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1 Polydomy in ants 

Although worldwide many ant species are known to form large polydomous systems 

comprised of many interrelated nests (e.g. Formica yessensis Wheeler, 1913 and Lasius 

sakagamii Yamauchi and Hayashida), in Europe only a handful of ant species develop 

polydomous systems (Seifert 2010). Among European well-known native polydomous ant 

species are Liometopum microcephalum (e.g. Petráková and Schlaghamerský 2011), Lasius 

fuliginosus (e.g. Czechowski et al. 2013) and many species from the genus Formica (e.g. 

Cherix 1980; Rosengren and Pamilo 1983; Rosengren 1986; Savolainen and Vepsäläinen 1989; 

Sundström 1993; Markó et al. 2012). Ecologically dominant native ants are often polydomous, 

and nest relocation and the maintenance of multiple nests both play a role in their competitive 

success (Debout et al. 2007; Helanterä et al. 2009; Buczkowski 2012; Boulay et al. 2014; 

Robinson 2014). 

Polydomy implies the existence of a plethora of specific features in ant species (Debout 

et al. 2007; Helanterä et al. 2009). In most of these species, polydomy and polygyny are 

correlated because polygynous colonies reproduce by budding (Alloway et al. 1982; Rosengren 

and Pamilo 1983; Helanterä et al. 2009). Polydomy often coincides with the loss or shorter 

range of nuptial flight in gynes, and with queens and males mating inside or in the close vicinity 

of the nest, while queens would not disperse far after mating (Chapuisat and Keller 1999). 

Colonies of such species usually reproduce through budding, where the daughter nests are 

formed by a fraction of workers and queens originating from the mother nest (Higashi 1979; 

Ross and Keller 1995). The newly formed daughter nests usually remain in social contact with 

the mother nest (Rosengren and Pamilo 1983; Pamilo 1991), and exchange workers, brood and 

food for several years (Liautard and Keller 2001, Gyllenstrand and Seppä 2003). 

Polydomy can empirically be identified in the field based on the overdensity of same-

species neighbors, the existence of shorter internest distances with very high mound densities, 

associated with huge number of workers, which often cover several hectares (Pisarski 1982; 

Savolainen and Vepsäläinen 1988; Hölldobler and Wilson 1990). Polydomous colonies range 

from the simplest structure, made up of two or few connected nests, to complexes of many 

thousands of nests (Markó et al. 2012; Giraud et al. 2002). 

The social connections between polydomous colonies can be broadly categorized into 

three types: (a) resource sharing (e.g. food, nest material) (e.g. Erős et al. 2009, Csata et al. 

2012), (b) exchange of colony members (e.g. queens, broods, workers, particular task groups) 

(Pisarski 1982, Debout et al. 2007, Kümmerli and Keller 2007), and (c) information sharing 

(e.g. recruitment of workers to food) (Robinson 2014). 

Polydomy can also be perceived as cooperation between separate parts of a colony 

evolutionary selected for to avoid conflict across nests, which would hinder the monopolization 

of resources (Debout et al. 2007; Erős et al. 2009). The lack of aggression (Astruc et al. 2001; 

Holzer et al. 2006) is evolutionary advantageous since aggression is costly, involving direct 

and indirect losses, while high accuracy non-nestmate discrimination system is needed in order 

to avoid recognition errors (Reeve 1989). The absence of intraspecific aggression within 

supercolonies leads to high population density, reduces costs associated with maintaining 
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territoriality, and ultimately leads to increased colony size, which is key to the ecological 

dominance in ants (Holway et al. 1998; Holway 1999; Steiner et al. 2007). 

Polydomy has numerous ecological advantages, in terms of colonization ability 

(Holway 1999; Giraud et al. 2002), resource exploitation (Hölldobler and Lumsden 1980; 

Holway and Case 2001; Elis et al. 2014) and interspecific competition (Holway 1999; Markó 

et al. 2013; Ślipiński et al. 2014). Consequently, supercolonial ants indeed are among the 

ecologically most successful organisms (Tsutsui et al. 2000; Debout et al. 2007; Helanterä et 

al. 2009). 

Socially connected nests can provide quick and low-risk spreading into a new area 

(Holway and Case 2000). The distribution of individuals and broods across nests may reduce 

the risk of colony extinction (Droual 1984; Cerdá and Retana 1998), which makes the colony 

less reliant on the survival of any particular nest, thus increases the resiliency of the system. 

Through this switch to dispersed central-place foraging behaviour from an entirely central-

place foraging strategy, the supercolonial system becomes more flexible (McIver 1991; 

Holway and Case 2000; Pfeiffer and Linsenmair 1998; Buczkowski and Bennett 2006). Thus, 

such ant species are thought to achieve energetic savings by decentralization (Hölldobler and 

Lumsden 1980), especially by reducing the overlap in the individual foraging paths (Traniello 

and Levings 1986; Davidson 1997), thereby increasing their foraging efficiency, competitive 

ability and effectiveness in defending resources form competitors (Cherix and Bourne 1980; 

Rosengren, 1986; Cao 2013). A polydomous colony can forage over a greater area on more 

diverse food resources, and thereby it stabilizes the colony’s food supply (Holway and Case 

2000; Cerdá et al. 2002). In particular, red wood ants of the subgenus Formica s. str. construct 

elaborate nests, and increase their food supply by tending aphids thus developing large 

supercolonies (Pisarski 1982). Such conditions may lead to the monopolisation of patches of 

habitat (Chapuisat and Keller 1999; Pfeiffer and Linsenmair 2001), as in the case of red wood 

ants, which dominate entire forests. 

The main aim of our study was to investigate the specific features of intra- and 

interspecific relationships within polydomial Formica ant nest systems, mostly in F. exsecta. 

2 Study species 

Our study species Formica (Coptoformica) exsecta Nylander, 1846, the narrow-headed 

ant, is a relatively common mound-building, pan-Palaearctic ant species. Both monogynous 

and polygynous colonies are frequent in F. exsecta; the latter can develop into large 

polydomous systems (Werner et al. 1979; Chudzicka 1982; Pisarski 1982; Skibińska 1982; 

Czechowski 1990; Seifert 2000; Bliss et al. 2006; Goropashnaya et al. 2007; Kümmerli and 

Keller 2007; Martin et al. 2009). One nest can contain from several hundred to several hundred 

thousand individuals, and in polygynous nests, the number of queens can reach several dozen 

(Pisarski 1982; Sorvari 2009). In the polygynous form, colonies may extend through nest 

splitting. Large aphid colonies and a high stability of the aphid source are usually needed for 

the development of such polydomous systems (Pisarski 1982). Formica exsecta supercolonies 

can effectively displace other ant species, as well as other arthropods, from their territory 

(Pisarski 1982). 
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3 Study site 

Fig. 1. Map of the studied Formica exsecta population (46°36’N, 25°36’E, Harghita County) 

with the polydomous systems (© Google Earth). 

Our investigations were carried out mainly in the southern part of the Giurgeului 

depression, in the eastern Carpathians, near the village of Voslobeni (Harghita County, 

Romania, 46°36’N, 25°36’E, 780 m a.s.l., Fig. 1). There are at least nine large polydomous 

systems of F. exsecta in the southern part of the depression. The smallest polydomous system 

comprised 12 nests, while the largest, and comprised more than 3000 nests, stretching over 

more than 22 ha. Several aspects of polydomy have already been studied in the case of the 

supercolony selected for the purpose of this study (Goropashnaya et al. 2007, Erős et al. 2009, 

Martin et al. 2009; Csata et al. 2012; Kiss and Kóbori 2012). The results of these studies are 

consistent with the general knowledge regarding polydomy. Thus, intranest relatedness of 

workers is low (r = 0.22 ± 0.06) (Goropashnaya et al. 2007), and the level of aggression is 

reduced between ants originating from different nests of the polydomous system (Martin et al. 

2009; Kiss and Kóbori 2012). The density of ant nests and aphid colonies can reach extreme 

values in specific parts of this system, and feeding grounds overlap to a great extent (Erős et 

al. 2009). Formica exsecta also builds outstations near aphid colonies, usually at the root of the 

aphid-housing plants (Csata et al. 2012). At the high density site outstations belonged to more 

ants nests, which, ultimately, could result in higher intensity of information flow among 

different nests. In the view of our previous results (BSc- and MSc-thesis) outstations act like 

localized information exchange centers, which contribute to the integration of nests within a 

supercolonial system (Erős et al. 2009; Csata et al. 2012). F. exsecta has a negative effect on 

ant communities of the supercolonies (Pisarski 1982; Czechowski et al. 2013; Markó et al. 

2013), it influences the presence or the abundance of sub-dominant ant species, and can cause 

significant changes in their foraging behaviour (Czekes et al. in prep; Maák et al. in prep.). 
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Table 1. The features of the studied nine supercolonies. 

Site code Area (m2) No. of nests Density 

(nests/ha) 

Mean nest mound 

diameter 

F1 220000   3347 152 55.11 (SD ±57.04) 

F2 19300  ~400 207 46.46 (SD ±56.01) 

F3 1940  37 191 40.51 (SD ±45.58) 

F4 660  18 273 37.94 (SD ±26.59) 

F5 4900  74 151 30.60 (SD ±24.05) 

F6 1670 20 119 48.20 (SD ±33.76) 

F7 1130  18 159 12.69 (SD ±6.78) 

F8 3600  67 186 29.77 (SD ±26.80) 

F9 840  15 179 47.73 (SD ±34.44) 

The main subjects of the present study, the F. exsecta supercolonies are located in a fen 

meadow with Molinia caerulea, Deschampsia caespitosa, Festuca pratensis, Briza media, 

Nardus stricta, Succisa pratensis, Filipendula ulmaria, Stachys offiinalis, and Cirsium palustre 

as the most abundant or characteristic plant species. The sites are overgrown with scattered 

small trees and saplings of Betula pubescens, Picea abies, Frangula alnus, and Salix spp. The 

meadows are fairly intensely grazed by cows for most of the year (Fig. 2). 
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4 Results 
 

4.1 The largest polydomous system of Formica ants in Europe 

Our primary aim was (1) to reveal how unique the recently discovered Formica exsecta 

population is in Europe, which comprises nine polydomous colonies (see Fig. 1). We 

hypothesized that differences in ant nest density within a supercolony could result in 

differences regarding the number of connections an ant nest has with other nests e.g. through 

shared aphid colony tending. 

Based on our results, the supercolony presented here is by far the largest known 

European polydomous system not just for this species, but most probably for all mound 

building territorial Formica species. The entire population is remarkably large; it could well be 

one of the largest F. exsecta populations in Europe. 

The presence of aphid colonies together with other rich food sources may shape ant 

communities by allowing aphid-tending ants to become numerically (and, in the case of certain 

species, also behaviorally) dominant, reducing the abundance and success of other ant species 

(Banschbach and Herbers 1996). Under optimal conditions, colonies of certain aphid-tending 

ants can develop into large polydomous systems (Pisarski 1982; Debout et al. 2007). These 

factors, among others, could have led to the formation of these F. exsecta supercolonies (Erős 

et al. 2009). Although mostly stable, such polydomous systems show certain variations in time 

and space that can be attributed to some extent to the dynamics of the aphid sources (Bönsel 

2007; Vepsäläinen and Savolainen 1994; Czechowski and Vepsäläinen 2009). In this 

supercolony, very few changes occurred in the number of F. exsecta nests compared to a 

previous study period reported in Erős et al. (2009). The relatively high stability found for the 

ant nests suggests suitable habitat conditions, with the persistence of available food sources 

possibly being one of the most important stabilizing factors.  

It is reasonable to assume that biases in ant-nest distribution and size within 

supercolonies can be caused by heterogeneity in the distribution and availability of permanent 

food sources, e.g., aphid colonies. For example, Werner et al. (1979) showed that F. exsecta 

nests tend to be aggregated around trees within a polydomous system, not just because of the 

better climatic conditions, but also because of the richer aphid sources. The Formica exsecta 

population presented here seems extremely healthy and stable due to high ant nest density and 

ant nest number. 
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4.2 Habitat characteristics of polydomous systems in Formica exsecta 

Habitat characteristics influence also the composition and stability of ant communities, 

species abundance and also the development of specific social structures (Boomsma and van 

Loon 1982; Hölldobler and Wilson 1990; Bönsel 2007). A variety of ecological factors may 

favor the spatial separation of a colony (Cerdá et al. 2002). Polydomy has often been considered 

as a response to various environmental constraints, and several hypotheses have been proposed. 

But how could such large polydomous system develop in a relatively restricted area? Thus, 

further on we were interested to find out (1) which habitat features could contribute to the 

formation and stability of such polydomous systems? (2) Can a set of optimal habitat 

characteristics be identified based on F. exsecta nest density and nest size? (3) Is there any 

specific traditional land use strategy, which helps them survive and develop? 

Fig. 2. Typical habitat of a Formica exsecta supercolony in the study region. 

On the basis of our results F. exsecta polydomous systems develop in grazed, open 

areas with low shrub-coverage and reduced shrub height (Fig. 3). The traditional low intensity 

grazing controls the height and cover of shrubs, thus prevents the development of forests, which 

are un-habitable for F. exsecta. Thus, to some extent, grazing by cows could be beneficial for 

F. exsecta supercolonies, as it keeps trees and shrubs below a certain height. However, too 

intense grazing can represent a major threat for this species (Werner et al. 1979; Erős et al. 

2009). Trampling by cows can reduce vegetation cover and prevent nests from budding by 

destroying incipient nests. The features (no. of nests, nest density, nest size) of the studied 

polydomous systems are unique in Europe, which shows that the habitat conditions are optimal 

for F. exsecta. The results of our study could further on be used for the elaboration of an 

appropriate conservation plan of the studied F. exsecta polydomous systems. The relatively 

high stability of the ant nests in these supercolonies suggests suitable habitat conditions, with 
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the persistence of available food sources possibly being one of the most important stabilizing 

factors (Erős et al. 2009). 

Fig. 3. NMDS ordination of study sites based on vegetation parameters (Bray-Curtis similarity, 

stress = 2.52). Abbreviations: shade – shading, pcov – plant cover, pheight – plant height (excl. 

shrubs), moss – moss cover, bare – bare ground cover, shrubh – shrub height, shrubc – shrub 

cover. 

  

CONTROL 
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Fig. 4. The size of ant nests in different intensity grazed sites. 

 

Nevertheless, the recent changes in Romanian agriculture, which have caused a drastic 

decrease in cow numbers and consequently abandonment of traditional extensive grazing and 

haymaking techniques, additionally the illegal burning. These changes may affect the size of 

F. exsecta nests (Fig. 4) and their density (Fig. 5). These changes may endanger the survival of 

this unique population in the long run, as proven in other related species (Bönsel 2007). Thus, 

only the implementation of an appropriate management plan could help the survival of this 

unique social system. 
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Fig. 5. The mound volume of dead and survived nests after illegal arsen. 

 

4.3 The key to cooperation: nestmate and non-nestmate discrimination within a 

supercolonial system 

The lack of aggression and recognition of kins on the basis of a simple cues among non-

nestmate workers within polydomous systems is well-known. The colony odour plays a key 

role in ensuring the social cohesion and, therefore, it is at the basis of altruistic behaviour within 

a society (Beye et al. 1997; Mateo 2004), whether constituted by a small family group or by 

millions of individuals. In ants, the cues responsible for colony-mate recognition are specific 

bouquet of cuticular hydrocarbons (CHC-profile), which has an inherited and an acquired 

component (Lahav et al. 1999; Wagner et al. 2000; Lenoir et al. 1999). Polydomy, however, 

poses an intriguing problem, since workers must recognize not only nestmates residing in the 

same nest, but also those living in other nests (Beye et al. 1997). The small differences 

occurring between workers coming from different parts of a supercolony could not be mirrored 

by other behavioral acts as e.g. antennation, which is known to be the first step to discrimination 

(Boulay et al. 2000; Holzer et al. 2006). (1) Does the length of intraspecific interactions show 

some variations within an exceptionally large supercolonial system, and, more importantly (2) 

could the duration of antennations reflect, as suggested above, the process of updating 

recognition cues in case of encounters where individuals are coming from distant nests? (3) 

The level of aggression was very low among non-nestmate F. exsecta, almost no 

aggression was registered against conspecific individuals. This leads us to the conclusion that, 

as stated by Kiss and Kóbori (2011), the F. exsecta nest-complexes, which are more than 500 

m away from each other, are forming a meta-nest-complex. 
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Fig.6. Aggression indices based on the frequency of aggressive interactions (different letters 

indicate significant differences). 

 

There was, though, a slight but not significant increase in the aggressiveness with 

increasing distance (Fig. 6), which might indicate that there is a slight separation between these 

nest-complexes, yet this is not enough for rejection. The lack of intraspecific aggression is even 

more emphasized when the registered aggression levels are compared to the aggression 

recorded in the case of interspecific encounters, where, indeed, aggression peaked. 

 

Fig. 7. Antennation indices based on the frequency of antennations (different letters indicate 

significant differences). 
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The data on antennation behaviour showed also no significant increase in the duration 

of bouts between nestmates and non-nestmates, between nests of different nest-complexes (Fig. 

7). The lack of differences in the peaceful mutual investigation by antennation between ants 

from different nests might be caused by small differences in colony odor. This study supports 

that our study system can indeed function as a supercolony, since ants there is mutual 

acceptance among ants coming from various parts of the same system, but they are even 

tolerant to workers from different system of the same population. 

 

4.4 Potential antimicrobial properties of Formica exsecta nest mound’s plant material 

The social system of ants is an attractive target for many parasites due to the high 

abundance of potential host organisms and the spatial stability of nests (Buschinger 2009; 

Boomsma et al. 2014). A polydomous system is made up of high number of related ant nests, 

which are connected through permanent worker and information exchange that (Kümmerli and 

Keller 2007) could promote the dispersal of parasites (Schmid-Hempel 1995). Parasites can 

dramatically reduce host fitness, therefore hosts are expected to evolve protective mechanisms 

and behavioral adaptations that reduce the risk of infection or minimize parasite-induced fitness 

loss. In addition to immune defense mechanisms, the use of plant metabolites is also known to 

be efficient in many cases against pathogens (Clark 1991; Huffman 2003). It is known that 

wood ants species nest mound building is associated with frequent needle turnover and they 

collect and incorporate antimicrobial plant resin from conifer trees into their nests, which 

prevents and reduces microbial growth, and can the increase the survival chances of parasitized 

individuals (Christe et al. 2003; Chapuisat et al. 2007; Castella et al. 2008; Simone et al. 2009; 

Simone-Finstrom and Spivak 2010; Brütsch and Chapuisat 2014). We wished to examine 

whether the nest material of F. exsecta mounds, which contains plant remnants, has some 

general antimicrobial properties, such as it is known in several bird and mammal species. Our 

study show a clear negative results. The F. exsecta nest mound’s plant material does not have 

any negative antimicrobial effect on microorganisms from the nests or from the soil (Fig. 8). 

On the other hand, the nest material is heterogeneous, which might explain the large variance 

in the data and the lack of clear trends. 
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Fig. 8. The colony number of microorganisms among different treatments with Festuca grass 

blades and with Picea needles in the autumn samples. 

 

 

4.5 Simple defense mechanisms that keep Pandora’s box closed in an ant nest system 

parasitized by a highly pathogenic fungus 

The lethal endoparasitic fungus Pandora myrmecophaga is known from the studied 

Formica exsecta polydomial system (Csata et al. 2012). The fungus manipulates the host in 

order to ensure its efficient distribution within the supercolony (Roy et al. 2006. Boer 2008). 

Based on this most efficient transmission mechanism considerable prevalence of the fungus 

would be expected in a parasitized social system. A hypothesis of a simple social behavioral 

defense strategy was anecdotally formulated by Marikovsky (1962) based on his field 

observations and we tested this hypothesis regarding the existence of simple defense 

mechanism: workers would dispose of every corpse, as potential source of infection, appearing 

on grass-blades, thus lowering the chances of spore dispersal. 

After discovering corpses ants removed them quickly (Fig. 9), and larger nests, which 

were more active, reacted generally more promptly. The result of this efficient reaction is the 

prevention of the development of the conidia, which needs at least 2-4 days in natural 

conditions (Marikovsky 1962, Boer 2008, pers. obs.), but in favourable conditions, with 

elevated temperature and moisture the spores could develop after one day (pers. obs.). The 

generality of this prophylactic strategy is very important, since usually specific defense 

mechanisms are costly. 
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Fig. 9. Estimated functions for Cox regression of time to corpse removal based on the type of 

corpses. Broken lines represent a point-wise 95-percent confidence interval around the 

corresponding functions. 

 

4.6 Pollen as alternative food source for subdominant ant species in suboptimal 

circumstances on the territories of polydomous F. exsecta and F. polyctena 

Ants, being so ubiquitous, have the potential to influence plants both beneficially and 

antagonistically. Thus ants contribute decisively to the dispersal of a wide array of plant 

species, however, they could also have serious negative impact on plants, especially with 

regards to the process of on pollination (Beattie et al. 1986; Ashman and King 2005). In order 

to hinder this impact, many plant species have evolved traits that repel ants (Willmer and Stone 

1997; Ghazoul 2001; Raine et al. 2002; Nicklen and Wagner 2006; Wagner and Kay 2002; 

Ballantyne and Willmer 2012), therefore, regardless of the fact that ants are omnivorous, pollen 

seems to be very rare in their diet (Czechowski et al. 2011; Cembrowski et al. 2015). We 

hypothesized that food shortage caused by extreme competitive pressure of polydomous 

territorial ant species may drive subdominant species to use resources that are not commonly 

utilized, as pollen. Two supercolonial systems, one of Formica exsecta and one of F. polyctena 

offered suitable field conditions to test this hypothesis. 

We examined the effect of polydomial F. exsecta and F. polyctena, which are at the top 

of the hierarchical competitive system (Cherix 1980; Pisarski 1982; Erős et al. 2009), on 

foraging strategies of subdominant species, specifically on their pollen utilization, as 

suboptimal food source. Our main result is that Myrmaica species consume pollen and even 
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recruit to it more often and in higher number pollen in patches where the territorial dominates 

generally the food sources (Fig. 10-11). It has been several times documented in many different 

species that submissives adapt to the presence of dominants by changing their foraging 

strategies, e.g. selecting for less rewarding food sources (Savolainen and Vepsäläinen 1988; 

1989; Savolainen 1991; Vepsäläinen and Pisarski 1982; Markó and Czechowski 2012; 

Czechowski et al. 2013; Markó et al. 2013). Such possible alternative source is pollen, which 

has a high nutritional value (Roulston and Cane 2000), but ants often avoid it possibly because 

of repellents produced by plants (Junker et al. 2007; Junker and Blüthgen 2008; Willmer et al. 

2009). Our results show that indeed submissive species, as e.g. Myrmica spp. on the territories 

of both supercolonies, tend to consume pollen, which is usually avoided or at least markedly 

less utilized by dominants. On territory of F. exsecta other submissive species were also 

recorded to consume pollen, as F. cunicularia, F. fusca, and M. schencki, while on the territory 

of F. polyctena Temnothorax spp. individuals were seen on pollen in addition to Myrmica spp. 

We even observed recruitment to pollen by submissive ants: M. scabrinodis on F. 

exsecta territory and Myrmica spp. on F. polyctena territory. When a forager discovers a 

rewarding food source returns to the nest laying a pheromone trail, and recruits other foragers 

from the nest, which then follow the discoverer via the previously laid pheromone trail 

(Beckers et al. 1990). In this way the colony can exploit the food source much quicker, more 

efficiently (see Beckers et al. 2009, Czaczkes et al. 2015). These observations also confirm that 

pollen can be attractive in certain conditions. 
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Fig. 10. Occurrence of ants on pollen baits within the territory of the F. exsecta supercolony 

and in the control site. 

Fig. 11. Number of Myrmica spp. individuals eating pollen in empty patches and in those 

dominated by F. polyctena. 

In the frame of our study we demonstrated that the consumption of pollen in ants can 

be much more frequent than originally thought. In suboptimal circumstances ants could exploit 

this resource too. In a poorer habitat the submissive species used more the pollen as alternative 

sources, so pollen constitutes an important food source in such a habitat, where the competition 

is fiercer. This also underlines the importance of repellent agents produced by plants, since our 

study demonstrates that in the lack of these agents ants might easily turn to utilize this 

alternative food source. 
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4.7 A peculiar natural disturbance factor for supercolonies: brown bears (Ursus 

arctos) 

The importance of ants as food source for bears has been recognized for quite a while 

(Boltunov 1993; Elgmork and Unander 1998; Bojarska et al. 2012). Since a highly dense multi-

nest system, as supercolony of F. exsecta could constitute a stable, and highly rewarding food 

source, and the region where it is located is known for its large brown bear population, we can 

hypothesize that bears would target the supercolony. We proposed to evaluate the potential 

impact of brown bears on the supercolony by performing a standard census of attacked ant 

nests. 

Out of F. exsecta ant nests 916 (56%) mounds were visibly attacked by bears (Fig. 13). 

The attack proportion seems to be high, though, when comparing it solely to available data on 

F. exsecta (56% vs. 0-2% after Atanassov 1983 in Swenson et al. 1999). 

Consequently, our large F. exsecta supercolony constitutes an important food source 

for brown bears in the area. It is not clear though, whether bear attacks could actually be fatal 

to the F. exsecta supercolony on the long run. Regular bear visits of the meadow may, in a 

strange way, even benefit the supercolony due to destruction of shrubs and saplings, which, if 

maturing, could cause the decay of F. exsecta nests by increasing shadow (Seifert 2000). 

 

Fig. 13. Number of unharmed and bear-excavated Formica exsecta nests. 
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5 Conclusions 

 

Our findings have important implications for our understanding of supercoloniality in 

ants. 

 Our most studied F. exsecta supercolony is by far the largest known European 

polydomous system not just for this species, but most probably for all mound building 

territorial Formica species. The entire population is remarkably large; it could well be 

one of the largest F. exsecta populations in Europe, which implies the need for its 

protection. 

 

 The F. exsecta population presented here seems extremely healthy and stable due to 

high ant nest density and ant nest number, which can be caused both by the stability of 

permanent food sources, as e.g., aphid colonies. 

 

 F. exsecta polydomous systems develop in grazed habitats, open areas with low shrub-

coverage and reduced shrub height. The traditional low intensity grazing controls the 

height and cover of shrubs, thus prevents the development of forests, which are un-

habitable for F. exsecta. Thus, to some extent, grazing by cows could be beneficial for 

F. exsecta supercolonies, as it could keep trees and shrubs below a certain height. The 

features (no. of nests, nest density, nest size) of the studied polydomous systems are 

unique in Europe, which shows that the habitat conditions are optimal for F. exsecta. 

 

 The lack of differences in the frequency and duration of peaceful mutual investigation 

by antennation between ants from different nests might be caused by small differences 

in colony odor. This study supports that our study system can indeed function as a 

supercolony, since there is a mutual acceptance among ants coming from various parts 

of the same system, but they are even tolerant to workers from different system of the 

same population. The results are also supported by the lack of aggression towards each 

other, but also by the high level of aggression towards alien rivals as F. sanguinea. 

 

 The lethal endoparasitic fungus Pandora myrmecophaga is known from the studied 

Formica exsecta polydomial system. We tested the hypothesis regarding the existence 

of simple defense mechanism: workers would dispose of every corpse, as potential 

source of infection, appearing on grass-blades, thus lowering the chances of spore 

dispersal. After discovering the corpses ants removed them quickly, and larger nests, 

which were more active, reacted generally more promptly. The result of this efficient 

reaction is the prevention of the development of the conidia, which needs at least 2-4 

days in natural conditions, but in favorable conditions, with elevated temperature and 

moisture the spores could develop after one day (pers. obs.). The generality of this 

prophylactic strategy is very important, since usually specific defense mechanisms are 

costly to maintain. 

 

 The consumption of pollen in ants can be much more frequent than originally thought. 

In suboptimal circumstances ants could exploit this resource too. In an area dominated 

by territorials as the supercolonial F. exsecta and F. polyctena the co-occurring 

submissive species, as Myrmica spp., Temnothorax spp. and Serviformica spp. used 

more frequently pollen as alternative food source, so pollen constitutes an important 
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resource in such a habitat, where the competition is fiercer. This also underlines the 

importance of repellent agents produced by plants, since our study demonstrates that in 

the lack of these agents ants might easily turn to utilize this alternative food source and 

thus heavily exploit plants. 

 

 Our large F. exsecta supercolony constitutes an important food source for brown bears 

in the area. It is not clear though, whether bear attacks could actually be fatal to the F. 

exsecta supercolony on the long run. Regular bear visits of the meadow may, in a 

strange way, even benefit the supercolony due to destruction of shrubs and saplings, 

which, if maturing, could cause the decay of F. exsecta nests by increasing shadow. 

 

 The recent changes in Romanian agriculture, which have caused a drastic decrease in 

cow numbers and consequently abandonment of traditional extensive grazing and 

haymaking techniques, additionally the spread of illegal burning as management 

strategy, may endanger the survival of this unique population on the long run. Thus, 

only the implementation of an appropriate management plan could help the survival of 

this intriguing social system with its unique features. 
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