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Introduction

Fibonacci numbers can be defined by the recurrence relation Fn+2 − Fn+1 − Fn = 0

starting from the initial values F0 = 1 and F1 = 1. Various types of closed forms

expressions exist for the general sequence term (Binet formulae), which involve the

two roots of the characteristic equation x2 − x − 1. The larger root is referred to as the

golden ratio 1+
√

5
2 ≈ 1.61803 39887 · · · , associated in arts with ideal proportions [115].

If the circle is divided into two arcs whose ratio is the golden number, then the shorter

arc subtends an angle of about φ = 137.5◦, called the golden angle. This was used to

simulate nature phyllotaxis [119], [95], in search algorithms to find minima of unimodal

functions [51], or in optimal designs for concentrated power plants [96].

Following the work initiated by Horadam in the 1960’s, general second order complex

recurrences are called Horadam sequences. These can be expressed as

wn+2 = pwn+1 + qwn, w0 = a, w1 = b, n ≥ 0,

where in the most general context a, b, p, q are arbitrary complex coefficients.

Horadam first investigated basic properties of this recursion (both real and complex)

[52, 53, 55], [54] and links to Tschebyscheff and other functions [56]. One may note that

both types of Tschebyscheff polynomial—Tn(x) (of the first kind) and Un(x) (of the

second kind)—are solutions of the above recurrence when p = 2x and q = −1, with

(for n ≥ 0) Tn(x) = wn(1, x; 2x,−1) and Un(x) = wn(1, 2x; 2x,−1) [77]. Numerous

results involving Horadam sequences followed.

During 1960-70’s, Zeitlin investigated generating functions for products of recursive se-

quences, power identities, determinants and general identities for Horadam sequences

[125–128]. During 1980-90’s Horadam and Shannon established links with Catalan

identities [61], elliptic functions and Lambert series [57], sequences of general order [58]

and polynomial sequences [59, 60]. More identities were obtained by Lee [84], while

Zhang explored integer Horadam sequences [129–131]. Extensions involving special

recurrences [111], ideals [108] and partitions [109], have also been explored, together

with basic results regarding third order recurrences in a general context [110], [124].
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INTRODUCTION

In 2000’s, Kiliç et al. explored further identities for Horadam sequences [67], involving

binomial sums [68], generating functions [69] and matrix methods [70]. Other results

were presented in [47], [86] and recently, by Larcombe, Bagdasar and Fennesey [78, 79].

Links between Fibonacci and Horadam sequences were investigated by deKerf [36],

Hilton [50] and Morgado [93], together with reciprocal sums of terms [2, 3], [44], [63],

[76], [114], [116], polynomials [48], [62], [105], and algorithmic properties [104].

Upon completion of the survey paper [77], the authors sent a letter to Professor Ho-

radam, to inform him about the recent developments in the field he initiated. In his

response, Professor Horadam mentioned (for details presented see the Appendix)

“I am very flattered by the tone of the paper . . . [which is] comprehensive and

thorough with an insightful perspective on the history of the sequence.”

Linear recurrent sequences can be periodic [30, 106, 118]. First examples of periodic

Horadam sequences were provided by Horadam in [53, (2.35), (2.36), p.166]. Clapper-

ton, Larcombe and Fennessey provided further examples [31], [80], while necessary

and sufficient conditions for periodicity were established by Bagdasar and Larcombe

first for Horadam sequences [18], then for the general case [20].

This thesis represents the first comprehensive study aimed at unravelling the geometry

and structure of Horadam sequences. We begin within the context of self-repeating or-

bits, followed by an atlas of non-periodic Horadam orbits. Then results are generalized

to complex linear recurrent sequences of arbitrary order. The study so-far inspired the

design of a pseudo-random number generator, while other applications are expected

in areas like cryptography, search algorithms and geometric optimization.

Horadam sequences are expected to be useful for solving optimization problems in the

complex plane. To this end, the unidimensional Fibonacci search method of Kiefer [66]

can be generalized via novel unimodal-type functions, linked to those existing for the

scalar [51], or vector (multi-objective) case [85].

This thesis is divided into five chapters.

Chapter 1 presents important notions and results. Section 1.1 presents key concepts

regarding linear recurrent sequences, together with particular examples involving sec-

ond order recurrences. Section 1.2 is dedicated to homographic recurrences in the com-

plex plane [12], which motivate the study of periodicity conditions in the context of

other complex recurrences. Section 1.3 presents key basic definitions regarding the ge-

ometry of the complex plane [33, 34], arithmetic functions [13, 14, 92], as well as certain

density and linear independence results in number theory [10, 11, 43, 46].
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INTRODUCTION

Chapter 2 is dedicated to periodic orbits of complex Horadam sequences, depending

on two arbitrary initial conditions and two complex recurrence coefficients. Section

2.1 presents basic concepts and binet-type formulae for the general sequence term for

the cases when the roots of the quadratic characteristic equation (termed as generators

for convenience) are equal (degenerate) or distinct (non-degenerate). In Section 2.2 are

formulated necessary and sufficient conditions ensuring the periodicity of Horadam

sequences in a general context. In Section 2.3 we discuss the geometry of self-repeating

Horadam orbits. In Section 2.4 we establish enumerative and asymptotic properties

for the number of self-repeating Horadam sequences of a given integer length k ≤ 1,

denoted by HP(k) The results in this chapter have been published by Bagdasar and

Larcombe [18, 19], and by Bagdasar, Larcombe and Anjum [21, 22].

Chapter 3 is dedicated to non-periodic Horadam sequences and their applications.

First, degenerate orbits are discussed in Section 3.1. In Section 3.2 showcases an atlas

of Horadam patterns, obtained by Bagdasar [16]. This presents stable orbits (which are

finite, or dense within 1D or 2D subsets of the complex plane). then quasi-convergent,

convergent and divergent patterns in the complex plane. Section 3.3 analyzes a Horadam-

based pseudo-random number generator designed by Bagdasar and Chen in [17].

In Chapter 4 we extend the results presented in Chapters 2 and 3, for higher-order

complex linear recurrent sequences (also called generalized Horadam sequences). In

Section 4.1, we discuss the structure of the solution space for linear recurrent sequences.

In Section 4.2, we present necessary and sufficient periodicity conditions for complex

linear recurrent sequences of arbitrary order given by Bagdasar and Larcombe [20].

In Section 4.3 we establish geometric boundaries for regions containing generalized

periodic Horadam orbits. We also determine the geometric structure and number of

the periodic orbits of given length. Section 4.4 presents geometric properties of orbits

produced by roots of unity. A mini-atlas of generalized complex Horadam patterns is

presented, for third-order sequences in Section 4.5.

Chapter 5 presents certain integer sequences, relevant for the enumeration of periodic

complex linear recurrent sequences. In Section 5.1 we find the number of ordered in-

teger k-tuples having same lcm n. The results in this section have been published by

Bagdasar in [15]. The arithmetic functions enumerating the (strictly) increasing tuples

having the same lcm, are analyzed in Section 5.2. These are required for the enumer-

ation of generalized periodic Horadam sequences, characterized in [17]. In Section 5.3

we discuss some newly added sequences to the OEIS database of integer sequences

(A245019, A245020, A247513, A247516, A247517) by Bagdasar in 2014 [15], as well as

various other contributions to already existing sequences.
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CHAPTER 1

Theoretical background

In this chapter we present various key results and relevant examples regarding recur-

rent sequences, as well as concepts of complex plane geometry and number theory,

useful for the formulation of results in this thesis.

1.1 Linear recurrent sequences (LRS)

In this section we present basic results in the theory of linear recurrent sequences.

Definition 1.1.1. A linear recurrence sequence (LRS) represents an infinite sequence w =

(w0, w1, w2, . . . ) of numbers satisfying the recurrence relation

wn = c1wn−1 + c2wn−2 + · · ·+ cmwn−m, (1.1.1)

for m ≤ n ∈ N, with c1, . . . , cm (cm 6= 0) fixed numbers. If numbers a1, . . . , am satisfy

wi−1 = ai, i = 1, . . . , m, the recurrence is said to have order m, and is uniquely defined.

The characteristic polynomial associated with the LRS satisfying (1.1.1) is defined by

f (x) = xm − c1xm−1 − · · · − cm−1x − cm, (1.1.2)

and dictates the recurrence properties. The general term of the recursion is given by

wn = p1(n)z
n
1 + · · ·+ pm(n)z

m
1 ,

where z1, . . . , zm are roots of the characteristic polynomial (1.1.2). If these roots are

distinct, the LRS is called simple and p1, . . . , pm are constants.

Numerous properties and results are presented in the monograph of Everest et al. [38].

Decision problems involving LRS with rational terms are discussed by Ouaknine in

[99] and other of his papers.

1



CHAPTER 1: THEORETICAL BACKGROUND

Problem 1. Does wn = 0 for some n ? (Skolem)

Problem 2. Is wn = 0 for infinitely many n ?

Problem 3. Does wn ≥ 0 for all n ? (Positivity)

Problem 4. Does wn ≥ 0 for all but finitely many n ? (Ultimate Positivity)

Despite persistent efforts, Problem 1 is still open, while Berstel and Mignotte showed

that Problem 2 is decidable [24]. Recently, Ouaknine reported progress on Problem 3

for simple LRS of order m ≤ 9 [100], or arbitrary LRS of order m ≤ 5 [101], respectively.

Problem 4 has also received a positive answer for simple LRS [99].

Reduction of order for LRS

The order of a linear recurrence can be reduced while producing a non-linear recurrent

sequence. For second-order recurrences, Andrica and Buzeţeanu showed that [8]:

Theorem 1.1.2. If wn = c1wn−1 + c2wn−2 with c2 6= 0, w1 = a1 and w2 = a2, then

w2
n − c1wnwn−1 − c2w2

n−1 = (−1)ncn−2
2

(

a2
2 − c1a1a2 − c2a2

1

)

.

For c1 = c2 = 1 and a1 = a2 = 1 one obtains the identity for Fibonacci numbers

F2
n − FnFn−1 − F2

n−1 = (−1)n−1.

Applications to the theory of diophantine equations were also provided in that paper.

The result for recurrences of arbitrary order was proved by the same authors in [9].

Second-order recurrent sequences

Fibonacci numbers and golden section

Definition 1.1.3. The classical example of recurrence is represented by Fibonacci numbers,

obeying the rule that each subsequent element is the sum of the previous two [1, Chapter 5]

Fn+2 − Fn+1 − Fn = 0, F0 = 1, F1 = 1.

The roots of the quadratic characteristic equation x2 − x − 1 = 0 can be used to produce

formulae for the general term (Binet formulae). An example is Fn = (ϕn − φn)/
√

5,

where ϕ = 1+
√

5
2 ≈ 1.61803 39887 · · · is the golden ratio (sequence A001622 in OEIS).

In Mathematics they have applications in graph theory (Fibonacci numbers and graphs)

[71], data structures (Fibonacci heap) [41], or search algorithms (Fibonacci search) [66].

Other results and further applications are given in [27–29], [73], [87–91], or [96].

2



CHAPTER 1: THEORETICAL BACKGROUND

Horadam sequences

Horadam sequences are a direct extension of the Fibonacci numbers in the complex plane.

These are given by the recurrence

wn+2 = pwn+1 + qwn, w0 = a, w1 = b, n ≥ 0,

where in the most general context a, b, p, q are arbitrary complex coefficients.

The first systematic investigation into the Horadam literature produced over the past

50 years, was carried out in the survey paper of Larcombe, Bagdasar and Fennesey [77].

Horadam periodicity was first emphasized by Clapperton, Larcombe and Fennessey [31],

and then by Larcombe and Fennesey [80]. The authors provided examples of periodic

Horadam sequences and linked them to Catalan polynomials, such as

{wn(1, 1; 1,−1)}∞
n=0 = {1, 1, 0,−1,−1, 0, . . . } = {Pn(1)}∞

0

{wn(1,
√

2;
√

2,−1)}∞
n=0 = {1,

√
2, 1, 0,−1,−

√
2,−1, 0, . . . } = {

√
2

n
Pn(1/2)}∞

0 ,

where Pn(x) is the (n + 1)-th Catalan polynomial defined in [31].

1.2 Homographic recurrences: orbits and periodicity

In this section we present results concerning homographic recurrences. These include

general terms for degenerate/non-degenerate sequences, as well as the convergence,

divergence and periodicity conditions investigated by Andrica and Toader [12].

Definition 1.2.1. A homographic sequence {zn}∞
n=0 is defined by the recurrence

zn+1 =
a · zn + b
c · zn + d

z0 ∈ C, (1.2.1)

where a, b, c, d are complex numbers and c 6= 0 6= ad − bc.

The roots of the quadratics below can be used to express the general term of (1.2.1).

cq2 + (d − a)q − b = 0, p2 − (a + d)p + ad − bc = 0. (1.2.2)

The two quadratics share the common discriminant D = (d− a)2 + 4bc, while the roots

of (1.2.2) denoted by q1, q2 and p1, p2 satisfy the identities

q1,2 =
a − d ±

√
D

2c
; pk = cqk + d, k = 1, 2. (1.2.3)

3



CHAPTER 1: THEORETICAL BACKGROUND

Theorem 1.2.2 (Non-degenerate case, Theorem 2.1 [12] ). If D 6= 0 then zn is given by

zn =
q1 · (z0 − q2) · (cq1 + d)n − q2 · (z0 − q1) · (cq2 + d)n

(z0 − q2) · (cq1 + d)n − (z0 − q1) · (cq2 + d)n . (1.2.4)

Equivalently, one can obtain formulae involving p1, p2c, d, and z0.

Theorem 1.2.3 (Degenerate case, Theorem 2.3 [12] ). If D = 0 then zn is given by

zn =
(a + d) · z0 + n [(a − d) · z0 + 2b]

a + d + n(2cz0 − a + d)
. (1.2.5)

We can define the following notation z = a+d+
√

D
a+d−

√
D
= p2

p1
= re2πiθ , A = z0−q2

z0−q1
.

The initial assumption ad − bc 6= 0 implies a + d −
√

D 6= 0. For z ∈ {0, 1} it follows

that D = 0, while for D 6= 0, formula (1.2.4) is equivalent to zn = Aq1−q2zn

A−zn .

In what follows we reformulate [12, Theorem 3.1], in the single variable z.

Theorem 1.2.4. Let {zn}∞
n=0 be a homographic recurrence defined by (1.2.1). One has:

(a) If z = 1, then {zn}∞
n=0 converges to (a − d)/2c = (q2 + q1)/2;

(b) If |z| < 1, then {zn}∞
n=0 converges to q1.

(c) If |z| > 1, then {zn}∞
n=0 converges to q2.

(d) If |z| = 1, then the following two distinct cases are possible.

(d1) For θ = p/q ∈ Q irreducible fraction, {zn}∞
n=0 is periodic within a curve.

(d2) For θ = p/q ∈ R \ Q, {zn}∞
n=0 is dense within the graph of w = H(z) = q2z−q1

z−1 .

In Fig. 1.1 are plotted a periodic with 13 points (a), and a dense orbit (b).

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

Re z
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 z

(a)

−0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

Re z

Im
 z

(b)

Figure 1.1: First 100 terms of {zn}∞
n=0 computed by (1.2.1) (diamonds) and direct formula (cir-

cles) for z0 = 1 + 2i (star) and z = re2πi x, where (a) r = 1, x = 4/13; (b) r = 1, x =
√

2/4. for

a = 3 + i, d = 1 − 2i, b = 2 − 2i. Arrows indicate the increase of sequence index.
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CHAPTER 1: THEORETICAL BACKGROUND

1.3 Key elements of complex geometry and number theory

Definition 1.3.1. (Star polygons) For integers k and p the regular star polygon denoted by the

Schläfli symbol {k/p} can be considered as being constructed by connecting every pth point

out of k points regularly spaced in a circular placement (see [33, Chapter 2], [34, Chapter 6]).

Definition 1.3.2. (Multipartite graph) For k a natural number, a k-partite graph W is a graph

whose vertex set V is partitioned into k parts, with edges between vertices of different parts only:

G = (V1, . . . , Vk, E) with E ⊂ {uv | u ∈ Vi, v ∈ Vj, i 6= j}. The vertices of Vi, i = 1, . . . , k

are called the ith level of G [83, p.4]. A 2-partite graph is called bipartite.

LCM and GCD of integer tuples

Assume that a = pa1
1 pa2

2 · · · pak
k , b = pb1

1 pb2
2 · · · pbk

k where p1 < p2 < ... < pk are primes

and ai, bi are non-negative integers. The following identities hold:

gcd(a, b) = pmin(a1,b1)
1 pmin(a2,b2)

2 · · · pmin(ak,bk)
k ,

lcm(a, b) = pmax(a1,b1)
1 pmax(a2,b2)

2 · · · pmax(ak,bk)
k ,

a · b = lcm(a, b) · gcd(a, b) = pa1+b1
1 pa2+b2

2 · · · pak+bk
k . (1.3.1)

If n = pn1
1 pn2

2 . . . pnr
r , |{(a, b) : lcm (a, b) = n}| = (2n1 + 1)(2n2 + 1) · · · (2nr + 1) [7].

The number of k-tuples of positive integers with the least common multiple n is

LCM(n; k) = |{(a1, . . . , ak) : lcm (a1, . . . , ak) = n}|.

A link between lcm and gcd of k-tuples was proved by Vălcan and Bagdasar [117].

Theorem 1.3.3. Let k ≥ 2 and a1, . . . , ak be natural numbers. The following properties holds

lcm (a1, a2, . . . , ak) =

∏
1≤i1<···<iu≤k

gcd (ai1 , . . . , aiu)

∏
1≤i1<···<iv≤k

gcd (ai1 , . . . , aiv)
, (1.3.2)

gcd (a1, a2, . . . , ak) =

∏
1≤i1<···<iu≤k

lcm (ai1 , . . . , aiu)

∏
1≤i1<···<iv≤k

lcm (ai1 , . . . , aiv)
, (1.3.3)

where u is odd and v is even.

Proof (sketch): If a prime p has multiplicities m1, . . . , mk in a1, . . . , ak, (1.3.2) reduces to

max(m1, . . . , mk) = ∑
1≤i1<...<iu≤n

min(mi1 , . . . , miu)− ∑
1≤i1<...<iv≤n

min(mi1 , . . . , miv),

where u is odd and v is even. To this end one just need to count the terms in the two

sides. This argument can also be checked using an inclusion-exclusion principle. �
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CHAPTER 1: THEORETICAL BACKGROUND

Definition 1.3.4. For an integer n ∈ N, ϕ(n) represents the number of integers 1 ≤ k ≤ n

relatively prime with n [14, 46, 92]. If the factorisation of n is n = pa1
1 pa2

2 · · · pak
k , then

ϕ(n) = n

(

1 − 1
p1

)(

1 − 1
p2

)

· · ·
(

1 − 1
pk

)

.

The following identity valid is useful in Section 2.3.

Proposition 1.3.5. For any positive integers a, b ∈ N one has

ϕ(gcd(a, b)) · ϕ(lcm(a, b)) = ϕ(a) · ϕ(b). (1.3.4)

Partitions and Stirling numbers

Let n and k be non-negative integers. The following results hold.

Proposition 1.3.6. The number of k-tuples of positive integers with sum n is

S∗
+(n, k) =

(

n − 1
k − 1

)

.

Proposition 1.3.7. The number of k-tuples of non-negative integers with sum n is

S+(n, k) =

(

n + k − 1
k − 1

)

.

For more examples and detailed proofs one may consult [1], [4], [7], [39], or [42].

Definition 1.3.8. The Stirling numbers of the second kind S(n, k) (see [26], [72]), count the

number of ways to partition a set of n labelled objects into k nonempty unlabelled subsets.

Stirling numbers of second kind have the following properties [112]:

S(n + 1, k) = kS(n, k) + S(n, k − 1);

S(n, k) =
1
k!

k

∑
j=0

(−1)k−j
(

k
j

)

jn.

Linear (in)dependence and density results

Here we present a number of useful linear independence and density results.

Definition 1.3.9. The numbers x1, . . . , xk ∈ R, k ≥ 1 are called linearly dependent over Q (or

Z) if there are coefficients a1, . . . , ak ∈ Q, such that

a1x1 + a2x2 + · · ·+ akxk = 0, and (a1, . . . , ak) 6= (0, . . . , 0). (1.3.5)

If the identity (1.3.5) only takes place when (a1, . . . , ak) = (0, . . . , 0), the numbers x1, . . . , xk

are called linearly independent.
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CHAPTER 1: THEORETICAL BACKGROUND

Proposition 1.3.10. For a prime p, the triplet (1, 3
√

p, 3
√

p2) is linearly independent over Z.

For k = 1, the linear independence of 1 and x1 implies that x1 ∈ R \Q, and one recovers

the one-dimensional lemma of Kronecker [46, Theorem 339], [43].

Theorem 1.3.11. If x is irrational, then {nx} is dense in the interval [0, 1].

The following more general result is due to Weyl [121].

Theorem 1.3.12. If x is irrational, then the points {nx} are uniformly distributed in [0, 1].

Alternative formulations and generalizations of Kronecker’s and Weyl’s results were

proposed by Andrica and Buzeţeanu in [10]. These include the following three results:

Theorem 1.3.13. Let P(X) = apXp + · · ·+ a1X + a0 ∈ R[X] be a polynomial such that at

least one of the coefficients ap, . . . , a1 is irrational. Then limN→∞
1
N ∑

N
0 e2πi P(n) = 0.

Theorem 1.3.14. If x ∈ R \ Q, A = {n + mx : m ∈ N, n ∈ Z} is dense everywhere in R.

Theorem 1.3.15. Let s > 0, a ≥ 0 and ≥ 0 be integers and x irrational. Then the set

A = {n + mx : m ∈ N, n ∈ Z, n = a(mod s), m = b(mod s)} is dense everywhere in R.

In Chapter 3 we need the following multi-dimensional version of Kronecker’s lemma.

Theorem 1.3.16. ([46, Theorem 442]) If 1, x1, x2 . . . , xk are linearly independent (over N),

α1, α2, . . . , αk, and N and ε are positive, then there are integers n > N, p1, . . . , pk such that

|nxm − pm − αm| < ε (m = 1, . . . , k)

Theorem 1.3.17. ([46, Theorem 443]) If 1, x1, x2 . . . , xk are linearly independent (over N),

then the set of points {nx1}, {nx2}, . . . , {nxk}, is dense in the unit cube.

Proposition 1.3.18. Let x1, x2 ∈ R. If (1, x1, x2) are linearly independent over Q (or Z), then

sequence ({nx1}, {nx2}) is dense within [0, 1] × [0, 1]. Otherwise, (1, x1, x2) are linearly

dependent over Q (or Z), hence one can find a0, a1, a2 with the property a0 + a1x1 + a2x2 = 0.

The following cases are possible:

1. x1, x2 ∈ Q (a0 = −a1x1 − a2x2). In this case, the sequence ({nx1}, {nx2}) is periodic.

2. x1 = p/k ∈ Q (irreducible), x2 ∈ R \ Q (a1 = 0, a0 = −a2x2). For these values the

sequence ({nx1}, {nx2}) is dense within {0, 1
k , . . . k−1

k } × [0, 1].

3. x1, x2 ∈ R \ Q (x2 = − a1
a2

x1 − a0
a2

= b1x1 + b0). Here the sequence ({nx1}, {nx2})
is dense within the graph of the function f : [0, 1] → R2 defined by f (x) = (x, b1x + b0).

Notable instances of this case are b1 = 0 (i.e., x2/x1 ∈ Q) or b1 = 1 (i.e., x2 − x1 ∈ Q).
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CHAPTER 2

Periodic complex Horadam patterns

Complex Horadam sequences are a natural extension of Fibonacci numbers, involving

four parameters (two initial values and two recursion coefficients), therefore successive

sequence terms can be visualized in the complex plane. In this chapter we first provide

formulae for the general sequence term. Then we discuss periodicity conditions used

to classify and enumerate self-repeating Horadam patterns.

2.1 Horadam sequences

A sequence {wn}∞
n=0 = {wn(a, b; p, q)}∞

n=0 defined by the recurrence

wn+2 = pwn+1 + qwn, w0 = a, w1 = b, (2.1.1)

where the parameters a, b, p and q are complex numbers is called a Horadam sequence.

For simplicity, the Horadam sequence {wn(a, b; p, q)}∞
n=0 is written {wn}∞

n=0 hereafter.

The second-order linear recurrent sequence (2.1.1) was named to honour the work of

A.F. Horadam—who initiated the investigation of this general recursion in two seminal

1960’s papers [53, 55]. When starting from (a, b) = (0, 1), for (p, q) = (1, 1) one recovers

the Fibonacci, while for (p, q) = (1,−1) the Lucas sequences, respectively.

The characteristic equation associated with the recurrence (2.1.1) is

P(x) = x2 − px − q = 0, (2.1.2)

whose roots termed generators are denoted by z1 and z2. Vieta’s relations written for

the polynomial P give

−p = z1 + z2, q = z1z2, (2.1.3)

showing that the recurrence (2.1.1) defined for coefficients p, q may alternately be de-

fined through the solutions z1, z2 of the characteristic polynomial, through (2.1.3).

8



CHAPTER 2: PERIODIC HORADAM PATTERNS

General sequence term

We first present formulas for the general term wn of the complex Horadam sequence

(2.1.1), when the characteristic polynomial (2.1.2) has distinct, or equal roots.

Non-degenerate case: Distinct roots (z1 6= z2)

The general term of the sequence {wn}∞
n=0, for distinct roots z1, z2 of (2.1.2), is given by

(see, for example, [1, Chapter 7], [38, Chapter 1] or [65])

wn = Azn
1 + Bzn

2 =
1

z2 − z1
[(az2 − b)zn

1 + (b − az1)z
n
2 ] , (2.1.4)

with constants A and B obtained from w0 = a and w0 = b as

A =
az2 − b
z2 − z1

, B =
b − az1

z2 − z1
, (2.1.5)

Degenerate case: Equal roots (z1 = z2)

When the characteristic roots are equal (z1 = z2 = z, say) the general term of the

associated Horadam sequence is given by

wn = Azn + Bnzn =

[

a +

(

b
z
− a

)

n

]

zn (2.1.6)

Particular Horadam orbits

The results in this section have been published in [21] and concern Horadam orbits

produced by distinct generators. Some can be formulated for the equal generator case.

Orbits produced by conjugate generators (if a, b ∈ R)

Theorem 2.1.1. Let {wn}∞
n=0 be a Horadam sequence of general term (2.1.4), whose generators

satisfy z1 = z2. The sequence {Wn}∞
n=0 represents a subset of the real line whenever a, b ∈ R.

In this case we obtain the classical Horadam sequence for real numbers.

Concentric orbits produced by opposite entries

Theorem 2.1.2. Let k ∈ N be even, z1, z2 opposite primitive k-th roots satisfying z2 = −z1

and a, b ∈ C arbitrary. The orbit of the sequence {wn}∞
n=0 defined in (2.1.1) is formed from two

concentric regular k/2-gons, whose nodes represent a bipartite graph (see Fig. 2.1).

9
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Figure 2.1: First N = 100 orbit terms of sequence {wn}N
n=0 obtained from (2.1.4), computed for

pairs of opposite roots (a) k = 10, z1 = e2πi 1
10 , z1 = e2πi 6

10 ; (b) k = 14, z1 = e2πi 5
14 , z1 = e2πi 12

14 .

Arrows indicate the direction of the orbit from one term to the next. The dotted line is the unit

circle. The initial conditions w0 = a = 2 + 2/3i and w1 = b = 3 + i are represented by stars.

Conjugate orbits produced by conjugate parameters

Theorem 2.1.3. Let {wn}∞
n=0 be the sequence defined in (2.1.4) for generators z1 6= z2 and

initial conditions a and b. The sequence {Wn}∞
n=0 generated by the conjugate generators z1, z2

and initial conditions a, b satisfies

Wn = wn, n ∈ N. (2.1.7)

2.2 Periodicity of complex Horadam sequences

In one of his initial publications [53], Horadam himself made a passing remark about

two periodic p, q sequence instances {wn(a, b;±1, 1)}∞
n=0. In this section necessary and

sufficient conditions for the periodicity of the sequence {wn}∞
n=0 are established when

the characteristic solutions z1, z2 of (2.1.2) are distinct or identical. The results in this

section have been published in [18].

Lemma 2.2.1. The set M = {{nx} | n ∈ N} is dense in the interval [0, 1] for every x ∈ R\Q.

The lemma below describes the behaviour of sequence {zn}∞
n=0 for arbitrary z ∈ C.

Lemma 2.2.2. Let z = re2πix ∈ C be a complex number (r > 0). The orbit of {zn}∞
n=0 is

(i) a regular k-gon if r = 1, and x = j/k ∈ Q with gcd(j, k) = 1;

(ii) a dense subset of the unit circle for r = 1 and x ∈ R \ Q;

(iii) an inward spiral for r < 1;

(iv) an outward spiral for r > 1.
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Figure 2.2: Orbit of {zn}∞
n=0 obtained for r = 1 and (a) x = 1/5; (b) x = 1/8. Arrows indicate

orbit’s direction, dotted line the unit circle and generator z = r exp(2πix) is shown as a square.
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Figure 2.3: First 71 terms of {zn}∞
n=0 obtained for r = 0.98 and (a) x = 1/5; (b) x =

√
2/10.

Orbit’s direction shown by arrows, unit circle by a dotted line and z = r exp(2πix) by a square.
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Figure 2.4: First 101 terms of {zn}∞
n=0 obtained for r = 1.01 and (a) x = 1/10; (b) x =

√
2/10.

Orbit’s direction shown by arrows, unit circle by a dotted line and z = r exp(2πix) by a square.
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Periodicity conditions: Non-degenerate Case (z1 6= z2)

Let z1 6= z2 be distinct kth roots of unity (k ≥ 2), and let the polynomial P(x) be

P(x) = (x − z1)(x − z2), x ∈ C. (2.2.1)

Theorem 2.2.3. The recurrence sequence {wn}∞
n=0 generated by the characteristic polynomial

(2.2.1), and the arbitrary initial values w0 = a, w1 = b, is periodic.

Theorem 2.2.4. (Necessary condition for periodicity) Let z1 6= z2 be the distinct roots of the

characteristic polynomial (2.2.1). The recurrence sequence {wn}∞
n=0 generated by z1, z2, and

arbitrary initial values w0 = a, w1 = b, is periodic only if there exists k ∈ N s.t.

A(zk
1 − 1)z1 = 0, B(zk

2 − 1)z2 = 0, (2.2.2)

where A and B are given by (2.1.5). Explicitly, these conditions allow for the following subcases:

(i) z1 and z2 are kth roots of unity (for some natural number k ≥ 2) (non-degenerate);

(ii) z1 or z2 is a kth root of unity and the other is zero (regular polygon);

(iii) z1 or z2 is a kth root of unity and satisfies b = az1 or b = az2, resp. (regular polygon);

(iv) z1 and z2 are arbitrary, and a = b = 0 (degenerate orbit).

Periodicity conditions: Degenerate Case (z1 = z2)

Let z be a kth root of unity (k ≥ 2), and let the polynomial P(x) be

P(x) = (x − z)2, x ∈ C. (2.2.3)

Theorem 2.2.5. The sequence {wn}∞
n=0 having the characteristic polynomial (2.2.3), and ar-

bitrary initial values w0 = a, w1 = b, is periodic when b = az, being otherwise divergent.

Proposition 2.2.6. When generated by a repeated kth root of unity, the terms of the divergent

subsequence {wNk+j}∞
N=0 are collinear for each value of j ∈ {0, . . . , k − 1}.

Theorem 2.2.7. (Necessary condition for periodicity) The recurrence sequence {wn}∞
n=0 gen-

erated by the characteristic polynomial (2.2.3), and arbitrary initial values w0 = a, w1 = b, is

periodic only if one of the following is true

(z = 0) or (zk − 1 = 0, B = 0) or (zk − 1 6= 0, A = B = 0). (2.2.4)

Explicitly, these conditions give the subcases

(i) z = 0 (degenerate orbit)

(ii) z is a kth root of unity (for some natural number k ≥ 2) and b = az (regular polygon);

(iii) z is arbitrary and a = b = 0 (degenerate orbit).
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2.3 The geometry of periodic Horadam orbits

A classification of the geometry patterns produced by generators z1 = e2πip1/k1 and

z2 = e2πip2/k2 is proposed. The results in this section are published in [19].

Regular star polygons

Theorem 2.3.1. If z1 = e2πip/k is a primitive kth root (k ≥ 2) and z2 = 1, the orbit of the

sequence {wn}∞
n=0 is the regular star polygon {k/p}. The property is illustrated in Fig. 2.5.

Proof. In this case, the general formula (2.1.4) gives wn = Azn
1 + B. �
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Figure 2.5: First N = 100 orbit terms of sequence {wn}N
n=0 obtained from (2.1.4), for z2 = 1 and

(a) k = 7, z1 = e2πi 2
7 ; (b) k = 7, z1 = e2πi 3

7 ; when a = 2 and b = 4 + 2i. Also shown are orbit’s

direction (arrows), starting points w0, w1 (star), w2, . . . , wN (circles), unit circle (dotted line).

Bipartite graphs

Theorem 2.3.2. (k is odd) Let k ≥ 2 be an odd number, z1 a primitive kth root and z2 = −1.

The orbit of sequence {wn}∞
n=0 is a 2k-gon, whose nodes can be divided into two regular k-gons

representing a bipartite graph. The property is illustrated in Fig. 2.6 (a).

Proof. In this case, the general formula (2.1.4) gives wn = Azn
1 + (−1)nB, and the orbit

W = {w0, w1, . . . , w2k−1} which can be partitioned into the disjoint ordered sets

W0 = {A + B, Az2
1 + B, . . . , Azk−1

1 + B, Azk+1
1 + B, . . . , Az2k−2

1 + B},

W1 = {Az1 − B, Az3
1 − B, . . . , Azk−2

1 − B, Azk
1 − B, . . . , Az2k−1

1 − B}, (2.3.1)

the vertices of two regular k-gons, visited alternatively by sequence {wn}∞
n=0. �

Theorem 2.3.3. (k is even) Let k ≥ 2 be an even number, z1 a primitive kth root and z2 = −1.

The orbit of the sequence {wn}∞
n=0 is a k-gon, whose nodes can be divided into two regular

k/2-gons representing a bipartite graph. The property is illustrated in Fig. 2.6 (b).
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Figure 2.6: First N = 100 orbit terms of {wn}N
n=0 obtained from (2.1.4), for z2 = −1 and (a)

k = 5 (odd), z1 = e2πi 1
5 and a = 2− 4i, b = −1− 3i; (b) k = 14 (even), z1 = e2πi 1

14 and a = 1− 2i,

b = −1 − 3i. Arrows indicate the direction of the orbit visiting w0, w1 (star), w2, . . . , wN.

Multipartite graphs

In the general case, multipartite periodic orbits of {wn}∞
n=0 are obtained for the primi-

tive roots of unity z1 = e2πip1/k1 and z2 = e2πip2/k2 .

Theorem 2.3.4. Let k1, k2, d ∈ N s.t. gcd(k1, k2) = d and z1, z2 be k1th,k2th primitive roots,

respectively. The orbit {wn}∞
n=0 is a k1k2/d-gon, whose nodes can be divided into k1 regular

k2/d-gons. By duality, the nodes of the orbit can also be divided into k2 regular k1/d-gons. The

property is illustrated in Fig. 2.7 for k1 = 4 and k2 = 5, satisfying (k1, k2) = 1.
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Figure 2.7: First N = 100 orbit terms of sequence {wn}N
n=0 obtained from (2.1.4), for k1 = 4,

k2 = 5. We compute w0, . . . , wN for z1 = e2πi 1
5 , z2 = e2πi 1

4 and initial conditions a = (1 + i)/2,

b = −(1 + i)/3. The orbits are partitioned into (a) four regular pentagons; (b) five squares;

Arrows indicate orbit’s direction from one term to the next. The dotted line is the unit circle.

Corollary 2.3.5. If k2|k1 the orbit is a k1-gon whose nodes can be divided into k2 regular

k1/k2-gons. The asymmetry in Fig. 2.8 illustrates this, as the only regular polygons that can

be identified in the periodic orbit of {wn}∞
n=0 are 1- and 2-gons.
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Figure 2.8: First N = 100 orbit terms of sequence {wn}N
n=0 obtained from (2.1.4), for initial

conditions are a = 1 + 2i and b = −2 − 2i. We compute w0, . . . , wN for (a) k1 = k2 = 12,

z1 = e2πi 1
12 , z2 = e2πi 7

12 ; (b) k1 = 2k2 = 12, z1 = e2πi 1
6 , z2 = e2πi 11

12 . Arrows indicate the direction

of the orbit from one term to the next. The dotted line is the unit circle.

−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

Re z

Im
 z

(a)

−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

Re z

Im
 z

(b)

Figure 2.9: Orbit of a periodic Horadam sequence {wn}∞
n=0 computed for (a) z1 = e2πi 2

5 , z2 =

e2πi 3
5 , a = 4 + 5i, b = 2 − 3i; (b) z1 = e2πi 1

6 , z2 = e2πi 5
6 , a = 1 + 2i, b = 3 − 2i. Also plotted are

the initial values a, b (stars), the generators z1, z2 (squares), the unit circle S(0, 1) (solid line) and

boundaries of the annulus U(0, | |A| − |B| |, |A|+ |B|) (dashed lines).

Geometric bounds of periodic orbits

Theorem 2.3.6. When the Horadam sequence {wn}∞
n=0 is periodic, the orbit is subject to the

following geometric boundaries (see Fig. 2.9):

(i) For z1 6= z2, then one has (where A and B given by (2.1.5))

{z ∈ C : | |A| − |B| | ≤ |wn| ≤ |A|+ |B|}, ∀n ∈ N.

(ii) For z1 = z2 = z the orbit is regular k-gon within circle S(0, |a|) = {z ∈ C : |z| = |a|},

for a 6= 0, or else the zero set {0} for a = 0.
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2.4 The enumeration of periodic Horadam patterns

In this section we investigate the number of distinct Horadam sequences which (for

arbitrary initial conditions) have a fixed period, giving enumeration formulas in both

degenerate and non-degenerate cases. The results have been published in [19].

2.4.1 The number of Horadam patterns of fixed length HP(k)

Let k ≥ 2 be a positive integer. The function for enumerating the Horadam sequences

{wn}∞
n=0 of period k is denoted by HP(k). This depends on the generators z1 = e2πip1/k1

and z2 = e2πip2/k2 , and the initial conditions a, b. There are two types of (degenerate

and non-degenerate) periodic orbits to consider.

Degenerate orbits

A degenerate orbit is a regular polygon centered in 0 or point.

The number of distinct degenerate sequences having period k is given by

HP(k) = |{(p1, k1) : (p1, k1) = 1, k1 = k}| = ϕ(k),

where ϕ is Euler’s totient function.

If no generator appears explicitly in the formulas (2.1.6) or (2.1.4) (this can be the case

when z1 6= z2, A = 0, B = 0 or z1 = z2 = z, a = 0, b = 0), the periodic sequence

is constant and the number of generator configurations leading to periodicity k ≥ 2 is

therefore zero.

Non-Degenerate orbits

Here we cover periodic sequences producing non-degenerated orbits. In this case the

generators are distinct roots of unity z1 = e2πip1/k1 and z2 = e2πip2/k2 , and the arbitrary

initial conditions a, b are such that AB 6= 0 for A, B defined in (2.1.5).

The number of distinct sequences of period k can be enumerated from the quadruples

HP(k) = |{(p1, k1, p2, k2) : (p1, k1) = (p2, k2) = 1, [k1, k2] = k, k1 ≤ k2}| . (2.4.1)

Some formulas for this expression are identified, based on the properties of pairs (k1, k2)

satisfying [k1, k2] = k, and corresponding generators z1 = e2πip1/k1 and z2 = e2πip2/k2 .

16



CHAPTER 2: PERIODIC HORADAM PATTERNS

A first formula for HP(k)

The first lemma counts the quadruples (p1, k1, p2, k2) in (2.4.1) for which k1 = k2.

Lemma 2.4.1. If k1 = k2 and [k1, k2] = k then k1 = k2 = k.

The number of quadruples (p1, k, p2, k) fulfilling (2.4.1) produced in this case is

H′
P(k) = |{(p1, p2) : (p1, k) = (p2, k) = 1, p1 < p2}| =

1
2

ϕ(k) (ϕ(k)− 1) .

The second lemma counts the quadruples (p1, k1, p2, k2) when k1 6= k2 and [k1, k2] = k.

Lemma 2.4.2. If [k1, k2] = k and k1 6= k2, the number of quadruples (p1, k1, p2, k2) is

H′′
P(k) = |{(p1, k1, p2, k2) : (p1, k1) = (p2, k2) = 1, [k1, k2] = k}| = ϕ(k1)ϕ(k2).

Theorem 2.4.3. The number of distinct Horadam sequences of period k ≥ 2 is equal to

HP(k) = ∑
[k1,k2]=k, k1<k2

ϕ(k1)ϕ(k2) +
1
2

ϕ(k) (ϕ(k)− 1) . (2.4.2)

The number sequence HP(k) provided the first context for A102309 in OEIS [97].

1, 1, 3, 5, 10, 11, 21, 22, 33, 34, 55, 46, 78, 69, 92, 92, 136, 105, . . .

Example 1: Prime numbers. When k is a prime number we have

HP(k) = k(k − 1)/2. (2.4.3)

Example 2: Powers of a prime number. For k = pm with p prime, m ≥ 2 we have

HP(k) =
ϕ(k)[2k − ϕ(k)− 1]

2
. (2.4.4)

Example 3: Products of two prime numbers. When p, q are prime and k = pq, we have

HP(k) = (p − 1)(q − 1)(pq + p + q)/2.

For example, when k = 6 = 2 · 3 there are 11 solutions produced by the pairs
(

p1

k1
,

p2

k2

)

∈
{(

1
1

,
1
6

)

,
(

1
1

,
5
6

)

,
(

1
2

,
1
3

)

,
(

1
2

,
2
3

)

,
(

1
2

,
1
6

)

,

(

1
2

,
5
6

)

,
(

1
3

,
1
6

)

,
(

1
3

,
5
6

)

,
(

2
3

,
1
6

)

,
(

2
3

,
5
6

)

,
(

1
6

,
5
6

)}

,

Some of the orbits realized for k = 6 are plotted in Fig. 2.10.

Example 4: More general numbers. The formula for k = 12 involves the divisor pairs

(k1, k2) ∈ {(1, 12), (2, 12), (3, 4), (3, 12), (4, 6), (4, 12), (6, 12), (12, 12)},

with multiplicities ϕ(p)ϕ(q) for each pair (p, q) in the list satisfying p < q, and finally,

ϕ(12)(ϕ(12)− 1)/2 for the pair (12, 12). This gives the formula

HP(12) = 4 + 4 + 4 + 8 + 4 + 8 + 8 + 4 · 3/2 = 46.
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Figure 2.10: Sequence terms {wn}N
n=0 obtained from (2.1.4) for the pairs ( p1

k1
, p2

k2
) (a) ( 1

1 , 1
6 ); (b)

( 1
2 , 1

3 ); (c) (
1
3 , 5

6 ); (d) (
2
3 , 1

6 ) when a = 2 and b = 3i (stars). Arrows indicate the orbit’s direction

w0, w1, . . . , w6 = w0 (circles). Also plotted are generators z1, z2 (squares), unit circle (solid line)

and boundaries of annulus U(0, | |A| − |B| |, |A|+ |B|) (dotted line) with A, B from (2.1.5).

A second formula for HP(k)

Lemma 2.4.4. Let d < k be two natural numbers s.t. d|k, whose prime decomposition is

d = pd1
1 pd2

2 · · · pdn
n , k = pm1

1 pm2
2 · · · pmn

n , (1 ≤ di ≤ mi).

The number of pairs of natural numbers k1, k2 which satisfy d = (k1, k2) and k = [k1, k2] is

GL(d, k) = |{(k1, k2) : d = (k1, k2) and k = [k1, k2]}| = 2 ω(k/d)−1, (2.4.5)

where ω(x) represents the number of distinct prime divisors for the integer x.

Theorem 2.4.5. Formula HP(k) can be written more compactly as

HP(k) =

[

∑
d|k, d<k

ϕ(d)2 ω(k/d) + ϕ(k)− 1
]

ϕ(k)
2

. (2.4.6)

Theorem 2.4.6 (HP(k) for square-free numbers). When the period k is a square-free positive

number k = p1 p2 . . . pm for m ≥ 2 and p1, . . . , pm prime numbers, we have

HP(k) =

[

(p1 + 1) · · · (pm + 1)− 1
]

(p1 − 1) · · · (pm − 1)
2

. (2.4.7)
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Remark 2.4.7. The function HP(k) can also be generated from pairs (p1, p2) satisfying

HP(k) = |{(p1, p2) : ((p1, k), (p2, k)) = 1, 1 ≤ p1 < p2 ≤ k}| . (2.4.8)

2.4.2 Computational complexity of evaluating HP(k)

The number of pairs (k1, k2) s.t. [k1, k2] = k required to evaluate HP(k) using (2.4.2) is

[(2m1 + 1)(2m2 + 1) · · · (2mn + 1) + 1]/2.

In formula (2.4.6) one needs to identify all the distinct divisors d of k, which are exactly

(m1 + 1)(m2 + 1) · · · (mn + 1).

Asymptotic bounds for HP(k)

Lower and upper boundaries can be formulated for HP(k), as illustrated in Fig. 2.11.

Theorem 2.4.8. For every k ∈ N one has the following bounds ϕ(k)k
2 ≤ HP(k) ≤ (k−1)k

2 .

Theorem 2.4.9. If k = p1 p2 · · · pm is square-free, the following lower bound holds

HP(k) =

[

(p1 + 1) · · · (pm + 1)− 1
]

(p1 − 1) · · · (pm − 1)
2

≥ ϕ(k)[2k − ϕ(k)− 1]
2

.

It is interesting that all these bounds are sharp whenever k is prime. An open question

is whether this is indeed lower bound for HP(k) in general, as suggested in Fig. 2.11.
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Figure 2.11: First 40 terms of the sequences (a) HP(k) (circles), (k − 1)k/2 (dashed) and ϕ(k)k
2

(dotted); (b) f (k)/HP(k), where f (k) is HP(k) (circles), (k − 1)k/2 (dashed), ϕ(k)k
2 (dotted) and

ϕ(k)[2k−ϕ(k)−1]
2 (dash-dotted).
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CHAPTER 3

Non-periodic Horadam sequences

and applications

In this chapter we investigate the orbits produced by non-periodic Horadam sequences.

Section 3.1 presents degenerate orbits produced by equal generators, which are either

singletons or simple spirals. An atlas of non-degenerate Horadam patterns is presented

in Section 3.2. Certain dense Horadam patterns inspired the design a Horadam-based

random-number generator, presented in Section 3.3.

3.1 Preliminary results and degenerate orbits

The notations S = S(0; 1), U = U(0; 1), S(z0, r) and U(0; r1, r2) are used for the unit

circle, unit disc, circle of centre z0 and radius r, and annulus of radii r1 and r2.

General term of Horadam sequences

Details on these results can be found in [18] or in Section 2.1. We summarize them

here for convenience. Recall that a Horadam sequence {wn}∞
n=0 = {wn(a, b; p, q)}∞

n=0 is

defined by the recurrence

wn+2 = pwn+1 + qwn, w0 = a, w1 = b,

where the parameters a, b, p, q are complex numbers. The characteristic equation is

x2 − px − q = 0, (3.1.1)

whose roots z1 and z2 are called generators.
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For equal roots z1 = z2 of (3.1.1), the general term of Horadam’s sequence {wn}∞
n=0 is

wn =

[

a +

(

b
z
− a

)

n

]

zn =

[

az + (b − az)n

]

zn−1. (3.1.2)

For distinct roots z1 6= z2 of (3.1.1), the general term of sequence {wn}∞
n=0 are

wn = Azn
1 + Bzn

2 , (3.1.3)

where the constants A and B are obtained from initial conditions w0 = a and w1 = b as

A =
az2 − b
z2 − z1

, B =
b − az1

z2 − z1
. (3.1.4)

When AB = 0, at least one of the generators z1 and z2 does not appear explicitly in the

formula of wn. For this reason, it will be assumed from now on that AB 6= 0.

Behaviour of sequence {zn}∞
n=0

As linear combinations of {zn
1}∞

n=0 and {zn
2}∞

n=0 with coefficients A and B, the patterns

of Horadam sequences largely depend on the behaviour of {zn}∞
n=0, where z ∈ C. This

is described in the following result [18, Lemma 2.1]

Lemma 3.1.1. Let z = re2πix be a complex number (r ≥ 0, x ∈ R). The orbit of {zn}∞
n=0 is

(a) a regular k-gon if z is a primitive k-th root of unity;

(b) a dense subset of the unit circle if r = 1 and x ∈ R \ Q;

(c) an inward spiral for r < 1;

(d) an outward spiral for r > 1.

Whenever x = j/k ∈ Q is irreducible, the spirals in (c) and (d) are aligned along k rays.

Patterns produced by identical generators

We first examine the orbits produced by repeated roots of the quadratic (3.1.1).

Theorem 3.1.2. Let {wn}∞
n=0 be the sequence defined by (3.1.3) for initial conditions w0 = a,

w1 = b and let us assume that the polynomial (3.1.1) has a repeated root z = z1 = z2 = re2πix.

The orbit of {wn}∞
n=0 is reduced to a single point if |a|+ |b| = 0. Otherwise, this represents:

(a) the vertices of a k-gon when b = az and z is a primitive k-th root of unity;

(b) a dense subset of S when b = az and |z| = 1 and x ∈ R \ Q;

(c) a convergent spiral collapsing onto the origin for |z| < 1;

(d) a divergent spiral for |z| > 1 and |a|+ |b| > 0, or for |z| = 1 and b 6= az.
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3.2 An atlas of Horadam patterns

The aim of this section is to characterize the orbits of Horedam sequences obtained for

arbitrary generators and initial conditions. The distinct generators are here denoted by

z1 = r1e2πix1 , z2 = r2e2πix2 , (3.2.1)

where r1, r2, x1, x2 are real numbers. We may assume that 0 ≤ r1 ≤ r2.

Horadam patterns produced by formula (3.1.3) can be summarized below

1. Stable for r1 = r2 = 1;

2. Quasi-convergent for 0 ≤ r1 < r2 = 1;

3. Convergent for 0 ≤ r1 ≤ r2 < 1;

4. Divergent for r2 ≥ 1.

3.2.1 Stable orbits: r1 = r2 = 1

The patterns recovered in this scenario are finite sets (periodic), or sets dense within

certain 1D curves, or 2D annuli. Stable orbits are located inside the annulus

{z ∈ C : | |A| − |B| | ≤ |z| ≤ |A|+ |B|}. (3.2.2)

Theorem 3.2.1. Let {wn}∞
n=0 be the sequence defined by (3.1.3). If the distinct roots (3.2.1)

satisfy r1 = r2 = 1, the following orbit patterns of {wn}∞
n=0 emerge for:

(a) x1, x2 ∈ Q : periodic orbit (finite set) (see Figs. 2.7, 2.8 or 2.10 in Chapter 2);

(b) x1 = p/k ∈ Q (irreducible), x2 ∈ R \ Q (or vice-versa): Orbit is a dense subset of the

reunion of k distinct circles (see Fig. 3.1);

(c) x1, x2 ∈ R \ Q. In this case we have three distinct types of behaviour:

(c1) x2 − x1 = q ∈ Q: the orbit is a finite set of concentric circles (see Fig. 3.2);

(c2) x2 = x1q, q ∈ Q: the orbit is a stable closed curve (flower) (see Fig. 3.3);

(c3) 1, x1, x2 lin. indep. over Q: dense orbit in U(0, | |A| − |B| |, |A|+ |B|) (see Fig. 3.4).

Proof. The dimension of the orbit’s closure is zero for finite orbits, one for orbits dense

within closed curves and two for orbits dense within an annulus.

(a) Stable periodic (finite) orbits

When x1, x2 ∈ Q the orbit of the sequence is finite.

22



CHAPTER 3: NON-PERIODIC HORADAM PATTERNS AND APPLICATIONS

(b) Stable orbits dense within unions of circles

When x1 = p/k is irreducible, z1 is a k-th primitive root of unity, therefore {z1
n}∞

n=0

only takes the distinct values 1, z1, . . . , zk−1
1 representing the vertices of a regular k-gon.

This property is illustrated for x1 = 1/3 in Fig. 3.1. The k = 3 circles are disjoint for

|A| > |B| (see Fig. 3.1(a)), and intersect for |A| < |B| (see Fig. 3.1(b)), respectively.
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Figure 3.1: First 500 terms of {wn}∞
n=0 from (3.1.3) for r1 = r2 = 1 and (a) x1 = 1/3, x2 =

√
2/5,

when a = 0.6 and b = 0.6 exp(2πi(
√

2/5 + 0.1)); (b) x1 = π/15, x2 = 1/3, when a = 2 + 2/3i

and b = 3 + i. Also depicted are initial conditions w0, w1, (stars), generators z1, z2 (squares),

unit circle (dotted line). Inner and outer circles show annulus U(0, | |A| − |B| |, |A|+ |B|).

(c1) Orbits dense within concentric circles

This property is illustrated in Fig. 3.2 for the case when x1 and x2 are irrational and

x2 − x1 = 1/2 in (a) and x2 − x1 = 1/3 in (b), respectively.
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Figure 3.2: First 1000 terms of {wn}∞
n=0 obtained from (3.1.3) for r1 = r2 = 1 and (a) x1 = e/3,

x2 = e/3 + 1/2; (b) x1 = π/2, x2 = π/2 + 1/3, when a = 2 + 2/3i and b = 3 + i.

23



CHAPTER 3: NON-PERIODIC HORADAM PATTERNS AND APPLICATIONS

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Re z

Im
 z

(a)

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Re z

Im
 z

(b)

−2 −1 0 1 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Re z

Im
 z

(c)

−4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

Re z

Im
 z

(d)

Figure 3.3: First 1000 sequence terms of {wn}∞
n=0 obtained from (3.1.3) for r1 = r2 = 1, x2 =

qx1, where (a) q = 2, x2 =
√

2/4 ; (b) q = 3, x2 =
√

2/4 ; (c) q = 6, x2 =
√

2/4 ; and

a = 1.5, b = 1.5 exp(2πi(
√

2/4 + 1/10)) and also for (d) q = 2/3, x2 =
√

2/3, and a = 1.5,

b = 1.5 exp(2πi(2
√

2/3 + 1/10)). Initial conditions a, b shown by stars, generators z1, z2 by

squares, unit circle by dotted line. Inner and outer circles depict U(0, | |A| − |B| |, |A|+ |B|).

(c2) Orbits dense within closed 1D curves

(c2) x1, x2 ∈ R \ Q, x2 = x1q, q ∈ Q. The general term wn from (3.1.3) can be written as

wn = Azn
1 + Bzn

2 = Azn
1 + B(zq

1)
n.

From Lemma 3.1.1, the orbit of {zn
1}∞

n=0 is dense within the unit circle, so the orbit of

{wn}∞
n=0 is dense within the graph of the complex function f : S → C defined as

f (z) = Az + Bz q.

This property is illustrated in Fig. 3.3. As shown in (a), q = 6 gives 5 self-intersections

and winding number one, while for the case q = 3/2 illustrated in (d), winding number

is three with two self-intersections. For an irreducible fraction q = m/k one can show

that the curve g(x) = Ae2πxi + Bz 2πqxi, has m self-intersections and winding number k.
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(c3) Stable orbits dense within 2D annuli

Whenever 1, x1, x2 are linearly independent over Q (or Z), the resulting Horadam orbit

is dense within an annulus.

The property is illustrated in Fig. 3.4 (a) for |A| 6= |B|, obtained for r1 = r2 = 1, x1 =
√

2
3 , x2 =

√
5

15 and a = 2 + 2
3 i, b = 3 + i. When |A| = |B|, the orbit is dense within

the circle U(0, 2|A|), as depicted in Fig 3.4(b) for the parameter values r1 = r2 = 1,

x1 = exp(1)/2, x2 = exp(2)/4 and a = 1+ 1/3i, b = 1.5a exp(π(x1 + x2)). These types

of dense orbits are used to design a random number generator in Section 3.3.
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Figure 3.4: First N sequence terms of {wn}∞
n=0 obtained from (2.1.4). (a) N = 1000, |A| 6= |B|;

(b) N = 500, |A| = |B|. Also plotted, initial conditions a, b (stars), generators z1, z2 (squares),

unit circle S (solid line) and circle U(0, |A|+ |B|) (dotted line).

3.2.2 Quasi-convergent orbits for 0 ≤ r1 < r2 = 1

Theorem 3.2.2. Let {wn}∞
n=0 be the sequence defined by (3.1.3) for initial conditions w0 = a,

w1 = b and let us assume that the polynomial (3.1.1) has distinct roots z1 6= z2 such that

0 ≤ r1 < r2 = 1. The orbit of {wn}∞
n=0 has the following profiles

(a) For x2 ∈ Q : Orbits attracted onto discrete finite sets (vertices of regular polygons) along

rays (x1 ∈ Q) or spirals (x1 ∈ R \ Q) (see Fig. 3.5).

(b) For x2 ∈ R \ Q : Orbits collapse onto a dense circle of radius |B| (see Fig. 3.6).

(a) When x2 = p2/k2 is an irreducible fraction, z2 is a k2-th primitive root of unity,

therefore the sequence {z2
n}∞

n=0 is periodic and has just k2 distinct terms 1, z2, . . . , zk2−1
2

representing the vertices of a regular k2-gon. When x1 = p1/k1 ∈ Q is irreducible, the

subsequences {wnk2+j}∞
n=0 approach their limit along rays, as depicted in Fig. 3.5 (a).

The number of rays is the same for each attractor.
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Figure 3.5: First 1000 terms of sequence {wn}∞
n=0 obtained from (3.1.3) for r1 = 0.995, r2 = 1 and

(a) x1 = 1/5, x2 = 1/7; (b) x1 =
√

5/7, x2 = 1/7, when a = 2 exp(2πi/30) and 2.5 exp(2πi/7).

Stars depict initial conditions a, b, squares the generators z1, z2 and the solid line the unit circle.

Inner and outer circles represent the boundaries of the annulus U(0, | |A| − |B| |, |A|+ |B|).

(b) When x2 is irrational, {Bzn
2}∞

n=0 is a dense subset of the circle of radius |B| centred in

the origin. As the sequence {Az1
n}∞

n=0 converges to zero the orbit of sequence {wn}∞
n=0

collapses onto the circle of radius |B| centred in the origin, as illustrated in Fig. 3.6.

Note that sequence terms in Fig. 3.6 (a) are inside the circle U(0, |A| + |B|), but not

inside the annulus U(0, | |A| − |B| |, |A| + |B|), as seen in Fig. 3.6 (a). If |A| > |B|
we have limn→∞ |wn| = |B| < |A| − |B| = ||A| − |B||, therefore such a condition is

|A| > 2|B|, which requires |az2 − b| > 2|b − az1|. In the example shown in Fig. 3.6 (a)

we have |A| = 3.4669 and |B| = 1.5254.
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Figure 3.6: First 1000 sequence terms {wn}∞
n=0 given by (3.1.3) for r1 = 0.995, r2 = 1 and (a)

x1 = 1/5, x2 =
√

3/5; (b) x1 =
√

2/2, x2 =
√

3/5, when a = 2 exp(2πi/30) and 2.5 exp(2πi/7).

Stars represent initial conditions a, b, squares generators z1, z2, and the solid line the unit circle.

Inner and outer circles represent the orbit boundaries U(0, | |A| − |B| |, |A|+ |B|).
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Figure 3.7: First 2000 terms of sequence {wn}∞
n=0 obtained from (3.1.3) for r1 = 0.99, r2 = 0.999

and (a) x1 = 1/3, x2 = 1/4; (b) x1 = 1/6, x2 = 1/8; when a = 1.5 exp(2πi/30) and b =

1.2 exp(2πi/7). Also plotted, initial conditions w0, w1 (stars), generators z1, z2 (squares), unit

circle S (solid line) and circle U(0, |A|+ |B|) (dotted line).

3.2.3 Convergent orbits for 0 ≤ r1 ≤ r2 < 1

The sequence {wn}∞
n=0 defined by (3.1.3) now converges to the origin. The cases when

r1 and r2 are equal, or distinct have to be analyzed separately.

Theorem 3.2.3. [Orbits for r1 < r2] Let {wn}∞
n=0 be the sequence defined by (3.1.3) for initial

conditions w0 = a, w1 = b and let us assume that the polynomial (3.1.1) has distinct roots

z1 6= z2 such that 0 ≤ r1 < r2 < 1. The following orbit profiles of {wn}∞
n=0 emerge:

(a) x1 = p1
k1

, x2 = p2
k2

∈ Q : lcm(k2, k1) convergent branches merging onto k2 rays (Fig. 3.7).

(b) x1 ∈ R \ Q, x2 = p/k ∈ Q (irreducible): k spirally perturbed arms. (see Fig. 3.8).

(c) x1 = p/k ∈ Q (irreducible), x2 ∈ R \ Q: Orbit converges concentrically to the origin, as a

set of k petals or branches (see Fig. 3.9).

(d) x1, x2 ∈ R \ Q. In this case the orbit is an erratic or ordered spiral (see Fig. 3.10).

Theorem 3.2.4. (Orbits for r1 = r2 = r) Let {wn}∞
n=0 be the sequence defined by (3.1.3) for

initial conditions w0 = a, w1 = b and let us assume that the polynomial (3.1.1) has distinct

roots z1 6= z2 such that 0 < r1 = r2 = r < 1. The following orbit profiles of {wn}∞
n=0 emerge:

(a) x1 = p1/k1, x2 = p2/k2 ∈ Q : lcm(k1, k2) rays converging to origin (see Fig. 3.11 (a)).

(b) x1 ∈ Q and x2 ∈ R \ Q (or vice-versa): k2 perturbed spirals (see Fig. 3.11 (b),(c),(d)).

(c) x1, x2 ∈ R \ Q. In this case we identify the patterns

(c1). x2 − x1 = q ∈ Q: multiple spiral (see Fig. 3.12 (a)).

(c2). x1 = x2q, q ∈ Q: multi-chamber contours (see Fig. 3.12 (b) and (c)).

(c3). 1, x1, x2 linearly independent over Q: erratic convergent spiral (see Fig. 3.12 (d)).
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Figure 3.8: First 2000 terms of sequence {wn}∞
n=0 obtained from (3.1.3) for parameters x1 =√

5/3, x2 = 1/4 and r2 = 0.999 for (a) r1 = 0.99, (b) r1 = 0.997, when a = 1.5 exp(2πi/30) and

b = 1.2 exp(2πi/7). Also plotted, initial conditions w0, w1 (stars), generators z1, z2 (squares),

unit circle S (solid line) and circle U(0, |A|+ |B|) (dotted line).
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Figure 3.9: First 2000 terms of {wn}∞
n=0 obtained for r1 = 0.99, r2 = 0.999 and (a) x1 = 1/3,

x2 =
√

5/3; (b) x1 = 1/4, x2 =
√

5/3; when a = 1.5 exp(2πi/30) and b = 1.2 exp(2πi/7).
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Figure 3.10: First 2000 terms of {wn}∞
n=0 for r1 = 0.99, r2 = 0.997 and (a) x1 =

√
2/2, x2 =√

5/3; (b) x1 = 3
√

2/10, x2 =
√

2/10, when a = 1.5 exp(2πi/30) and b = 1.2 exp(2πi/7).
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Figure 3.11: First 2000 terms of {wn}∞
n=0 given by (3.1.3) for (a) x1 = 1/3, x2 = 1/2, r = 0.99;

(b) x1 =
√

5/3, x2 = 1/4, r = 0.995; (c) x1 =
√

5/3, x2 = 1/4, r = 0.999; (d) x1 =
√

5/5,

x2 = 1/5, r = 0.999 when a = 1.5 exp(2πi/30) and b = 1.2 exp(2πi/7) (stars).
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Figure 3.12: Sequence {wn}∞
n=0 obtained for r = 0.999 and (a) x1 = 5

√
2/2 + 1/2, x2 = 5

√
2/2,

(b) x1 = 5
√

2/10, x2 =
√

2/10; (c) x1 =
√

3/2, x2 =
√

3/4; (d) x1 =
√

2/2, x2 =
√

3/7.
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Figure 3.13: First N terms of {wn}∞
n=0 for r2 = 1.002, x1 = 5/6, x2 = 3/8 and (a) N = 500 and

r2 = 0.999; (b) N = 1000 and r2 = 1, when a = 1.5 exp(2πi/30) and b = 1.2 exp(2πi/7).

3.2.4 Divergent orbits for 1 < r2

The sequence {wn}∞
n=0 defined by (3.1.3) diverges to infinity.

Theorem 3.2.5. [Orbits for 1 < r2, r1 < r2] Let {wn}∞
n=0 be the sequence defined by (3.1.3)

for initial conditions w0 = a, w1 = b and assume that the polynomial (3.1.1) has distinct roots

z1 6= z2 such that 0 < r1 < r2 and 1 < r2. The following orbit profiles of {wn}∞
n=0 emerge:

(a) x1 = p1/k1, x2 = p2/k2 ∈ Q : lcm(k2, k1) branches merging onto k2 rays which diverge

away from the origin to infinity (see Fig. 3.13).

(b) x1 ∈ R \ Q, x2 = p/k ∈ Q (irreducible): k divergent spiral arms. (see Fig. 3.14).

(c) x1 = p/k ∈ Q (irreducible), x2 ∈ R \ Q: Orbit diverges concentrically to infinity, as a set

of k petals or branches (see Fig. 3.15).

(d) x1, x2 ∈ R \ Q. In this case the orbit is an erratic or ordered spiral (see Fig. 3.16).

Theorem 3.2.6. (Orbits for r1 = r2 = r) Let {wn}∞
n=0 be the sequence defined by (3.1.3) for

initial conditions w0 = a, w1 = b and let us assume that the polynomial (3.1.1) has distinct

roots z1 6= z2 such that 1 < r1 = r2 = r. For different generators we have the following profiles

for the orbit of {wn}∞
n=0:

(a) x1 = p1/k1, x2 = p2/k2 ∈ Q : lcm(k1, k2) rays diverging to infinity (see Fig. 3.17 (a)).

(b) x1 ∈ Q = p1/k1 and x2 ∈ R \ Q (or vice-versa): k1 divergent spirals (see Fig. 3.17 (b)).

(c) x1, x2 ∈ R \ Q. In this case we identify the patterns

(c1) x2 − x1 = q ∈ Q: multiple divergent spirals (see Fig. 3.17 (c)).

(c2) x1 = x2q, q ∈ Q: multi-chamber divergent contours (see Fig. 3.17 (d)).

(c3) 1, x1, x2 linearly independent over Q: erratic convergent spirals (see Fig. 3.18).

30



CHAPTER 3: NON-PERIODIC HORADAM PATTERNS AND APPLICATIONS

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Re z

Im
 z

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Re z

Im
 z

Figure 3.14: First 500 terms of the sequence {wn}∞
n=0 obtained for r2 = 1.002, x1 =

√
5/12,

x2 = 1/12 and (a) r1 = 0.99; (b) r1 = 0.997, when a = 1.5 exp(2πi/30) and b = 1.2 exp(2πi/7).

−5 0 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

Re z

Im
 z

−3 −2 −1 0 1 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Re z

Im
 z

Figure 3.15: First 1500 terms of {wn}∞
n=0 obtained for r2 = 1.001, and (a) x1 = 1/3, x2 = π/5,

r1 = 0.997; (b) x1 = 1/8, x2 = π/10, r1 = 1, when a = 1.5 exp(2πi/30) and b = 1.2 exp(2πi/7).
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Figure 3.16: First 1000 terms of {wn}∞
n=0 obtained for r2 = 1, r2 = 1.002, and (a) x1 = 4

√
2/6,

x2 =
√

2/6; (b) x1 = 5
√

2/7, x2 =
√

2/7 when a = 1.5 exp(2πi/30) and b = 1.2 exp(2πi/7).
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Figure 3.17: First 500 terms of the sequence {wn}∞
n=0 obtained from (3.1.3) for r = 1.002 and

(a) x1 = 1/3, x2 = 1/2; (b) x1 =
√

5/3, x2 = 1/4; (c) x1 = 5
√

2/2 + 1/2, x2 = 5
√

2/2; (d)

x1 =
√

2/2, x2 =
√

2/10, when a = 1.5 exp(2πi/30) and 1.2 exp(2πi/7).
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Figure 3.18: First N terms of the sequence {wn}∞
n=0 obtained from (3.1.3) for (a) x1 =

exp(1)/1000, x2 = π/1000, r = 1.001, N = 1500; (b) x1 = exp(1)/1000, x2 = π/1000,

r = 1.001, N = 2400; when a = 1.5 exp(2πi/30) and 1.2 exp(2πi/7). Also plotted, initial

conditions w0, w1 (stars), generators z1, z2 (squares) and unit circle S (solid line).
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3.3 A Horadam-based pseudo-random number generator

In this section certain complex Horadam sequences are used to design a pseudo-random

number generator. This is evaluated using Monte Carlo π estimations against other

generators like Multiplicative Lagged Fibonacci and the ’twister’ Mersenne.

Pseudo-random generators and Horadam sequences

Pseudo-random number generators are a core component of numerical algorithms

based on simulation and statistical sampling. Numerous implementations are based

on recursive methods such as Linear Congruences and Lagged Fibonacci Sequences [98].

Random number generators require periodicity, uniformity and correlation [49].

3.3.1 The complex argument of 2D dense Horadam orbits

Certain bounded orbits are dense within a circle or an annulus centered in the origin.

Specifically, if r1 = r2 = 1 and the generators z1 = e2πix1 6= z2 = e2πix2 are such

that 1, x1, x2 are linearly independent over Q, then the orbit of the Horadam sequence

{wn}∞
n=0 is dense in the annulus U(0, | |A| − |B| |, |A|+ |B|) These dense orbits are here

examined and used to design a random number generator.

Argument of Horadam sequence terms

If A = R1eiφ1 , B = R2eiφ2 , z1 = e2πix1 , z2 = e2πix2 , the term wn in polar form is

reiθ = Azn
1 + Bzn

2 = R1ei(φ1+2πnx1) + R2ei(φ2+2πnx2).

Denoting θ1 = φ1 + nx2, θ2 = φ2 + nx2, one can write

reiθ = R1eiθ1 + R2eiθ2 , θ1, θ2 ∈ R, R1, R2 > 0. (3.3.1)

For R = R1 = R2, the formula for θ gives θ = 1
2(θ1 + θ2).

Periodicity of arguments

From the formula of θ, the sequence of arguments for wn is

θn =
φ1 + φ2

2
+ 2πn(x1 + x2).

For irrational and linearly independent 1, x1, x2, x1 + x2 is also irrational, so the se-

quence of arguments θn is aperiodic. This property is also valid for the sequence of

normalised arguments (θn + π)/(2π).
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Uniform distribution of arguments

When the values of x1 and x2 are irrational, the arguments θ1 = φ1 + 2πnx2, and

θ2 = φ2 + 2πnx2 ∈ [−π, π] are uniformly distributed modulo 2π, hence θ is uniformly

distributed on [−π, π]. The normalized argument (θ + π)/(2π) is then uniformly dis-

tributed in [0, 1], as seen in Fig. 3.19 (a).
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Figure 3.19: (a) Histogram of arg(wn)+π
2π vs uniform density on [0, 1]. (b) Normalized angle

correlations: (Arg(wn), Arg(wn+1)).

Autocorrelation of arguments

A test for the quality of pseudo-random number generators is the autocorrelation [49].

For a good quality generator, the 2D diagrams of normalised arguments (θn, θn+1)

should uniformly cover the unit square. The plot depicted in Fig. 3.19 (b) suggests

that consecutive arguments are very correlated.

3.3.2 Monte Carlo simulations

A Monte Carlo simulation approximating the value of π could involve randomly se-

lecting points (xn, yn)N
n=1 in the unit square and determining the ratio ρ = m/N, where

m is number of points that satisfy x2
n + y2

n ≤ 1. In our simulation two Horadam se-

quences {w1
n} and {w2

n} computed from formula (2.1.4) are used.

The parameters are x1 = e
2 , x2 = e2

4 for {w1
n}, and x1 = e

10 , x2 = π
10 for {w2

n}, with initial

conditions a = 1+ 1
3 i, b = 1.5a exp(π(x1 + x2)). The 2D coordinates plotted in Fig. 3.20

represent normalized arguments of Horadam sequence terms, given by the formula

(xn, yn) =

(

Arg(w1
n) + π

2π
,

Arg(w2
n) + π

2π

)

. (3.3.2)
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Figure 3.20: First (a) 1000; (b) 10000 points having coordinates (xn, yn) given by (3.3.2). Also

represented, points inside (circles) and outside (crosses) the unit circle (solid line).

In the simulation shown in Fig. 3.20(a), the sample size is N = 1000 and 792 points

satisfy x2
n + y2

n ≤ 1. Using this data, one obtains ρ = 792
1000 = 0.792 and π ∼ 4ρ = 3.1680.

The value significantly improves with the increase in the number of sequence terms, to

3.1420 for N = 104 (depicted in Fig. 3.20 (b)) and to 3.141888 for N = 106.

Table 3.1: 10N is the sample size used in each simulation.

10N H1 H2 F1 F2 MT1 MT2

1 0.0584 0.0584 -0.3297 -0.3297 -0.7258 0.8584

2 0.2584 -0.0216 0.0985 -0.0615 -0.0215 0.0985

3 0.0784 -0.0016 -0.0136 0.0304 -0.0456 0.0264

4 0.0104 0.0004 0.0092 -0.0200 0.0036 0.0096

5 0.0012 -0.0006 -0.0016 -0.0018 0.0004 -0.0034

6 0.0003 0.0000 -0.0001 -0.0010 -0.0026 -0.0015

7 0.0000 0.0000 0.0003 -0.0006 -0.0002 0.0004

A more detailed illustration of this convergence is shown in Table 3.1. There H1 and H2

are obtained from the pairs w1
n and w2

n of Horadam sequences, while H2 from sequences

w1
n and w3

n given below in the form (x1, x2, a, b): w1
n :=

(

e
2 , e2

4 , 1 + 1
3 i, 1.5aeπ(x1+x2)

)

,

w2
n :=

(

e
10 ,

√
5

15 , 1 + 2
3 i, 1.5aeπ(x1+x2)

)

, w3
n :=

(√
2

3 , e
15 , 1 + 2

3 i, 1.5aeπ(x1+x2)

)

.

The 2D coordinates producing the results in the table are then given by the formulae

H1 : (xn, yn) =

(

Arg(w1
n) + π

2π
,

Arg(w2
n) + π

2π

)

,

H2 : (xn, yn) =

(

Arg(w1
n) + π

2π
,

Arg(w3
n) + π

2π

)

.
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CHAPTER 4

Geometric patterns of complex

linear recurrent sequences

This chapter investigates the geometric properties of complex linear recurrent sequences

of arbitrary order, generalizing the results for Horadam sequences in Chapters 2 and 3.

The periodicity of linear recurrent sequences has been investigated mostly within the

context of finite fields and general rings (see [38, Chapter 3] and [106, 118]). Bagdasar

and Larcombe formulated necessary and sufficient periodicity conditions for complex

linear recurrent sequences [17]. Here we enumerate the periodic sequence of fixed

length and examine the geometric structure of their orbits. We then consider orbits

produced by roots of unity and present a mini-atlas of non-periodic patterns.

4.1 Preliminary results

Let m ≥ 2 be a natural number, a = (a1, . . . , am) and c = (c1, . . . , cm) be vectors of

complex numbers and let {wn(a; c)}∞
n=0 be the sequence defined by the recurrence

wn = c1wn−1 + c2wn−2 + · · ·+ cmwn−m, m ≤ n ∈ N, (4.1.1)

satisfying the initial conditions wi−1 = ai, i = 1, . . . , m.

In this chapter are established necessary and sufficient conditions for the periodicity of

generalized complex Horadam sequences. Results are derived using the formulas for

the general term of arbitrary linear recurrences, formulated in terms of the initial condi-

tions a1, . . . , am and the generators z1, . . . , zm, representing the non-zero roots (distinct

or equal) of the characteristic equation of (4.1.1)

λn = c1λn−1 + c2λn−2 + · · ·+ cm−1λn−m+1 + cmλn−m, n ∈ N. (4.1.2)
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The structure of the solution space for general linear recurrences under arbitrary con-

ditions is also discussed, based on the work of Ivanov [64]. Other means to obtain the

closed-form formulae for the general term exist, as for example those given in Andrica

and Toader [11], or Cobzaş [32, Chapter 6, Theorem 2.8].

The structure of the solution space for linear recurrences

A solution of the recurrence (4.1.1) is any function w : N → C satisfying the condition

w(n) = c1w(n − 1) + c2w(n − 2) + · · ·+ cmw(n − m), n ≥ m. (4.1.3)

Note that for a non-zero value of λ, the characteristic equation (4.1.2) is equivalent to

λm = c1λm−1 + c2λm−2 + · · ·+ cm−1λ + cm.

It may be assumed without loss of generality that the order of the recurrence can not be

reduced, therefore cm 6= 0. For finding a base of the vector space V, one may first check

that the functions w(n) = λn (λ 6= 0) are a solution of (4.1.3), whenever λ is a zero of

the characteristic polynomial

f (x) = xm − c1xm−1 − c2xm−2 − · · · − cm−1x − cm. (4.1.4)

As a complex polynomial, f (x) has exactly m roots. Examples of bases for V for the

cases when the roots of (4.1.4) are all distinct, all equal, or distinct with arbitrary mul-

tiplicities are presented below.

Theorem 4.1.1. ([64, Theorem 1]) If the characteristic polynomial f (x) defined in (4.1.4) has

m distinct roots z1, . . . , zm, then the m sequences

f1(n) = zn
1 , f2(n) = zn

2 , . . . , fm(n) = zn
m,

form a basis of the vector space V containing the solutions of the recurrence (4.1.3).

Theorem 4.1.2. ([64, Corollary 1]) If the characteristic polynomial f (x) defined in (4.1.4) has

m roots equal to z, then the m sequences

f1(n) = zn, f2(n) = nzn, . . . , fm(n) = nm−1zn,

form a basis of the vector space V containing the solutions of the recurrence (4.1.3).

Theorem 4.1.3. ([64, Theorem 2]) If a characteristic polynomial of a linear recurrence has m

distinct roots z1, . . . , zm of multiplicities d1, . . . , dm (d1 + · · ·+ dm = d), then the d sequences

fij(n) = nj−1zn
i , 1 ≤ i ≤ m, 1 ≤ j ≤ di, (4.1.5)

form a basis of the vector space V containing the solutions of the recurrence (4.1.3).
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4.2 Periodicity conditions

For convenience, the sequence {wn(a; c)}∞
n=0 defined in (4.1.1) for the complex m-tuples

a1, . . . , am (initial conditions) and c1, . . . , cm (coefficients) is denoted by {wn}∞
n=0. It is

assumed that recurrence order cannot be reduced, therefore cm 6= 0.

4.2.1 Distinct roots

Let z1, . . . , zm be distinct kth roots of unity (m ≤ k) and define P(x) by

P(x) = (x − z1)(x − z2) · · · (x − zm), x ∈ C. (4.2.1)

Also, consider the arbitrary initial conditions

wi−1 = ai ∈ C, i = 1, . . . , m. (4.2.2)

Theorem 4.2.1. The recurrent sequence {wn}∞
n=0 generated by the characteristic polynomial

(4.2.1) and arbitrary initial conditions (4.2.2) is periodic.

Proof. Sequence {wn}∞
n=0 of characteristic polynomial (4.2.1) satisfies the recurrence

wn = c1wn−1 + c2wn−2 + · · ·+ cmwn−m, m ≤ n ∈ N, (4.2.3)

with the coefficients c1, . . . , cm given by ci = (−1)i−1Si(z1, . . . , zm), where Si(z1, . . . , zm)

represents the symmetric sum of products having i (unordered) factors chosen from

z1, . . . , zm. From Theorem 4.1.1, the sequences f1(n) = zn
1 , f2(n) = zn

2 , . . . , fm(n) = zn
m,

form a basis in the vector space V of solutions of the recurrence (4.2.3), therefore the

n-th term of the sequence can be written as the linear combination

wn = A1zn
1 + A2zn

2 + · · ·+ Amzn
m. (4.2.4)

The coefficients A1, . . . , Am can be obtained from (4.2.4) and the initial conditions (4.2.2)

by solving the system of linear equations


































a1 = A1 + A2 + · · ·+ Am

a2 = A1z1 + A2z2 + · · ·+ Azm

· · ·
am = A1zm−1

1 + A2zm−1
2 + · · ·+ Azm−1

m .

As z1, . . . , zm are kth roots of unity, zn
i = zn+k

i , i = 1, . . . , m, therefore wn = wn+k, n ∈ N.

This shows that the sequence {wn}∞
n=0 is periodic and its period divides k.
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The initial condition (4.2.2) can be written in matrix form as














1 1 · · · 1

z1 z2 · · · zm
...

...
...

zm−1
1 zm−1

2 · · · zm−1
m





























A1

A2
...

Am















= Vm,m(z)















A1

A2
...

Am















=















a1

a2
...

am















, (4.2.5)

where Vm,m(z) denotes the square Vandermonde matrix. For distinct z1, . . . , zm, one

obtains det
(

Vm,m(z)

)

= ∏1≤i<j≤m(zj − zi) 6= 0.. Using the notation a = (a1, . . . , am),

Cramer’s rule [94] ensures that the unique solution of (4.2.5) is given by the expression

Ai = det
(

V i
m,m(z, a)

)

/ det
(

Vm,m(z)

)

, i = 1, . . . , m, (4.2.6)

where V i
m,m is the matrix obtained by replacing the i-th column of Vm,m(z) with aT.

The first N terms of the sequence {wn}∞
n=0 can be computed from the formula

VN,m(z) ∗ (A1, A2, . . . , Am)
T = (w0, w1, . . . , wN−1)

T (4.2.7)

Fig. 4.1 illustrates the periodic orbits of sequence {wn}∞
n=0 obtained from the recurrence

(4.2.3) (diamonds), or direct formula (4.2.7) (circles) when selecting (a) m = 3 and (b)

m = 5 distinct roots respectively, from the 7th roots of unity.
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Figure 4.1: First 15 terms of {wn}∞
n=0 computed from the recurrence (4.2.3) (diamonds) and

direct formula (4.2.7) (circles), for (a) m = 3, zj = e
2πi

7 (2j−1), and aj = .5e
2πi

5 (j+3), j = 1, 2, 3; (b)

m = 5, zj = e
2πi

7 j for j = 1, 2, 5, 6, 7 and aj = 3e
2πi

5 (j+1), j = 1, . . . , 5. Also illustrated, initial

conditions (stars), generators (squares), unit circle S (solid line) and orbit direction (arrows).

Theorem 4.2.2. (Necessary condition for periodicity) Let us assume that the roots z1, . . . , zm

of (4.2.1) are all distinct. The recurrent sequence {wn}∞
n=0 having the characteristic polynomial

(4.2.1) and initial conditions a1, . . . , am is periodic only if there exist k ∈ N positive s. t.

Ai(z
k
i − 1) = 0, i = 1, . . . , m, (4.2.8)

where A1, . . . , Am are computed from formula (4.2.6).
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4.2.2 Equal roots

Let z be a kth root of unity, m ∈ N and consider the polynomial P(x) defined by

P(x) = (x − z)m, x ∈ C. (4.2.9)

Theorem 4.2.3. The recurrent sequence {wn}∞
n=0 generated by the characteristic polynomial

(4.2.9) and initial conditions (4.2.2) is periodic when A2 = A3 = · · · = Am = 0, where

A1, . . . , Am are the coefficients of {wn}∞
n=0 in the basis defined in Theorem 4.1.2. The sequence

{wn}∞
n=0 is divergent otherwise.

Proof. Similarly to Theorem 4.2.1, the sequence {wn}∞
n=0 satisfies the linear recurrence

(4.2.3), for the coefficients c1, . . . , cm given by ci = (−1)i−1(m
i )z

i, i = 1, . . . , m. From

Theorem 4.1.2, the sequences f1(n) = zn, f2(n) = nzn
2 , . . . , fm(n) = nm−1zn, form a

basis in the vector space V of solutions of the recurrence generated by the characteristic

polynomial (4.2.9), hence the n-th term of the sequence can be written as

wn = A1zn + nA2zn + · · ·+ nm−1Amzn. (4.2.10)

For Ai = 0, i = 2, . . . , m we have wn = A1zn, so in this case the sequence {wn}∞
n=0 is

periodic. Whenever there exists i ≥ 2 s.t. Ai 6= 0, the behaviour of wn is dictated by the

divergent coefficient ni Ai of zn, therefore the sequence {wn}∞
n=0 diverges. This property

is illustrated in Fig. 4.2. The sequence can either be (a) periodic or (b) divergent.
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Figure 4.2: First 16 terms of sequence {wn}∞
n=0 computed from the recurrence (4.2.3) (dia-

monds) and direct formula (circles) for m = 3, z = e
2πi

5 and initial conditions (a) aj = e
2πi

5 j/3,

j = 1, 2, 3; (b) aj = e
2πi

7 j/3, j = 1, 2, 3. Also plotted are initial conditions (stars), generators

(squares) and unit circle S (solid line). Orbit’s diection is indicated by arrows.

Theorem 4.2.4. (Necessary condition for periodicity) The recurrent sequence {wn}∞
n=0 having

the characteristic polynomial (4.2.9) and initial conditions (4.2.2) is only periodic when

A1(z
k − 1) = 0, A2 = A3 = · · · = Am = 0, (4.2.11)

where A1, . . . , Am are computed from the initial conditions.
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4.2.3 Distinct roots with arbitrary multiplicities

Let 2 ≤ m ≤ k and d1, . . . , dm be natural numbers, z1, . . . , zm distinct kth roots of unity

and let the polynomial P(x) be defined as

P(x) = (x − z1)
d1(x − z2)

d2 · · · (x − zm)
dm , x ∈ C. (4.2.12)

Theorem 4.2.5. The recurrent sequence {wn}∞
n=0 having the characteristic polynomial (4.2.12)

of degree d = d1 + · · ·+ dm and initial conditions wi−1 = ai, i = 1, . . . , d is periodic when

Aij = 0, 1 ≤ i ≤ m, 2 ≤ j ≤ di, (4.2.13)

where Aij (1 ≤ i ≤ m, 1 ≤ j ≤ di) represent the coefficients of {wn}∞
n=0 in the basis (4.1.5)

defined in Theorem 4.1.3. The sequence {wn}∞
n=0 is divergent otherwise.

As illustrated in Fig. 4.3 (a), the sequence may be periodic even when di ≥ 2, i =

1, . . . , m. When any of the coefficients Aij, 1 ≤ i ≤ m, 2 ≤ j ≤ di does not vanish, the

sequence {wn}∞
n=0 diverges as depicted in Fig. 4.3 (b). A detailed explanation of this

behaviour is presented in Theorem 4.2.6.
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Figure 4.3: First 31 terms of sequence {wn}∞
n=0 computed from the recurrence (diamonds) and

direct formula (circles) for z1 = e
2πi

6 , z2 = e
4πi

6 , d1 = d2 = 2 and initial conditions (a) aj = 2e
2πi

6 j,

j = 1, . . . , 4; (b) aj = 2e
2πi

7 j, j = 1, . . . , 4. Initial conditions (stars), generators (squares) and unit

circle S (solid line). Arrows indicate the increase of sequence index.

Theorem 4.2.6. (Necessary condition for periodicity) Let 2 ≤ m ≤ k and d1, . . . , dm be natural

numbers. The recurrent sequence {wn}∞
n=0 having the characteristic polynomial (4.2.12) of

degree d = d1 + · · ·+ dm and initial conditions wi−1 = ai, i = 1, . . . , d is periodic only if

Ai1(z
k
i − 1) = 0, i = 1, . . . , m, (4.2.14)

Aij = 0, j = 2, . . . , di,

where the coefficients Aij are computed from initial conditions, for 1 ≤ i ≤ m, 1 ≤ j ≤ di.

41



CHAPTER 4: GEOMETRIC PATTERNS OF COMPLEX LINEAR RECURRENCES

4.3 The geometry and enumeration of periodic patterns

In this section we examine the geometry and number of periodic orbits.

4.3.1 Geometric bounds of periodic orbits

Theorem 4.3.1. Let 2 ≤ m ≤ k and d1, . . . , dm ∈ N. Let {wn(a; c)}∞
n=0 be a generalized

Horadam sequence. Assume that the roots z1, . . . , zm of the polynomial P(x) defined in (4.2.12)

are distinct. If {wn(a; c)}∞
n=0 is periodic, all sequence terms are located inside the disk of radius

|A11|+ |A21|+ · · ·+ |Am1|, with Aj1, j = 1, . . . , m computed from initial conditions.

4.3.2 The geometric structure of periodic orbits

Theorem 4.3.2. Let m ≥ 2 and k1, k2, . . . , km be natural numbers and consider the distinct

primitive roots of unity zj = e2πipj/k j , j = 1, . . . , m. Denote by K the least common multiple

of numbers k1, . . . , km, i.e., K = [k1, k2, . . . , km]. The orbit of the sequence {wn}∞
n=0 is then a

K-gon, whose nodes can be divided into K/kj regular kj-gons representing a multipartite graph.

4.3.3 The enumeration of periodic orbits

Let m ≥ 2 and consider the distinct roots of unity zj = e2πipj/k j with j = 1, . . . , m. We

assume that the coefficients A1, . . . , Am in formula (4.2.4) are all non-zero.

Definition 4.3.3. The number of distinct sequences of order m having period k for fixed a1, . . . , am

is denoted by Hm
P (k). Function Hm

P (k) is the number of tuples (P, K) = (p1, k1, p2, k2, . . . , pm, km)

(1 ≤ pj ≤ kj, j = 1, . . . , m) satisfying the conditions

Hm
P (k) = |{(p1, k1) = · · · = (pm, km) = 1, [k1, . . . , km] = k, k1 ≤ · · · ≤ km}| . (4.3.1)

Lemma 4.3.4. If k1 = k2 = · · · = km and [k1, k2, . . . , km] = k then k1 = k2 = · · · = km = k.

Lemma 4.3.5. If [k1, k2, . . . , km] = k and k1, . . . km are distinct, the number of 2m-tuples

(P, K) satisfying (4.3.1) is ϕ(k1)ϕ(k2) · · · ϕ(km).

Lemma 4.3.6. If the numbers k1, k2, . . . , km satisfying [k1, k2, . . . , km] = k can be partitioned

into s > 0 sets having dj elements equal to a value Ks for j = 1, . . . , s, then the 2m-tuples

(P, K) satisfying (4.3.1) corresponding to this m-tuple is

(

ϕ(K1)

d1

)(

ϕ(K2)

d2

)

· · ·
(

ϕ(Ks)

ds

)

.
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Theorem 4.3.7. Let us consider the integers k, m ≥ 2. The number of distinct generalized

Horadam sequences order m and fixed period k is equal to

HP(m; k) =
m

∑
s=1

{

∑
k1<k2<···<ks
d1+···+ds=k

1≤di≤k
[k1,...,ks]=k

(

ϕ(k1)

d1

)

· · ·
(

ϕ(ks)

ds

)}

.

An example for m = 3

To find HP(3; k), one needs to count all configurations (p1, k1) = (p2, k2) = (p3, k3) = 1

with [k1, k2, k3] = k. Then HP(3; k) = H1 + H2 + H3 + H4 where

(1) k1 = k2 = k3: H1 = ϕ(k)(ϕ(k)−1)(ϕ(k)−2)
3! = (ϕ(k)

3 );

(2) k1 = k2 < k3: H2 = ϕ(k1)(ϕ(k1)−1)
2! ϕ(k3) = (ϕ(k1)

2 )ϕ(k3);

(3) k1 < k2 = k3: H3 = ϕ(k1)
ϕ(k3)(ϕ(k3)−1)

2! = ϕ(k1)(
ϕ(k3)

2 );

(4) k1 < k2 < k3: H4 = ϕ(k1)ϕ(k2)ϕ(k3).

As a number sequence HP(3; k) in k ≥ 1 gives

k 1 2 3 4 5 6 7 8 9 10 11 · · ·
HP(3; k) 0 0 1 4 9 19 35 52 83 110 165 · · ·

not currently indexed in OEIS.

4.4 Orbits generated by roots of unity

Theorem 4.4.1. Let 2 ≤ m ≤ k and d1, . . . , dm be natural numbers, z1, . . . , zm distinct kth

roots of unity and the sequence {wn}∞
n=0 be generated by the characteristic polynomial (4.2.12).

Defining the number

d ∗ = max{j : Aij 6= 0, i ∈ {1, . . . , m}}, (4.4.1)

for the coefficients Aij (1 ≤ i ≤ m, 1 ≤ j ≤ di) given in Theorem 4.2.5, one obtains the

following properties referring to the sequence {wn}∞
n=0 and the subsequences {wNk+j}∞

N=0:

(a) For d ∗ ≤ 1 the sequence {wn}∞
n=0 is periodic.

(b) For d ∗ ≥ 2 the sequence {wn}∞
n=0 is divergent.

(c) For d ∗ ≤ 2 the terms of {wNk+j}∞
N=0 are collinear (including the periodic case d ∗ = 1).

(d) For d ∗ ≥ 3 the terms of {wNk+j}∞
N=0 converge asymptotically towards straight lines.

43



CHAPTER 4: GEOMETRIC PATTERNS OF COMPLEX LINEAR RECURRENCES

4.5 A mini-atlas of non-periodic of complex LRS patterns

In this section we examine certain types non-periodic LRS patterns. The results extend

those formulated in Chapter 3 for Horadam sequences. We shall again focus on non-

degenerate orbits produced by distinct generators, where the formula of the general

term is given by wn = A1zn
1 + A2zn

2 + · · · + Amzn
m, and the arbitrary initial conditions

a1, a2, . . . , am are such that the coefficients A1, . . . , Am are all non-zero.

The m ≥ 2 distinct generators are here denoted by

z1 = r1e2πix1 , z2 = r2e2πix2 , · · · , zm = rme2πixm , (4.5.1)

where r1, . . . , rm, x1, . . . , xm ∈ R. We may safely assume 0 ≤ r1 ≤ r2 ≤ · · · ≤ rm. The

generalized Horadam patterns produced by formula (4.2.10) for generators (4.5.1) are

1. Stable for r1 = r2 = · · · = rm = 1;

2. Quasi-convergent for 0 ≤ r1 ≤ r2 ≤ · · · ≤ rm = 1;

3. Convergent for 0 ≤ r1 ≤ r2 ≤ · · · ≤ rm < 1;

4. Divergent for rm ≥ 1.

The geometric patterns obtained in each case are presented below.

4.5.1 Stable orbits: r1 = r2 = · · · = rm = 1

Here the orbits corresponding to generators located on the unit circle are investigated.

For convenience we restrict to the case m = 3, where for initial conditions w0 = a,

w1 = b and w2 = c (a, b, c ∈ C), the general term formula for simple roots is given by

wn = A1zn
1 + A2zn

2 + A3zn
3 , (4.5.2)

where the constants A1, A2, A3 can be recovered from the initial conditions.

The patterns recovered in this scenario are finite sets (periodic), or sets dense within

certain 1D curves, or unions of 2D annuli and disks.

As illustrated in Section 4.3, sequence orbits are in this case located inside the disk of

radius |A1|+ |A2|+ |A3|, which is represented in the diagrams.

We here present a number of illustrative situations. Properties are linked to wether

terms of the set {1, x1, x2, x3} are linearly dependent (or independent) over Q, i.e., there

exist p0, p1, p2, p3 ∈ Q (not all zero) s.t. p0 + p1x1 + p2x2 + p3x3 = 0.

44



CHAPTER 4: GEOMETRIC PATTERNS OF COMPLEX LINEAR RECURRENCES

(a) Stable periodic (finite) orbits

When x1, x2, x3 ∈ Q the sequence orbit is finite (see Fig. 4.4). Indeed, when x1 = p1/k1,

x2 = p2/k2 and x3 = p3/k3 are irreducible, one has zk1
1 = zk2

2 = zk3
3 = 1. For certain

A1, A2, A3 values, sequence terms {wn}∞
n=0 repeat with periodicity lcm(k1, k2, k3).
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Figure 4.4: Orbit of {wn}∞
n=0 obtained by (4.5.2) for r1 = r2 = r3 = 1. (a1) x1 = 1

3 , x2 = 1
2 ,

x3 = 1
5 (30 points); (a2) x1 = 1

2 , x2 = 1
7 , x3 = 1

5 (70 points). Initial conditions w0, w1, w2 (stars),

generators z1, z2, z3 (squares), U(0, 1) (solid line), U(0, |A1|+ |A2|+ |A3|) (dotted line).

(b) Orbits dense in unions of circles (1D)

Horadam orbits may also be dense within unions of circles, as shown in Fig. 4.5.

(b1) x1, x2 ∈ Q and x3 ∈ R \ Q: orbit is dense in a union of [k1, k2] circles;

(b2) x1 ∈ R \ Q but x2 − x1, x3 − x1 ∈ Q: orbit is dense in a union of concentric circles.
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Figure 4.5: Orbit of {wn}∞
n=0, given by (4.5.2) for r1 = r2 = r3 = 1. (b1) x1 = 1/3, x2 =

√
5/20,

x3 = 1/2; (b2) x1 = π, x2 = π + 1/3, x3 = π + 1/3. Initial conditions w0, w1, w2 (stars),

generators z1, z2, z3 (squares), U(0, 1) (solid line), U(0, |A1|+ |A2|+ |A3|) (dotted line).
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(c) Stable orbits dense within 1D complex curves

The orbits may also be dense within unions of rotated curves as in Fig. 4.6, or within

more complex 1D curves. The closure of the orbit is

(c1) x1 ∈ Q, x2 ∈ R \ Q and x3/x2 ∈ Q: k1 rotated copies of a complex curve.

(c2) x1 ∈ R \ Q but x2/x1, x3/x1 ∈ Q: a complex curve of type f (z) = az + bzp + czq.
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Figure 4.6: Orbits of {wn}∞
n=0 dense within 1D curves, given by (4.5.2) for r1 = r2 = r3 = 1.

(c1) x1 = 1
3 , x2 = e, x3 = e

7 ; (c2) x1 = π, x2 = 1π
3 , x3 = 4π. Initial conditions w0, w1, w2 (stars),

generators z1, z2, z3 (squares), U(0, 1) (solid line), U(0, |A1|+ |A2|+ |A3|) (dotted line).

(d) Stable orbits dense within a 2D disk

If 1, x1, x2, x3 are linearly independent over Q, the orbit is dense within the disk of

radius |A1|+ |A2|+ |A3|. This usually happens when we combine square roots, e or π.

This case is illustrated in Fig. 4.7.
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Figure 4.7: Orbits of {wn}∞
n=0 dense within 2D regions, given by (4.5.2) for r1 = r2 = r3 = 1.

(d1) x1 = e, x2 = e2, x3 = e3; (d2) x1 = π, x2 = π2, x3 = π3. Initial conditions w0, w1, w2 (stars),

generators z1, z2, z3 (squares), U(0, 1) (solid line), U(0, | |A1|+ |A2|+ |A3|) (dotted line).
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(e) Stable orbits dense within a 2D region: Unions of annuli

If x1, x2 ∈ R \ Q with 1, x1, x2 linearly independent over Q and x3 ∈ Q, the orbit is a

collection of k1 annuli rotated around the origin. The situation is depicted in Fig. 4.8

for 3, and 4 annuli respectively.
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Figure 4.8: Orbits of {wn}∞
n=0 dense within 2D regions, given by (4.5.2) for r1 = r2 = r3 = 1.

(e1) x1 =
√

2
3 , x2 =

√
5

15 , x3 = 1
4 ; (e2) x1 =

√
2

3 , x2 =
√

5
15 , x3 = 1

3 . Also represented are

the initial conditions w0, w1, w2 (stars), generators z1, z2, z3 (squares), U(0, 1) (solid line) and

U(0, |A1|+ |A2|+ |A3|) (dotted line).

(f) Stable orbits dense within a 2D region: "Buns"

If x1, x2, x3 ∈ R \ Q with 1, x1 and x3 linearly dependent over Q (for example when

x3/x1 ∈ Q), the orbit is obtained by translating a disk along a closed 1D curve. This

case is illustrated in Fig. 4.9 for 3, and 5 lobes respectively.
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Figure 4.9: Orbits of {wn}∞
n=0 dense within 2D regions, given by (4.5.2) for r1 = r2 = r3 = 1.

( f 1) x1 = π, x2 = π2, x3 = 3π; ( f 2) x1 = π, x2 = π3/90, x3 = 6π. Initial conditions w0, w1, w2

(stars), generators z1, z2, z3 (squares), U(0, 1) (solid line), U(0, |A1|+ |A2|+ |A3|) (dotted line).
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4.5.2 Quasi-convergent orbits: 0 ≤ r1 ≤ r2 ≤ · · · ≤ rm = 1

Here one of the components vanishes. For simplicity we assume 0 < r1 < r2 = r3 = 1.

(a) Finite attractor set

When x2, x3 ∈ Q the orbit has lcm(k2, k3) attractor points. If x1 ∈ Q, there are k1 rays

towards each attractor, while for x1 ∈ R \ Q one obtains spirals (see Fig. 4.10).
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Figure 4.10: Orbit of {wn}∞
n=0 obtained by (4.5.2) for r1 = .995, r2 = r3 = 1. (a1) x1 = 1

3 , x2 = 1
2 ,

x3 = 1
5 ; (a2) x1 =

√
3

10 , x2 = 1
3 , x3 = 1

2 . Initial conditions w0, w1, w2 (stars), generators z1, z2, z3

(squares), U(0, 1) (solid line), U(0, | |A1|+ |A2|+ |A3|) (dotted line).

(b) 1D attractor set - circles

When x2 ∈ R \ Q the orbit’s closure may consist of circles. If x2 − x3 ∈ Q one has

concentric circles, while for x3 ∈ Q one obtains k3 rotated circles (see Fig. 4.11).
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Figure 4.11: Orbit of {wn}∞
n=0 obtained by (4.5.2) for r1 = .995, r2 = r3 = 1. (b1) x1 = π

10 ,

x2 = π
3 , x3 = π

3 + 1
2 ; (b2) x1 = 1

12 , x2 =
√

5
10 , x3 = 1

5 . Initial conditions w0, w1, w2 (stars),

generators z1, z2, z3 (squares), U(0, 1) (solid line), U(0, | |A1|+ |A2|+ |A3|) (dotted line).
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(c) 1D attractor set - curves

When x2 ∈ R \ Q and x3/x2 = q ∈ Q, the orbit is dense within a curve, representing

the graph of the function f : S → C defined by f (z) = A2z + A3z q. The details of this

statement are explained in Theorem 3.2.1 (c2). Two examples are shown in Fig. 4.12.

−5 0 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

Re z

Im
 z

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Re z

Im
 z

Figure 4.12: Orbit of {wn}∞
n=0 obtained by (4.5.2) for r1 = .995, r2 = r3 = 1. (c1) x1 = 1

3 ,

x2 =
√

2
2 , x3 = 4x2; (c2) x1 = π

25 , x2 = x1
4 , x3 = 20x2. Initial conditions w0, w1, w2 (stars),

generators z1, z2, z3 (squares), U(0, 1) (solid line), U(0, | |A1|+ |A2|+ |A3|) (dotted line).

(d) 2D attractor set - annuli

When 1, x2, x3 are linearly independent over Q the orbit’s closure is dense within an

annulus. The convergence property is illustrated in Fig. 4.13, when 2000 (d1), or 4000

(d2) sequence terms are evaluated, respectively.
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Figure 4.13: Orbit of {wn}∞
n=0 obtained by (4.5.2) for r1 = .995, r2 = r3 = 1 obtained for x1 = 1

3 ,

x2 =
exp(.5)

10 , x3 = π
5 and (d1) 2000 terms; (d1) 4000 terms;. Initial conditions w0, w1, w2 (stars),

generators z1, z2, z3 (squares), U(0, 1) (solid line), U(0, | |A1|+ |A2|+ |A3|) (dotted line).
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4.5.3 Convergent orbits: 0 ≤ r1 ≤ r2 ≤ · · · ≤ rm < 1

In this case the orbit has the origin as it’s single attractor. As seen in Chapter 3, numer-

ous patterns may emerge. We illustrate two of them in Fig. 4.14 below.
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Figure 4.14: Orbit of {wn}∞
n=0 obtained by (4.5.2) for r1 = .99, r2 = .995 and r3 = .997. (a1)

x1 = 1
2 , x2 = 1

3 , x3 = 1
4 ; (a2) x1 = 1

3 , x2 = π, x3 = 4π. Initial conditions w0, w1, w2 (stars),

generators z1, z2, z3 (squares), U(0, 1) (solid line), U(0, | |A1|+ |A2|+ |A3|) (dotted line).

4.5.4 Divergent orbits: rm > 1

In this case the orbit diverges. As seen in Chapter 3, numerous patterns may emerge.

(a) Divergent rays and spirals

If x1, x2, x3 ∈ Q, orbit diverges along rays. If x3 ∈ R \ Q spirals emerge (see Fig. 4.15).
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Figure 4.15: Orbit of {wn}∞
n=0 obtained by (4.5.2) for r1 = r2 = 1 and r3 = 1.002. (a1) x1 = 1

3 ,

x2 = 1
2 , x3 = 1

5 ; (a2) x1 = 1
3 , x2 = 1

2 , x3 = e3. Initial conditions w0, w1, w2 (stars), generators z1,

z2, z3 (squares), U(0, 1) (solid line), U(0, | |A1|+ |A2|+ |A3|) (dotted line).
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(b) General divergent patterns

Some other examples of divergent orbits are shown below in Fig. 4.16.
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Figure 4.16: Divergent orbits of {wn}∞
n=0 (various number of terms) obtained by (4.5.2) for

r1 = r2 = 1 and r3 = 1.002. Initial conditions w0, w1, w2 (stars), generators z1, z2, z3 (squares),

U(0, 1) (solid line), U(0, |A1|+ |A2|+ |A3|) (dotted line).
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CHAPTER 5

Enumerative sequences linked to

periodic complex LRS

The enumeration of periodic Horadam sequences requires counting ordered or (strictly)

increasing tuples having the same lcm. So far, arithmetic functions counting ordered

tuples with the same lcm (and gcd), have been investigated by Bagdasar in [15]. The

study led to novel additions to the OEIS database of integer sequences (A245019, A245020,

A247513, A247516, A247517) in 2014, along with new meanings for existing sequences.

5.1 Ordered tuples with the same lcm and gcd

In this section we discuss arithmetic functions counting ordered tuples of positive in-

tegers with the same lowest common multiple and same greatest common divisor.

Tuples of integers with the same lcm

Definition 5.1.1. The number of k-tuples of positive integers with lcm n is

LCM(n; k) = |{(a1, . . . , ak) : lcm (a1, . . . , ak) = n}| . (5.1.1)

Theorem 5.1.2. Let k and n be naturals numbers. If n has the factorization n = pn1
1 pn2

2 . . . pnr
r ,

the number of ordered k-tuples whose lcm is n defined in (5.1.1) is given by the formula

LCM(n; k) =
r

∏
i=1

[

(ni + 1)k − nk
i

]

. (5.1.2)

Remark 5.1.3. For particular values of k, one recovers the following OEIS indexed sequences:

A048691 for LCM(n; 2) (with numerous interpretations), and A070919, A070920, A070921

for LCM(n; 3), LCM(n; 4), LCM(n; 5), respectively.
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The following result illustrates the independence of LCM(n; k) on the prime factors.

Corollary 5.1.4. Let k be a natural number and n = pn1
1 pn2

2 . . . pnr
r , m = qn1

1 qn2
2 . . . qnr

r , such

that some, or all numbers p1, . . . , pr, q1, . . . , qr are distinct. Then LCM(m; k) = LCM(n; k).

An arithmetic function f (n) of the positive integer n is called

• multiplicative if f (1) = 1 and for any a and b coprime, then f (ab) = f (a) f (b).

• completely multiplicative if f (1) = 1 and f (ab) = f (a) f (b), even when a and b are

not coprime.

Remark 5.1.5. Let a, b be positive integers and f : N → N be a multiplicative arithmetic

function. The following property holds

f (gcd(a, b)) · f (lcm(a, b)) = f (a) · f (b) . (5.1.3)

Corollary 5.1.6. Let m, n be integers satisfying (m, n) = 1. The following property holds

LCM(m · n; k) = LCM(m; k) · LCM(n; k).

Corollary 5.1.7. Consider the natural numbers a and b. The following property holds:

LCM (gcd(a, b); k) · LCM (lcm(a, b); k) = LCM (a; k) · LCM (b; k) . (5.1.4)

Theorem 5.1.8. Let m, n and k ≥ 2 be positive integers. The following inequality holds

LCM(m · n; k) ≤ LCM(m; k) · LCM(n; k). (5.1.5)

Lemma 5.1.9. Let k ≥ 2, p be a prime number and α, β ≥ 1 natural numbers. Then

LCM(pα+β; k) ≤ LCM(pα; k) · LCM(pβ; k). (5.1.6)

Remark 5.1.10. The arithmetic function LCM(n; k) is not completely multiplicative. Indeed,

for p = 2, α = β = 1 one obtains the relation 3k − 2k
< (2k − 1k)(2k − 1k), which is true for

all values k ≥ 2.

Tuples of integers with the same lcm and gcd

The following lemma represents the motivation for the results in this section.

Lemma 5.1.11. Let d < n be positive integers, such that d|n. The number of ordered pairs

(a, b) with the same greatest common divisor d and least common multiple n is

|{(a, b) : gcd (a, b) = d, lcm (a, b) = n}| = 2ω(n/d).

where ω(x) represents the number of distinct prime divisors for the integer x.
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Definition 5.1.12. The number of ordered k-tuples with the same gcd d and lcm n is

GL(d, n; k) = |{(a1, . . . , ak) : gcd (a1, . . . , ak) = d, lcm (a1, . . . , ak) = n}| , (5.1.7)

Lemma 5.1.13. Let k and d|n be natural numbers. If d = pd1
1 pd2

2 . . . pdr
r and n = pn1

1 pn2
2 . . . pnr

r ,

the number of ordered k-tuples whose gcd is d, and lcm is n satisfies the property

GL(d, n; k) = GL(1, n/d; k). (5.1.8)

Lemma 5.1.14. Let k and α be positive integers. The number of tuples (α1, . . . , αk) satisfying

T(α; k) = |{(α1, . . . , αk) : min (α1, . . . , αk) = 0, max (α1, . . . , αk) = α}| , (5.1.9)

is given by the formula

T(α; k) = (α + 1)k − 2αk + (α − 1)k. (5.1.10)

Theorem 5.1.15. Let k and n be naturals numbers. If n has the factorization n = pn1
1 pn2

2 . . . pnr
r ,

the number of ordered k-tuples whose gcd is 1 and lcm is n, is given by the formula

L(n; k) =
r

∏
i=1

[

(ni + 1)k − 2nk
i + (ni − 1)k

]

. (5.1.11)

Corollary 5.1.16. Let k be a natural number and n = pn1
1 pn2

2 . . . pnr
r , m = qn1

1 qn2
2 . . . qnr

r , such

that all numbers p1, . . . , pr, q1, . . . , qr are distinct. Then L(m; k) = L(n; k).

The following result states the multiplicity of the arithmetic function L(n; k) for k ≥ 2.

Corollary 5.1.17. Let m, n be comprime integers and k ≥ 2. The following property holds

L(m · n; k) = L(m; k) · L(n; k).

Corollary 5.1.18. Let a, b be natural numbers. The following property holds:

L (gcd(a, b); k) · L (lcm(a, b); k) = L (a; k) · L (b; k) .

Moreover, the arithmetic function L(n; k) is not completely multiplicative.

Remark 5.1.19. Choosing m = n = 2 and k ≥ 2, one has

L(m · n; k) = 3k − 2 · 2k + 1 < (2k − 2) · (2k − 2) = L(m; k) · L(n; k).

Some inequalities for L(n; k) can also be proved, for general values of m and n.

Theorem 5.1.20. Let m, n and k ≥ 2 be positive integers. The following inequality holds

L(m · n; k) ≤ L(m; k) · L(n; k).
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5.2 Monotonic integer tuples having same lcm

For increasing and strictly increasing k-tuples whose lcm is n we use the notations

LCM≤(k, n) = |{(a1, . . . , ak) : [a1, . . . , ak] = n, 1 ≤ a1 ≤ · · · ≤ ak ≤ n}| ; (5.2.1)

LCM<(k, n) = |{(a1, . . . , ak) : [a1, . . . , ak] = n, 1 ≤ a1 < · · · < ak ≤ n}| . (5.2.2)

In what follows we will establish the links between the above formulae. The main goal

is to compute LCM≤ and LCM< as linear combinations involving LCM. For k, n ≥ 2

the k × n matrices for LCM, LCM< and LCM≤, are denoted by L, L< and L≤. Also,

the k × k transition matrices will be denoted by M,N ,P ,Q,R as below.

L<(k, n) = M(k, :) · L(:, n); (5.2.3)

L≤(k, n) = N (k, :) · L(:, n); (5.2.4)

L≤(k, n) = P(k, :) · L<(:, n); (5.2.5)

L(k, n) = Q(k, :) · L<(:, n); (5.2.6)

L(k, n) = R(k, :) · L≤(:, n). (5.2.7)

We will show that P and Q are invertible and the following identities hold

N = PM, M = Q−1, R = QP−1. (5.2.8)

5.2.1 LCM(k; n), LCM<(k; n) and LCM≤(k; n) for k = 3

A triplet consisting of numbers 1 ≤ a1, a2, a3 ≤ n with property [a1, a2, a3] = n may be

(1) (all equal): The only triplet with a1 = a2 = a3 and [a1, a2, a3] = n is (n, n, n);

(2) (two equal): Any pair a1 < a2 creates the increasing triplets (a1, a1, a2), (a1, a2, a2),

plus the ordered triples (a1, a2, a1), (a2, a1, a1), (a2, a1, a2), (a2, a2, a1);

(3) (all distinct): Any triplet a1 < a2 < a3 creates six ordered triples (permutations).

The following relations can be obtained

LCM≤(n; 3) = 1 + 2 · LCM<(2, n) + LCM<(3, n); (5.2.9)

LCM(3, n) = 1 + 6 · LCM<(2, n) + 6 · LCM<(3, n). (5.2.10)

Rewriting (5.2.10) for LCM<(3, n) and using the results for m = 2, we obtain

LCM<(3, n) =
LCM(3, n)− 3 · LCM(2, n) + 2

6
;

LCM≤(3, n) =
LCM(3, n) + 3 · LCM(2, n) + 2

6
.
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5.2.2 Recurrence coefficients

Here we discuss the coefficients linking LCM, LCM< and LCM≤.

The link between LCM≤ and LCM<

For a fixed n, the matrix P(k, j) (1 ≤ k, j ≤ n) in (5.2.5) is given by

P(k, j) =







(k−1
j−1), k ≥ j

0, k < j.

The link between LCM and LCM<

For a fixed n, the matrix Q(k, j) (1 ≤ k, j ≤ n) in (5.2.7) is given by

Q(k, j) =







j!S(k, j), k ≥ j

0, k < j.

where S(k, j) stands for the Stirling numbers of the second kind seen in Chapter 1.

The transformation matrices R, M and N

By (5.2.8), matrices P and Q were sufficient for computing R, M and N . These will

allow the computation of matrices for LCM≤ and LCM<.

Theorem 5.2.1. The following identities hold for K ≥ 2 and 1 ≤ j, k ≤ K:

R(k, j) = (−1)k+jQ
M(k, j) = (−1)k+jN .

5.3 Novel additions to OEIS

New sequences obtained from T(k, n) and L(n, k)

A245019: T(4, n) = 5n − 2 · 4n + 3n.

A245020: T(5, n) = 6n − 2 · 5n + 4n.

A247513: L(3, n) = 6ω(n) ∏
r
i=1 ni.

A247516: L(4, n) = 2ω(n) ∏
r
i=1

[

6n2
i + 1

]

.

A247517: L(5, n) = 10ω(n) ∏
r
i=1

[

2n3
i + ni

]

.
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Contributions to other sequences

The results in [15] contributed with new meanings to the following OEIS sequences:

A000918: T(n, 1) = 2n − 2 (number of proper subsets for a set with n elements)

A028243: T(n, 2) = 3n − 2n+1 + 1 (Stirling numbers of the second kind).

A008588: T(3, n).

A038721: T(3, n + 1).

A005914: T(4, n) = 12n2 + 2 (counts the points on the surface of a hexagonal prism).

A068236: T(5, n) = 20n3 + 10n.

A101098: T(5, n + 1).

A048091: LCM(2, n)

A070919: LCM(3, n)

A070920: LCM(4, n)

A070921: LCM(5, n)

A102309: Our work provided the first enumerative context. Indeed, a(n − 1) is the

number of periodic complex Horadam orbits with period n, for n > 2 [19].

Contributions to OEIS from Section 5.2:

A063647: L<(2, n). An interpretation for this sequence is the number of ways to write

1/n as sum of exactly two distinct unit fractions.

A086165: L<(3, n)

Axxxxxx: L<(4, n) - not currently indexed.

A018892: L≤(2, n) number of ways to write 1/n as sum of exactly two unit fractions.

A086222: L≤(3, n)

Axxxxxx: L≤(4, n) - not currently indexed.

A008778: L≤(n, 6) + fourth row of A022818.

A000292: L≤(n, 8) - tethraedral numbers n · (n + 1) · (n + 2)/6

Axxxxxx: L≤(n, 12) - not currently indexed.
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Appendix

a bridge between this work and professor Horadam - excerpt from [77]

We here present some details regarding the correspondence between the authors of the

Survey paper on Horadam sequences and Professor A. F. Horadam [77].

A Dedication to Professor A.F. Horadam

In the early part of April 2012 the author P.J.L. sent a draft version of this article to

Professor A.G. Shannon, a longstanding and close friend of A.F. Horadam with whom

he collaborated professionally. Professor Shannon, on a pre-planned visit to Armidale

(New South Wales, Australia) shortly afterwards, took a copy of the paper with him

from Sydney and read it to Professor Horadam who has not enjoyed good health for

a number of years. Our sincere thanks go to Professor Shannon, who passed on the

following comments from Professor Horadam:

“I am very flattered by the tone of the paper . . . [which is] comprehensive and

thorough with an insightful perspective on the history of the sequence.”

We are pleased to receive this personal endorsement from Professor Horadam, and

we would like to dedicate this paper to him in recognition of both the work he con-

ducted on the Horadam sequence and the motivation he has provided for others—

ourselves included—to continue to study it.

P.J.L.

O.D.B.

E.J.F.
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[44] Gould, H. W., Quaintance, J., Products of numbers which obey a Fibonacci-type recur-

rence, Fibonacci Quart., 45 (2007), 337–346.

[45] Halava, V., Harju, T., Hirvensalo, M., Positivity of Second Order Linear Recurrent

Sequences, T.U.C.S. Tech. Rep. No. 685, Turku Centre for Computer Science, Uni-

versity of Turku, Finland, 2005.

[46] Hardy, G. H., Wright, E. M., An Introduction to the Theory of Numbers, Oxford

University Press, Oxford, 5th ed., 1979.

[47] Haukkanen, P., A note on Horadam’s sequence, Fibonacci Quart., 40 (2002), 358–361.

[48] He, T.-X., Shiue, P.J.-S., On sequences of numbers and polynomials defined by linear

recurrence relations of order 2, Int. J. Math. Math. Sci., 2009 (2009), Article I.D.

No. 709386, 21pp.

[49] Hellekalek, P., Good random number generators are (not so) easy to find, Mathematics

and Computers in Simulation, 46 (1998), 485–505.

[50] Hilton, A. J. W., On the partition of Horadam’s generalized sequences into generalized

Fibonacci and generalized Lucas sequences, Fibonacci Quart., 12(4) (1974), 339–345.

[51] Hoffman, A. J., Wolfe, P., Minimizing a unimodal function of two integer variables,

Mathematical Programming Studies, Vol. 25 (1985), 76–87.

[52] Horadam, A. F., A generalized Fibonacci sequence, Amer. Math. Month., 68 (1961),

455–459.

[53] Horadam, A. F., Basic properties of a certain generalized sequence of numbers, Fi-

bonacci Quart., 3(3) (1965), 161–176.

[54] Horadam, A. F., Generating functions for powers of a certain generalised sequence of

numbers, Duke Math. J., 32 (1965), 437–446.

[55] Horadam, A. F., Special properties of the sequence wn(a, b; p, q), Fibonacci Quart.,

5(5) (1967), 424–434.

62



REFERENCES

[56] Horadam, A. F., Tschebyscheff and other functions associated with the sequence

{wn(a, b; p, q)}, Fibonacci Quart., 7(1) (1969), 14–22.

[57] Horadam, A. F., Elliptic functions and Lambert series in the summation of reciprocals

in certain recurrence-generated sequences, Fibonacci Quart., 26(2) (1988), 98–114.

[58] Horadam, A. F., Associated sequences of general order, Fibonacci Quart., 31(2) (1993),

166–172.

[59] Horadam, A. F., A synthesis of certain polynomial sequences, in Bergum, G. E., Philip-

pou, A. N. and Horadam, A. F. (Eds.), Applications of Fibonacci numbers (Vol. 6)

(1996), Kluwer, Dordrecht, Netherlands, 215–229.

[60] Horadam, A. F., Extension of a synthesis for a class of polynomial sequences, Fibonacci

Quart., 34(1) (1996), 68–74.

[61] Horadam, A. F., Shannon, A. G., Generalization of identities of Catalan and others,

Port. Math., 44 (1987), 137–148.

[62] Horzum, T., Kocer, E. G., On some properties of Horadam polynomials, Int. Math.

Forum, 4 (2009), 1243–1252.

[63] Hu, H., Sun, Z.-W., Liu, J.-X., Reciprocal sums of second-order recurrent sequences,

Fibonacci Quart., 39(3) (2001), 214–220.

[64] Ivanov, N. V., Linear Recurrences, preprint, http://www.mth.msu.edu/~ivanov/Reurrene.pdf (2008).

[65] Jeske, J. A., Linear recurrence relations - part i, Fibonacci Quart. 1(2) (1963), 69–74.

[66] Kiefer, J., Sequential minimax search for a maximum, P. Am. Math. Soc. 4 (1953),

502–506.

[67] Kiliç, E., Tan, E., More general identities involving the terms of {Wn(a, b; p, q)}, Ars

Comb., 93 (2009), 459–461.

[68] Kiliç, E., Tan, E., On binomial sums for the general second order linear recurrence,

Integers: Elec. J. Comb. Num. Theory, 10 (2010), 801–806.
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