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Chapter 1. Motivation and main objectives 

The crystallization is a widely applied separation, purification and particle formation method in 

chemistry as well as in chemical and pharmaceutical industry [1]. Moreover, it has numerous 

applications in food industry, heavy chemical industry and petrochemical industries too. 

According to estimates around 80 % of chemical industrial end-products involve powder 

ingredients [2]. In chemical research the aim of crystallization may be the X-Ray Diffraction 

(XRD) analysis whose result is proven to depend on crystal size and shape. The protein 

crystallization represents increased interests as the drug design methods often make use of it. The 

state-of-the art heat storage systems use the latent heat of crystallization as a straightforward 

manner of energy accumulation [3]. Nano-sized materials are also crystallized and the quick 

spread of plastics also generated significant research in polymer crystallization. The 

crystallization serves the microelectronic industry by offering the possibility of silicone 

production. The possibility of growing pure crystals of controlled size distribution with reduced 

energy demand made the crystallization the most important separation tool in sugar industry [4]. 

Nevertheless, the crystallization might appear as a natural accompanying phenomenon of heat 

and mass transfer processes. Such an example might be the fouling, undesired salt deposition in 

the heat exchangers or the methane hydrate formation in oil industry [5]. 

Crystallization operations are carried out in batch, continuous batch and tubular 

crystallizers as well [6]. The choice between the continuous or batch operation generally depend 

on the scale of production: the benefits of optimal continuous operation are inevitable if the 

requirements are high enough but for smaller quantities, as generally happen in the 

pharmaceutical industry, the batch crystallization may be more favorable. Nevertheless, in the 

last years the Food and Drug Administration (FDA) is urging the adaptation of continuous 

technologies into food and pharmaceutical industries too [7]. 

Regardless of operation mode, the key concern in any industrial process is to improve the 

quality of final product and to maximize the production efficiency while taking into account 

various ecological and economical aspects [8]. One of main challenges in modern particulate 

science is the robust and reproductive control of crystal size distribution as it significantly affects 

the downstream operation (filtration, drying, granulation, transportation) and some of relevant 

macroscopic properties of the powder (porosity, dissolution rate, specific surface etc.). 

Significant time was spent on analysis and control of crystallization processes from both 

theoretical and experimental sides [9]. Despite of the fact that crystallization is one of the oldest 

unit operations there is a disproportionate number of problems associated with its deep 

understanding and control. These uncertainties the results of the complex competitive-

consecutive process dynamics, the significant effects of hydrodynamics and the lack of 

understanding the exact mechanisms of nucleation and crystal growth [10]. 

The problem of analyzing and controlling the CSD was investigated majorly for 

monodimensional (e.g. sphere or cube) crystals but the behavior of higher dimensional crystal 

shapes during the crystallization was not in research focus for long years [11]. The explanation 

lies in the fact that tracking higher dimensional crystal size distributions became possible in the 



last decades with the most advanced tools of microscopes and image processing tools [12]. 

However, multidimensional population balance models were proposed and discussed which, 

among of other applications, is able to describe de temporal evolution of multi-dimensional 

crystal shape, these instruments predominately were applied to support the experimental results 

[13]. Nevertheless, some publication emerged detailed model based system analysis, only a few 

of them refers to multi-dimensional case [14]. The state-of-the art shape control generally 

reduces to mean aspect ratio and mean size control or tracks a (model based) pre-defined 

concentration or temperature profile [15]. 

The overall aim of this work was to develop single and multivariable population balance 

model-based analysis and control approaches for cooling crystallization processes. The main 

focus is on manipulation possibilities of the CSD. The following objectives were posed: 

 To identify gaps in our actual knowledge in cooling crystallization and to develop 

mathematical models for the given system. 

 To develop solution methods for fast and accurate solution of extended multivariable 

population balance equations. 

 To carry out parametric analysis with the simulations in focus of factors influencing the 

CSD. 

 To apply high performance computing in control-oriented solution (Finite Volume 

Method - FVM) of population balances exploring the compute capacities of the GPU. 

 To create a MatLab based function, which enables the simple solution of PBE-s. 

 To develop a Graphical User Interface (GUI) for the MatLab based program which, 

enables the interactive, simple simulation of crystallization processes. 

 To develop a NMPC strategy for batch crystallization which uses state-of-the-art process 

analytical technologies (FBRM and PVM). Demonstrate the control system performance 

and robustness via numerical simulations. 

 To gather experimental data and validate a mathematical model. 

 To implement the NMPC, running with the validated mathematical model for ascorbic 

acid crystallization from water and 

 To validate a bidimensional mathematical model based on concentration and chord length 

distribution data 

 

 

 

 

 

 

 

 

 

 



Chapter 2 - Literature survey 

 

The crystal formation - crystallization occurs when the atoms or molecules of a substance are 

locating systematically in a well-defined crystal lattice. A solid state crystal can be formed by 

solidification of a melt, by vapor deposition (either chemical or physical), by a solution 

crystallization etc. Solid state crystallization processes are also known when the atoms of a 

disordered (amorphous) solid are forming a crystal or one crystal structure is transforming to 

another one in solid state. In this context the crystallization, as a rule, involves at least two 

distinct phases. These phases, in the case of solution crystallization are in two distinct state of 

matter - solid and liquid. This thesis axes in the topic of solution crystallization.  

The crystallization itself is a natural stabilization process of thermodynamically un-stable 

systems. This instability is a result of supersaturation state: a solution is supersaturated if the 

actual solute concentration exceeds the saturation concentration under the given thermodynamic 

conditions (temperature, ionic force, solution composition etc.). There are a several ways of 

superaturation generation but the most important is the cooling, which uses the simple principle 

that the solubility (generally) decreases with the temperature. 

Next to the solubility line, one more additional curve can be defined in the temperature – 

concentration phase diagram: the metastable limit, as Figure 1 illustrates. It seen that the 

metastable concentration limit is higher than the solubility. Above the metastable limit the 

solution is labile, which entails spontaneous crystallization. In metastable zone, however, the 

situation is more interesting: in this zone the growth of existing crystals occurs but the 

nucleation, the formation of new crystals is prohibited. In contrast with the solubility line, which 

is constant, the metastable limit depends on operating conditions such as the cooling rate. As the 

nucleation occurs above the metastable limit this is often referred as nucleation curve. 

 
Figure 1. General trajectory of a batch crystallization process in the c-T phase diagram 

The crystallization generally is conducted within the metastable zone, as the Figure 1 presents: 

the two, industrially applied feedback control strategies, finally, applies this principle. (i) the 

supersaturation control (SSC) works based on concentration measurement and is aimed to 

maintain desired supersaturation level [9]. (ii) the direct nucleation control (DNC) measures the 



relative particle number and by repeated heating-cooling  (fines dissolution-growth) cycles  it  

keeps the crystal number in desired level [16] thus it keeps the system in the metastable zone. 

The more advanced, model based controllers uses the so-called process models to predict 

the system behavior [17], whose idea is to find the temperature profile, based on process 

simulations, which will lead exactly to the desired product [18], as the Figure 2 illustrates. It was 

showed that employing process models in the calculation of temperature profile improves the 

quality of control: either from economical (e.g. shorter batch time) or technological (e.g. 

improved crystal size distribution, not requiring milling or coagulation) point of view [19].  

 

Figure 2. Schematic representation of the working principle of the model based controllers 

The model based controllers involves, generally, population balance models, which describes the 

temporal evolution of crystal size distribution [20]. Is a general situation that the solution of 

these model equations, due to their hyperbolic nature, is more complicated than the deduction for 

the given system [21]. The moment based method [22] and the finite volume methods [23] are 

promising techniques for crystallization simulation. One of these is employed in the 

overwhelming majority model based control systems.  

For robust crystallizer operation state estimators are required [24]. The state estimator, as 

it name already suggests, it aimed to estimate the (un-measurable) system states for the model 

based controller. For instance the population balance based simulation is used to calculate the 

optimal temperature profile (NMP control). The crystal size (distribution) is required in the 

actual time moment, as an initial condition of process simulation, but this cannot be directly 

measured with real time measuring tools. Thus, a numerical apparatus is required, which, by 

using the available measurements (e.g. concentration) estimates the actual crystal size 

distribution. Various state estimators are applied in crystallization control from the famous 

Kalman filters [25], through the Luenberger observers [26] to moving horizon estimators [27].  



Despite of the significant (and continuously growing) process engineering efforts of last 

two decades, the model based crystallizer analysis and control has still numerous open 

challenges and issues. The model methods are more and more accepted tools in the 

pharmaceutical industry as well.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3. Modeling the cooling crystallizers 

 

The batch crystallization is still widely applied in fine chemical and pharmaceutical industries 

where the crystal shape and solution crystallization has significant role. The morphological PBE 

is, as a rule, multidimensional, which is able to reconstruct the shape of crystals at any moment 

of simulation. The simplest crystal shape is two dimensional [28]. With this restriction the rod-

like and the plate-like crystals can be approximated, thus the simplest morphological PBM’s are 

ready to describe the crystallization of rod-like and plate-like crystals [29]. Next to the PBE the 

mass balance is required to close the crystallizer model. Energy balance is necessary only if 

assuming natural cooling, otherwise (for linear cooling or temperature control) the temperature is 

a known variable, thus is not modeled. 

 The two dimensional particle is characterized with two so-called internal properties, 

which are in this case the two characteristic sizes (L1 and L2). These can be the length and width 

of the crystal. Then, the crystal population is characterized by a bi-dimensional size density 

function n(L1,L2,t), which gives the number of crystals within the (L1, L1+dL1)×(L2, L2+dL2) size 

domain in t time moment. A typical 2D CSD is presented in Figure 3. 

 

Figure 3. A typical 2D crystal size distribution 

The 2D PBE governs the temporal evolution of the 2D CSD under the influence of various 

crystallization mechanisms (nucleation, growth, dissolution, breakage etc.). The 2D PBE is a two 

dimensional hyperbolic partial differential equation, which might involve integral terms if 

secondary crystallization mechanisms (such as agglomeration or breakage) are also modeled. 

The solution of these equations might cause difficulties as only limited number of numerical 

algorithms is suitable, and those generally have increased computational burden.  

The 2D method of moments is a model reduction technique, which calculates the moments of the 

distribution by applying the moment transformation rule on the original PBE [30]: 
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Solving the generated moment equation system is generally carried out by numerical 

approximations to avoid the closure problem [31]. Using the calculated moments the mean 
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 In some practical cases the mean particulate properties are enough to know and in these 

situations the quadrature moment of method is applicable, which has two very useful properties: 

it is applicable on complex, extended PBE’s and its computational burden is decreased. 

 In the process control is sometimes required to manipulate the CSD, not only the mean 

crystal sizes. In these situations is required to use a PBE solution technique, which calculates the 

full CSD. Such a method is the high resolution finite volume method, which is accurate in terms 

of CSD and it has reduced computational cost compared to the classical FVM, if same accuracy 

requirements are posed, however, still much larger than of the moment based methods. The HR-

FVM is a discretization based technique: it discretizes the continuous size distribution function 

(see Figure 4) and for each size bin generates an individual equation [32].  

 

Figure 4. Illustrative two dimensional finite volume discretization 

According to the Figure, 4 the approximation becomes more accurate if the mesh is finer. 

However this generates more equations, which needs to be solved. In the present thesis a novel 

implementation is developed for the HR-FVM, which utilizes the graphical processing unit 

(GPU) to solve the (parallel) HR-FVM equations. The GPU has massively parallel hardware 

architecture, equipped with hundreds or thousands of individual compute units. A typical CPU-

GPU core comparison is presented in Figure 5. 



 

Figure 5. Comparison of a typical CPU (with four, fast cores) and GPU (with hundreds of 

slower cores) architectures 

In the hybrid implementation the GPU is used to solve the parallel operations (such as 

integral calculations, HR-FVM equations and size dependent growth rate calculations) and the 

CPU for the serial parts of the algorithm (time stepping, mass balance calculation etc.). The code 

is compiled to .mex file, which is callable from the MatLab. The flow-sheet of this .mex file is 

presented in Figure 6. The main difficulty in the implementation is that the data existing in the 

on-board GPU memory is not visible for the CPU and vice-versa, thus the data need to be copied 

to the respective computing unit before attempting to execute the calculations. Next to the serial 

programming issues the parallel-specific questions, such as race conditions or thread 

synchronization needs to be handled. 

 

Figure 6. The working principle of the hybrid CPU-GPU implementation of HR-FVM solution 



Nevertheless, not all 2D models are a morphological population balance. In this thesis a 

2D model is developed for heat effects: in this case the first internal property of the crystals is the 

linear crystal size and the second the crystal temperature. Thus, the distribution of crystals 

temperature is taken into account, in contrast with the generally applied homogeneous 

temperature field approximation. This model enables the investigation of influence of un-

measurable temperature distribution on the size distribution. The temperature and concentration 

conditions around of a particle being in supersaturated solution (growing crystal) are represented 

in Figure 7. 

 

Figure 7. Thermal and concentration conditions during the crystal growth 

In the model-predictive control simpler (1D) models were applied, as the main purpose of 

this part was the development of an MPC system, which uses the Chord Length Distribution 

(CLD), a distributional data routinely measured but very rarely used for quantitative purposes, 

strictly in of-line applications. A soft-sensor was developed, which, in fact, is the first principle 

simulation of the FBRM (Focused Beam Reflectance Measurement, measuring the CLD) which 

enables the CSDCLD simulation thus enables the direct comparison of measured CLD with 

the simulation results. The method has negligible real time computational expense. 

 

 

 

 

 

 

 

 

 



 Chapter 4. Numerical analysis of cooling crystallizers 

In this section simulation results are presented analyzing the behavior of continuous and 

discontinuous cooling crystallizers based on the models discussed in the previous chapter. 

 

4.1. Batch cooling crystallization of plate-like crystals 

The plate-like crystal shape appears amongst of pharmaceutical industry relevant organic 

materials but only a few paper deals with their simulation. In the simulations seeded 

crystallization was considered with secondary nucleation and growth(s) mechanisms. In the 

simulations it was showed that the seeding temperature (the temperature, at which the seeds are 

added, proportional with the degree of sub-cooling) has the most powerful effect on the product 

shape. According to the simulation results presented in Figure 8, the cooling rate has 

considerably weaker influence on the product shape than the seeding temperature. Manipulating 

the seeding temperature the product aspect ratio varies between 2 and 4. Truly, in real systems 

the seeding temperature depends cannot exceed the nucleation curve as above of this 

spontaneous primary nucleation occurs. 

 

Figure 8. Influence of linear cooling rate and seed addition temperature on the product crystal 

shape (aspect-ratio) [33] 

 

4.2. Crystallization of high aspect ratio crystals 

Numerous paper and research showed that numerous organic and inorganic material form high 

aspect ratio rod-like crystal. These crystals are naturally sensitive to breakage along their length. 

In the thesis the crystallization of rod-like crystals is analyzed in continuous crystallizer 



assuming primary nucleation, size dependent growth and size dependent breakage. The novelty 

in this model is that employs the quadrature method of moments solution method (an own 

implementation), which permits the direct application of nonlinear growth and breakage models. 

The simulation results revealed an interesting and unexpected inverse effect: according to the 

results, the increasing breakage rate might lead to decrease in crystal number (Figure 9), if the 

crystal production rate is governed by the nucleation but the breakage rate is also significant. 

This inverse effect illustrates well that the nonlinear sub-processes (nucleation, growth and 

breakage) are linked to each-other strongly by the supersaturation and the crystal size 

distribution. 

 
Figure 9. Steady state particle production rate in the function of breakage rate constant [28] 

 

4.3. Modeling the solution crystallization with heat effects 

The effect of crystallization heat is a relative un-cared aspect of the crystallization from both 

experimental and modeling part. The heat of crystallization is released on the surface of growing 

crystals which leads to temperature difference between the crystal and solution. The generally 

applied models uses homogeneous temperature field approximation: assumes that the heat of 

crystallization is absorbed by the whole suspension. To check the validity of this approximation 

we developed a 2D population balance model which distinguishes the particle and solution 

temperature handling the particle temperature as a meso-scale property of crystals population. 

The batch crystallization model includes the primary and secondary nucleation, crystal growth 

and crystal-solution heat transfer. The primary nucleation is assumed to occur at solution 

temperature while the secondary nucleation and crystal growth, being sub-processes associated 

to the crystal surface, are assumed to occur at the temperature (and corresponding 

supersaturation) of the crystal. The simulation results revealed that the simplified 1D model 

applying the widely used homogeneous temperature field approximation presents up to 10 % 

deviation from the results of the (thermally) more detailed 2D model. According to the results 



the 2D simulation results goes to the 1D results as the particle-solution heat transfer coefficient 

goes to infinite. This is expected as in this case the temperature distribution becomes 

degenerated, which, according to the mathematical derivation, simplifies the 2D model to the 

corresponding 1D PBM. 

 
Figure 10. Deviations of crystals number predicted by the 1D model from 2D model results as a 

function of crystallization heat and crystals-solution heat transfer coefficient [34] 

 

 

4.4. GPU acceleration for high resolution finite volume PBE solution 

The real time controller application requires that the model is solved with orders of magnitude 

faster than the real process. Despite of the advantages of FVM, it has increased computational 

burden which is a power-law function of problem dimensionality. For this reason several 

attempts were made to improve the computational efficiency. The majority of these methods 

employ supercomputers involving multiple CPU’s. However, from industrial point of view this is 

not desired, due to the increased cost of these computers.  

The GPU’s are low-to mid-cost devices, being suitable for the execution of heavy, 

parallel calculations. They have been used for accelerating massive scientific calculations in 

almost all area of science and technology. In the field of crystallization several works were 

published discussing mainly the GPU acceleration of Monte Carlo methods. Surprisingly, GPU’s 

were not used yet for the acceleration of HR-FVM PBE solution. 

Figure 11 presents the effects of mesh size on solution time and accuracy. It seems that 

for the cruder mesh (N = 300/2 μm discretization) the error is almost 1 % and it decreases 

quickly with the mesh size. The N = 1500 mesh size (0.375 μm) presents a local minima in the 

error curve thus it is a good trade-off between the accuracy and computational burden. The 

CUDA .mex : .mex speed up increases with the mesh size from 5 to 18 and the .mex : MatLab is 



decreasing. The MatLab simulations were not carried out due to the extremely high 

computational time. It seen that the run time, which for a 2D PBE is quadratic function of mesh 

size, with N = 1500 division required 18000 seconds (∼5 hours). According to the investigations 

the advantage of CUDA .mex over the .mex function is higher for the computationally more 

expensive calculations. The CUDA .mex, in contrast, required one and a half minute. 

 

 
 

Figure 11. Dependence of acceleration ratio and accuracy on mesh size [35] 

 

 

4.5. The CrySiV tool 

The CrySiV, acronym of the Crystallization Simulation and Visualization Tool is a numerical 

instrument for simulating solution crystallization problems. The CrySiV is based on the 

functions presented in the previous section, thus employs the high resolution finite volume 

method to solve the 1D and 2D PBE. The motivation of starting the development of a generic 

platform which can easily be shared with the crystallization community was the unexpected and 

surprisingly high performance of the combined CPU-GPU implementation. The main advantages 

of the first distributed CrySiV version over the currently available crystallization simulators are 

the ability of simulating 2D PBEs, the GPU acceleration and the embedded dissolution model.  

The CrySiV has two parts, for two well-separated target users: 

 A MatLab based function. This has similar calling methodology as the internal MatLab 

functions. The MatLab based function is designated for process engineering purposes: for 

simulation/parameter estimation, optimization and control. The fact that the CrySiV has 

no optimization and control functionality, by using the CrySiV function in combination 

with the optimization and control toolboxes of the MatLab, this can hardly be an obstacle 

for process engineers. 



 MatLab based Graphical User Interface (GUI). The GUI was created for visualization 

purposes and is aimed to make the simulation more interactive and user friendly 

 

 
 

Figure 12. The graphical user interface of the CrySiV v1.1 

 

 

4.6. FBRM and PVM soft sensors 

To illustrate the functioning of the developed projection based CSDCLD, ARD 

transformation, in this section simulations are carried out for 2D prism shaped crystals. Note that 

the transformation can also be used for 1D cube like crystals with the L1 = L2 restriction. The 

CSDCLD transformation is a heavily investigated but still open topic in the crystallization 

science as is the basic requirement of using the routinely measured CLD (by FBRM) for 

qualitative purposes. The Aspect Ratio Distribution (ARD) is extracted from the images captured 

with an in-line imaging tools (for instance with PVM-Process Vision and Microscopy) by the 

means of image analysis. 

Let us consider a bivariate uncorrelated log-normal distribution with L1 = 600 μm, L2 = 

100 μm mean sizes and σL1 = 500 μm, σL2 = 200 μm dispersions. The simulated CLD and ARD 

for the bivariate crystal population presented in Figure 3 is presented in Figure 13. In the CLD 

plot it can be seen the characteristic bimodal distribution of high aspect ratio crystals. The chord 



lengths are 100 and 700 μm and the maximums are located at around 400 and 550 μm. In the 

ARD plot there is a strong maximum at 1.5 but aspect ratios are expected up to 10.5, what is 

strange as the real mean aspect ratio is 6. This can be explained with the combined effects of 

dispersion of crystal size distribution and the distorting effects of 2D projections. 

  
  

Figure 13. Simulated CLD and ARD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 5. Optimal control of cooling crystallizers 

In this chapter of the thesis model based kinetic estimation studies, control system development 

and model predictive control experiments are presented. 

 

 

5.1. CLD based NMPC + RHE algorithm. Simulation results 

 

The objective of this part of the thesis is to develop a shrinking horizon NMPC for the product 

CSD in fixed batch time cooling crystallizer. The control strategy involves a MHE whose 

estimation horizon is growing with the actual process time (receding horizon estimator RHE) and 

uses the measured concentration and CLD. To deal with the parametric PMM the RHE has the 

role, next to the estimation of un-measurable system states, to continuously improve the model 

quality by re-adjusting the kinetic parameters. In NMPC calculations an accelerated direct single 

shooting dynamic optimization strategy is applied which reduces the calculation time to the 

range of industrial sampling time. To avoid the structural PMMs (deviations from the ”Plant” 

caused by numerical inaccuracies) fine mesh is applied in the PBM solution. The calculations are 

finished within industrial sampling time (2-3 minutes). 

Figure 14 presents the open loop temperature profile and the NMPC/RHE performance. 

The Plant optimum is the optimal temperature profile calculated by CSD based optimization with 

the Plant parameters. This strategy directly operates on CSD and the correct kinetic parameters 

are involved, this is the Optimal profile from the point of view of product quality. However, the 

CSD cannot be measured with on-line real time tools. Amongst the possible CLDs (weighting 

degree) the non-weighted (NW) CLD is the most suitable for control application. The NW CLD 

based optimum curve has been calculated involving the correct (plant) kinetic parameters based 

on the simulated CLDs. As it seems, this curve is above of the CSD based optimal temperature 

profile. The kinetic parameters used in simulations might differ from the actual plant kinetics 

(case of parametric plant-model mismatch). This situation is demonstrated by carrying out a 

CLD based optimization involving the Model parameters. This temperature trajectory is the NW 

CLD based model profile. This profile totally differs from both Plant parameter simulations: at 

the beginning a strong cooling is applied which is followed by a long, slow cooling period. The 

initial kinetic parameters of NMPC system might be different from the actual parameters. The 

NW CLD based RHE+NMPC is a control simulation, started with the Model parameters but the 

RHE continuously re-adjusts them. According to the figure, very good agreement exists between 

the NMPC run and the CLD based optimal temperature profile. The CSDs realized by these two 

cooling profiles practically overlaps. The CLD based optimization carried out with the Model 

parameters leads to the worst, bimodal CSD. These results indicate the robustness of 

RHE/NMPC combination against parametric PMM, ensured by the efficient state estimator. 



 

  
Figure 14. Open loop optimal temperature profiles and the RHE/NMPC control and the realized 

CSDs by the temperature profiles 

 

 

5.2. Batch cooling crystallization of L-ascorbic acid from aqueous solution: process analytical 

technology based kinetic and control studies 

Despite of the fact that the crystallization modeling and control is intensively investigated area of 

modern particulate science and technology and the L-ascorbic acid (vitamin C) is produced in 

high quantities, only a few paper deals with the vitamin C crystallization. In the literature the 

shape and size variations were monitored using state-of-the-art PAT tools assuming two 

dimensional shape during the seeded batch crystallization from water. The solubility, nucleation 

and growth kinetics have been investigated for alcohol water systems by others but the kinetic 

equations of these investigations can hardly be incorporated into the traditional PB based 

crystallizer models. In a theoretical investigation it was showed that the shape of L-ascorbic acid 

is not constant but it exhibits complex habit during the crystallization. However, a control 

oriented study on L-ascorbic acid crystallization not appeared yet. In this section the CLD based 

NMPC system is applied for the L-ascorbic acid crystallization. Naturally, beforehand of the 

NMPC run the kinetic parameters of seeded batch crystallization of L-ascorbic acid were 

determined by fitting the 1D model on concentration and CLD data of four experiments.  

The surface of Figure 15 illustrates the temporal variation of the CLD as well as the 

target CLD. It seems well that at the end of the batch the target CLD is very well approached. 

Although, in the upper view of the same surface seems well that the maximal variation of the 

CLDs are recorded in the slow cooling region, where the supersaturation was high and the fine 

seeds were growing, in diameter, quickly. On this view is also suggested that, when the final, 

faster cooling occurs, the CLs slightly decreased. 

 



 
 

Figure 15. Variation of CLD during the N-MPC batch and upper view of the CLD variation 

surface 

 

It worth noting that the target is the real CLD of the crystals which the N-MPC is supposed to 

produce, measured with the same FBRM under the same conditions as the used in the control 

experiment. This is very advantageous as the potential errors of CSDCLD transformations are 

completely omitted from the point of view of process control and it might manifest only in the 

quality of intermediate kinetic parameters. 

 

 

5.3. Parameter estimation of rod-like succinic acid crystallization 

 

The understanding of formation of crystal shape during the solution crystallization is a major 

challenge in modern crystallization science, which would made possible the rational and efficient 

simultaneous manipulation of the size and shape. The high aspect ratio crystals were already 

analyzed in this work, which have the very advantageous property that their agglomeration, 

generally, is negligible and by choosing well the impeller type and revolution speed the breakage 

rate can also minimized. Thus, the nucleation, growth and dissolution are the mechanisms whose 

rate needs to be estimated. Consequently the rod like crystals seems to be ideal candidates for 

calibration of 2D morphological population balance models, based on quantities recorded by 

commercially available PAT tools.  

It is known that the dissolution might considerably improve the system flexibility and 

help considerably in reaching the target distribution due to fines dissolution. In the 2D case, next 

to the fines dissolution, the dissolution might lead to modifications in crystal shape due to the 

different growth/dissolution supersaturation exponents of different crystal facets. Thus, in the 

design of experiment cooling-heating stages of different rate were applied to generate results 

which are suitable for the estimation of nucleation, growth and dissolution kinetics. 



Figure 16 presents a temperature profile which involves multiple cooling-heating stages, 

aimed to improve the estimation quality. The variation of experimental CLD is also depicted and 

it seems well that the first cooling generates a high small fraction, which dissolves in the first 

dissolution stage and starting from the second cooling considerably larger crystals are produced. 

It seems that every heating stage brings the CL’s in larger domains, which confirms the 

supposition that the supersaturation dependencies of the dissolution and growth rates differs. 

  
Figure 16. A temperature profile applied in 2D estimation experiment with multiple heating-

cooling stages and the variation of CLD under the action of this temperature profile 

 

Figure 17 presents the simulated and measured concentrations during the batch of Figure 16.  It 

can be observed that the agreement is very good between the values. It seems that the 

concentrations correlate with the applied temperature, what is caused by the temperature 

dependency of solubility. As a consequence, the concentration plot suggests that in this case fast 

growth and dissolution kinetics are present as the actual concentrations follows fairly the 

temperature, which indicates that the actual concentration is near to the solubility at all time. 

 
Figure 17. Variation of simulated and measured concentrations during the temperature profile of 

Figure 16 



Conclusions 

 

The central topic of this PhD work was the model based analysis and control of cooling 

crystallizers. In the model based analysis part novel crystallizer models, involving morphological 

population balances for plate-like and rod like crystals and a 2D model for the crystal size-

temperature binary population were developed. The simulations carried out based on these 

population balance based models were aimed to help in the deeper understanding of complex 

crystallization processes. All investigation gave some unexpected results, which were explained 

by the complex inter-correlation of crystallization sub-processes with each other through the 

supersaturation and crystal size distribution. A GPU assisted implementation of the HR-FVM 

method was proposed, which opens new doors in the applicability of multidimensional full 

population balances. 

The model based control part utilizes 1D population balances but a novel CSDCLD 

transformation, standing on physical basis was developed. The transformation is developed for 

2D prism-like crystals, whose limiting case is the 1D cube shape. This enables the application of 

FBRM provided CLD in the process control, which is routinely collected during the experiments 

but only rarely used for quantitative purposes. The NMPC, coupled with an RHE state estimator 

ensured robust functioning in the simulations. The developed control system was tested in the 

batch crystallization of L-ascorbic acid. It presented good control behavior and produced 

considerably better CSD than the corresponding linear cooling. In this chapter the crystallization 

kinetics of the 2D prism-like succinic acid was estimated based on batch experiments 

(concentration and CLD data). 
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