

Babeş-Bolyai University Facultatea de Chimie și Inginerie Chimica

CERCETARI IN CHIMIA COMPUSILOR STANIU-ORGANICI

Rezumatul tezei de doctorat

BARBUL IOANA

Conducator stiintific:

Prof. Dr. CRISTIAN SILVESTRU

Cluj-Napoca, 2012

COMISIE

PRESEDINTE

Prof. Dr. Luminița SILAGHI-DUMITRESCU

REFERENTI

Prof. Dr. Kieran Molloy – Department of Chemistry, University of Bath, United Kingdom.

Conf. Dr. Ing. Monica Venter – Facultatea de Chimie si Inginerie Chimica, Babeş-Bolyai University, Cluj-Napoca, Romania.

Prof. Dr. Ing. Lelia Ciontea – Universitatea Tehnica Cluj-Napoca, Cluj-Napoca, Romania

Data sustinerii publice: 28 Septembrie 2012

CUPRINS

Prescurtari, Ac	ronime si S	Simboluri					5			
Introducere ge	nerala						7			
PARTEA 1. Sint organici cu pos 1.1. Date de lit	eza si carc sibilitati de reratura	acterizarea structu coordinare intran	rala a unor noi noleculara	compusi	staniu(IV)-organici	cu liganzi 11 13			
1.1.1.0	Compusi	staniuorganici	hipervalenti	cu	with	single	bonded			
intram	olecularly	coordinating oxyg	jen			0	14			
1.1.2. (Compusi st	taniuorganici hipe	rvalenti cu dou	ble bond	ed intr	amolecula	arly			
coordinating o	xygen						26			
1.1.3.F	lypervalen	it organotin comp	ounds with dou	ble bond	ed intr	amolecula	arly			
1.2. Objective	ltiogen						44			
1.3. Contributi	i originale						46			
1.3.A. Compusi staniu(IV)-organici ce contin fragmentul 2-{(CH ₂ O) ₂ CH}C ₂ H ₄										
	1.3.A.1 Sinteza									
	1.3.A.2. Spectroscopie RMN									
1.3.A.3. Studii de difractie de raze X pe monocristal										
	1.3.A.4. Spectroscopie IR									
	1.3.A.5. S	Spectrometrie de i	nasa				67			
1.3.B.	Compusi staniu(IV)-organici ce contin fragmentul 2-(O=CH)-C ₆ H ₄									
	1.3.B.1 S	Sinteza					68			
	1.3.B.2. S	Spectroscopie RMI	N				69			
	1.3.B.3. S	Studii de difractie	de raze X pe mo	nocristal			76			
	1.3.B.4. S	Spectroscopie IR					79			
	1.3.B.5. S	Spectrometrie de r	nasa				80			
1.3.C.	Compusi	staniu(IV)-organio	ci ce contin o leg	gatura –C	C=N-		81			
	1.3.C.1 S	Sinteza					81			
	1.3.C.2. 9	Spectroscopie RMI	N				83			
	1.3.0.3.5	studii de difractie (de raze X pe mo	nocristal			90			
	1.3.0.4.5	Spectroscopie IR					98			
1 4 Concluzii	1.3.0.5.3	spectrometrie de r	lidsd				99			
1.4.Concluzii	orimontal	2					100			
$\frac{1.5.Faitea experimantaia}{\frac{5}{100}} = \frac{1}{100} \left[\frac{1}{100} + \frac{1}{100} $							105			
Sinteza [2-](CH O) CH C H] SnCl (2)							100			
Sintera $[2 - {(CH_2O)_2 CH_3C_3 H_4]_3 Since (2)}$										
Sintez	Sinteza $[2 - {(CH_2O)_2 CH_3O_6, 4_3 2 500 2 (C)}]$									
Sinteza	a [2-{(CH ₂ C) ₂ CH}C ₆ H ₄] ₂ SnMe	CI (5)				110			
Sinteza	a [2-(O=CH)-C ₆ H₄]₄Sn (6)	- \-/				111			
		, , , , , , , , , , , , , , , , , , , ,								

Sinteza $[2-(O=CH)-C_6H_4]_2$ SnCl ₂ (7)	112
Sinteza [2-(O=CH)-C ₆ H ₄]SnMe ₂ Cl (8)	113
Sinteza [2-(O=CH)-C ₆ H ₄] ₂ SnMeCl (9)	114
Sinteza [2-{CH=N-2,4,6-(CH ₃) ₃ C ₆ H ₂ }C ₆ H ₄] ₄ Sn (10)	115
Sinteza $[2-{CH=NCH_2CH_2N(CH_3)_2}C_6H_4]_4Sn$ (11)	117
Sinteza [2-(CH=N-CH ₂ -C ₆ H ₅)C ₆ H ₄] ₄ Sn (12)	118
Sinteza $[2-(CH=NC_{10}H_7)C_6H_4]_2SnCl_2$ (13)	119
Sinteza [2-{CH=N-2,4,6-(CH ₃) ₃ C ₆ H ₂ }C ₆ H ₄] ₂ SnCl ₂ (14)	120
Sinteza $[2-{CH=NC_2H_4N(CH_3)_2}C_6H_4]_2SnCl_2$ (15)	121
Sinteza [2-(CH=N-CH ₂ -C ₆ H ₅)C ₆ H ₄] ₂ SnCl ₂ (16)	122
PART 2 Sinteza, caracterizarea structurala, reactivitatea and materials chemistry of tin(II) oxo- clusters and iminotin(II) cubanes	123
2.1. Date de literatura	125
2.1.1.Monoorganotin oxo-clusters	126
2.1.2.Imidotin(II) clusters	132
2.2. Obiective	148
2.3. Contributii originale	150
2.3.A.Tin(II) oxo-clusters	152
2.3.A.1 Sinteza	152
2.3.A.2. Spectroscopie RMN	155
2.3.A.3. Studii de difractie de raze X pe monocristal	157
2.3.A.4. Spectroscopie IR	160
2.3.A.5. Analiza termogravimetrica	160
2.3.A.6. CVD testing of precursors	162
2.3.B.Imidotin(II) cubanes	167
2.3.B.1 Sinteza	167
2.3.B.2. Spectroscopie RMN	169
2.3.B.3. Studii de difractie de raze X pe monocristal	175
2.3.B.4. Spectroscopie IR	181
2.3.B.5. Analiza termogravimetrica	182
2.3.B.6. CVD testing of precursors	184
2.4.Concluzii	187
2.5.Partea experimantala	189
Sinteza $Sn_6O_4(OSiMe_3)_4$ (17	192
Sinteza Sn₄O(OSiMe₃) ₈ (18)	193
Sinteza $Sn_6O_4(ONep)_4$ (19)	194
Sinteza $Sn_3(N^tBu)_4H_2$ (20)	195
Sinteza $[Sn_3O(N^tBu)_4H_2]_2$ (21)	196
Sinteza Sn ₃ (N ^t Bu) ₄ H ₃ Cl PhCH ₃ (22)	197
Sinteza Sn ₃ (N ^t Bu) ₄ H ₃ Cl Sn ₃ (N ^t Bu) ₄ H ₂ [Fe(CO) ₄] ₂ (23)	198
Sinteza $(SnN^{t}Bu)_{4}[Fe(CO)_{4}]_{2}$ (24)	199
Sinteza $[SnNSi(NMe_2)_3]_4$ (25)	200

Sinteza [SnN(SiNMe₂)₂]₄[Fe(CO)₄] (26)

Anexe

201 202

Cuvinte cheie: staniu; sinteza; hipervalent; difractie de raze X; spectroscopie RMN; CVD.

1.3. Contributii originale

1.3.A. Compusi staniu(IV)-organici ce contin fragmentul 2-{(CH₂O)₂CH}C₆H₄

Sinteza compusilor staniu(IV)-organici **1-6** a fost efectuata in conformitate cu schemele de reactie prezentate mai jos. Materia prima, 2-(2-bromofenil)-1,3-dioxolane, a fost obtinuta prin reactia unui echivalent de 2-BrC₆H₄CH=O cu un echivalent de HOCH₂CH₂OH in prezenta de 4-MeC₆H₄SO₃H ca si catalizator (sinteza a fost efectuala in acord cu metode de sinteza descrise in literatura, dar au fost utilizati solventi diferiti) pentru a proteja gruparea O=CH– a compusului 2-bromo-benzaldehide.⁸³

Compusii au fost sintetizati folosind doua metode, prin folosirea compusului o-litiat si a reactivului Grignard al compusului 2-(2-bromofenil)-1,3-dioxolane. S-a observat ca pentru sinteza compusului **1** s-au obtinut randamente mai mari si compusi de o puritate mai mare folosind compusul o-litiat ca si materie prima, in timp ce pentru compusii **2**, **3**, **4** si **5** s-au obtinut rezultate mai bune folosind reactivul Grignard ca si materie prima.

Schema 15

Litierea compusului protejat al 2-bromobenzaldehidei cu BuLi, in atmosfera inerta, in hexan uscat, intr-un raport molar de 1:1, a dus la formarea derivatului *o*-litiat care a fost folosit mai departe in reactii cu SnCl₄. Compusul **1** a fost obtinut prin reactia unui echivalent-gram de compus *o*-litiat cu SnCl₄, la temperatura camerei in atmosfera inerta, intr-un raport molar de 4:1 (Schema 15).

Compusii staniu(IV)-organici **2**, **3**, **4** si **5** au fost preparati folosind reactivul Grignard obtinut prin reactia 2-(2-bromofenil)-1,3-dioxolane cu magneziu in atmosfera inerta, in Et₂O uscat. Reactivul Grignard astfel obtinut a fost reactionat mai departe cu SnCl₄, la temperature camerei in atmosfera inerta intr-un raport molar de 3:1 pentru a obtine compusul **2**, in timp ce compusul **3** a fost obtinut la -78°C in atmosfera inerta prin reacita reactivului Grignard cu SnCl₄ in raport molar de 2:1. Compusul **4** a fost obtinut prin reactia unui echivalent-gram al reactivului Grignard cu un echivalent-gram de $(CH_3)_2SnCl_2$ la -78°C in atmosfera inerta, in timp ce compusul **5** a fost sintetizat la temperatura camerei in atmosfera inerta prin reactia reactivului Grignard cu (CH₃)SnCl₃ intr-un raport molar de 2:1 (Scheme 16).

Schema 16

Spectrul ¹H RMN al compusului **1** a fost masurat in CDCl₃ si prezinta in zona alifatica un multiplet ce corespunde protonilo H₈ si un singlet ce corespunde protonilor H₇ ai inelului 1,3dioxal. Zona aromatica prezinta rezonantele asteptate, doua triplete pentru protonii H₄ si H₅ si doua dublete pentru protonii H₃ si H₆ (Figure 13).

Spectrele ¹H RMN ale compusilor **2** si **3** au fost masurate si comparate cu spectrul ¹H RMN al compusului **1**: in zona alifatica, semnalul pentru protonii H₈ apare ca si un multiplet in spectrul ¹H RMN al compusului **2** in timp ce in spectrul ¹H RMN al compusului **3** acesta apare ca si un singlet. Un singlet poate fi observat in ambele spectre ¹H RMN ale compusilor **2** si **3** pentru atomii H₇ ai ciclului 1,3-dioxal. In zona aromatica a spectrului ¹H RMN al compusului **2**, pot fi observate un multiplet corespunzator semnalelor pentru protonii H₄ si H₅ impreuna cu doua dublete pentru protonii H₃ si H₆ iar in spectrul ¹H RMN al compusului **3** pot fi observate un multiplet pentru rezonantele protonilor H₃, H₄ si H₅ si un dublet pentru protonii H₆. In spectrele ¹H RMN ale compusilor **2** si **3**, semnalele sunt deplasate spre valori mai mari ale deplasilor chimice in comparative cu spectrul ¹H RMN al compusului **1**, datorita faptului ca in compusii **2** si **3** atomul de staniu este legat de 1 sau 2 atomi de clor care sunt mai electronegative decat atomul de carbonal gruparii 2-fenil-1,3-dioxolan.

Figura 13. Spectrele ¹H RMN suprapuse (CDCl₃, 300.1 MHz) pentru complecsii 1 (rosu), 2 (verde) si 3 (albastru)

Figure 15. Spectrele ¹¹⁹Sn RMN (CDCl₃, 111.9 MHz) pentru complecsii 1 (rosu), 2 (verde) si 3 (albastru)

Spectrul ¹¹⁹Sn RMN al compusului **1** a fost comparat cu date din literatira.⁸⁴ Diferenta mica in deplasarea chimica a semnalului de rezonanta al atomului de staniu (-142.66 ppm pentru compusul **1** si -126.5 ppm pentru compusul *p*-substituit) denota ca atomul de staniu este tetracoordinat in solutie in compusul **1**. Spectrul ¹¹⁹Sn RMN al compusului **2** prezinta un semnal de rezonanta la -139.68 ppm pentru atomul de staniu, deplasarea chimica reflectand un mediu asemanator atomului de staniu din compusul **1**. Aceasta deplasare chimica diferita a rezonantei pentru atomul de staniu, este datorata inlocuirii unui ligand organic cu un atom de clor si a cresterii aciditatii Lewis la atomul de staniu. O deplasare chimica mai accentuate a fost observata pentru compusul **3**. Un semnal de rezonanta la-203.48 ppm in spectrul de ¹¹⁹Sn RMN sugereaza ca atomul de staniu este hexacoordinate in solutie. Aceasta concluzie este sustinuta de perechea de sateliti de staniu (²*J*_{SnH} 9.1 MHz) observati pentru semnalul de rezonanta al prononilor H₇ din spectrul ¹H RMN (Figure 15).

Spectrul ¹H RMN al compusilor [2-{(CH₂O)₂CH}C₆H₄]SnMe₂Cl (4) si [2-{(CH₂O)₂CH}C₆H₄]₂SnMeCl (5) contin in zona alifatica un singlet pentru gruparea metal legata de staniu cu perechea de sateliti de staniu corespunzatoare (0.78 ppm cu ²J_{SnH} 64/67 Hz pentru compusul **4** si 0.99 ppm cu² J_{SnH} 68.5 Hz pentru compusul **5**) si un singlet pentru protonii H₇ ai nucleului 1,3-dioxal (5.88 ppm cu ${}^{4}J_{SnH}$ 7.9 Hz pentru compusul **4** si 5.87 ppm cu ${}^{4}J_{SnH}$ 7 Hz pentru compusul 5). Semnalul de rezonanta characteristic protonilor H₈ apare in spectrul ¹H RMN al compusului **4** ca si un singlet la 4.10 ppm in timp ce in spectrukl ¹H RMN al compusului **5** apare ca si un multiplet datorita sistemului AA'XX'. In zona aromatica a spectrului ¹H RMN al compusului 4, semnalul de rezonanta characteristic protonilor H₃, H₄ si H₅ ai nucleului aromatic sunt suprapuse si apar ca si un multiplet in timp ce semnalul de rezonanta characteristic protonilor H₆ apare ca si un dublet. In zona aromatica a spectrului ¹H RMN al compusului **5**, se observa doua seturi de rezonante pentru zona aromatica. Acest fapt sugereaza ca cele doua grupari organice nu sunt echivalente. Neechivalenta este atribuita prezentei unei legaturi $O \rightarrow Sn$ intramoleculare prezente in solutie (Figure 18).

Figure 18. Spectre ¹H RMN (CDCl₃, 300.1 MHz) ale compusilor $[2-{(CH_2O)_2CH}C_6H_4]SnMe_2Cl$ (4) (negru) si $[2-{(CH_2O)_2CH}C_6H_4]_2SnMeCl$ (5) (rosu)

Monocristale potrivite pentru studii de difractie X au fost obtinute din difuzia hexanului in solutii de CH_2Cl_2 ale compusilor **1**, **2**, **3** si **5**, respectiv hexan pentru compusul **4**.

Figure 21. Reprezentare ORTEP a structurii moleculare a compusului 1 (a) si 2 (b) prezentand 30% delocalizare elipsoidala si schema de numerotare

Structurile moleculare ale compusilor **1-3** prezinta unele asemanari: *i*) in toate casurile aromul de staniu prezinta o geometrie de coordinare de tetrahedru bicapped distorsionat, distorsia fiind cauzata de coordinarea intramoleculara a atomului de oxigen al gruparii organice si datorita impedimentelor sterice, *ii*) doi sunt coordinati intramolecular centrului metalic, rezultand in specii staniu(IV)-organice care au un numar de coorsinare marit de la patru la sase, *iii*) toti compusii sunt specii hipervalente 12-Sn-6 species, nomenclaruta sistemului N–X–L a fost descrisa in literatura: numarul de electroni, N, in stratul de valenta al unui atom centra X cu L liganzi legati de el.

Structura moleculara a compusului **5** cu schema de numeratore este prezentata in Figura 29.

Figure 29. Reprezentare ORTEP a structurii moleculare a compusului $[2-{(CH_2O)_2CH}C_6H_4]SnMe_2CI$ (4) prezentand 30% delocalizare elipsoidala si schema de numerotare

In compusul **4**, atomul de staniu este pentacoorinat cu o geometrie de bipiramida trigonala distorsionata, datorita legaturilor $O \rightarrow Sn$ intramoleculare puternice. Datorita coordinarii atomului O(1) la atomul de staniu, carbonul C(7) se comporta ca si un centru chiral, ambii izomeri $R_{C(7)}$ si $S_{C(7)}$ fiind prezenti in cristal.

Structura moleculara a compusului **5** cu schema de numerotare este aratat in Figura 31a. Structura moleculara a compusului **5** contine un atom de staniu hexacoordinat avand o geometrie tetraedrica bicapped distorsionata datorita a doua interactiuni $O \rightarrow$ Sn intramoleculare puternice [Sn(1)···O(1) 2.60(2) Å si Sn(1)···O(3) 2.86(3) Å]. Valoarea unghiurilor din jurul atomului de staniu se afla intre valorile 99.5(9)-133.7(1)°. Cea mai evidenta deviatie de la valoarea ideala de 109.23° este observata pentru C(1)–Sn(1)–C(10) de 133.7(1)°. Aceasta deviatie este cauzata de pozitia celor doua interactiuni intramoleculare intre atomiii de oxigen care interactioneaza cu atomul de staniu aflati in pozitie *trans* fata de atomii de clor, determinand o deschidere de unghi (Figure 31b).

Figure 31. Reprezentare ORTEP a structurii moleculare a compusului $[2-{(CH_2O)_2CH}C_6H_4]_2SnMeCl (5)$ prezentand 30% delocalizare elipsoidala si schema de numerotare (**a**) si reprezentare a tetraedrului bicapped (*C*,*O*)_2SnCCl core (**b**)

1.3.B. Compusi staniu(IV)-organici ce contin fragmentul 2-(O=CH)-C₆H₄

Compusii [2-(O=CH)-C₆H₄]₄Sn (**6**), [2-(O=CH)-C₆H₄]₂SnCl₂ (**7**), [2-(O=CH)-C₆H₄]SnMe₂Cl (**8**) si [2-(O=CH)-C₆H₄]₂SnMeCl (**9**) au fost preparati prin deprotejarea gruparii carbonil a fragmentelor organice ale compusilor [2-{(CH₂O)₂CH}C₆H₄]₄Sn (**1**), [2-{(CH₂O)₂CH}C₆H₄]₂SnCl₂ (**3**), [2-{(CH₂O)₂CH}C₆H₄]SnMe₂Cl (**4**) si [2-{(CH₂O)₂CH}C₆H₄]₂SnMeCl (**5**) folosind metode modificate de sinteza existente in literature pentru compusi ce contin mercur si seleniu.^{16,89}

Inlaturarea gruparii acetal a fost realizata prin hidroliza in CH_2Cl_2 pentru compusul **6** si in solventi polari precum acetona pentru compusul **7** folosind a solutie apoasa de HCl ca si catalizator. Amestecul de reactia a fost incalzit pan ace intreaga cantitate de CH_2Cl_2 si acetone s-a evaporate iar compusii **6** si **7** au precipitat ca si solide albe (Schema 17).

Schema 19

Solutii de acetona ale compusilor **4** si **5** au fost tratate cu acid *p*-toluen sulfonic ca si catalizator pentru a inlaruta gruparea protectoare si pentru a obtine compusii **8** si **9**. catalyst in order to remove the protecting acetal group and obtain compounds **8** and **9**, respectively. Reactiile au fost realizate la temperature camerei (Schema 19).

Compusii **6-9** au fost folositi fara purificari ulterioare. Comparand metodele de sinteza folosite pentru obtinerea compusilor **6-9** cu procedurile descrise in literature s-a observat obtinerea unor randamente mai bune. Mai mult, purificarea utilizant cromatografie pe oxid de aluminiu, recristalizarea sau refluxul indelungat au fost evitate. ^{16,22}.

Spectrele ¹H si ¹³C RMN sunt utile pentru a monitoriza formarea compusilor **6-9** prin indepartarea protectiei gruparii acetal a compusilor **1-5**. formarea gruparii aldehida este realizata cand atomii de carboni corespunzatori isi schimba hibridizarea de la sp^3 (gruparea acetal) la sp^2 (gruparea aldehida). Aceasta schimbare are un mare efect asupra valorilor deplasarilor chimice a atomilor de carbon aldehidici precum si asupra atomilor de hydrogen care apar dezacranati comparativ cu materia prima.

Figura 33. Spectrele ¹H RMN (CDCl₃, 300.1 MHz) pentru complecsii 1 (rosu) si 6 (negru)

Regiunea aromatica a spectrului ¹H RMN a compusului **6** prezinta un semnal de rezonanta multiplet care corespunde protonilor H_5 si H_4 , un semnal de rezonanta dublet pentru atomii de hydrogen H_6 inconjurate de satelitii de staniu (⁴ J_{SnH} 51.2/53 Hz), semnalele putand fi observate la o deplasare chimica de 7.67 ppm, precum si un semnal de rezonanta dublet pentru H_3 at 7.85 ppm inconjurat de satelitii de staniu (³ J_{SnH} 24.4 Hz). Ultimul semnal, de rezonanta singlet este corespunzator protonilor H_7 din gruparea aldehida. In spectrul ¹³C RMN se pot observa toate semnale asteptate, sase semnale de rezonanta singlet corespunzatoare celor sase atomi de carbon ai nucleului aromatic si un semnal de rezonanta singlet corespunzator aldehida (Figura 33).

Comparand spectrul ¹H RMN al compusului **6** cu spectrul ¹H RMN al compusului **1**, se poate observa ca semnalul de rezonanta multiplet corespunzator atomilor de hydrogen din cele doua grupari $-CH_2$ - de la 1,3-dioxal din compusul **1** dispare in cazul compusului **6**. formarea gruparii aldehida are un mare efect asupra deplasarilor chimice atomii de hidrogen si carbon corespunzatori, datorita schimbarii hibridizarii atomilor de carbon de la sp^3 la sp^2 . In plus, valoarea deplasarii chimice a gruparii acetal in cazul compusului **1** este la 5.49 ppm in timp ce in cazul compusului 6 este deplasata la 9.80 ppm (Figura 31). Acelasi efect poate fi observat si in cazul spectrului ¹³C RMN (104.17 ppm in compusul **1**, respective 193.53 ppm in compusul **6** (Figura 34).

Semnalul de rezonanta ¹¹⁹Sn in cazul compusului **6** nu poate fi observat la temperature camerei. Semnalul de rezonanta este extreme de larg si nu este vizibil in determinarea directa a ¹¹⁹Sn datorita relaxarii quadropolare rapide a nucleilor ¹⁷O prezente in directa vecinatate a atomilor de staniu.⁹⁰ Inregistrarea spectrul de ¹¹⁹Sn RMN la temperatura scazuta face posibila observarea unui semnal de rezonanta singlet la -129.20 ppm. Relaxarea incetinita a nucleilor ¹⁷O determinate de temperatura scazuta permite observarea semnalului de rezonanta pentru ¹¹⁹Sn (Figura 35).

Figura 35. Spectrul ¹¹⁹Sn RMN (CDCl₃, 111.9 MHz) la temperature variabila a compusului 6

Unitatea moleculara a compusului **6** prezinta un centru metalic coordinat de atomii de oxigen ai fragmentelor benzaldehida (Figura 41a), cu o valoare medie a distantei O \rightarrow Sn de 3.01 Å, $\Sigma r_{vdW}(Sn, O) = 3.7$ Å, $\Sigma r_{cov}(Sn, O) = 2.13$ Å. Geometria de coordinare a atomului de staniu este de tetraedru tetra-"capped" cu toti patru atomii de oxigen de la cele patru grupari organice coordinati la atomul de staniu (Figura 41b), rezultand astfel o specie hipervalenta 16-Sn-8.

Figura 41. Reprezentarea ORTEP a structurii moleculare a compusului $[2-(O=CH)-C_6H_4]_4$ Sn (6) prezentand 30% delocalizare elipsoidala si schema de numerotare (a) vedre a tetraedrului bi-"capped" cu centru $(C,O)_4$ Sn (b)

Compusul **6** este primul exemplu de compus tetraorganostaniu(IV) octacoordinat. Coordinarea este obtinuta utilizand gruparile benzaldehida ca si ligand cu brat pendant. Compusii de staniu(IV) octacoordinati raportati anterior⁹² au fost obtinuti utilizand liganzi anorganici pentru a creste numarul de cordinare la centrul metalic.

In molecula compusului **7** (Figure 43a) precum si in molecula compusului 9 (Figura 43b), ambele grupari benzaldehida actioneaza ca si liganzi chelati, avand atomii de oxigen coordinati la centrul de staniu [Sn(1)…O(1) = 2.4(7) Å, Sn(1)…O(2) = 2.5(7) Å in compusul **7** si Sn(1)…O(1) = 2.54(4) Å, Sn(1)…O(2) = 2.87(4) Å in compusul **9**]. Interactiunea $O \rightarrow$ Sn este mai puternica comparativ cu compusul 6, datorita scaderii impedimentelor sterice datorate liganzilor.

Figure 43. Reprezentarea ORTEP a structurii moleculare a compusilor $[2-(O=CH)-C_6H_4]_2$ SnCl2 (7) (a) si $[2-(O=CH)-C_6H_4]_2$ SnMeCl (9) prezentand 30% delocalizare elipsoidala si schema de numerotare (b)

Geometria de coordinare in jurul atomului de staniu in cazul compusilor **7** si **9** (Figura 44) este de tetraedru distorsionat bi-"capped". La fel ca si in cazul compusului **3**, unghiul C(1)–Sn(1)–C(8) cu o valoare de 143.9(4)° prezinta o puternica deviere de la valoarea ideala de 109.23° datorita celor doi atomi de oxigen coordinati intramolecular. Ciclul format din cinci atomi SnC₃O in cazul compusului **7** este aproape planar, cu unghiurile diedre Sn(1)C(1)C(2)C(7)/Sn(1)C(7)O(1) la 0.63° si Sn(1)C(8)C(9)C(14)/Sn(1)C(14)O(2) la 1.4°. Atomii de oxigen sunt in afara planului ideal cu O(1) 0.02 Å, respectiv O(2) 0.016 Å. Compusul **9** prezinta similaritati ale unghiului diedru cu unghiul Sn(1)C(1)C(2)C(7)/Sn(1)C(7)O(1) din compul **3**, cu un unghi diedru Sn(1)C(8)C(9)C(14)/Sn(1)C(14)O(2) la 0.85°, in timp ce atomii de oxigen sunt plasati cu O(1) 0.05 Å si O(2) 0.02 Å in afara planului ideal format de restul de atomi, rezultand astfel ciclul planar SnC₃O.

Figure 44. Vedere a tetraedrului bi-"capped" cu centru $(C,O)_2$ SnCl₂ core a compusului **7** (a) si cu centru $(C,O)_2$ SnCClpentru compusul **9** (b)

1.3.C. Compusi staniu(IV)- organici ce contin o legatura –C=N–

Compusii **10-16** au fost preparati prin reactia de condensare intre compusii staniu(IV)organici ce contin gruparea $2-(O=CH)-C_6H_4$ si diferite amine in rapoarte molare corespunzatoare.

Schema 20

Reactiile de condensare pentru sinteza compusilor **10-12** au fost realizate mai intai in prezenta de solvent, catalizator si conditii de reflux, pentru a obtine randamente bune dupa un timp de reactie indelungat (Scheme 20). Reactiile de condensare pentru compusii **11** si **12** au fost realizate in toluen la reflux, folosind TsOH ca si catalizator si Na₂SO₄ anhidru pentru a intaluta apa din mediul de reacite. Pentru compusul **10**, reactia in toluene la reflux, folosind Na₂SO₄ anhidru, in prezenta sa absenta de TsOH ca si catalizator, nu a dus la obtinerea compusului dorit. Materia prima folosita, $[2-(O=CH)-C_6H_4]_4$ Sn (**6**), a fost recuperate cantitativ. Reactia de condensare pentru a obtine compusul **10** a fost realizata in acetonitril, Na₂SO₄ anhidru si fara TsOH ca si catalizator. Compusii **10-12** au precipitat in momentul racirii mediului de reactie.

Aceleasi reactii ca si cele descrise in Schema 20 si reactiile de condensare pentru sinteza compusilor **13-16** au fost realizate prin amestecul reactantilor in rapoarte molare 1:4 si 1:2 fara solvent sau catalizator, doar prin incalzire pana la obtinerea unei topituri limpezi (Scheme 21). Dupa ce temperature este mentinuta pentru 5 minute, apa rezultata din reactive este inlaturata la pompa de vid. Se obtine o conversie totala a reactantilor in compusii iminici doriti, lucru confirmat de spectrele ¹H RMN ale compusilor neprelucrati. Aceasta metoda de sinteza reprezinta o alternativa green ale metodelor deja descries in literature de a obtine compusi iminici din aldehida si amine.

Spectrul ¹H RMN al compusului **14** prezinta in zona alifatica trei semnale de rezonanta singlet in raport de intensitate de 1:1:1 corespunzatoare gruparilor metil legate la nucleul aromatic. Zona aromatica prezinta rezonante diferite pentru doi dintre protonii aromatici din nucleul aromatic legat la atomul de azot impreuna cu semnale de rezonanta singlet corespunzatoare atomilor de hidrogen a nucleului aromatic legat la atomul de staniu precum si un semnal de rezonanta singlet pentru protonii H₇ (Figura 48).

Figure 48. Spectrul ¹H RMN (CDCl₃, 300.1 MHz) al compusului [2-{CH=N-2,4,6-(CH₃)₃C₆H₂}C₆H₄]₂SnCl₂ (**14**)

Prezenta a trei semnale diferite, in zona alifatica, atat in spectrul ¹H RMN, cat si in cazul spectrului ¹³C RMN, pentru fiecare grupare metil sugereaza aranjamente diferite a gruparilor metil. Aceste rezultate, impreuna cu valoarea deplasarii chimice a semnalului de rezonanta din spectrul ¹¹⁹Sn RMN (-295.91 ppm), sugereaza ca atomul de staniu, in cazul compusului **14** este hexacoordinat in solutie (Figura 49). Neechivalenta atomilor de proton si carbon din nucleul aromatic legat la atomul de azot este data de interactiunea intramoleculara N \rightarrow Sn dintre ligandul organic si atomul de staniu. Aceasta coordinare impiedica ratotia libera in jurul legaturii N–C.

Spectrul ¹H RMN al compusului **11** prezinta in zona alifatica trei semnale de rezonanta corespunzatoare celor trei tipuri de protoni, doua semnale de rezonanta triplet corespunzatoare protonilor H₈ si H₉ la 2.84 si 1.87 ppm, precum si un semnal de rezonanta singlet pentru protonii H₁₀ din gruparile metil la 1.98 ppm. Zona aromatica prezinta toate semnalele de rezonanta asteptate, respectiv un semnal de rezonanta dublet corespunzator protonilor H₆ din gruparea fenil la 7.66 ppm, precum si un semnal de rezonanta singlet pentru protonii H₇ la 8.15 ppm (Figura 50).

Figure 50. Spectre ¹H RMN suprapuse (CDCl₃, 300.1 MHz) ale complecsilor [2- $\{CH=NCH_2CH_2N(CH_3)_2\}C_6H_4\}_4Sn$ (**11**) (negru) si [2- $\{CH=NC_2H_4N(CH_3)_2\}C_6H_4\}_2SnCl_2$ (**15**) (rosu)

2.3.A.Oxo-clusteri de staniu(II)

Figure 89. Spectrul ¹ H RMN (CDCl₃, 99.35 MHz) la temperature varabila pentru compusul 18

Comportamentul in solutie a compusului $Sn_4O(OSiMe_3)_8$ (**18**) a fost studiat prin spectroscopie RMN multinucleara.La temperature camerei in zona alifatica in spectrele 1H si 13C RMN a compusului 18 semnale de rezonanta pentru gruparile metil apar largi. Experimentul ¹H RMN a fost facut la temperatura scazuta pentru a obtine semnale de rezonanta bine rezolvate (Figura 89).

Structura moleculara a compusului $Sn_4O(OSiMe_3)_8$ (**18**) este prezentata in Figura 93. Compusul **18** formeaza un cluster care contine trei atomi de Sn(II) si un atom de Sn(IV). Doi dintre atomii de Sn(II) sunt pentacoordinati cu o geometrie de coordinare de *pseudo*-octaedru in jurul atomilor de staniu si cu o pozitie libera. Geometria de coordinare de *pseudo*-octaedru in jurul atomilor de staniu este reflectata de valorile unghiurilor de legatura O–Sn–O [O–Sn(2)–O 65.9(1)–102.6(1)° and O–Sn(3)–O 58.0(1)–108.7(8)°]. Al treilea atom de Sn(II) are o geometrie de coordinare de tetraedru distorsionat cu valoarea unghiurilor O–Sn–O situate in intervalul 76.9(2)-99.0(1)°. Toti trei atomii de staniu au doua legaturi covalente cu atomii de oxigen de la gruparile –OSiMe₃, iar atomii Sn(2) si Sn(3) prezinta trei interactiuni intramoleculare O–Sn. In toate cazurile pozitia libera este ocupata de o pereche de electroni.

Figure 93. Reprezentarea ORTEP a structurii moleculare pentru Sn₄O(OSiMe₃)₈ (**18**) prezentand 30% delocalizare elipsoidala si schema de numerotare

Al patrulea atom de staniu este un ato de staniu(IV). Sn(1) este hexacoordinat cu o geometrie de coordinare de octaedru distorsionat datorita celor doua interactiuni intramoleculare cu doua grupari –OSiMe₃. Pozitiile trans sunt ocupate de gruparile –OSiMe₃ care duc la formarea de unghiuri O–Sn(1)–O cu valori cuprinse in intervalul 157.2(1)-163.8(2)°, in timp ce unghiurile cis O–Sn(1)–O au valori cuprinse in intervalul 70.2(1)-103.4(2)°.

Figure 94. Vedere a geometriei de coordinare octaedrica in jurul atomului de Sn(1) in compusul 18

Caracterizarea termica a compusilor chimici este importanta pentru a controla procesul reactiei chimice cat si pentru a determina proprietatile materialelor rezultate. Curba termogravimetrica arata schimbarile masei reziduale in raport cu temperatura. Analize termogravimetrice (TGA) au fost facute pentru complecsii **17-19** cu temperature controlata, in atmosfera de azot.

Incercarile de a obtine filme compuse din Sn_3N_4 in conditiile date au esuat. Nu se obtin depuneri ale precursorului **20** la temperature mai joase de 450°C. La 450°C se obtine un amestec de SnO si staniu metalic (Figure 121).

Figure 122. X-ray diffraction pattern of the film deposited on glass using **20** as precursor at a temperature of 450°C, indexation is consistent with mixed tetragonal SnO and tetragonal Sn, lines marked with • correspond to tetragonal Sn

Figure 121. SEM a filmului obtinut din precursorul 20 pe sticla, la 450°C

Cu ajutorul PXRD s-a stabilit formarea unui amestec de SnO tetragonal Si Sn metallic tetragonal (Figure 122). Studii similare au fost raportate in literatura.¹⁶¹ Studiile descries sugereaza descompunerea Sn_3N_4 in elemente la temperature de 400°C. Prezenta unor mici cantitati de SnO in filmul obtinut la 450°C pot fi cauzate de mai multi factori. In timpul depunerii filmului de staniu datorita descompunerii Sn_3N_4 , prezenta accidentala a oxigenului in reactor poate duce la oxidarea staniului la SnO. O explicatie mai larg intalnita in literature este faptul ca daca experimenele sunt realizate utilizand N_2 sau Ar ca si gaze transportatore, se poate obtine oxidarea precursorului. Pentru a preveni acest lucru, gazul tranportator este imbogatit cu NH₃. Un alt motiv pentru care poate avea loc oxidarea precursorilor este folosirea solventilor pentru a obtine H₂O sau O₂.

Din acest moment, prin ridicarea temperaturii, se obtin filme compuse exclusive din staniu metalic (Figure 124). PXRD concluzioneaza formarea staniului tetragonal iar prezenta staniului metallic este confirmata de analize EDX (Figure 123).

Figure 123. X-ray diffraction pattern of the film deposited on glass using **20** as precursor at a temperature of 500°C, indexation is consistent with tetragonal Sn (**a**) and and the corresponding EDX of the film (**b**)

Figure	124.	SEM	а	filmului	obtinut	din	precursorul	20	ре	sticla,	la	500°C
--------	------	-----	---	----------	---------	-----	-------------	----	----	---------	----	-------

References

¹ C. T. Onions, G. W. S. Friedrichsen, *The Oxford Dictionary of English Etymology*, Oxford, Oxford University Press, **1966**, pp. 925.

² W. Chambers, *Chambers Dictionary of Etymology*, Edinburgh, Chambers Harrap Publishers Ltd., **2006**, pp. 490.

³ J. Cierny, G. Weisgerber, *The Problem of Early Tin*, Oxford, Archaeopress, **2003**, pp. 23-31.

⁴ R. D. Penhallurick, *Tin in Antiquity: its Mining and Trade Throughout the Ancient World with Particular Reference to Cornwall*, London: The Institute of Metals, **1986**, pp. 5.

⁵ N. N. Greenwood, A. Earnshaw, *Chemistry of the Elements*, 2nd Ed., Oxford, Butterworth-Heinemann, **1997**, pp. 371-373.

⁶ M. J. P. Musgrave, *Proc. Roy. Soc.*, **1963**, 227A, 503.

⁷ A. K. De, *A Text Book of Inorganic Chemistry*, 9th Ed., New Delhi, New Age International, **2003**, pp. 375.

⁸ E. Frankland, *Q. J. Chem. Soc.*, **1850**, *2*, 263.

⁹ E. Frankland, *Liebigs Ann. Chem.*, **1849**, *71*, 171.

¹⁰ C. Löwig, *Liebigs Ann. Chem.*, **1852**, *84*, 308.

¹¹ C. J. Evans, S. Karpel, *Organotin Compounds in Modern Technology*, Amsterdam, Elsevier, **1985**, pp. 16, 106-110, 202-203.

¹² W. Henderson, J. S. McIndoe, *Mass Spectrometry of Inorganic, Coordination and Organometallic Compounds: Tools - Techniques - Tips*, Chichester, John Wiley & Sons, **2005**, pp. 176-178.

¹³ J. C. Martins, M. Biesemans, R. Willem, Prog. Nucl. Magn. Reson. Spectrosc., **2000**, 36, 271.

¹⁴ (a) J. T. B. H. Jastrzebski, G. van Koten, *Adv. Organomet. Chem.*, **1993**, *35*, 241 and references therein. (b) N. Pieper, C. Klaus-Mrestani, M. Schurmann, K. Jurkschat, M. Biesemans, I. Verbruggen, J. C. Martins, R. Willem, *Organometallics*, **1997**, *16*, 5486. (c) A. Esparza-Ruiz, A. Pena-Hueso, I. Ramos-Garcia, A. Vasquez-Badillo, A. Flores-Parra, R. Contreras, *J. Organomet. Chem.*, **2009**, *694*, 269. (d) R. R. Holmes, *Chem. Rev.*, **1996**, *96*, 927. (e) I. Kalikhman, S. Krivonos, D. Stalke, T. Kottke, D. Kost, *Organometallics*, **1997**, *16*, 3255. (f) D. Dakternieks, H. Zhu, E. R. T. Tiekink, *Main Group Met. Chem.*, **2011**, *17*, 519.

¹⁵ (a) S. S. <u>Al-Deyab</u>, A. M. <u>Al-Hazmi</u>, M. H. <u>El-Newehy</u>, *Molecules*, **2010**, *15*, 1784. (b) K. Gholivand, S. Farshadian, Z. Hosseini, K. Khajeh, N. Akbari, *Appl. Organomet. Chem.*, **2010**, *24*, 700.

¹⁶ (a) W. L. Drew, R. C. Miner, G. I. Marousek, S. Chou, *J. Clin. Virol*, **2006**, *37*, 124. (b) I. Omar, T. M. O'Neill, S. Rossall, *Plant Pathol.*, **2006**, *55*, 92. (c) A. Joubert, X.-W. Sun, E. Johansson, C. Bailly, J. Mann, S. Neidle, *Biochem.*, **2003**, *42*, 5984. (d) A. V. Dolzhenko, W.-K. Chui, *J. Heterocyclic Chem.*, **2006**, *43*, 95. (e) A. V. Dolzhenko, W.-K. Chui, *A. V. Dolzhenko, J. Heterocyclic Chem.*, **2006**, *43*, 1513. (f) A. D. Settimo, G. Primofiore, F. D. Settimo, A. M. Marini, S. Taliani, S. Salerno, L. D. Via, *J. Heterocyclic Chem.*, **2003**, *43*, 1091.

¹⁷ J. Parr, *Comprehensive Coordination Chemistry. From Biology to Nanotechnology*, 2nd Ed., Volume 3, *Comprehensive Coordination Chemistry of s, p and f metals*, Hardbound, Elsevier, **2005**, pp. 545-546.

¹⁸ L. Dostal, R. Jambor, A. Ruzicka, I. Cisarova, J. Holecek, M. Biesemans, R. Willem, F. De Proft, P. Geerlings, *Organometallics*, **2007**, *26*, 6312.

¹⁹ (a) J. Holecek, M. Nadvornik, K. Handlir, A. Lycka, *J. Organomet. Chem.*, **1983**, *241*, 177. (b) J. Holecek, M. Nadvornik, K. Handlir, A. Lycka, *Collect. Czech. Chem. Commun.*, **1990**, *55*, 1193.

²⁰ (a) J. Holecek, M. Nadvornik, K. Handlir, A. Lycka, *Z. Chem.*, **1990**, *30*, 265. (b) A. Lycka, J. Holecek, B. Schneider, J. Straka, *J. Organomet. Chem.*, **1990**, *389*, 29. (c) V. Pejchal, J. Holecek, A. Lycka, *Sci. Univ. Pap. Pardubice*, **1996**, *A2*, 35.

²¹ H. Handwerker, C. Leis, R. Probst, P. Bassinger, A. Grohmann, P. Kiprof, F. Herdtweek, J. Blumel, N. Auner, C. Zybill, *Organometallics*, **1993**, *12*, 2162.
 ²² (a) R. Jambor, L. Dostal, A. Ruzicka, I. Cisarova, J. Brus, M. Holcapek, J. Holecek, *Organometallics*, **2002**, *19*, 3996.

(a) R. Jambor, L. Dostal, A. Ruzicka, I. Cisarova, J. Brus, M. Holcapek, J. Holecek, *Organometallics*, 2002, *19*, 3996.
(b) B. Kasna, R. Jambor, L. Dostal, A. Ruzicka, I. Cisarova, J. Holecek, *Organometallics*, 2004, *23*, 5300. (c) B. Kasna, R. Jambor, L. Dostal, L. Kolarova, I. Cisarova, J. Holecek, *Organometallics*, 2006, *25*, 148. (d) M. Mehring, C. Loew, F. Uhling, M. Schurmann, K. Jurkschat, B. Mahieu, *Organometallics*, 2000, *19*, 4613. (e) M. Mehring, I. Vrasidas, D. Horn, M. Schurmann, K. Jurkschat, *Organometallics*, 2001, *20*, 4647.

²³ (a) M. Mehring, C. Loew, M. Schurmann, K. Jurkschat, *Eur. J. Inorg. Chem.*, **1999**, 887. (b) K. Peveling, M. Henn, C. Loew, M. Mehring, M. Schurmann, K. Jurkschat, Organometallics, 2004, 23, 1501, (c) L. Dostal, R. Jambor, A. Ruzicka, A. Lycka, J. Holecek, Magn. Reson. Chem., 2006, 44, 171.

²⁴ V. K. Belsky, A. A. Simonenko, V. O. Reikhsfeld, I. E. Saratov, J. Organomet. Chem., **1983**, 244, 125.

²⁵ (a) J. T. B. H. Jasrezebski, P. A. van der Schaaf, J. Boersma, G. van Koten, M. de Wit, Y. D. Wang, Y. D. Heijdenrijk, C. H. Stam, J. Organomet. Chem., 1991, 407, 301. (b) A. Ruzicka, L. Dostal, R. Jambor, V. Buchta, J. Brus, I. Cisarova, M. Holcapek, J. Holecek, Appl. Organomet. Chem., 2002, 16, 315.

²⁶ L. Pellerito, L. Nagy, *Coord. Chem. Rev.*, **2002**, 224, 111.

²⁷ (a) K. Sakamoto, Y. Hamada, H. Akashi, A. Orita, J. Otera, *Organometallics*, **1999**, *18*, 3555. (b) S. Durand, K. Sakamoto, T. Fukuyama, A. Orita, J. Otera, A. Duthie, D. Dakternieks, M. Schulte, K. Jurkschat, Organometallics, 2000, 19, 3220.

²⁸ J. Holecek, M. Nadvornik, K. Handlir, A. Lycka, *J. Organomet. Chem.*, **1983**, *241*, 177.

²⁹ G. Socrates, *Infrared Characteristic Group Frequencies*, Wiley-Blackwell, **1980**, pp. 145.

³⁰ F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, G. Orpen, R. Taylor, J. Chem. Soc., Perkin. Trans. 2, 1987, 12, S1.

³¹ (a) W. H. Knoth, J. Am. Chem. Soc., **1967**, 89, 1274. (b) W. H. Knoth, Inorg Chem., **1971**, 10, 598. (c) J. Plesek, T. Jelinek, E. Drdakova, S. Hermanek, B. Stibr, Collect. Czech. Chem. Commun., 1984, 49, 1559.

³² (a) M. F. Hawthorne, D. C. Young, T. D. Andrews, V. Howe, R. L. Pilling, A. D. Pitts, M. Reintjes, L. F. Warren, P. A. Wegner, J. Am. Chem. Soc., 1968, 90, 879. (b) M. F. Hawthorne, T. D. Andrews, P. M. Garrett, F. P. Olsen, M. Reintjes, F. N. Tebbe, L. F. Warren, P. A. Wegner, D. C. Young, Inorg. Synth., 1967, 10, 91.

³³ (a) C. A. Reed, Acc. Chem. Res., **1998**, 31, 133. (b) S. H. Strauss, Chem. Rev., **1993**, 93, 927.

³⁴ K. Shelly, D. C. Finster, Y. J. Lee, W. R. Sheidt, C. A. Reed, *J. Am. Chem. Soc.*, **1985**, *107*, 5955.

³⁵ A. Zalkin, T. E. Hopkins, D. H. Templeton, *Inorg. Chem.*, **1967**, *6*, 1911.

³⁶ (a) Book of Abstracts OP38, XVth FECHEM Conference on Organometallic Chemistry, Zurich (Switzerland), 10th-15th August 2003. (b) Book of Abstracts O54, 11th International Conference on the Coordination and Organometallic Chemistry of Germanium, Tin, and Lead (ICCOC-GTL-11), Santa Fe (New Mexico, USA), 27th June-2nd July 2004.

³⁷ M. Mehring, C. Low, M. Schurmann, F. Uhling, K. Jurkschat, *Organometallics*, **2000**, *19*, 4613.

³⁸ M. Henn, *Ph.D. Thesis*, Dortmund University, **2004**.

³⁹ B. Kasna, R. Jambor, M. Schurman, K. Jurkschat, J. Organomet. Chem., **2008**, 693, 3446.

⁴⁰ (a) N. S Narasimhan, R. S. Mali, Synthesis, **1983**, 964. (b) V. Snieckus, Chem. Rev., **1990**, 6, 879. (c) P. Beak, S. T. Kerrick, D. J. Gallagher, J. Am. Chem. Soc., 1993, 113, 10628. (d) T. Kremer, M. Junge, P. v. R. Schleyer, Organometallics, 1996, 15, 3345. (d) J. Belzner, D. Schar, U. Dehnert, M. Noltemeyer, Organometallics, 1997, 16, 285.

⁴¹ M. Mehring, M. Schurmann, K. Jurkschat, *Organometallics*, **1998**, *17*, 1227.

⁴² D. Dakternieks, K. Jurkschat, H. Zhu, E. R. T. Tiekink, *Organometallics*, **1995**, *14*, 2512.

⁴³ C. D. Schaeffer, S. E. Ulrich, J. J. Zuckerman, *Inorg. Chem. Lett.*, **1978**, *14*, 55.

⁴⁴ J. Holecek, M. Nadvornik, K. Handlir, A. Lycka, J. Organomet. Chem., **1983**, 241, 177.

⁴⁵ B. Mathiasch, Org. Magn. Reson., **1981**, 17, 296.

⁴⁶ S. Dostal, S. J. Stoudt, P. Fanwick, W. F. Sereatan, B. Kahr, J. E. Jackson, *Organometallics*, **1993**, *12*, 2284.

⁴⁷ J. T. B. H. Jastrzebski, J. Boersma, P. M. Esch, G. van Koten, *Organometallics*, **1991**, *10*, 930.

⁴⁸ U. Kolb, M. Drager, B. Jousseaume, *Organometallics* **1991**, *10*, 2737.

⁴⁹ (a) A. V. Yatsenko, S. V. Medvedev, L. A. Aslanov, *Zh. Strukt. Khim.*, **1992**, *33*, 126. (b) H. Reuter, H. Puff, J. Organomet. Chem., 1992, 424, 23.

⁵⁰ (a) F. Richter, H. Weichmann, *J. Organomet. Chem.*, **1994**, *466*, 77. (b) R. W. Deemie, J. C. Fettinger, D. A. Knight, *J. Organomet. Chem.*, **1997**, *538*, 257. ⁵¹ P. G. Harrison, *Chemistry of Tin*, London, Ed. P. G. Harrison, Blackie, **1989**, pp. 10.

⁵² (a) C. Drost, P. B. Hitchcock, M. F. Lamppert, L. J.-M. Pierssens, J. Chem. Soc., Chem. Commun., **1997**, 1141. (b) W.-P. Leung, W.-H. Kwok, F. Xue, T. C. W. Mak, J. Am. Chem. Soc., 1997, 119, 1145.

⁵³ P. Svec, Z. Padelkova, A. Ruzicka, T. Weidlich, L. Dusek, L. Plasseraud, J. Organomet. Chem., **2011**, 696, 676.

⁵⁴ P. Svec, Z. Padelkova, P. Stepnicka, A. Ruzicka, J. Holecek, J. Organomet. Chem., **2011**, 696, 1809.

⁵⁵ P. Stepnicka, I. Cisarova, A. Ruzicka, J. Organomet. Chem., **2010**, 695, 271.

⁵⁶ J. Turek, Z. Padelkova, M. S. Nechaev, A. Ruzicka, *J. Organomet. Chem.*, **2010**, *695*, 1843.

⁵⁷ Z. Padelkova, A. Havlik, P. Svec, M. S. Nechaev, A. Ruzicka, J. Organomet. Chem., **2010**, 695, 2651.

⁵⁸ P. Svec, E. Cernoskova, Z. Padelkova, A. Ruzicka, J. Holecek, J. Organomet. Chem., **2010**, 695, 2474.

⁵⁹ B. W. Fitzsimmons, D. G. Othen, H. M. M Shearer, K. Wade, G. Whitehead, J. Chem. Soc., Chem. Commun., **1977**, 215.

⁶⁰ W. Clegg, C. M. J. Grievson, K. Wade, *J. Chem. Soc., Chem. Commun.*, **1987**, 969.

⁶¹ (a) D. Dakternieks, K. Dunn, V. T. Perchyonok, C. H. Schiesser, E. R. T. Tiekink, J. Organomet. Chem., 2000, 605, 209. (b) D. Dakternieks, K. Dunn, V. T. Perchyonok, C. H. Schiesser, E. R. T. Tiekink, J. Chem. Soc., Dalton Trans., 2000, 3693. (c) D. Dakternieks, C. H. Schiesser, Aust. J. Chem., 2001, 54, 89. (d) D. Dakternieks, V. T. Perchyonok, C. H. Schiesser, Tetrahedron: Asym., 2003, 14, 3057. (e) G. Muller, J. Brand, Z. Anorg. Allg. Chem., 2005, 631, 2820. (f) J. Kang, T. Hyung Kim, Bull. Korean Chem. Soc., 2003, 24, 1055.

⁶² D. P. Curran, C. T. Chang, *J. Org. Chem.*, **1989**, *54*, 3140.

⁶³ (a) T. N. Mitchell, B. S. Bronk, Organometallics, 1991, 19, 936. (b) D. P. Curran, G. Gualtieri, SynLetters, 2001, 1038. (c) D. L. J. Clive, J. Wang, J. Org. Chem., 2002, 67, 1192.

⁶⁴ (a)P. Cmoch, Z. Urbanczyk-Lipkowska, A. Petrosyan, A. Stepien, K. Stalinski, J. Molec. Struct., 2005, 733, 29. (b) K. Stalinski, Z. Urbanczyk-Lipkowska, P. Cmoch, L. Rupnicki, A. Grachev, J. Organomet. Chem., 2006, 691, 2394. (c) D. Matkowska, M. Gola, M. Sniezek, P. Cmoch, K. Stalinski, , J. Organomet. Chem., 2007, 692, 2036.

⁶⁵ (a) F. Fu, H. Li, D. Zhu, Q. Fangm H. Pan, E. R. T. Tiekink, F. Kayser, M. Biesemans, I. Verbruggen, R. Willem, M. Gielen, J. Organomet. Chem., 1995, 490, 163. (b) R. Willem, A. Delmotte, I. de Borger, M. Biesemans, M. Gielen, F. Kayser, E. R. T. Tiekink, J. Organomet. Chem., 1994, 480, 255. (c) F. Kayser, M. Biesemans, A. Delmotte, I. Verbruggen, I. de Borger, M. Gielen, R. Willem, Organometallics, 1994, 13, 4026. (d) F. Kayser, M. Biesemans, H. Pan, M. Gielen, R. Willem, J. Chem. Soc., Perkin Trans. 2, 1994, 297.

⁶⁶ M. Nadvornik, J. Holecek, K. Handlir, A. Lycka, J. Organomet. Chem., **1984**, 275, 43.

⁶⁷ A. K. Sawyer, H. G. Kuivila, J. Am. Chem. Soc., **1962**, 84, 837.

⁶⁸ A. G. Davies, R. Osei-Kiss, J. Organomet. Chem., **1994**, 474, C8.

⁶⁹ H. Puff, B. Breuer, G. Brinkmann, P. Kind, H. Reuter, W. Schuh, W. Wald, G. Weidenbruck, J. Organomet. Chem., **1989**, *363*, 265.

⁷⁰ A. Bury, J. R. Speilman, *J. Org. Chem.*, **1961**, *83*, 2667.

⁷¹ H. McAlonan, P. J. Stevenson, *Organometallics*, **1995**, *14*, 4021.

⁷² (a) H, X. Zhang, F. Guibe, F. B. Balavoine, J. Org. Chem., **1990**, 55, 1857. (b) V. I. Dodero, T. N. Mitchell, J. C. Podesta, Organometallics, 2003, 22, 856.

⁷³ (a) M. Weidenbruch, J. Schlaefke, K. Peters, H. G. von Schnering, J. Organomet. Chem., **1991**, 414, 319. (b) D. Cunningham, T. Higgins, P. McArdle, J. Chem. Soc., Chem. Commun., **1984**, 833. ⁷⁴ D. Dakternieks, K. Dunn, C. H. Schiesser, E. R. T. Tiekink, J. Chem. Soc., Dalton Trans., **2000**, 3693.

⁷⁵ (a) M. Albrecht, G. van Koten, *Angew. Chem.*, **2001**, *113*, 3866. (b) M. Albrecht, G. van Koten, *Angew. Chem.*, *Int.* Ed., 2001, 40, 3750. (c) M. E. van der Boom, D. Milstein, Chem. Rev., 2003, 103, 1759. (d) W. J. Hoogervorst, A. L. Koster, M. Lutz, A. L. Spek, C. Elsevier, Organometallics, 2004, 23, 1161. (e) N. Selander, K. J. Szabo, Chem. Rev., 2011, 111, 2048.

⁷⁶ (a) P. Simon, F. De Proft, R. Jambor, A. Ruzicka, L. Dostal, *Angew. Chem.*, **2010**, *120*, 1674. (b) P. Simon, F. De Proft, R. Jambor, A. Ruzicka, L. Dostal, Angew. Chem., Int. Ed., 2010, 49, 5468.

⁷⁷ P. P. Power, *Nature*, **2010**, *463*, 171.

⁷⁸ A. D. Phillips, R. J. Wright, M. M. Olmstead, P. P. Power, J. Am. Chem. Soc., **2002**, 124, 5930.

⁷⁹ R. C. Fischer, L. Pu, J. C. Fettinger, M. A. Brynda, P. P. Power, *J. Am. Chem. Soc.*, **2006**, *128*, 11366. (b) Y. Peng, R. C. Fischer, W. A. Merrill, J. Fischer, L. Pu, B. D. Ellis, J. C. Fettinger, R. H. Herber, P. P. Power, Chem. Sci., 2010, 1, 461. (c) R. Jambor, B. Kasna, K. N. Kirschner, M. Schurmann, K. Jurkschat, Angew. Chem., 2008, 120, 1674. (d) R. Jambor, B. Kasna, K. N. Kirschner, M. Schurmann, K. Jurkschat, Angew. Chem., Int. Ed., 2008, 47, 1650.

⁸⁰ (a) H. Gilman, C. Arntzen, J. Am. Chem. Soc., **1950**, 72, 3823. (b) K. Akiba, Y. Ito, F. Kondo, N. Ohashi, A. Sakaguchi, S. Kojima, Y. Yamamoto, Chem. Lett., 1992, 1563. (c) G. D. Smith, P. E. Fanwick, I. P. Rothwell, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1995, 51, 2501. (d) G. D. Smith, V. M. Visciglio, P. E. Fanwick, I. P. Rothwell, Organometallics, 1992, 11, 1064. (e) D. J. Edwards , J. A. Hadfield , T. W. Wallace, S. Ducki, Org. Biomol. Chem., 2011, 9, 219. f) P. R. Markies, G. Schat, S. Griffioen, A. Villena, O. S. Akkerman, F. Bickelhaupt, Organometallics, 1991, 10, 1531. (g) I. Wharf, M. G. Simard, J. Organomet. Chem., 1997, 532, 1.

⁸¹ J. F. Beck, J. A. R. Schmidt, *Dalton Trans.*, **2012**, *41*, 860.

⁸² J. Clayden, N. Greeves, S. Warren, P. Wothers, *Organic Chemistry*, Oxford, Oxford University Press, **2001**, pp.615.

⁸³ (a) I. Bonnaventure, A. B. Charette, J. Org. Chem., 2008, 73, 6330. (b) R. Mosca, M. Fagnoni, M. Mella, A. Albini, Tetrahedron, 2001, 57, 10319.

⁸⁴ M. Veith, A. Rammo, C. Kirsch, L. Khemtemourian, D. Agustin, J. Organomet. Chem., 2004, 689, 1546.

⁸⁵ (a) M. T. Ahmet, A. Houlton, C. S. Frampton, J. R. Miller, R. M. G. Roberts, J. Silver, B. Yavari, *J. Chem. Soc., Dalton* Trans., 1993, 3085. (b) S. S. Al-Juaid, M. Al-Rawi, C. Eaborn, P. B. Hitchcock, J. D. Smith, J. Organomet. Chem., 1998, 564, 215.

⁸⁶ C. W. Perkins, J. C. Martin, A. J. Arduengo, W. Lau, A. Alegria, J. K. Kochi, *J. Am. Chem. Soc.* **1980**, *102*, 7753.

⁸⁷ J. Emsley, *Die Elemente*, Walter de Gruyter, Berlin, **1994**.

⁸⁸ IUPAC Nomenclature of Organic Chemistry, Pergamon Press, Oxford, **1979**.

⁸⁹ (a) M. Veith, A. Rammo, C. Kirsch, L. Khemtemourian, D. Agustin, J. Organomet. Chem., 2004, 689, 1546. (b) G. Drehfahl, D. Lorentz, J. Pract. Chem., 1964, 24, 106. (c) K. R. Flower, V. J. Howard, S. Naguthney, R. G. Pritchard, J. E. Warren, A. T. McGown, Inorg. Chem., 2002, 41, 1907. (d) A. Panda, S. C. Menon, H. B. Singh, R. J. Butcher, J. Organomet. Chem., 2001, 623, 87. (e) G. Drehfahl, D. Lorentz, J. Pract. Chem., 1964, 24.

J.C. Martins, M. Biesemans, R. Willem, Prog. Nucl. Magn. Reson. Spectrosc., 2000, 36, 271.

⁹¹ B. Wrackmeyer, E. Kupce, J. Kummerlen, *Magn. Reson. Chem.*, **1992**, *30*, 403.

⁹² a) A. Deak, M. Venter, A. Kalman, L. Parkanyi, L. Radics, I. Haiduc, *Eur. J. Inorg. Chem.* **2000**,127. b) L. Parkanyi, A. Kalman, A. Deak, M. Venter, I. Haiduc, Inorg. Chem. Commun. 1999, 2, 265. c) E. Lopez-Torres, A. R. Cowley, J. R. Dilworth, Inorg. Chem. Commun. 2007, 10, 724. d) M. Nardelli, C. Pelizzi, G. Pelizzi, P. Tarasconi, J. Chem. Soc. Dalton Trans. 1985, 321. e) C. Pelizzi, G. Pelizzi, P. Tarasconi, J. Organomet. Chem. 1984, 277, 29.

⁹³ E. Pretsch, P. Buhlmann, C. Affolter, *Structure Determination of Organic Compounds. Tables of Spectral Data*, 3rd Ed., New York, Springer, 2000, pp. 273.

⁹⁴ (a) D. R. Burfield, K. –H. Lee, R. H. Smithers, J. Org. Chem., **1977**, 42, 3060. (b) D. R. Burfield, R. H. Smithers, J. Org. Chem., 1978, 43, 3966. (c) D. R. Burfield, R. H. Smithers, J. Org. Chem., 1983, 48, 2420.

⁹⁵ (a) I. Bonnaventure, A. B. Charette, J. Org. Chem., 2008, 73, 6330. (b) R. Mosca, M. Fagnoni, M. Mella, A. Albini, Tetrahedron, 2001, 57, 10319.

⁹⁶ MestReC and MestReNova, Mestrelab Research S.L., A Coruña 15706, Santiago de Compostela.

⁹⁷ G. M. Sheldrick, Acta Crystallogr., Sect A, **2008**, 64, 112.

⁹⁸ DIAMOND – Visual Crystal Structure Information System, CRYSTAL IMPACT: Postfach 1251, D-53002 Bonn, Germany.

⁹⁹ P. v. d. Sluis, A. L. Spek, *Acta Crystallogr., Sect A*, **1990**, *A46*, 194.

¹⁰⁰ R. L. Mishra, S.K.Mishra, S. G. Prakash, *J. Ovonic Res.*, **2009**, *5*, 77.

¹⁰¹ G. W. Hunter, C. C. Liu, D. B. Makel, *The MEMS Hand Book*, CRC Press, LLC, **2002**, pp. 1-22.

¹⁰² A. Goetzberger, C. Helbling, Sol. Energy Mater and solar cells, **2000**, 62, 1.

¹⁰³ K. S. Parka, Y. J. Parkb, M. K. Kima, J. T. Sona, H. G. Kima, S.J. Kim, *J. Power Sources*, **2001**, *103*, 67.

¹⁰⁴ M. Zervos, A. Othonos, *Nanoscale Res Lett*, **2009**, *4*, 1103.

¹⁰⁵ (a) N. Takahashi, M. Takekawa, T. Takahashi, T. Nakamura, M. Yoshioka, Y. Kawata, *Solid State Sci.*, **2003**, *5*, 587. (b) T. Maruyama, T. Morishita, *Appl. Phys. Lett.*, **1996**, *69*, 890. ¹⁰⁶ K. L. Choy, *Prog. Mater. Sci.*, **2003**, *48*, 57.

¹⁰⁷ H. O. Pierson, Handbook of chemical vapour deposition (CVD). Principles, Technology, and Applications, 2nd Ed., New York, Noves Publications / William Andrew Publishing, LLC, **1999**, pp. 73-74.

¹⁰⁸ (a) M. T. Pope, A. Muller, Angew. Chem. Int. Ed., **1991**, 30, 34. (b) M. T. Pope, Comprehensive Coordination Chemistry II, Elsevier, Oxford, 2004, pp. 635. (c) C. L. Hill, Comprehensive Coordination Chemistry II, Elsevier, Oxford, 2004, pp. 679.

¹⁰⁹ H. W. Roesky, I. Haiduc, N. S. Hosmane, *Chem. Rev.*, **2003**, *103*, 2579.

¹¹⁰ (a) B. Cetinkaya, I. Gumkurkcu, M. F. Lappert, J. L. Atwood, R. D. Rogers, M. J. Zaworotko, J. Am. Chem. Soc., 1980, 102, 2088. (b) D. M. Barnhart, D. L. Clark, J. Watkin, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1994, *50,* 702.

¹¹¹ (a) C. D. Chandler, C. Roger, M. J. Hampden-Smith, *Chem. Rev.*, **1993**, *93*, 1205. (b) K. G. Caulton, L. G. Hubert-Pfalzgraf, Chem. Rev., 1990, 90, 969. (c) L. G. Hubert-Pfalzgraf, New J. Chem., 1987, 11, 663.

¹¹² (a) E. A. Gulliver, J. W. Garvey, T. A. Wark, M. J. Hampden-Smith, A. Datye, *J. Am. Ceram. Soc.*, **1991**, *74*, 1091. (b) M. J. Hampen-Smith, T. A. Wark, C. J. Brinker, Coord. Chem. Rev., 1992, 112, 81.

R. A. Howie, W. Moser, *Nature*, **1968**, *219*, 372.

¹¹⁴ R. R. Holmes, Acc. Chem. Res., **1989**, 22, 190.

¹¹⁵ P. Kircher, G. Huttner, L. Zsolnai, A. Driess, *Angew. Chem. Int. Ed.*, **1998**, 37, 1666.

¹¹⁶ P. H. Harrison, B. J. Haylett, T. J. King, J. Chem. Soc., Chem. Commun., **1978**, 112.

¹¹⁷ N. Hollingsworth, G. A. Horley, M. Mazhar, M. M. Mahon, K. C. Molloy, P. W. Haycock, C. P. Myers, G. W. Critchlow, Appl. Organomet. Chem., 2006, 20, 687.

¹¹⁸ I. Wakeshima, I. Kijima, *Chem. Lett.*, **1972**, 325.

¹¹⁹ T. B. Brill, N. C. Campbell, *Inorg. Chem.*, **1973**, *12*, 1884.

¹²⁰ (a) M. J. Hampden-Smith, T. A. Wark, A. L. Rheingold, J. C. Huffman, *Can. J. Chem.*, **1991**, *69*,121. (b) H. Reuter, M. Kremser, Z. Anorg. Allg. Chem., 1991, 598/599, 259. (c) C. D. Chandler, J. Caruso, M. J. Hampden-Smith, A. L. Rheingold, Polyhedron, 1995, 14, 2491.

¹²¹ L. R. Sita, J. R. Babcock, R. Xi, J. Am. Chem. Soc., **1996**, 118, 10912.

¹²² L. R. Sita, R. Xi, G. P. A. Yap, L. M. Liable-Sands, A. L. Rheingold, J. Am. Chem. Soc., **1997**, 119, 756.

¹²³ A. I. Yanovskii, N. Y. Turova, E. P. Turevskaya, Y. T. Struchkov, *Koord. Khim.*, **1982**, *8*, 153.

¹²⁴ T. J. Boyle, T. M. Alam, M. A. Rodriguez, C. A. Zechmann, *Inorg. Chem.*, **2002**, *41*, 2574.

¹²⁵ (a) M. S. Holt, W. L. Wilson, J. H. Nelson, *Chem. Rev.*, **1989**, *89*, 11. (b) M. F. Lappert, R. S. Rowe, *Coord. Chem.* Rev., 1990, 100, 267. (c) M. Veith, S. Weidner, K. Kunze, D. Kafer, J. Han, V. Huch, Coord. Chem. Rev., 1994, 137, 297.

¹²⁶ (a) R. F. Bryan, J. Am. Chem. Soc., **1968**, 696. (b) M. Weidenbruch, A. Stilter, K. Peters, H. G. van Schnering, Z. Anorg. Allg. Chem., 1996, 622, 534.

¹²⁷ (a) C. A. Jaska, A. Bartole-Scott, I. Manners, *Dalton Trans.*, **2003**, 4015. (b) A. R. McWilliams, H. Dorn, I. Manners, Top. Curr. Chem., 2002, 220, 141.

¹²⁸ M. Afzaal, M. A. Malik, P. O'Brien, *Chem. Commun.*, **2004**, 334.

¹²⁹ (a) M. Afzaal, D. Crouch, M. A. Malik, M. Motevalli, P. O'Brien, J. H. Park, J. D. Woollins, Eur. J. Inorg. Chem., 2004, 171. (b) M. Afzaal, K. Ellwood, N. L. Pickett, P. O'Brien, J. Raftery, J. Waters, J. Mater. Chem., 2004, 14, 1310.

¹³⁰ (a) T. Chivers, T. J. Clark, M. Krahn, M. Parvez, G. Schatte, *Eur. J. Inorg. Chem.*, **2003**, 1857. (b) T. Chivers, D. J. Eisler, Angew, Chem. Int. Ed., 2004, 43, 6686.

¹³¹ (a) M. Veith, M. L. Sommer, D. Jager, *Chem. Ber.*, **1979**, *112*, 2581. (b) M. Veith, O. Recktenwald, *Z. Naturforsch.*, 1983, 38b, 1054.

¹³² M. Veith, G. Schlemmer, *Chem. Ber.*, **1982**, *115*, 2141.

¹³³ M. Veith, M. Opsolder, M. Zimmer, V. Huch, *Eur. J. Inorg. Chem.*, **2000**, 1143.

¹³⁴ (a) A. Bashall, N. Feeder, E. A. Harron, M. McPartlin, M. E. G. Mosquera, D. Saez, D. S. Wright, J. Chem. Soc., Dalton Trans., 2000, 4104. (b) A. Bashall, A. Ciulli, E. A. Harron, G. T. Lawson, M. McPartlin, M. E. G. Mosquera, D. S. Wright, , J. Chem. Soc., Dalton Trans., 2002, 1046.

¹³⁵ H. Chen, R. A. Bartlett, H. V. Rasika Dias, M. M. Olmstead, P. P. Power, *Inorg. Chem.*, **1991**, *30*, 3390.

¹³⁶ (a) R. E. Allan, M. A. Beswick, A. J. Edwards, M. A. Paver, M. A. Rennie, P. R. Raithby, D. S. Wright, J. Chem. Soc., Dalton Trans., 1995, 1991. (b) R. E. Allan, M. A. Beswick, N. L. Cromhout, M. A. Paver, P. R. Raithby, A. Steiner, M. Trevithick, D. S. Wright, Chem. Commun., 1996, 1501.

¹³⁷ R. E. Allan, M. A. Beswick, G. R. Coggan, P. R. Raithby, A. E. H. Wheatley, D. S. Wright, Inorg. Chem., 1997, 36, 5202.

¹³⁸ M. Veith, W. Frank, Angew. Chem. Int. Ed. Engl., **1985**, 24, 223.

¹³⁹ M. Veith, M. Grosser, O. Recktenwald, *J. Organomet. Chem.*, **1981**, *216*, 27.

¹⁴⁰ T. Chivers, T. J. Clark, M. Parvez, Gabriele Schatte, *Dalton Trans.*, **2003**, 2107.

¹⁴¹ (a) T. A. George, K. Jones, M. F. Lappert, J. Chem. Soc., **1965**, 2157. (b) J. K. Brask, T. Chiver, M. Parvez, Angew. *Chem. Int. Ed. Engl.*, **2000**, *39*, 958. ¹⁴² D. Dakternieks, T.S. B. Baul, S. Dutta, E.R. T. Tiekink, *Organometallics*, **1998**, *17*, 3058.

¹⁴³ M. Veith, H. Lange, Angew. Chem. Int. Ed. Engl., **1980**, 19, 401.

¹⁴⁴ B. Galan, M. E. G. Mosquera, J. S. Palmer, P. R. Raithby, D. S. Wright, *J. Chem. Soc., Dalton Trans.*, **1999**, 1043.

¹⁴⁵ (a) A.-M. Sapse, P. v. R. Schleyer, **1995**, *Lithium Chemistry; A Theoretical and Experimental Overview*, Wiley, New

York, pp. 227, 295. (b) M. M. Olmstead, P. P. Power, Inorg. Chem., 1991, 30, 2547. (c) M. M. Olmstead, J. T. Ellison, P. P. Power, S. C. Shoner, Inorg. Chem., 1991, 30, 2888. (d) F. A. Cotton, R. L. Luck, K.-A. Son, Inorg. Chim. Acta, **1991**, *179*, 11.

¹⁴⁶ T. Chivers, G. Shatte, *Chem. Commun.*, **2001**, 2264.

¹⁴⁷ Y. Zhou, D. S. Richeson, J. Am. Chem. Soc. **1996**, 118, 10850.

¹⁴⁸ (a) W-P. Leung, W-H. Kwok, L. T. C. Law, Z-Y. Zhou, T. C. W. Mak, *Chem. Commun.* **1996**, 505. (b) M.

C. Kuchta, G. Parkin, J. Am. Chem. Soc. 1994, 116, 8372.

¹⁴⁹ T. Chivers, D. J. Eisler, J. S. Ritch, *Z. Anorg. Allg. Chem.*, **2004**, 630, 1941.

¹⁵⁰ M. Veith, J. Fischer, T. R. Prout, M. Notzel, P. Hobein, V. Huch, *Inorg. Chem.*, **1991**, *30*, 4130.

¹⁵¹ (a) M. Veith, Angew. Chem., **1975**, 87, 287. (b) M. Veith, Angew. Chem., Int. Ed. Engl., **1975**, 14, 263.

¹⁵² K. Jones, Comprehensive Inorganic Chemistry, The Chemistry of Nitrogen, Pergamon Reso, Oxford, **1975**, pp 245.

¹⁵³ (a) B. Dietrich, J. Guilhem, J. M. Lehn, C. Pascard, E. Sonveaux, *Helv. Chim. Acta*, 1984, *67*, 91. (b) B. Metz, J. M. Rosalky, R. Weiss, *J. Chem. Soc., Chem. Commun.*, **1976**, 533. (c) R. A. Bell, G. G. Christoph, F. R. Fronzek, R. E. Marsh, *Science*, **1975**, *190*, 151.

¹⁵⁴ N. G. Parsonage, L. A. Staveley, *Disorder in Crystals,* Clarendon, Oxford, **1978**.

¹⁵⁵ (a) N. Tokitoh, R. Okazaki, *The Chemistry of Organic Germanium, Tin and Lead Compounds,* Vol. 2, Part 1, Wiley, Chichester, 2002, pp. 843. (b) N. Tokitoh, R. Okazaki, *Adv. Organomet. Chem.* 2001, *47*, 121. (c) R. Okazaki, N. Tokitoh, *Acc. Chem. Res.* **2000**, *33*, 625. (d) P. P. Power, *Chem. Rev.*, **1999**, *99*, 3463. (e) M. Saito, N. Tokitoh, R. Okazaki, *J. Am. Chem. Soc.* **1997**, *119*, 11124.

¹⁵⁶ (a) W.-P. Leung, W.-H. Kwok, L. T. C. Law, Z.-Y. Zhou, T. C. W. Mak, *Chem. Commun.*, **1996**, 505. (b) M. Saito, N. Tokitoh, R. Okazaki, *J. Am. Chem. Soc.*, **1997**, *119*, 11124.

¹⁵⁷ M. C. Janzen, H. A. Jenkins, L. M. Rendina, J. J. Vittal, R. J. Puddephatt, *Inorg. Chem.*, **1999**, *38*, 2123.

¹⁵⁸ (a) F. Benevelli, E. L. Doyle, E. A. Harron, N. Feeder, E. A. Quadrelli, D. Saez, D. S. Wright, *Angew. Chem. Int. Ed.*, **2000**, *39*, 1501. (b) D. R. Armstrong, F. Benevelli, A. D. Bond, N. Feeder, E. A. Harron, A. D. Hopkins, M. McPartlin, D. Moncrieff, D. Saez, E. A. Quadrelli, A. D. Woods, D. S. Wright, *Inorg. Chem.*, **2002**, *41*, 1492.

¹⁵⁹ F. Benevelli, E. M. Doyle, E. A. Harron, N. Feeder, E. A. Quadrelli, D. Saez, D.S. Wright, *Angew. Chem.*, **2000**, *112*, 1559.

¹⁶⁰ K. Okamura, B. Nasr, R. A. Branda, H. Hahn, *J. Mater. Chem.*, **2012**, *22*, 4607.

¹⁶¹ (a) S. V. Nand, K. Ankur, K. Brijesh, M. B. Raj, Mehta Bodh, *Solid State Sci.*, **2008**, *10*, 569. (b) E. Kroke, M. Schwarz, *Coord. Chem. Rev.*, **2004**, *248*, 493. (c) N. Scotti,W. Kockelmann, J. Senker, S. Trassel, H. Jacobs, *Z. Anorg. Allg. Chem.*, **1999**, *625*, 1435. (d) L. Maya, *Inorg. Chem.*, **1992**, *31*, 1958.

¹⁶² (a) D. R. Burfield, K. –H. Lee, R. H. Smithers, J. Org. Chem., **1977**, 42, 3060. (b) D. R. Burfield, R. H. Smithers, J. Org. Chem., **1978**, 43, 3966. (c) D. R. Burfield, R. H. Smithers, J. Org. Chem., **1983**, 48, 2420.
 ¹⁶³ S. D. Cosham, Synthesis and characterisation of single-source CVD precursors for M-N-Si composites, PhD.

¹⁰³ S. D. Cosham, *Synthesis and characterisation of single-source CVD precursors for M-N-Si composites*, PhD. Thesis, (**2010**), University of Bath, United Kingdom.