhancements and on
the generic computational implementation, more recently the focus has switched to ev-
eryday application of such methodologies as LAD in fields of utmost priority, namely
medicine. Nevertheless, in order to fully explore the classification power and data min-
ing capabilities of LAD, the researcher will need to sacrifice great amounts of time.

This section was intended to provide an accurate computational evaluation of LAD
models and compare them with other data mining algorithms. Further research in the
field aims at assessing the time needed for designing a LAD model, together with finding
means for reducing it as much as possible, while also ensuring accurate results. Follow-
ing this stage, we can focus on the development of LAD models for various other types
of medical issues.

4.2.3 Results and analysis

There are two main directions we have focused on within previous section of the the-
sis. The first was to assess the utility of the LAD methodology, as well as the suitability
of LAD for the two datasets, attended by a judgment of the results obtained. The main
conclusions of this stage are:

• LAD is a methodology which combines combinatorics basic notions, operational
research and optimization in order to achieve a classification of a satisfactory per-
centage. This conclusion can be verified for ”breast-cancer-wisconsin.arff”, where
the accurate classification percentage was of 96.10% or the others datasets, where
the accurate classification percentage was more than 75%-80%. The assessment
was made by means of the application, available free of charge but which was
slightly adapted by the author in the purpose of the ease of use.

We remind here that the adaptations were: converting the application in order that
it could be used in Windows (the original application was developed for Linux),
converting the application so that it becomes a console application, not a command
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line application and the optimal rewriting in C++ of some methods (dynamic al-
location instead of static allocation, we change the parameters of some functions,
in those cases where they had more than four parameters, we changed some struc-
tures in classes and we wrote some Object-oriented modules). We added some new
necessary methods, like the one for calculating standard deviation. Additionally,
because k-folding method is the most frequently used cross-validation technique,
we evaluate the accuracy of LAD using one random 10-fold cross-validation and
for this purpose, we introduced some new methods.

• There are several software applications available for LAD, but at present it is not a
largely used methodology. It might be that the integration of LAD in a collection
of data learning algorithms like WEKA would make for a wise option;

• Results obtained with LAD proved very interesting in isolated cases and in partic-
ular fields, such as medicine, but they also demonstrated several drawbacks. One
of the most significant is the uncontrolled generation of patterns;

• Considering the advances of technology, any Object-oriented implementation for
LAD would not be sensible;

• Within [13] we have discussed about the economic implication that such method-
ology as LAD can have. In fact, it is true with any classification matter that the
lower the costs, the more efficient the method.

The second direction this study aimed at considering was the comparative research
of LAD and several algorithms known within the specialized fields. Of course, we also
had to consider the fact that LAD remains a methodology used at a limited level and
quite new in the field. Nevertheless, within the comparative research it was proved that:

• For the selected datasets, LAD offered even better results than in the case of other
methods used at larger scale (such as MLP). Percentages obtained in the classifi-
cation come to prove this aspect;

• From the perspective of the execution duration, LAD holds the highest grounds.
It’s certain that they are much quicker methodologies, but LAD offers a more de-
cent execution time, compared to other results obtained in the research. For in-
stance, MLP lasts shorter, but the end results are poorer;

• From the perspective of the applied notions, LAD does not require so much math-
ematical background knowledge, or yet, better said, it involves the knowledge of
quite simple notions, such as the logic behind the Boolean functions, their simpli-
fication or solving techniques for set covering problems.
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An important contribution of the author in this chapter was that of having undergone
a computational evaluation of the LAD methodology and made comprehensive compar-
isons with other specific machine learning techniques. The overall conclusion is that re-
search in the field of LAD methodology has made great progress, while it counts among
classification methods rated as being highly intelligent. Our experiments led to the con-
clusion that the most considerable advantage of the methodology studied is that it pro-
vides self-explanatory/with justification classification, when compared to other methods.
In order to obtain the best results possible, we evaluated the accuracy of the classification
models in this chapter using one random 10-fold cross-validation procedure. All results
provided are to be found in [11].

Another contribution was viewing LAD in economic parameters A. Băicoianu, S.
Dumitrescu [13]. This was not difficult because the performance of the present method-
ology has been so far certified by numerous fruitful applications.

Further research in the field aims at assessing the time needed for designing a LAD
model, together with finding means for reducing it as much as possible, while ensuring
accurate results. Following this stage, we can also focus on the development of LAD
models for various other types of medical issues which can use data mining techniques
for risk evaluation.

At the same time, we intend to integrate results obtained with LAD to WEKA, since,
as mentioned before, WEKA is a suitable tool for developing new machine learning
schemes. Furthermore, WEKA can be extended as to include the elementary learning
schemes designed not only for research but also for various other educational purposes.
Achieving this aspect means that the use of LAD methodology as a classification tool
will become much easier and user-friendly.

Additionally, as a perspective on this presented data mining tool, we would like to
extend our previous work on Haskell [12] to some pattern mining algorithms. We intend
to use specific libraries, like HLearn - Haskell based library for machine learning [82] - in
some specific problems of data mining, particullary on LAD. An interesting perspective
would be to find a Haskell alternative solution for practical problems basically solved
with LAD methodology.

Among the observed advantages of LAD following experiments, we recall:

• the quality of patterns provided;

• the time necessary to achieving the experiments;

• the accuracy of results (quite low standard deviation);

• the confusion matrix obtained indicates minimal classification errors;

• the methodology does not depend on many parameters or constant values (like the
other algorithms discussed here), hence the possibility to obtain different results
within repeated experiments diminishes.
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Among the disadvantages of LAD we recall:

• there is no automatic tool to support the LAD methodology;

• the existent code for the methodology is tetchy and difficult to run or to optimize,
thus extending the application is a costly and time, inefficient process;

• from tests achieved on the datasets tested, it was noticed the LAD application
provides unsatisfactory results when there are invalid recordings at the level of
data sets (e.g. ”Parkinsons Data Set”, ”seismic-bumps Data Set” [83] - the author
avoided choosing such datasets);

• in the case of test repetition (for instance 20/30 times 10 fold cross validation),
the time required for execution is of too great an amount (hours/days) - hence the
conclusion that the application should be largely optimized;

• in the case of a great number of thresholds, the classification time for LAD proves
exponential growth.

We recommend the LAD methodology for datasets with medical content, where in-
valid/incomplete information lacks entirely. The diffusion of the LAD methodology
within the medical field is partly explainable by the fact that LAD generates justifi-
able/explainable patterns that is patterns which can be thoroughly understood by spe-
cialists in the field of medicine. In this field, such methodology is important, since it
entails an automatic system of patient distribution or a healthy/unhealthy distribution of
patients. This clearly results in reduced time for diagnosis. At the same time, it is cer-
tain that achieving such meaningful ”patterns” is not a priority in other fields, where the
percentage of accurate classification is more important.

4.3 Summary and future work

Within this chapter, we described the methodology of LAD and discussed its main
components. Moreover, we shortly summarized the concept which lies at the basis of
various well-known classification algorithms used as reference and which served at eval-
uating accuracy within the validation procedures of our computational experiments. We
have also described a set of ground-breaking and opportunistic applications of an opti-
mized design of LAD model for classification.

It is to be noticed that research of LAD has made great progress since early original
publications on the topic. Though a decade ago research mainly focused on theoretical
enhancements and on generic computational implementation, more recently the focus
has switched to the applied application of such methodologies as LAD in fields of utmost
priority, namely medicine. This particular application of LAD dawned in 2002-2003
when the results of a collective research study carried out together with clinicians from
a healthcare foundation [3, 4] were officially published.
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Numerous studies showed that the accuracy obtained by means of LAD models is
fairly comparable to that of the best rated methods in data analysis, while results obtained
with LAD methodology closely relate or even better those obtained by means of other
similar methods. In the meanwhile, the value of LAD was in more than one occasion
reconfirmed and enhanced in medical applications. The array of medical applications
of LAD proposes that LAD has the potential of being further developed in order for it
to support and provide new combinatorial understanding of a wide variety of studies,
including SNP data analysis or studies on genetic disorders. Further on, such findings
would help integrate results from different genomic, genetic and proteomic platforms.



Chapter 5

Conclusions

The aim of this thesis was to study various types of discrete/combinatorial optimiza-
tion problems which have practical applications in various scientific fields. The entire
range of studied problems stem from concrete applications to be usually encountered in
real life situations. In regard to this particular selection of problems, we have set out to
depict a variety of ground-breaking and opportunistic applications of optimization for
the design of LAD models for classification and regression.

Below, you will find a brief review of the study and the most important aspects
which confirm it as a relevant contribution to various scientific fields of knowledge and
research.

The major contributions of this thesis in the area of rectangular two dimensional cut-
ting problems can be found in papers authored by Iacob P., Marinescu D. and Băicoianu
A. [34], D. Marinescu, A. Băicoianu [48], D. Marinescu, A. Băicoianu [49], D. Mari-
nescu, A. Băicoianu [50], [51], D. Marinescu, A. Băicoianu [52], D. Marinescu, A.
Băicoianu [53]. Each of these papers presents some original points of view and opti-
mized algorithms on two dimensional cutting problems.

In Section ”The generating cutting-covering solutions using Euclid’s algorithm” our
objective was to find some receipts for solving the cutting and covering problem, using a
polynomial method based on Euclid’s algorithm for finding the greatest common divisor.
The complexity of this method is based on Euclid’s algorithm and Lamé’s theorem. We
define the properties for our algorithm, we construct the set of receipts and we estab-
lish that the construction in one direction of the cutting-covering receipt is a geometrical
construction of Euclid’s algorithm, see Theorem 1. We were able to conclude the com-
plexity of the new method based on the number of divisions in Euclid’s algorithm using
Lamé’s theorem. The novelty of this problem is given by using the Euclid’s algorithm
for solving this kind of problems. The results within this section can be found in the
paper authored by Iacob P., Marinescu D. and Băicoianu A. [34].

In Section ”The determination of the guillotine restrictions for a rectangular cover-
ing model” we emphasize the cutting and covering problems with guillotine restrictions.
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Using the graph representation of the cutting or covering pattern [47, 44] we presented
in this section another analytic method for the testing of the guillotine restriction based
on the decomposition of a graph in connex components. In [51] we used the graph repre-
sentation of the cutting and covering pattern to prove the connection between guillotine
restrictions and the connex components of the graph. We started from this connection
and we presented in this section an algorithm which can be used to verify the guillotine
restrictions in a two-dimensional covering model. The algorithm is originally developed
by the authors of the paper. We introduced the notions of rectangular covering model,
guillotine restrictions, downward adjacency, rightward adjacency and we considered the
graph of downward adjacency and the graph of rightward adjacency for defining the cuts
for the rectangular cutting and covering problem. The results from Theorems 13 and 14
suggest an algorithm for the verification of the guillotine restrictions, using the decom-
position of graphs G′d or G′r in connex components, defined in [44]. The novelty for this
section is given by the manner of defining the cuts and the algorithm. The correctness of
the algorithm follows from the Theorems 13 and 14, that make the connection between
a guillotine cut and the decomposition of the graph G′d or G′r in connex components.
The algorithm for finding the connex components has the complexity O(m), where m is
the number of the arches [17, 19]. So the complexity of V-CUT or H-CUT procedures
defined is also O(m). It follows that the complexity of PREORDER procedure for a
rectangular covering model of k items with guillotine restrictions is O(km). We note
that the results obtained within this section complete the results obtained in [47] and
detailed results are found in [51]. Also, the next section completes this section, giving
some extra information about the algorithm and a particular example with all iterations.

In section ”The determination of the guillotine restrictions for a rectangular cutting-
stock pattern” we consider a two-dimensional rectangular cutting stock problem in case
of a cutting pattern with gaps. First we presented two new graph representations of the
cutting pattern, weighted graph of downward adjacency and weighted graph of rightward
adjacency. Using this kind of representation we propose a method to verify guillotine
restrictions of the pattern which can be applied for cutting-stock pattern with gaps but
also for the covering pattern without gaps and overlapping. The results from the The-
orem 22 suggest an algorithm for the verification of the guillotine restrictions, in case
of a cutting-stock pattern with gaps. The defined algorithm has for input the weighted
graphsGd orGr attached to a rectangular cutting pattern, the output is the s-pictural rep-
resentation of the cutting pattern like a formula in a Polish prefixed form. The algorithm
constructs the syntax tree for the s-pictural representation of the cutting pattern, starting
from the root to the leaves (procedure PRORD). For every vertex of the tree it verifies if
it is possible to make a vertical (procedure VCUT) or horizontal cut (HCUT procedure),
using an algorithm for decomposition of a graph in two components. We note that we
can apply this algorithm also in the case of a cutting-stock pattern without gaps and,
of course, in the case of covering pattern with or without gaps. The correctness of the
algorithm follows from the Theorem 22, that makes the connection between a guillo-
tine cut and the decomposition of a graph in two subgraphs. The procedure PREORD()
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represents a preorder traversal of a graph, so the complexity is O(k) [19], where k is
the number of the cutting items. Also, in the procedure VCUT, respectively HCUT we
traverse a subgraph of the initial graph. So, the complexity of the algorithm is O(k2).
All the results exposed here are presented in [52].

We note that all the studied problems within the present chapter point out some
new approaches of solving the cutting and rectangular problems. We defined various
algorithms for this problem and we solved different particular types of two dimensional
rectangular cutting and covering problems.

The major contributions of this thesis in the area of three dimensional bin packing
problems can be found in papers [56, 59, 57, 58]. Each of these papers presents some
original points of view and optimized algorithms on three dimensional bin packing prob-
lems.

The section ”A topological order for a rectangular three dimensional bin packing
problem” is an extension of one of the previous work of D. Marinescu, P. Iacob and K.
Kiss-Jakab [55] regarding the two dimensional covering problem to a rectangular three
dimensional bin packing problem, where a bin is packed with a set of rectangular boxes,
without gaps or overlapping. We present a kind of topological sorting algorithm for
this problem, of linear complexity, OVERDIAG-3D Algorithm. By extending the two
dimensional covering model [44], we defined in this section three kinds of adjacency
relations, adjacency in the direction of Ox, Oy and Oz, definitions in 23, 25 and 27.
Starting with these three kinds of adjacency we define three kind of graphs: the graph
of adjacency in direction Ox, OY and Oz and we gave a concrete example of a pack-
ing model. The novelty of this problem is given, on the one hand, by the mathematical
models that we introduce and, on the other hand, by the fact that we used these extended
types of graphs for this kind of three dimensional bin packing problems. Also, we dis-
covered some important properties, see 32, 33. Due the Theorem 33 it is possible to
represent simultaneously these obtained graphs by a single adjacency matrix, a matrix
with elements from the set {0, 1, 2, 3}. For any packing model we defined a network,
a graph of compound adjacency, 34 and we prove that the graph is acyclic, see 35. To
determine a topological order we used a new algorithm, OVERDIAG-3D which is an
extension of a topological sorting algorithm presented in [19]. This algorithm is based
on the particularity of the compound graph defined, respectively on the form of the re-
sulted matrix, attached to the graph. The authors’ achievements within this section can
be found in paper [56]. It completes the results obtained in [44] and [55]. A plan for
loading of the boxes in the bin is obtained using a topological sorting algorithm of the
vertices of this acyclic graph. Here we turn our attention to the practical example dis-
cussed in the previous section. All the results obtained and discussed in this section are
in [59].

In section ”The determination of the guillotine restrictions for a rectangular three
dimensional bin packing pattern” we discussed the rectangular three dimensional bin
packing problem, where a bin is loaded with a set of rectangular boxes, without overlap-
ping. One of the most popular restriction for the solution of the three dimensional bin
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packing problem is the guillotine restriction, see 40. Our objective here was to find a
method for verifying if a solution of the three dimensional bin packing problem has the
guillotine constraints or not. For this purpose we used a weighed graph representation
43 of a solution of the problem, the generalization of this kind of representation obtained
by us for two dimensional cutting stock problem in [48, 49, 50]. Theorem 45 introduces
some properties for the weighed graphs attached to the pattern. The results from the
previous theorem suggest an algorithm for the verification of the guillotine restrictions,
in case of a bin-packing pattern with gaps but without overlapping [57]. We remark that
we can apply this algorithm also in case of a cutting-stock pattern without gaps and, of
course, in the case of covering pattern with or without gaps. An extended example is
discussed here and the algorithm iterations are highlighted. The prefix Polish notation
for the resulted syntactic tree is given and the algorithm’s complexity was studied [58].

The major contributions of this thesis in the area of LAD can be found in papers
of A. Băicoianu [11], A. Băicoianu, A. Vasilescu, R. Pândaru [12], A. Băicoianu, S.
Dumitrescu [13].

Clearly, the accuracy of a LAD model is directly related to the quality of the patterns
in the model (prevalence and homogeneity). We used the results from [4, 3, 41] and
we did our own experiments for investigating the performance of LAD. Also, the LAD
algorithm was compared here with the main classification and regression algorithms
used in the machine learning literature, and their implementation in WEKA [72].

For our final experiments, we used the public files from LADtools [41]. The per-
sonal contribution of the author in this area is the change made on this software. We
remind here that the adaptations of the original application were: converting the appli-
cation in order that it could be used in Windows (the original application was developed
for Linux), converting the application so that it becomes a console application, not a
command line application, the optimal rewriting in C + + of some methods, we added
some new necessary methods, like the one for calculating standard deviation, we evalu-
ate the accuracy of LAD using one random 10-fold cross-validation and for this purpose,
we used two new methods.

We evaluated the accuracy of classification models in ”Computational Experiments”
section using one random 10-fold cross-validation. The other classification methods as
well as the regression methods used for comparison are available in the WEKA package
[36]. For the purpose of comparing our results with these of algorithms implemented in
the WEKA package, we used the LAD accuracy definition, presented in [4]. Compared to
the commonly used machine learning algorithms implemented in the publicly available
WEKA software package, the implementation of LAD was shown here to be highly com-
petitive classification algorithm. However, to fully benefit from the classification power
and data mining capabilities of LAD, one must often go through a time consuming pro-
cess. It is part of future research plans to assess the time needed to construct the LAD
model and to minimize it as much as possible, with the best results. Also, is in our fu-
ture plan to develop LAD models for other types of medical problems, that were resolved
with data mining tools. Moreover, we intend to develop a LAD algorithm for WEKA. If



CHAPTER 5. CONCLUSIONS 145

we resolve this issue, then the use of LAD algorithm in classification will become easier.
Additionally, as a perspective on this presented data mining tool, we would like to extend
our previous work on Haskell [12] to some pattern mining algorithms. We intend to use
specific libraries, like HLearn - a Haskell based library for machine learning [74] - in
some specific problems of data mining/machine learning, particularly on LAD [12]. An
interesting perspective would be to find a Haskell alternative solution for practical
problems basically solved with LAD.
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Appendix 1

Further on, we shall discuss the code designed in Octave by the author for the logical
regression. More information on the Octave language code together with extra details
on its setup process can be found at:

http://www.gnu.org/software/octave/download.html and
http://www-mdp.eng.cam.ac.uk/web/CD/engapps/octave/octavetut.

pdf.
We will also mention a few general features of Octave, since some of them stand as

important reasons for having chosen this language code in order to implement some of
the classification algorithms discussed in Chapter 4, in view of their further comparison
with LAD:

• GNU Octave is a high-level language used in numerical calculations;

• It is considered to be a less enhanced clone of MATLAB, while the key feature is
its availability free of charge;

• The system can be used interactively or for running command files;

• This language code is portable on numerous operation systems;

• The Octave language code can be called directly from C + +, and the other way
round;

• This language code comes with support for complex numbers and matrices;

• It provides a wide array of matrix functions;

• Most of the times, the Octave language is exemplified in the command-line, but
there are also various graphic work interfaces which come with it.

For further details on logical regression, see Chapter 4. The implementation was
modular, so that algorithm testing for the datasets selected might be less intricate.

The first step was to randomly mix all selected data, by means of the shuffled func-
tion. This function deals with the random permutations of the lines in a matrix, by means
of the random function of the Octave code, in order to generate index permutations.
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function shuffled = shuffle (matrix)
randomIndices = randperm(rows(matrix));
shuffled = matrix(randomIndices, :);

endfunction

Next, the function augmented was described. This adds a first column filled with 1
to a given matrix. See logical regression algorithm [30, 31].

function augmented = augment_matrix (m)
augmented = [repmat(1, rows(m), 1), m];

endfunction

We then use a function for reading input data. This function reads the data in the file
and creates a matrix:

function [X, y] =
readData (filename, inputSize=given_number, outputSize=given_number)

data = dlmread(filename, ’ ’);
data = data(:, 1:columns(data)-1);

# the last value is always zero, garbage due to read
# shuffle data

data = shuffle(data);
# put input values into X

X = data(:, 1:inputSize);
# prepend a column filled with 1

X = augment_matrix(X);
# put outputSize columns in yy

yy = data(:, 1+inputSize:inputSize+outputSize);
# find locations of nonzero values in y

[i, j] = find(yy);
y = zeros(rows(data), 1);
y(i) = j .- 1;

endfunction

It is necessary to use another function for the implementation of the predictive pat-
tern it is preferred that this function is vectorized. It is also quite mandatory to have a
function for calculating the error rate:

function probability = h(X, theta)
probability = 1 ./ ( 1 .+ exp(-X * theta) );

endfunction

function error = J (X, theta, y)
m = rows(X);
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predicted = h(X, theta);

error = 0;
error += sum(log(predicted(y==1)));
error += sum(log(1 - predicted(y==0)));
error *= -1/m;

endfunction

The last function written for the logical regression is doAll, which divides the dataset
into a given fraction in this specific situation it is 70% training data and 30% test data.
Several values will be tested for the λ regularization hyper parameter, as well as for the
α learning rate. If necessary, the evolution of the J error function will be graphically
represented, while checking if any of these values decreases as they repeat:

function [theta, errors, X, y] =
doAll (filename, alpha=0.1, maxIters = 100)

[X, y] = readData(filename);
featuresCount = columns(X);
#rand("seed", 7);
theta = rand(featuresCount, 1) - 1;
errors = []; #no error so far
iters = 0;
do

iters += 1;

theta -= alpha * X’ * ( h(X, theta) - y );

error = J(X, theta, y);
errors = [errors, error];

until iters == maxIters;
endfunction

Another algorithm we found to be very interesting compared to LAD was the mul-
tilayer perceptron. Alongside testing its results with WEKA, we decided to undergo its
implementation in Octave. Further details on the algorithm are to be found in Chapter 4.
The written implementation in Octave obeys the MLP principles. We felt that making a
few comments on the code might be of use for grasping its deeper meaning:

function read()

# data read
data = load(’breast-cancer-wisconsin.data’);
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z = data(:, 1:256);\% 1593 * 256
d= data(:, 257:266);\% 1593 * 9

# data permutatio
[z, d] = F1_permutation(z, d);
#impartire date
[z_train, d_train, z_test, d_test] = F2_splitData(z, d);

z_train = F3_addMinusOnes(z_train);
z_test = F3_addMinusOnes(z_test);

# minimum 2 neurons
# hidden layer dimension, number of neurons
# number of neurons from each hidden layer
J = 8;
K = 10;

# the way for finding the weights
[V, W] = algorithm(z_train, d_train, J, K);

# depending of the weights we calculate the percentage
percentage = test(z_test, d_test, V, W, J, K)
endfunction

function [newX, newY] = F1_permutation(X, y)

# random permutation of the lines
random_i = randperm(rows(X));
newX = X(random_i,:);
newY = y(random_i,:);
endfunction

function [X_train, y_train, X_test, y_test] = F2_splitData(X, y)
# split the data, 70\% for training set
percentage = 70;
m = rows(y);
nrTrain= int32(percentage/100*m);

X_train = X(1:nrTrain,:);
y_train = y(1:nrTrain, :);

X_test = X((nrTrain+1):m,:);
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y_test = y((nrTrain+1):m,:);
endfunction

function newZ = F3_addMinusOnes(z)
# adding the column with 1
newZ = [z, (-1)*ones(size(z)(1,1), 1)];
endfunction

function E = F4_error(E, d_k, o_k)
E = E + 1/2(d_k - o_k);

endfunction

function f = sigmoid(net)
f = 1./ (1.+ exp(-net));
endfunction

function [V, W] = algorithm(z_train, d_train, J, K)

# training set
P = rows(z_train);
# the number of columns
I = columns(z_train);

niu = 0.5;\%learning rate
Emax = 0.001;\%minimum value of error

# the first layer of weights
W = rand(K, J) / 100;
# the second layer of weights
V = rand(J, I) / 100;

# each line from our testing data
p = 1;
q = 1;
E = 1;

# the last line from hidden layer
y(J, 1) = -1;

while(E > Emax)
E = 0;
for p = 1:P
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z = z_train(p, :);
d = d_train(p, :);

for j=1:J-1
y(j, 1) = sigmoid(V(j, :) * z’);

endfor

for k=1:K
o(p, k) = sigmoid(W(k, :) * y);

endfor

E = E + (1/2)*sum((d - o(p, :)).ˆ2);

delta_o = (d(1, :) .- o(p, :)) .* (1 .- o(p, :)) .* o(p, :);
delta_y = y .* (1 - y) .* (W’ * delta_o’);

\% update the weights
W = W + niu * delta_o’ * y’;

V = V + niu * delta_y * z;
endfor

E = sqrt(E)/(P*K)
all_errors(q, 1) = E;

q = q + 1;
endwhile
q
plot(all_errors);
endfunction

function percentage = test(z_test, d_test, V, W, J, K)

P = size(z_test)(1, 1);

y(J, 1) = -1;

# number of predicted correct output
corect = 0;
for p = 1:P

z = z_test(p, :);
d = d_test(p, :);
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for j = 1:J-1
y(j, 1) = sigmoid(V(j, :) * z’);

endfor

for k = 1:K
o(p, k) = sigmoid(W(k, :) * y);

endfor

poz_d = find( d == max(d));

poz_o = find( o(p, :) == max( o(p, :) ) );

if ( poz_d == poz_o )
corect = corect + 1;

endif
endfor

# correct percentage
percentage = (corect * 100) / P;
endfunction

The results obtained with these two algorithms are: logical regression recognition
rate between 87.0005% and 90.55%, MLP 91.10% and 94.766%. The time is not so
important for our tests, but they were close enough.
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This Appendix is meant to highlight the changes the author underwent on the exist-
ing LAD processing tool, a software application which was initially implemented by E.
Mayoraz. For further details, please refer to [60].

We remind here that the adaptations of the original application were: converting the
application in order that it could be used in Windows (the original application was de-
veloped for Linux), converting the application so that it becomes a console application,
not a command line application and the optimal rewriting in C + + of some meth-
ods (dynamic allocation instead of static allocation, we change the parameters of some
functions, in those cases where they had more than four parameters, we changed some
structures in classes and we wrote some Object-oriented programming modules).

Since the modules are fairly consistent, we will only chose some of them in order to
exemplify our purpose.

The header ”basic.h” was mainly modified so that it could allow running Windows.
Thus, we introduced: if defined ( WIN32), and math.h, for the mathematical functions.
Such implementations considered to be necessary to the task were introduced by the
author. For instance, a generic function (such as template) for interchanging two values:

tcT void Exchange (T &X, T &Y)
{
if (& X == & Y)
return;

T Z = X;
X = Y;
Y = Z;}

Were also defined:

#define ForBoolean(B)
for (boolean B = false; B <= true; B++)

#define ForBooleanDown(B)
for (boolean B = true; B >= false; B--)

Both of them were used in order to ease to code writing process.
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The header ”cutPtsSet.H” was consistently modified. This contained defining ele-
ments for cutpoints. The original version of the file is to be found in the specific doc-
umentation. The code we are using for LAD testing is (we introduce here just a piece
from it):

#ifndef cutPtsSet_h
#define cutPtsSet_h
#include "../Basics/basic.h"
#include "../Matrices/Matrix.h"
#include "../Matrices/setCovering.h"
#include "../Matrices/spareM.h"
#include "multiDS.h"
#include <iostream>
extern const char nonMonotonicAttr;
extern const char positiveAttr;
extern const char negativeAttr;
#define _val_GEQ_cp 1
#if 1
#define cutPtsSet_Plus1(x) ((x)+1)
#define cutPtsSet_Div2(x) ((x)>>1)
#define cutPtsSet_Tim2(x) ((x)<<1)
// else if T is float or double
#else
#define cutPtsSet_Plus1(x) (x)
#define cutPtsSet_Div2(x) ((x)/2.0)
#define cutPtsSet_Tim2(x) ((x)*2.0)
#endif

tcT class multiDS; // forward

tcT class cutPtsSet : private Matrix<T>
{
public:

cutPtsSet ()
: Matrix<T>(0),
origin(0),
weight(0),
var(0),
sigmaCP(0),
span(0)
{ }
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cutPtsSet (multiDS<T>& d, float& confidence,
const char method=0, const char weighting=0)

:
Matrix<T>(0),
origin(0),
weight(0),
var(0),
sigmaCP(0),
span(0)
{
if ( method==0 )
{
resize(d.ds[0].dim()*d.distinct(), d.ds[0].dim());
weight=0.0;
Matrix<T> valcat(d.distinct(),2);
int nbTh=0;
for (int attr=0; attr<d.ds[0].dim(); attr++)
{
sigmaCP(attr) = ( attr ? sigmaCP(attr-1) : 0);

int cl,clPtr;
for (cl=0, clPtr=0; cl<d.nbCats(); clPtr+=d.ds[cl].distinct(), cl++)
{
valcat.s(clPtr,d.ds[cl].distinct(),0,1) = d.ds[cl][attr];
valcat.s(clPtr,d.ds[cl].distinct(),1,1) = (T)(cl);
}
valcat.sort();
int total_rows=valcat.m(), first_d_k;
for(first_d_k=0;

first_d_k<total_rows && known(valcat(first_d_k,0));
first_d_k++)

;
if(first_d_k < total_rows)
{
int last_d_k;
for(last_d_k=first_d_k;

last_d_k+1<total_rows && unknown(valcat(last_d_k+1,0));
last_d_k++)

;
valcat.s(first_d_k,total_rows-last_d_k-1) =

valcat.s(last_d_k+1,total_rows-last_d_k-1);
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total_rows -= last_d_k - first_d_k + 1;
}
span(attr) = float (valcat(total_rows-1,0) - valcat(0,0));

boolean mixGroup=false;

T prevThresh=(T)(valcat(0,0));
T val1;
boolean newCutPtsSet;
for (int i=1; i<total_rows; i++)
{
newCutPtsSet=false;
if ( valcat(i-1,0) != valcat(i,0) )
{
val1 = valcat(i-1,0);
newCutPtsSet = ( valcat(i-1,1)!=valcat(i,1) || mixGroup );
mixGroup=false;
}
else if ( valcat(i-1,1)!=valcat(i,1) ) // && vc(i-1,0)==vc(i,0)
{
newCutPtsSet = ( prevThresh != valcat(i,0) );
mixGroup=true;
}
if ( newCutPtsSet )
{
Array<T>::operator()(nbTh) = val1 + valcat(i,0);
if ( weighting==2 )
weight(nbTh) = float(valcat(i,0)-val1)/(2.0*span(attr));
var(nbTh) = attr;
sigmaCP(attr)++;
nbTh++;
prevThresh=valcat(i,0);
}
}
}
resize_(nbTh);
weight.resize_(nbTh);
var.resize_(nbTh);
}
else if ( method==1 )
{
resize(d.ds[0].dim()*d.nbPairs(), d.ds[0].dim());
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Matrix<T> my_cut_pts(d.nbPairs());
int nbTh=0;
for (int attr=0; attr<d.ds[0].dim(); attr++)
{
sigmaCP(attr) = ( attr ? sigmaCP(attr-1) : 0);

Matrix<int> singleton(1,1,attr);
multiDS<T> proj(d,singleton);
proj.sort().checkMult();

int ptr=0;
T ll,rr;
for (int clL=0; clL<proj.nbCats()-1; clL++)
for (int clR=clL+1; clR<proj.nbCats(); clR++)
for (int indL=0; indL<proj.ds[clL].distinct(); indL++)
for (int indR=0; indR<proj.ds[clR].distinct(); indR++)
if (

(ll=proj.ds[clL](indL,0))!=(rr=proj.ds[clR](indR,0)) &&
known(ll) && known(rr) &&
( ll<rr ? d.monotone(attr)!=negativeAttr

: d.monotone(attr)!=positiveAttr )
)
my_cut_pts(ptr++) = ll+rr;
if ( ptr )
{
my_cut_pts.s(0,1,0,ptr).sort();
T mini,maxi;
dataSet<T> merged;
merged = proj.merge(false);
merged.sort();
int i;
for(i=0; i<merged.distinct() && unknown(merged(i,0)); i++)
{}
if (i==merged.distinct())
span(attr)=1;
else
{
mini=merged(i,0);
for(i=merged.distinct()-1; i>=0 && unknown(merged(i,0)); i--)
{}
maxi=merged(i,0);
span(attr) = maxi - mini;
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}
Array<T>::operator()(nbTh) = my_cut_pts(0);
var(nbTh) = attr;
sigmaCP(attr)++;
nbTh++;
for (int pth=1; pth<ptr; pth++)
{
if ( my_cut_pts(pth)!=my_cut_pts(pth-1) )
{
Array<T>::operator()(nbTh) = my_cut_pts(pth);
var(nbTh) = attr;
sigmaCP(attr)++;
nbTh++;
}
}
}
else
span(attr)=0;
}
resize_(nbTh);
weight.resize_(nbTh);
var.resize_(nbTh);
}

Array<int> list(d.listOfPairs());
float minConfi=1.0;
for (int pair=0; pair<list.m(); pair++)
{
float maxGap=0.0;
for (int pcp=0; pcp<nbCP(); pcp++)
{
int vari=attribute(pcp);
T val1 = minimum( d.ds[list(pair,0)](list(pair,1),vari),

d.ds[list(pair,2)](list(pair,3),vari));
T val2 = maximum( d.ds[list(pair,0)](list(pair,1),vari),

d.ds[list(pair,2)](list(pair,3),vari));
if ( between(val1,val2,pcp) &&

( val1<val2 ? d.monotone(vari)!=negativeAttr
: d.monotone(vari)!=positiveAttr ) &&

span(vari)>0.0
)

maximize(maxGap,
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float ((minimum(operator()(pcp)-cutPtsSet_Tim2(val1),
cutPtsSet_Tim2(val2)-operator()(pcp))) /

(2.0 * span(vari))));
}
minimize(minConfi,maxGap);
}
minConfi-=1E-5;
if ( confidence > minConfi )
flog<< endl << "The required confidence of " << setprecision(3)
<< setw(6) << confidence << " has been reset to " << setw(6)
<< (confidence=minConfi) << endl << flush;

// compute the weights
if ( weighting==1 ) // correlation with output
{
for (int pCP=0; pCP<nbCP(); pCP++)
{
int attr=attribute(pCP), set

;
Matrix<double> cardi(2,d.nbCats(),0.0);
for (set

=0; set
<d.nbCats(); set
++)

{
for (int ind=0; ind<d.ds[set

].distinct(); ind++)
switch ( compare(d.ds[set

](ind,attr),pCP,confidence) )
{
case +1:
{
cardi(1,set

)+=d.ds[set
].multiplicity(ind);

break;
}
case 0:
cardi(0,set

)+=d.ds[set
].multiplicity(ind);
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}
}
if ( cardi.sum().min()(0) = 0.0 )
{
weight(pCP) = -1E10;
}
else
{
cardi /= cardi.sum().t();
double entropyPos=0.0;
double entropyNeg=0.0;
for (set

=0; set
<d.nbCats(); set
++)

{
entropyPos += ( cardi(1,set

)>0.0 ?
cardi(1,set

)*log(cardi(1,set
)) : 0.0 );

entropyNeg += ( cardi(0,set
)>0.0 ?

cardi(0,set
)*log(cardi(0,set

)) : 0.0 );
}
weight(pCP) = float(maximum(entropyPos,entropyNeg));
}
}
}
else if ( weighting==2 && method )
{
weight=1E10;
for (int attr=0; attr<d.ds[0].dim(); attr++)
{
Matrix<int> singleton(1,1,attr);
multiDS<T> proj(d,singleton);
proj.sort().checkMult();
for (int clL=0; clL<proj.nbCats()-1; clL++)
for (int clR=clL+1; clR<proj.nbCats(); clR++)
for (int indL=0; indL<proj.ds[clL].distinct(); indL++)
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for (int indR=0; indR<proj.ds[clR].distinct(); indR++)
{
int val1 = proj.ds[clL](indL,0);
int val2 = proj.ds[clR](indR,0);
if ( val1 != val2 && known(val1) && known(val2))
{
int first=firstCPG( minimum(val1,val2),

attr,confidence);
int last = lastCPL( maximum(val1,val2),

attr,confidence);
if ( first>=0 )
for (int pth=first; pth<=last; pth++)
minimize(weight(pth),float(minimum(
absolute(cutPtsSet_Tim2(val1)-operator()(pth)),
absolute(cutPtsSet_Tim2(val2)-operator()(pth))))*

float(proj.ds[clL].multiplicity(indL))*
float(proj.ds[clR].multiplicity(indR)));

}
}
for (int pth=firstIndex(attr);

pth<firstIndex(attr)+nbCP(attr); pth++)
if ( weight(pth)<1E10 )
weight(pth)/=(2.0*span(attr));
else
weight(pth)=0.0;
}
}
else if ( weighting==3 ) // global separability
{
for (int attr=0; attr<d.ds[0].dim(); attr++)
{
Matrix<int> singleton(1,1,attr);
multiDS<T> proj(d,singleton);
proj.sort().checkMult();
for (int clL=0; clL<proj.nbCats()-1; clL++)
for (int clR=clL+1; clR<proj.nbCats(); clR++)
for (int indL=0; indL<proj.ds[clL].distinct(); indL++)
for (int indR=0; indR<proj.ds[clR].distinct(); indR++)
{
int val1 = proj.ds[clL](indL,0);
int val2 = proj.ds[clR](indR,0);
if ( val1 != val2 && known(val1) && known(val2))
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{
int first=firstCPG( minimum(val1,val2),

attr,confidence);
int last = lastCPL( maximum(val1,val2),

attr,confidence);
if ( first>=0 )
for (int pth=first; pth<=last; pth++)
weight(pth) += float(minimum(

absolute(cutPtsSet_Tim2(val1)-operator()(pth)),
absolute(cutPtsSet_Tim2(val2)-operator()(pth))))*
float(proj.ds[clL].multiplicity(indL))*
float(proj.ds[clR].multiplicity(indR));

}
}
weight.s(0,1,firstIndex(attr),nbCP(attr))/=(2.0*span(attr));
}
}
}

˜cutPtsSet ()
{}
tcT friend std::ostream& operator
<< (std::ostream& s, const cutPtsSet<T>& myself);
private:
cutPtsSet (int nbCP, int nbVars)
: Matrix<T>
(nbCPts),
origin(0),
weight(nbCPts),
var(nbCPts), sigmaCP(nbVars), span(nbVars)
{ }

cutPtsSet<T>& resize (int nbCPts, int nbVars)
{
Matrix<T>::resize(nbCPts);
weight.resize(nbCPts);
var.resize(nbCPts);
sigmaCP.resize(nbVars);
span.resize(nbVars);
if ( origin.n() )
origin.resize(nbCPts);
return *this;
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}

int index (int cpIndex) const
{
#ifdef _CHECK_INDEX
if ( cpIndex<0 || cpIndex>=nbCP() )
throw whereOutOfRange( "int cutPtsSet<T>::index(int cpIndex) const",

"cpIndex", cpIndex, 0, nbCP()-1);
#endif

return (var(cpIndex) ? cpIndex - sigmaCP(var(cpIndex)-1) : cpIndex);
}

int firstIndex (int vari) const // Returns index of the first CP of VAR.
{
#ifdef _CHECK_INDEX
if ( vari<0 || vari>=nbVars() )
throw whereOutOfRange( "int cutPtsSet<T>::firstIndex(int vari) const",

"vari", vari, 0, nbVars()-1);
#endif

return (vari ? sigmaCP(vari-1) : 0);
}
int lastIndex (int vari) const
{
#ifdef _CHECK_INDEX
if ( vari<0 || vari>=nbVars() )
throw whereOutOfRange( "int cutPtsSet<T>::
lastIndex(int vari) const",

"vari", vari, 0, nbVars()-1);
#endif

return sigmaCP(vari)-1;
}
Matrix<T>origin;
Matrix<float>weight;
Matrix<int>var;
Matrix<int>sigmaCP;
Matrix<float>span;
// int nbAttr; // # of attributes with at least one cut point.
};
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tcT std::ostream& operator <<
(std::ostream& s, const cutPtsSet<T>& myself)
{
s.setf(std::ios::fixed | std::ios::showpoint)
;
s << std::endl;
int curCP=0;
for (int v = 0; v < myself.nbVars(); v++)
if ( myself.nbCP(v) )
{
s << "v" << setw(2) << v+1 << ":";
for (int ptr=0; ptr<myself.nbCP(v); ptr++)
{
if ( ptr && !(ptr%5) )
s << std::endl << " ";
s << std::setw(6) << ++curCP << ":"
<< std::setw(6) << std::setprecision(1)
<< myself.original(ptr,v)
<< std::setw(7) << std::setprecision(3)
<< myself.weight(myself.firstIndex(v)+ptr);
}
s << endl;
}
return s << "#total :" << myself.nbCP() << std::endl;
}
#endif

Generally, we introduced new Object-oriented programming elements and generic
programming elements in C + +, as well as various manipulators for clear and efficient
formatting designs.

The file ”Matrix.c” was modified in order to highlight matrix specific operators. In
the same purposes - code reusability and code extensibility - we also implemented some
new operators. Such an example of written operator is:

binMatrix& operator = (const binMatrix& a);
binMatrix& operator = (const binArray& a);
binMatrix& operator = (const boolean a);

The ”Chrono.c” class was also modified. For instance, the class constructor was
rewritten. In its original version this was:

chrono::chrono() {
struct tms buf;
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times(&buf);
starttime = laptime = (double)(buf.tms_utime)/CLK_TCK;

}

In our new version this is:

chrono::chrono()
{
#if defined(_WIN32)
starttime = laptime = (double)clock() / CLOCKS_PER_SEC;
#else

struct tms buf;
times(&buf);
starttime = laptime = (double)(buf.tms_utime)/CLK_TCK;
#endif
}

The application we have modified contains five smaller projects: LAD, LAD.BIN,
LAD.PAT, LAD.R2B, LAD.THE. Each of the individual components was partially or in-
tegrally modified, depending both on the errors reported when running Windows and
on the purpose we had initially intended the application for. One of our main guiding
criteria was the optimality of the written code. When running the application the result
is a simple user menu, where the necessary functions for LAD processing are called.

Figure 1: The application
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We mention that we evaluate the accuracy of LAD using one random 10-fold cross-
validation. For this purpose, here is the code for two methods:

void divide(Matrix<int>& partition, int K)
{
int maxCard=0;
for (int set=0; set<nbCats(); set++)
maximize(maxCard,ds[set].card());
partition.resize(maxCard+K+1,nbCats());
partition=0;
partition.s(0)=K;
Matrix<int> smallerPartition(1,K,1);
int nbSmaller = K;

for (int set=0; set<nbCats(); set++)
{
const int theFloor = floor(float(ds[set].card())/K);
partition.s(1,K,set,1) = theFloor;

int toAdd = ds[set].card() - K * theFloor;
if ( toAdd>0 && nbSmaller<=toAdd )
{
partition.s(1,K,set,1) += smallerPartition.t();
toAdd -= nbSmaller;
nbSmaller = K;
smallerPartition = 1;
}
if ( toAdd>0 )
{
int skipped=0;
for (int k=0; k<K; k++)
if ( smallerPartition(k) && partition(k+1,set)==theFloor &&
randomR() < float(toAdd)/(nbSmaller - skipped++) )
{
partition(k+1,set)++;
smallerPartition(k)=0;
nbSmaller--;
skipped--;
if ( !(--toAdd) )
break;
}
}
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int finger=0;
for (int p=1; p<=K; finger+=partition(p,set), p++)
partition.s(K+1+finger,partition(p,set),set,1) = p;
for (int data=0; data<ds[set].card(); data++)
Exchange(partition(K+1+data,set),
partition(K+1+randomI(ds[set].card()),set));
}
}

void setFold(multiDS<T>& data,
const Matrix<int>& partition, const int fold)
{
if ( data.nbCats()!=nbCats() )
{
delete data.ds;
data.ds = new dataSet<T> [nbCats()];
data.nbSets=nbCats();
data.list.resize();
}
const int K = partition(0,0);
data.label.resize(label);
data.normalized=normalized;
for (int set=0; set<nbCats(); set++)
{
const int cardin =(fold>0 ? partition(fold,set) :
ds[set].card()-partition(-fold,set));
Matrix<T> d(cardin,dim());
Matrix<int> multiple(1,cardin,1);
Matrix<int> labelle(1,cardin);
int ptrD=0;
int ptrDS=0;
int mu=1;
for (int ptrP=0; ptrP<ds[set].card(); ptrP++, mu++)
{
if ( mu > ds[set].multiplicity(ptrDS) )
{
mu=1;
ptrDS++;
}
if ( fold>0 ? partition(K+1+ptrP,set)==fold :
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partition(K+1+ptrP,set)!=(-fold) )
{
d.s(ptrD)=ds[set](ptrDS);
labelle(ptrD)=ds[set].label(ptrDS);
ptrD++;
}
}
data.ds[set] =
dataSet<T>(d,multiple,labelle,ds[set].monotone);
}
}



Appendix 3

This Appendix is meant to highlight and sustain the results from Chapter ”Optimiza-
tion in Logical Analysis of Data”, section ”Computational Experiments”.

Figure 2: Dataset breast-cancer-wisconsin.arff in WEKA
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Figure 3: Dataset credit-g.arff in WEKA

Figure 4: Dataset diabetes.arff in WEKA
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Figure 5: Dataset diabetes.arff Statistics

Figure 6: Results in Experimenter for breast-cancer-wisconsin.arff
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Figure 7: Results in Experimenter for breast-cancer-wisconsin.arff - 10 repetitions

Figure 8: Results in Experimenter for credit-g.arff - 10 repetitions
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Figure 9: Explorer/DefaultParameters/J48
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Figure 10: Results in Explorer for breast-cancer-wisconsin.arff J48 - 10-fold
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Figure 11: Explorer/DefaultParameters/SMO
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Figure 12: Results in Explorer for breast-cancer-wisconsin.arff SMO - 10-fold
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Figure 13: Explorer/DefaultParameters/RandomForest
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Figure 14: Results in Explorer for breast-cancer-wisconsin.arff Random Forest - 10-
fold
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Figure 15: Explorer/DefaultParameters/Logistic
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Figure 16: Results in Explorer for breast-cancer-wisconsin.arff Logistic - 10-fold
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Figure 17: Explorer/DefaultParameters/MLP
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Figure 18: Results in Explorer for breast-cancer-wisconsin.arff MLP - 10-fold

Figure 19: Results in Explorer for credit-g.arff J48 - 10-fold
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