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Abstract

In this study, I have developed new variants of bio-inspired optimization al-

gorithms such as binary antlion optimization (BALO), binary grey wolf op-

timization (BGWO), and much more. All the proposed algorithms are com-

pared to two well-known techniques used in feature selection, namely particle

swarm optimization (PSO) and genetic algorithms (GA). With the big data

captured in the pharmaceutical product development practice, computa-

tional intelligence (CI) models, based on machine learning and bio-inspired

optimization algorithms, could potentially be used to identify critical quality

attributes (CQA) and critical process parameters (CPP), for the formula-

tions and manufacturing processes. The primary objective is to evaluate

the robustness of machine learning techniques combined with bio-inspired

optimization algorithms in modeling tablet manufacturing processes. More

precisely, our e�ort is focused on the prediction of tablet properties such

as porosity and tensile strength from powder and ribbons characteristics.

For this purpose, roll compaction experiments were performed with various

pharmaceutical excipients, leading to datasets with a wide range of features.

The modeling e�ciency is evaluated regarding the selected features and the

root mean square error. We have remarked that the predicted results were

in good agreement with the actual experimental data.

Keywords:

Bio-inspired optimization, Feature selection, Pharmaceutical roll compaction,

Antlion optimization, Moth-�ame optimization, Grey wolf optimization, So-

cial spider optimization, Flower pollination algorithm, Genetic algorithm,

Particle swarm optimization.



Chapter 1

Introduction

An input feature is a measurable property of the problem under observation. Over the

past years, the domain of features in machine learning and pattern recognition appli-

cations have expanded from hundreds to thousands of features (variables). The large

amounts of data generated today in biology o�er more detailed and useful information

on one hand; on the other hand, it makes the process of analyzing these data more di�-

cult because not all the information is relevant. Selecting the relevant characteristics or

attributes of the data is a complex problem. Feature selection is a technique for solving

classi�cation and regression problems, and it identi�es a subset of the features and re-

moves the redundant ones. This mechanism is particularly useful when the number of

features is large, and not all of them are required for describing the data and for further

exploring the data features in experiments (1).

Many studies formulate the feature selection problem as a combinatorial optimization

problem, in which the selected feature subset leads to the best data �tting (2). In

real world applications, feature selection is mandatory due to the abundance of noisy,

irrelevant or misleading features (3). These factors can have an adverse impact on

the classi�cation performance during the learning and operation processes. Two main

criteria are used to di�erentiate the feature selection methods:

1. Search strategy : the method employed to generate feature subsets or feature com-

binations.

2. Subset quality (�tness): the criteria used to judge the quality of a feature subset.
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1. INTRODUCTION

In general, the feature selection problem is formulated as a multi-objective problem

with two objectives: minimize the size of the selected features and maximize the pre-

diction performance. Typically, these two objectives are contradictory, and the optimal

solution is a tradeo� between them (4).

Most of the new optimization algorithms are nature-inspired that have been inspired

from nature (5). There are three main sources of inspiration, namely biology, physics,

and chemistry. Therefore, all the new optimization algorithms based on biology can be

referred to as bio-inspired (5).

In general, the size of search space is exponentially increasing with respect to the

number of features of a given data set (6). Thence, an exhaustive search for the optimal

or near to optimal solution in an enormous search space may be impracticable and

these exhaustive search techniques still su�er from stagnation in local optima (7) (2).

It is essential to have a convenient balance between exploration (diversi�cation, global

search) and exploitation (intensi�cation, local search) in all bio-inspired optimization

algorithms (8).

The speci�c objectives are derived from the general ones. In our research, they are

given below:

• O1: utilization of the bio-inspired optimization algorithms for feature selection

to solve the classi�cation problem that minimizes the number of selected features

and maximize the classi�cation accuracy.

• O2: in regression problem, the use of bio-inspired optimization to reduce the

number of selected features and minimize the prediction error.

• O3: applying the bio-inspired optimization in the pharmaceutical domain to min-

imize the number of selected features and minimize the prediction error. Also, we

also highlighted the importance of each input variables for a given dataset.

In the pharmaceutical industry, a good understanding of the casual relationship

between product quality and attributes of formulations is very useful in developing

new products and optimizing the manufacturing processes. During the pharmaceuti-

cal drug production, there are four main manufacturing processes namely mixing, roll

compaction, milling, and die compaction. Roller compaction is a method of preparing

drug granules for capsules or tablet formulations used in the pharmaceutical industry
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with suitable densi�cation. The most common �ller binder excipient used in roller com-

paction are microcrystalline cellulose (MCC), dibasic calcium phosphate (DCP), and

lactose. Also, roller compaction is a particle size enlargement technique that granulated

the powder materials to obtain materials of intermediate sizes in tablets production.

The use of latest technology facilitates to e�cient production of high-quality granules.

The selection of the critical roll compaction parameters such as (constant compacting

pressure, roller gap, etc.) is a very important process.

The thesis consists of nine chapters including this introductory one. The intro-

duction explores the characteristics of the bio-inspired optimization, the importance

of feature selection in classi�cation and regression problems, as well as the impact of

feature selection in pharmaceutical domain. Chapter (2) surveys the existing related

work on machine learning, bio-inspired optimization, and its applications. Chapter

(3) provides background information about the bio-inspired optimization and machine

learning algorithms. Chapter (4) presents the di�erent random model generators, the

proposed bio-inspired optimization algorithms and performance evaluation metrics. The

next three chapters contain our original work: experimental work of using bio-inspired

optimization algorithms in classi�cation (Chapter (5)); experimental results of using

bio-inspired optimization algorithms in regression (Chapter (6)), and experimental re-

sults of bio-inspired optimization algorithms in the pharmaceutical domain (Chapter

(7)). Moreover, Chapter (8) demonstrate three di�erent bio-inspired algorithms case

studies. All those four chapters discuss the characteristics of datasets used and results

analysis by comparison to well-known methods in feature selection. Finally, chapter (9)

summarizes the conclusions of this study and directions for future work.
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Chapter 2

Related work

2.1 Machine learning

Machine learning (ML) techniques play an important role to solve many complex classi-

�cation and regression problems. ML techniques are used in classi�cation and regression

for constructing the prediction models from of given data. Neural networks, especially

single hidden layer feed-forward neural network (SLFN) is considered one of the most

common machine learning models used in regression and classi�cation domains (9). The

extreme learning machine (ELM) model has been proposed for single hidden layer feed-

forward neural networks (SLFNs). In ELM model, the connections between the input

layer and the hidden neurons are randomly selected and remain unchanged during the

learning process (10).

2.2 Bio-inspired optimization

Various heuristic techniques mimic the behavior of biological and physical systems in

nature, and it has been proposed as robust methods for global optimizations. GA was

the �rst evolutionary based algorithm introduced in the literature and developed based

on the natural process of evolution through reproduction (11). In PSO, each solution

is considered as a particle that is de�ned by position, �tness, and a speed vector which

represents the moving direction of the particle (12). Ant colony optimization (ACO)

based wrapper feature selection algorithm applied in network intrusion detection (13).

ACO uses Fisher discrimination rate to adopt the heuristic information and rough set

theory used for feature selection method with ACO (14). Arti�cial bee colony (ABC)
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2.2 Bio-inspired optimization

is numerical optimization algorithm based on the foraging behavior of honeybees. In

ABC, the employer bees try to �nd the food source and advertise the other bees (15).

The interactions between these bees achieve the possible solution for the optimization

problem (16). Antlion optimization algorithm (ALO) is a comparatively recent EC

algorithm that mimics the hunting mechanism of antlions in nature (17).
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Chapter 3

Preliminaries and background

3.1 Machine learning

Classi�cation techniques are designed for dependent variables that take a �nite number

of unordered values, with prediction error measured regarding misclassi�cation cost. Re-

gression techniques are for dependent variables that take continuous or ordered discrete

values, with prediction error (mean square error) typically measured by the squared dif-

ference between the observed and predicted values. This section gives an introduction

to classi�cation and regressions techniques that used during the experiments.

3.1.1 Classi�cation

Machine learning (ML) methods play an important role to solve complex classi�cation

problems in di�erent applications. In this subsection, we present an overview of the

classi�cation techniques.

3.1.1.1 K-nearest neighbor (KNN)

K-nearest neighbor (KNN) is a very simple classi�er based on the nearest neighbor

approach. In the classi�cation phase, a new sample is classi�ed based on majority of K-

nearest neighbor category (K is prede�ned integer), given a query point, the algorithm

�nds K number of objects or training points closest to the query point. Simply it works

based on minimum distance from the searching query to the training one to determine

the K-nearest neighbors. After we speci�ed the K-nearest neighbor classes, the new

sample follows (predicts) as the major class of KNN (18).
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3.1 Machine learning

3.1.1.2 Random forest (RF)

Random forests (RF) is considered as one of the best machine learning classi�cation and

regression techniques. It can classify large data set with high accuracy (19). It consists

of a collection of tree-structured classi�ers. Each tree depends on the random vector

values sampled independently and distribution for all trees in the forest (20). Its input

goes into the top of the tree, then traverses down the tree. The original data is randomly

sampled, but with the replacement of smaller and smaller sets. The sample class is

determined using random forests trees that are based on random number generator

(19). The randomizing variable speci�es how the cuts are performed successively when

constructing the tree by selecting the node and the coordinate to divide and the position

of the divided (21).

3.1.2 Regression

3.1.2.1 Arti�cial neural network (ANN)

Arti�cial neural networks have been developed as generalizations of mathematical mod-

els of biological nervous systems. In a simpli�ed mathematical model of the neuron, the

e�ects of the synapses are represented by connection weights that modulate the e�ect

of the associated input signals, and the nonlinear characteristic exhibited by neurons is

represented by a transfer function. There are many transfer functions developed to pro-

cess the weighted and biased inputs, among which four basic transfer functions widely

adopted for multimedia processing. The behavior of the neural network depends largely

on the interaction between the di�erent neurons (22).

3.1.2.2 Extreme learning machine (ELM)

The extreme learning machine (ELM) model has been proposed for single hidden layer

feed-forward neural networks (SLFNs). In ELM model, the connections between the

input layer and the hidden neurons are randomly selected and remain unchanged during

the learning process. The output connections are then tuned via minimizing the cost

function through a linear system (10). The main objectives of ELM algorithm are the

randomly chooses of the SLFNN hidden layer weights and its biases function. ELM

both operations (training and prediction) are much faster than the other non-linear
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3. PRELIMINARIES AND BACKGROUND

techniques. Therefore, extreme learning machine (ELM) algorithm tends to provide a

good generalization performance with high learning speed (23).

3.2 Bio-inspired optimization algorithms

3.2.1 Genetic algorithm (GA)

GA were the �rst evolutionary-based algorithm that is introduced in the literature and

has been developed based on the natural process of evolution through reproduction.

Holland developed GA during the 1960s and 1970s. GA can solve the complex and

non-linear problems (11).

3.2.2 Particle swarm optimization (PSO)

PSO is a heuristic global optimization method originally developed by Kennedy and

Eberhart in 1995 (12). PSO is one of the well-known swarm intelligence algorithms

that based on the movement behavior of birds (24). PSO is widely used to solve the

optimization and feature selection problems (25).

3.2.3 Arti�cial bee colony (ABC)

The optimization algorithm based on the foraging behavior of honey bees called ABC

was proposed by Karaboga in 2007 (15). In ABC, the employer bees try to �nd a food

source and advertise them. The onlooker bees follow their interesting employer and the

scout bee �y spontaneously to �nd better food sources (8).

3.2.4 Fire�y algorithm (FFA)

FFA is a biologically stochastic global optimization method that was developed by Yang

in 2008 (26). FFA algorithm imitates the mechanism of �re�y mating and exchange of

information using light �ashes. In FFA, the move of �re�y is determined mainly by the

attractiveness of the other �re�ies.

3.2.5 Cuckoo search (CS)

CS is a heuristic search algorithm that has been proposed by Yang in 2009 (27) for

solving the continuous optimization problems. Cuckoo birds have aggressive reproduc-

14



3.2 Bio-inspired optimization algorithms

tion strategy and lay their eggs in the nests of other host birds that may be of di�erent

species. The host bird may discover that the eggs are not their own, they will either

throw these alien eggs away or simply abandon its nest and build a new nest elsewhere.

3.2.6 Bat algorithm (BA)

Yang developed BA algorithm in 2010 (28). BA is a meta-heuristic technique that uses

the echolocation behavior for seeking the prey and detects or avoids the obstacles. The

bats emit a very loud sound pulse and listen for the echo that bounces back from the

surrounding objects for navigation.

3.2.7 Flower pollination algorithm (FPA)

FPA is a meta-heuristic optimization algorithm based on the pollination operation of

�owering plants that developed by Yang in 2012 (29). The main objective of a �ower is

ultimately reproduction via pollination. Flower pollination is typically associated with

the transfer of pollen, and this process is linked with pollinators such as (insects, birds,

bats, etc.) (30). Pollination can be carried out in two ways self-pollination (abiotic) or

cross-pollination (biotic); local and global search in the arti�cial algorithm.

3.2.8 Social spider optimization (SSO)

SSO is one of the recent swarm optimization algorithms that was proposed by Cuevas

in 2013 (31). SSO algorithm mimics the social behavior of the spider's colony in nature.

The social spider optimizer consists of two main components, social members, and

communal web. The spider carries out cooperative interaction with the other members

of the colony (32).

3.2.9 Grey wolf optimization (GWO)

GWO algorithm was developed by Mirjalili in 2014. GWO is relatively new bio-inspired

heuristic optimization algorithm that imitates the way wolves search for food and survive

by avoiding their enemies (33). Each grey wolf in the pack chooses its own position,

continuously moving to a better spot and watching for potential threats. GWO is

prepared with a threat probability, which mimics the incidents of wolves bumping into

their enemies.
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3. PRELIMINARIES AND BACKGROUND

3.2.10 Hybrid monkey algorithm with krill herd algorithm (MAKHA)

MAKHA algorithm was developed by Khalil in 2015 (34). Hybrid optimization algo-

rithms in which operators from one algorithm are combined with other operators from

another one that aim to use the best from each algorithm to produce a better perfor-

mance. Hybrid MAKHA algorithm uses the best performance operators from monkey

algorithm (MA) and krill herd algorithm (KHA) that omit the less performance and

high-demanded calculation operators from both algorithms (34).

3.2.11 Dragon�y algorithm (DA)

Mirjalili recently proposed DA in 2015 (35). Dragon�ies are amazing insects, and there

are about 3000 di�erent species of this fancy insect (36). The life cycle of a dragon�y

consists of two main phases: nymph and adult. In the �rst phase, dragon�ies spend

the signi�cant portion of their lifespan. Then, they undergo to the second stage to

become adult (36). Dragon�ies look like small predators that hunt almost all other

small insects in nature. DA mimics the static (hunting) and the dynamic (migration)

swarming behaviors of dragon�ies in nature (37).

3.2.12 Moth-�ame optimization (MFO)

Mirjalili developed MFO algorithm in 2015. Moths have been evolved to �y in the

night using the moonlight, and they rely on a method called transverse orientation for

navigation. In this method, a moth �ies by maintaining a �xed angle with respect to the

moon (38) (i.e. the light source). This method is considered a very e�ective technique

for traveling long distances in a straight path (39).

3.2.13 Antlion optimization (ALO)

ALO is a bio-inspired optimization algorithm proposed by Mirjalili in 2015 (17). The

ALO algorithm mimics the hunting mechanism of antlions in nature. Antlions (doodle-

bugs) belong to the Myrmeleontidae family and Neuroptera order. They primarily hunt

in the larvae stage, and the adulthood period is for reproduction (17).
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Chapter 4

The Proposed System and

Methodology

All swarm intelligence algorithms usually share information among the multiple agents.

Therefore, at each iteration of the optimization all/some agents update/change their

position based on position information of other/own position.

Exploration or global search can be de�ned as acquisition of new information through-

out searching (26). Exploration is the main concern for all optimizers as it allows for

�nding new search regions that may contain better solutions. Exploitation or local search

is de�ned as application of known information. The good sites are exploited via the

application by applying local search. The selection process should be balanced between

random selection and greedy selection to bias the search towards �tter candidate solu-

tions (exploitation) while promoting useful diversity into the population (exploration)

(26).

The proposed bio-inspired optimization algorithms are used to �nd the minimum

number of features that maximize the prediction performance. The search space repre-

sents each feature as an individual dimension, and the span of each dimension ranges

from 0 to 1 and hence requires an intelligent searching method to �nd the optimal

feature set in the huge search space that maximizes a given �tness function. In classi�-

cation case, the general �tness function for the proposed optimization algorithms is to

maximize the classi�cation performance over the validation set given the training set,
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4. THE PROPOSED SYSTEM AND METHODOLOGY

as shown in equation (4.1) while keeping minimum number of features selected:

↓ Fitness = α(1− P ) + β
| R |
| C |

, (4.1)

where R is the length of selected feature subset, C is the total number of features

in the data set, α and β are two parameters corresponding to the importance of classi-

�cation performance and subset length, α∈[0, 1] and β = 1− α, P is the classi�cation

performance measured as in equation (4.2):

P =
Nc

N
, (4.2)

where Nc is the number of correctly classi�ed data instances and N is the total number

of instances in the data set.

In the case of regression, the general �tness function for the proposed optimization

algorithms is to minimize the prediction error over the validation set given the training

set as in equation (4.3) while keeping a minimum number of features selected.

↓ Fitness = α ∗ E + β

∑
i θi
N

, (4.3)

where E is the prediction error, θ represents a vector sized N with 0/1 elements rep-

resenting unselected/selected features, N is the total number of features in the dataset.

The used features are the same as the number of features in a given data set.

All features are limited in the range [0, 1], where the feature value approaches to 1;

its corresponding feature is candidate to be selected in the predicition. In individual

�tness calculation, the feature is threshold to decide whether a feature will be selected

at the evaluation stage.

The random weighting term α is used with a respectively high value so it can accom-

modate for the feature space with many local minima. This term is used to balance the

trade-o� between exploration and exploitation and hence should be carefully adapted.

Through the training process, every agent (moth, antlion, grey wolf, ant, bee, etc.)

position represents one feature subset. The training set is used to evaluate the clas-

si�cation (KNN) and regression models (ELM or ANN) on the validation set during

the optimization to guide the feature selection process. Each data set is divided into

three equal parts for training, validation, and testing. The training set is used to train

the prediction model through optimization and at the �nal evaluation. The validation
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4.1 Random distributions

set is used to assess the performance of the prediction model during the optimization

process. The testing set is used to evaluate the selected features at the �nal evaluation.

The classi�cation and regression models (KNN or ELM or ANN) is used to ensure the

quality of the selected features and is evaluated on a validation set inside the �tness

function during the optimization process (24).

4.1 Random distributions

In this section, we talk about the di�erent random models (Gaussian distribution, lèvy

�ight, and chaotic distribution) and how it's applied with di�erent bio-inspired opti-

mization algorithms. A random variable can be considered as an expression whose value

is the realization or outcome of events associated with a random process (26). A random

variable is a function which maps events to real numbers. The domain of this mapping

is called the sample space. Each random variable is represented by a probability density

function to express its probability distribution. In this study, we used three di�erent

distribution models; the details about each type as shown in the next subsections (40).

4.1.1 Gaussian distribution

Gaussian (normal) distribution is the most popular distributions and many physical

variables including light intensity, errors/uncertainty in measurements, and many other

processes apply the Gaussian distribution.

4.1.2 Lèvy �ight distribution

Many researchers have studied the birds and insects �ying behavior that described the

typical characteristics of lèvy �ights (41). Therefore, lèvy �ight distribution has been

applied to the optimization problems, and the preliminary results show its promising

capability (42).

4.1.3 Chaotic distribution

Chaos means a condition or place of great disorder or confusion (43). Chaotic systems

are deterministic systems that exhibit irregular (or even random) behavior and a sensi-

tive dependence on the initial conditions. Chaos is one of the most popular phenomena
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4. THE PROPOSED SYSTEM AND METHODOLOGY

that exist in nonlinear systems, whose action is complex and similar to that of ran-

domness (44). Chaos theory studies the behavior of systems that follow deterministic

laws but appear random and unpredictable, i.e., dynamical systems. Chaotic variables

can go through all states in certain ranges according to their own regularity without

repetition (44). A chaotic map is a map that exhibits some type of chaotic behavior

(43). In this work, we applied three di�erent chaotic maps that are common in the

literature namely: logistic map, Tent map, and Singer map.

4.2 Applying bio-inspired optimization with di�erent ran-

dom distributions

4.2.1 Chaotic version of bio-inspired optimization algorithms

Chaotic systems with their interesting properties such as topologically mixing and dense

periodic orbits, ergodicity and intrinsic stochasticity, can be used to adapt this param-

eter and allowing for the required mix between exploration and exploitation. In feature

selection, chaos search is more capable of escaping from local optima than random

search.

4.2.1.1 Chaotic antlion optimization (CALO)

Iteratively, the antlion algorithm selects an ant for hunting in a roulette wheel manner

and performs two di�erent random walks, (a) random walk of ants around the selected

ant and (b) random walk around the elite/best antlion. From the previous two random

walks, the selected ant adapts its location. Parameter I controls the trade-o� between

exploration and exploitation in the antlion optimization (ALO) algorithm. I is linearly

decreased to allow more exploration at the beginning of the optimization process, while

exploitation becomes more important at the end of the optimization. Therefore, half

of the optimization resources are consumed in exploration, whereas the remaining time

is dedicated to exploitation. Chaotic systems with their interesting properties such as

topologically mixing and dense periodic orbits, ergodicity and intrinsic stochasticity, can

be used to adapt this parameter and allowing for the required mix between exploration

and exploitation. The proposed CALO algorithm is schematically presented in �gure

(4.1). The search strategy of the wrapper-based approach explores the feature space
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4.2 Applying bio-inspired optimization with di�erent random distributions

Figure 4.1: The proposed chaotic antlion optimization (CALO)

to �nd a feature subset guided by the classi�cation performance of individual feature

subsets.

4.2.1.2 Chaotic Grey Wolf Optimization (CGWO)

A single parameter, namely −→a , was originally proposed to control the trade-o� between

exploration and exploitation in grey wolf optimization. In the original GWO (33), this

parameter was proposed to be linearly decremented to allow for much exploration at

the beginning of the optimization while exploitation becomes much more important at

the end of optimization. Therefore, that proposal allows us for consuming half of the

optimization in exploration while the rest of time is dedicated to exploitation. These

problems motivate adapting −→a such as successive periods of exploration are followed

by exploitation to allow for exploration distribution all over the optimization times and

also to allow for exploitation operations after each exploration stage.
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4. THE PROPOSED SYSTEM AND METHODOLOGY

Figure 4.2: The proposed lèvy antlion optimization (LALO) algorithm

4.2.2 Lèvy version of bio-inspired optimization algorithms

Lèvy �ight is e�cient random walks in exploring the huge search space that can be

highlighted from the large abrupt jumps in the walk. A random walking based on lèvy

�ight is used rather than uniform random distribution to help enhance the convergence

speed and convergence to global optima.

4.2.2.1 Lèvy antlion optimization (LALO)

The lèvy antlion optimization (LALO) is comprised of fundamental building phases as

described in �gure (4.2). Randomization plays an important role in both exploration

and exploitation, the essence of such randomization is the random walk (26). A random

walk is a random process that consists of taking a series of consecutive random steps.

4.2.2.2 Lèvy social spider optimization (LSSO)

When the step length obeys lèvy distribution, such a random walk is called a lèvy �ight

or lèvy walk. Mathematically speaking, a simple version of lèvy �ights are more e�cient
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4.3 Binary version of bio-inspired optimization algorithms

than Brownian random walks in exploring unknown, search large-scale space which can

be remarked from the large abrupt jumps in the walk.

4.3 Binary version of bio-inspired optimization algorithms

In some particular problems such as feature selection, the solutions are restricted to

the binary {0, 1} values that motivate to propose a binary version of the bio-inspired

optimization algorithms. The use of a binary version of an algorithm much limits the

search space size and hence eases the task of �nding the optimal solutions.

4.3.1 Binary Grey Wolf Optimization (BGWO)

In the continuous grey wolf optimization (GWO) wolves continuously change their posi-

tions to whatever point in the space. In some special problems such as feature selection,

the solutions are restricted to the binary {0, 1} values which motivate a special version

of the CGWO. In this work, a binary version of grey wolf optimization (bGWO) is

proposed for the feature selection task (45). The wolves updating equation is a function

of three position vectors namely xα, xβ, xδ which attracts each wolf towards the �rst

three best solutions. In BGWO algorithm, the pool of solutions is in binary form at

any given time; all solutions are on the corner of a hypercube. To update the positions

of a given wolf according to the CGWO principle, while keeping the binary restriction.

4.3.2 Binary Antlion Optimization (BALO)

ALO has very competitive results in terms of improved exploration, local optima avoid-

ance, exploitation, and convergence (17). These attractive properties motivate using

ALO in other applications. Continuous optimization algorithms are commonly used

to �nd feature combinations that maximizing the classi�er performance where search

agents are positioned in a d -dimensional search space at positions [0, 1]. Binary op-

timization algorithms; if appropriately used in a similar manner, but the search space

is much limited as two values are only allowed for each dimension {0, 1} and hence is

expected to perform better. Furthermore, the binary operator is expected to be much

simpler than continuous counterparts. In antlion optimization (ALO), antlions and ants

continuously change their positions to whatever point in the space. Also, the individual
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4. THE PROPOSED SYSTEM AND METHODOLOGY

ant updates its position as the average of two positions. One of the two positions is ob-

tained by performing random walk with suitable step size around the elite antlion while

the other position is obtained by performing random walk around a selected antlion.

4.3.3 Binary moth-�ame optimization (BMFO)

In MFO, moths continuously change their positions to whatever point in the space

depending on the spiral moving (SM). SM is the main component of the algorithm

because it decides how the moths are repositioned around �ames, which allows the

moth to �y around it corresponding �ame and not necessarily in the space between

them.

4.4 Algorithms used for comparison

In this study, we covered a set of modern numerical swarm-based optimization algo-

rithms. Our comparisons include (ALO, MFO, GWO, SSO, DA, MAKHA, FPA, BAT,

CS, and FFA) algorithms. All the optimization algorithms were compared to two com-

mon optimization algorithms used in feature selection domain namely PSO and GA, as

well as the variants of each of the proposed algorithms.

4.5 Initialization methods

In the proposed feature selection tool, there are four di�erent initialization methods are

used to ensure the capability to converge from di�erent initial positions namely small

initialization, uniform initialization, large initialization, and MRMR initialization (in

this study, we only used the uniform initialization). The small initialization method is

expected to test the global searching capability of a given optimizer as the initial search

agents' positions are commonly apart from the optimal. The large initialization method

is expected to assess the local searching capability of a given optimizer as the search

agents' positions are commonly at the optimal solution surround and hence just local

searching is usually required to reach the optimal solution. The uniform initialization

models the common initialization method where search agents are set randomly in the

search space using uniform distribution in each dimension. The MRMR initialization
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4.6 Performance metrics

is a �lter-based method that exploits data regardless of the used classi�er to select a

feature subset.

4.6 Performance metrics

Each algorithm has been applied K ∗M times with random positioning of the search

agents except for the full features selected solution that was forced to be a position for

one of the search agents. Forcing the full features solution guarantees that all subsequent

feature subsets if selected as the global best solution, are �tter than it. Repeated runs

of the optimization algorithms were used to test their convergence capability. The

indicators (measures) used to compare the di�erent algorithms such as mean, best,

worst, std of �tness values, prediction error, and the selected features.

25



Chapter 5

Bio-inspired optimization in

pharmaceutical processes

In this chapter, we have applied bio-inspired algorithms for di�erent pharmaceutical

processes. Extreme learning machine (ELM) and arti�cial neural network (ANN) are

used as regression model �tness function as in equation (4.3). Our third objectives O3

in the speci�c research objectives (Chapter 1) has been achieved. Extreme learning

machine (ELM) and arti�cial neural network (ANN) are used as regression model �t-

ness function during the optimization process and evaluating the test set. There are

three pharmaceutical data sets (roll compaction, die compaction, and poly-lactic-co-

glycolic acid (PLGA)). The primary objective of this chapter is to propose bio-inspired

optimization algorithms for feature selection approach that minimize the number of

selected features and minimize the prediction error from using all features and conven-

tional feature selection techniques in pharmaceutical domain. Also, we have highlighted

the selected features and the corresponding importance of each feature in the prediction

model. This chapter summarizes our published paper as in (46), (47), and (48).

Data sets.

We have used three data sets for di�erent pharmaceutical processes, namely, roll com-

paction, die compaction, and poly-lactic-co-glycolic acid (PLGA). In addition, we use

another pharmaceutical data poly-lactic-co-glycolic acid (PLGA) that have a signi�cant

e�ect in much pharmaceutical application.
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5.1 Pharmaceutical analysis and discussion

5.1 Pharmaceutical analysis and discussion

In pharmaceutical data category, the proposed feature selection for computational intel-

ligence (CI) modeling ANN is used as a regression model to evaluate the prediction per-

formance of each algorithm. The aggregate aim of this section is to propose bio-inspired

optimization algorithms for feature selection approach that minimize the number of se-

lected features and reduce the prediction error from using all features and conventional

feature selection techniques in pharmaceutical domain. Also, we have highlighted the

chosen features and the corresponding importance of each feature in the prediction

model.

5.1.1 Roll compaction results

In this experiment, we used all the inputs (7) to predict 4 outputs (Granules X10,

Granules X50, Granules X90, and Fines). We have applied six bio-inspired optimization

algorithms for feature selection combined with extreme learning machine (ELM) for

regression (to predict the 4 outputs). We observe that the most signi�cant input features

are Proportion MCC, Proportion MCC quadratic, Speci�c Compaction Force (kN/cm),

and Gap Width (mm); as shown in �gure (5.1). Moreover, we can conclude that GWO

is the best optimization algorithm in this experiment for two outputs (prediction of

Percentiles for Granules X50 and �nes outputs that make a compromise between RMSE

and features reduction.

5.1.2 Die compaction results analysis

The bio-inspired optimization algorithms are used for feature selection, in order to feed

good quality data to the ANN. ANN is then used for the prediction of the continuous

two outputs (porosity and tensile strength). The results presented in �gure (5.2) shows

the MSE values for each optimizer for 20 di�erent runs while Figures (5.3) shows the

average feature reduction of the two outputs. GWO algorithm was the most accurate in

predicting porosity. The most accurate prediction of the tensile strength was achieved

by SSO algorithm. GA obtained the highest reduction of features - 60% - with average

MSE of 7.2 for predicting porosity and 5.1 for predicting tensile strength. Overall,

GWO algorithm obtains the best compromise between MSE and feature reduction for
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5. BIO-INSPIRED OPTIMIZATION IN PHARMACEUTICAL
PROCESSES

(a) BALO predictor (b) ALO predictor (c) GWO predictor

(d) CS predictor (e) GA predictor (f) PSO predictor

Figure 5.1: Example of feature importance of percentiles for granules X10 output

predicting both the porosity and the tensile strength. The most importance inputs are

"compaction pressure" followed by "material" and "Granule size upper limit" (46).

5.1.3 Poly-lactic-co-glycolic acid (PLGA)

For consistency in comparison of the results for both approaches, original data was ex-

tracted from publication and the structure of the data was retained as in Szl�ek et al.

(47). In brief, the data was gathered after reviewing about 200 scienti�c publications.

The extracted data consisted of release rates of 68 PLGA formulations from 24 publi-

cations. Originally, the input vector consisted of 320 variables (molecular descriptors

of protein, excipients, formulation characteristics and the experimental conditions) and

745-time points (records). All data were of numeric format with continuous values,

except variables such as "Production method" and "Lactide to glycolide ratio" which

take discrete values (1, 2, 3, etc.). The amount of the drug substance released (Q) was

the only dependent variable, its values ranging from 0 to 100%.

Selection of crucial variables was performed under the assumption that both pre-
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5.1 Pharmaceutical analysis and discussion

Figure 5.2: Average MSE for porosity output

Figure 5.3: Average feature reduction for porosity and tensile strength outputs
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PROCESSES

dictability and model simplicity are of equal importance to the �nal result. Four bio-

inspired algorithms � ALO, BALO, GWO and SSO � are �rst used as a feature selection

tool. Whenever the feature selection tool proposes a set of input variables, a screening

procedure is then employed to �nd minimum generalization error across di�erent pre-

dictive models and their settings/architectures. For predictive modeling, various tools

are chosen such as Cubist, RF, ANN (monotonic MLP, deep learning MLP), and FugeR.

5.1.3.1 PLGA results and discussions

The measures described in the following sections are used to quantify the quality of the

results obtained by the computational models. RMSE is utilized by both the feature

selection and the predictive models and is a measure of how accurate the data is classi-

�ed. The reduction size is used by the feature selection methods and is an indicator of

the dimensionality reduction of the set of all PLGA attributes. Overall, regarding all

methods and 10-cv sets, nearly 18,000 models were trained and tested. NRMSE varied

from 31.1 to 15.9%. Random Forest algorithm yielded the lowest error; therefore, it

was used for selecting optimal inputs vector as in Table (5.1). RF model developed on

the nine input data set, 9in(2), selected by BALO algorithm, yielded one of the lowest

NRMSE and inputs number as shown in Table (5.2). Comparable results were obtained,

15.97% versus 15.4%, to those by Szl�ek et al. (47), but the vector of inputs was smaller,

nine versus eleven (48).
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5.1 Pharmaceutical analysis and discussion

Table 5.1: NRMSE for input vectors selected by bio-inspired algorithms

FS method No. Inputs Cubist Mon-mlp RF FugeR

ALO
8 22.45 24.55 21.95 -
12 25.95 25.15 22.19 -
20 18.73 20.20 16.33 20.15

BALO

9(1) 21.20 20.63 18.81 -
9(2) 18.26 17.31 15.97 18.09
9(3) 22.60 21.88 19.79 -
11 19.40 19.35 18.70 -
12 17.26 18.17 16.56 18.73

GWO

15 19.30 18.88 16.73 19.10
18 20.65 18.58 17.63 -
24 20.30 22.30 17.90 -
25 20.04 19.29 15.86 19.10
26 17.32 22.22 16.22 -

SSO 8 30.49 31.12 28.89 -
13 27.09 25.82 24.86 -

Table 5.2: Results for 9in (2), trained and tested on 10cv data sets.

Algorithm NRMSE R2
Cubist 18.26 0.611
Monmlp 17.31 0.652

Deep learning neural nets 16.87 0.655
FugeR 18.09 0.612
RF 15.97 0.692
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Chapter 6

Conclusions and future work

6.1 Conclusions

In this work, bio-inspired optimization algorithms were proposed and applied for feature

selection in wrapper mode. The most recent bio-inspired optimization algorithms are

hired in the feature selection domain for evaluation and results are compared against

well-known feature selection methods namely PSO and GA. The evaluation is performed

using a set of evaluation criteria to assess di�erent aspects of the proposed algorithms.

The feature selection is formulated as a multi-objective optimization task with a �tness

function re�ecting the prediction performance and feature reduction. A set of evalu-

ation indicators is used to assess di�erent aspects of performance of the optimization

algorithms over 21 data sets in classi�cation (10 data sets in regression) problems from

the UCI repository.

Bio-inspired feature selection algorithms in modeling tablet manufacturing processes

were evaluated, in particular, in the prediction of tablet properties such as porosity and

tensile strength of powder characteristics. The modeling e�ciency was assessed regard-

ing the average feature reduction and RMSE. GWO algorithm was the most accurate

in predicting the porosity while the most accurate prediction of the tensile strength was

achieved using SSO. Finally, we can conclude that bio-inspired optimization algorithms

are an e�cient search algorithm and suitable for feature selection problems.
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6.2 Future work

6.2 Future work

On basis of future performance, we have six di�erent ideas that can be added to the

work presented before as the following:

1. The proposed optimization algorithms will be assessed using complex data sets.

2. Add more statistics evaluation measures.

3. Employ bio-inspired optimization algorithms for solving the challenging problems

and in di�erent applications.

4. Use more machine learning techniques for wrapper-based �tness assessment such

as SVM, SVR, and RF.

5. Propose a multi-objective �tness function that uses bio-inspired algorithms to the

�nd optimal feature subset.

6. Proposes a hybrid of the recently proposed bio-inspired optimization algorithms

that applies for feature selection purpose.

33



References

[1] B. Chizi, L. Rokach, and O. Maimon. A Survey of Feature Selection

Techniques. IGI Global, pages 1888�1895, 2009. 7

[2] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classi�cation, 2nd Edition.

Wiley-Interscience, 2000. 7, 8

[3] Y. Chen, D. Miao, and R. Wang. A rough set approach to feature

selection based on ant colony optimization. Pattern Recognition Letters,

31(3):226�233, 2010. 7

[4] S. Shoghian and M. Kouzehgar. A Comparison among Wolf Pack Search

and Four other Optimization Algorithms. Computer, Electrical, Automation,

Control and Information Engineering, 6(12):1619�1624, 2012. 8

[5] I.F. Jr., X.S. Yang, I. Fister, J. Brest, and D. Fister. A Brief Review

of Nature-Inspired Algorithms for Optimization. Elektrotehniski Vestnik,

80(3):116�122, 2013. 8

[6] I. Guyon and A. Elisseeff. An introduction to variable and attribute

selection. Machine Learning Research, 3:1157�1182, 2003. 8

[7] B. Xue, M. Zhang, and W.N. Browne. Particle swarm optimization for

feature selection in classi�cation: a multi-objective approach. IEEE trans-

actions on cybernetics, 43(6):1656�1671, 2013. 8

[8] R. Akbari, A. Mohammadi, and K. Ziarati. A novel bee swarm opti-

mization algorithm for numerical function optimization. Communications

in Nonlinear Science and Numerical Simulation, 15:3142�3155, 2010. 8, 14

34



REFERENCES

[9] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse.

OP-ELM: Optimally Pruned Extreme Learning Machine. IEEE Transac-

tions Neural Networks, 21(1):158�162, 2010. 10

[10] C. Jiuwen and L. Zhiping. Extreme Learning Machines on High Dimen-

sional and Large Data Applications: A Survey. Mathematical Problems in

Engineering, 2015(1):1�13, 2015. 10, 13

[11] J.H. Holland. Adaptation in natural and arti�cial systems. MIT Press, Cam-

bridge, MA, USA, 1992. 10, 14

[12] R. Eberhart and J. Kennedy. A New Optimizer Using Particle Swarm

Theory. In International Symposium on Micro Machine and Human Science,

pages 39�43. IEEE, 1995. 10, 14

[13] H.H. Gao, H.H. Yang, and X.Y. Wang. Ant colony optimization based

network intrusion feature selection and detection. In International Confer-

ence on Machine Learning and Cybernetics, pages 3871�3875. IEEE, 2005. 10

[14] H. Ming. A rough set based hybrid method to feature selection. In

International Symposium on Knowledge Acquisition and Modeling, pages 585�588.

IEEE, 2008. 10

[15] D. Karaboga and B. Basturk. A powerful and e�cient algorithm for

numerical function optimization: arti�cial bee colony (ABC) algorithm.

Journal of Global Optimization, 39:459�471, 2007. 11, 14

[16] X.S. Yang. Engineering optimizations via nature-inspired virtual bee

algorithms. Arti�cial Intelligence and Knowledge Engineering Applications: A

Bioinspired Approach, 3562:317�323, 2005. 11

[17] S. Mirjalili. The Ant Lion Optimizer. Advances in Engineering Software,

83:80�98, 2015. 11, 16, 23

[18] A. Kibriya and E. Frank. An empirical comparison of exact near-

est neighbour algorithms. European Conference on Principles and Practice

of Knowledge Discovery in Databases, 4702:140�151, 2007. 12

35



REFERENCES

[19] V.Y. Kulkarni and P.K. Sinha. E�cient Learning of Random Forest

Classi�er using Disjoint Partitioning Approach. World Congress on Engi-

neering, 2, 2013. 13

[20] L. Breiman. Random forests. Machine learning, 45(1):5�32, 2001. 13

[21] G. Biau, L. Devroye, and G. Lugosi. Consistency of Random Forests

and Other Averaging Classi�ers. Machine Learning Research, 9:2015�2033,

2008. 13

[22] D.S. Huang. A constructive approach for �nding arbitrary roots of poly-

nomials by neural networks. IEEE Transaction on Neural Networks, 15(2):477�

491, 2004. 13

[23] G.B. Huang, Q.Y. Zhu, and C.K. Siew. Extreme Learning Machine:

theory and applications. Neurocomputing, 70(1):489�501, 2006. 14

[24] B. Xue, M. Zhang, and W.N. Browne. Particle swarm optimisation

for feature selection in classi�cation: Novel initialisation and updating

mechanisms. Applied Soft Computing, 18:261�276, 2014. 14, 19

[25] B. Chakraborty. Feature subset selection by particle swarm optimiza-

tion with fuzzy �tness function. In Third International Conference on Intelli-

gent System and Knowledge Engineering, pages 1038�1042. IEEE, 2008. 14

[26] X.S. Yang. Nature-Inspired Metaheuristic Algorithms. Luniver Press, UK,

2nd Edition, 2010. 14, 17, 19, 22

[27] X.S. Yang and S. Deb. Cuckoo Search via Levy Flights. World Congress

on Nature and Biologically Inspired Computing, 2009. 14

[28] X.S. Yang. A New Metaheuristic Bat-Inspired Algorithm. Nature Inspired

Cooperative Strategies for Optimization, 284:65�74, 2010. 15

[29] X.S. Yang. Flower pollination algorithm for global optimization. Un-

conventional Computation and Natural Computation, Lecture Notes in Computer

Science, 7445:240�249, 2012. 15

36



REFERENCES

[30] X.S. Yang, M. karamanoglu, and X. He. Multi-objective Flower Algo-

rithm for Optimization. International Conference on Computational Science,

Procedia Computer Science, 18:861�868, 2013. 15

[31] E. Cuevas, M. Cienfuegos, D. Zaldivar, and M. Perez-Cisneros. A

swarm optimization algorithm inspired in the behavior of the social-

spider. Expert Systems with Applications, 40(16):6374�6384, 2013. 15

[32] T. Jones and S. Riechert. Patterns of reproductive success associated

with social structure and microclimate in a spider system. Animal Be-

haviour, 76(6):2011�2019, 2008. 15

[33] S. Mirjalili, S.M. Mirjalili, and A. Lewis. Grey Wolf Optimizer. Ad-

vances in Engineering Software, 69:46�61, 2014. 15, 21

[34] A.M.E. Khalil, S.K. Fateen, and A. Bonilla-Petriciolet. MAKHA�A

New Hybrid Swarm Intelligence Global Optimization Algorithm. Algo-

rithms, 8(2):336�365, 2015. 16

[35] S. Mirjalili. Dragon�y algorithm: a new meta-heuristic optimiza-

tion technique for solving single-objective, discrete, and multi-objective

problems. Neural Computing and Applications, 1(1):1�21, 2015. 16

[36] J.H. Thorp and D.C. Rogers. Thorp and Covich's freshwater invertebrates,

4th Edition. Elsevier, 2014. 16

[37] M. Wikelski, D. Moskowitz, J.S. Adelman, J. Cochran, D.S. Wilcove,

and M.L. May. Simple rules guide dragon�y migration. Biology letters,

2(1):325�329, 2006. 16

[38] S. Mirjalili. Moth-Flame Optimization Algorithm: A Novel Nature-

inspired Heuristic Paradigm. Knowledge-Based Systems, 89:228�249, 2015.

16

[39] K.J. Gaston, J. Bennie, T.W. Davies, and J. Hopkins. The ecological

impacts of nighttime light pollution: a mechanistic appraisal. Biological

reviews, 88:912�927, 2013. 16

37



REFERENCES

[40] A.E. Hassanien and E. Emary. Swarm Intelligence: Principles, Ad-

vances, and Applications. CRC Press, Taylor & Francis Group, 2015. 19

[41] I. Pavlyukevich. Levy �ights, non-local search and simulated annealing.

Computational Physics, 226(2):1830�1844, 2007. 19

[42] A.M. Reynolds and M.A. Frye. Free-�ight odor tracking in Drosophila

is consistent with an optimal intermittent scale-free search. PLoS One,

2(4), 2007. 19

[43] R. Vohra and B. Patel. An E�cient Chaos-Based Optimization Al-

gorithm Approach for Cryptography. Communication Network Security,

1(4):75�79, 2012. 19, 20

[44] B. Ren and W. Zhong. Multi-objective optimization using chaos based

PSO. Information Technology, 10(10):1908�1916, 2011. 20

[45] E. Emary, H.M. Zawbaa, and A.E. Hassanien. Binary Grey Wolf Opti-

mization Approaches for Feature Selection. Neurocomputing, Journal indexed

in 'Journal Citation Reports' (Thomson Reuters), Impact Factor (2014): 2.083,

172:371�381, 2016. 23

[46] H.M. Zawbaa, S. Schiano, L. Perez-Gandarillas, C. Grosan, C.Y. Wu,

and A. Michrafy. An Evaluation of Bio-inspired Feature Selection Tech-

niques for Computational Intelligence Modeling of Die Compaction. In-

ternational congress on Particle Technology (PARTEC), 2016. 26, 28

[47] J. Szle�k, A. Paclawski, R. Lau, R. Jachowicz, and A. Mendyk.

Heuristic modeling of macromolecule release from PLGA microspheres.

Nanomedicine, 8:4601�4611, 2013. 26, 28, 30

[48] H.M. Zawbaa, J. Szlek, C. Grosan, A. Mendyk, and R. Jachowicz.

Computational modelling and optimization of the macromolecule release

from PLGA microspheres. PLOS ONE, 2016. 26, 30

38


	1 Introduction
	2 Related work
	2.1 Machine learning
	2.2 Bio-inspired optimization

	3 Preliminaries and background
	3.1 Machine learning
	3.1.1 Classification
	3.1.1.1 K-nearest neighbor (KNN)
	3.1.1.2 Random forest (RF)

	3.1.2 Regression
	3.1.2.1 Artificial neural network (ANN)
	3.1.2.2 Extreme learning machine (ELM)


	3.2 Bio-inspired optimization algorithms
	3.2.1 Genetic algorithm (GA)
	3.2.2 Particle swarm optimization (PSO)
	3.2.3 Artificial bee colony (ABC)
	3.2.4 Firefly algorithm (FFA)
	3.2.5 Cuckoo search (CS)
	3.2.6 Bat algorithm (BA)
	3.2.7 Flower pollination algorithm (FPA)
	3.2.8 Social spider optimization (SSO)
	3.2.9 Grey wolf optimization (GWO)
	3.2.10 Hybrid monkey algorithm with krill herd algorithm (MAKHA)
	3.2.11 Dragonfly algorithm (DA)
	3.2.12 Moth-flame optimization (MFO)
	3.2.13 Antlion optimization (ALO)


	4 The Proposed System and Methodology
	4.1 Random distributions
	4.1.1 Gaussian distribution
	4.1.2 Lèvy flight distribution
	4.1.3 Chaotic distribution

	4.2 Applying bio-inspired optimization with different random distributions
	4.2.1 Chaotic version of bio-inspired optimization algorithms
	4.2.1.1 Chaotic antlion optimization (CALO)
	4.2.1.2 Chaotic Grey Wolf Optimization (CGWO)

	4.2.2 Lèvy version of bio-inspired optimization algorithms
	4.2.2.1 Lèvy antlion optimization (LALO)
	4.2.2.2 Lèvy social spider optimization (LSSO)


	4.3 Binary version of bio-inspired optimization algorithms
	4.3.1 Binary Grey Wolf Optimization (BGWO)
	4.3.2 Binary Antlion Optimization (BALO)
	4.3.3 Binary moth-flame optimization (BMFO)

	4.4 Algorithms used for comparison
	4.5 Initialization methods
	4.6 Performance metrics

	5 Bio-inspired optimization in pharmaceutical processes
	5.1 Pharmaceutical analysis and discussion
	5.1.1 Roll compaction results
	5.1.2 Die compaction results analysis
	5.1.3 Poly-lactic-co-glycolic acid (PLGA)
	5.1.3.1 PLGA results and discussions



	6 Conclusions and future work
	6.1 Conclusions
	6.2 Future work

	References

