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Introduction

The Stackelberg competition model is a game in which the leader player
moves first and then the follower player moves sequentially. In order to
solve such a game, the so-called backward induction method is applied.
The first step is to find the best strategy/response for the follower
player by considering the strategy action of the leader player as a pa-
rameter; then, having in our mind this parameter-depending response,
the choice of the best strategy of the leader player concludes the prob-
lem. Consequently, the leader in the Stackelberg model has an advan-
tage while the follower has to react to the leader’s action, otherwise
the game reduces to the usual Nash competition model. In the usual
Nash model the two players are competing at the same level, while in
the Stackelberg model the players are subordinated to each other. For
some comparison results, we refer the reader to the papers of R. Amir
and I. Grilo [2], A.J. Novak, G. Feichtinger and G. Leitmann [53], and
W. Stanford [63]. For instance, in [53] the authors show that the Stack-
elberg model describes efficiently the combat against terror activities
(the terrorists being the leaders while officialities are the followers).

The purpose of the present thesis is to provide a variational ap-
proach to Stackelberg equilibria, focusing mainly on the behavior of
the follower player by using various elements from Calculus of Vari-
ations. Since the follower’s strategy is to minimize his loss (which
depends on the strategy of the leader), we shall apply several results
from the theory of variational inequalities together with deep results
from nonsmooth analysis and Riemannian geometry. This approach is
clearly motivated by:

• Variational inequalities. Since we are interested to find mini-
mum points of certain payoff functions, it is natural to consider
(nonsmooth) critical points and variational inequalities. Simple
examples support this approach; indeed, if f(x) = x for x ∈ [0, 1],
no critical points exist in the usual sense but the variational in-
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6 INTRODUCTION

equality f ′(x0)(x − x0) ≥ 0 for every x ∈ [0, 1] has the unique
solution x0 = 0 which is indeed a minimum point of f over [0, 1].
The appropriate concept to handle these phenomena is provided
by the Motreanu-Panagiotopoulos-type functionals, which is the
perturbation of a locally Lipschitz function by a proper, convex
and lower semicontinuous functional (e.g. the indicator function
of a convex set).

• Riemannian geometry. There are certain cases when the strat-
egy sets are not convex in the usual (Euclidean) sense but are
geodesic convex with respect to some other metric. A special
class of manifolds where we can elaborate Stackelberg and Nash
equilibria is the so-called Hadamard manifolds (which are sim-
ply connected, complete Riemannian manifolds with non-positive
sectional curvature).

The thesis is divided into four chapters.

In the first chapter we recall those theoretical results which are
needed to elaborate the thesis itself, making this work as self-contained
as possible. In particular, we recall Ekeland’s variational principle,
fixed point theorems, elements from set-valued and nonsmooth anal-
ysis, results from nonsmooth critical point theory and basic elements
from Riemannian geometry.

In the second chapter we study the existence and location of Stack-
elberg equilibria for two players by using appropriate variational in-
equalities and fixed point arguments; here, the payoff functions need
not be smooth. When the strategy sets are compact, we establish an
existence result for the so-called Stackelberg variational response by
using the set-valued Begle fixed point theorem. Here we also con-
struct a payoff function for which Stackelberg equilibria exist but the
set of Nash equilibria is empty. In the case when the strategy sets
are non-compact, we prove a uniqueness result by using a discrete and
a continuous projective dynamical system, both converging exponen-
tially to the unique element of the Stackelberg variational response set.
This chapter is based on the paper written by Sz. Nagy [49] (where
the results were presented in the smooth setting).

The third chapter extends the results from the previous chapter to
the case when the strategy sets are curved. More precisely, inspired
by A. Kristály [36, 37], we assume that the strategy sets are geodesic
convex subsets of certain finite-dimensional Riemannian manifolds. In
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order to achieve our aims, we consider the class of Hadamard mani-
folds which possesses two crucial properties: the non-expansiveness of
the metric projection map and the so-called Moskovitz-Dines property
(called also the obtuse-angle property) of the projection. We consider
both compact and non-compact strategy sets in order to prove exis-
tence, location and uniqueness of the Stackelberg variational response.
We notice that the presence of Hadamard manifolds plays a crucial role
in our investigations not only from the analytical point of view (cer-
tain estimates are based on the Rauch comparison theorem and fine
properties of the metric projections) but also from geometric point of
view; indeed, we know after A. Kristály [37] that the aforementioned
properties of the metric projection map characterize the Hadamard
manifolds among complete, simply connected Riemannian manifolds.
The results of this chapter are based on the paper by A. Kristály and
Sz. Nagy [38].

The fourth chapter is devoted to the study of multiplicity of the
Stackelberg variational responses. The existing literature usually pro-
vides results where the latter set is a singleton, i.e., the variational
response of the follower is uniquely determined. However, as we can
expect, there are situations where the uniqueness of the Stackelberg
response fails. The objective of this chapter is to provide a whole class
of payoff functions to show that the Stackelberg variational response
set may contain at least three different elements. In fact, the payoff
functions we are working on depend on a real parameter which plays a
crucial role in the number of responses. In this way, once the parameter
is small enough, we prove that the follower has only the null response
(no reason for him to participate actively to the game), while for large
values of the parameter, he has at least three variational possibilities
to choose his strategy. To prove this result, we explore the nonsmooth
critical point theory for Motreanu-Panagiotopoulos-type functionals
(global minimization, nonsmooth Mountain Pass theorem, nonsmooth
Palais-Smale condition). Some numerical examples are also provided
to support the sharpness of our results. These results are based on the
paper by Sz. Nagy [50].
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The thesis is based on three papers as follows:

• A. Kristály, Sz. Nagy, Followers strategy in Stackelberg equi-
librium problems on curved strategy sets, Acta Polytech. Hung.
10 (2013), no. 7, 69–80. ISI Journal (IF: 0.471)

• Sz. Nagy, Stackelberg equilibria via variational inequalities and
projections. J. Global Optim. 57 (2013), no. 3, 821–828. ISI
Journal (IF: 1.355)

• Sz. Nagy, Multiple Stackelberg variational responses, Stud.
Univ. Babeş-Bolyai Math., accepted, 2015.

We mention another paper which also contains original results that are
not included into the body of the thesis in order to keep the unity of
the presentation:

• Cs. Farkas, A.É. Molnár, Sz. Nagy, A generalized variational
principle in b−metric spaces. Matematiche (Catania) 69 (2014),
no. 2, 205–221.
In this paper we establish a generalized variational principle for
b−metric spaces. As a consequence, we obtain a weak Zhong-
type variational principle in b−metric spaces and we show its
applicability by presenting a Caristi-type fixed point theorem
and an extension of the main result for bifunctions.

In the sequel, we list our original contributions within the thesis:

• Chapter 1: some remarks.

• Chapter 2: Theorems 2.2.1, 2.3.1, 2.3.2, 2.3.3; Propositions 2.2.1,
2.2.2; Remarks 2.2.1, 2.2.2, 2.3.1, 2.3.2; Examples 2.3.1, 2.3.2;
Figures 2.1, 2.2.

• Chapter 3: Theorems 3.2.1, 3.3.1, 3.3.2, 3.3.3; Lemma 3.2.1; Re-
mark 3.2.1; Examples 3.3.1, 3.3.2, 3.3.3.

• Chapter 4: Theorem 4.1.1; Lemma 4.3.1; Propositions 4.3.1,
4.4.1, 4.4.2; Remarks 4.1.1, 4.1.3, 4.2.1, 4.3.1, 4.4.1; Example
4.1.1; Figure 4.1.

Keywords: Stackelberg equilibrium point, Stackelberg variational re-
sponse set, Nash equilibrium point, variational arguments, fixed points,
Ekeland variational principle, critical points, nonsmooth Mountain
Pass theorem, Palais-Smale condition, minimization, locally Lipschitz
functionals, Motreanu-Panagiotopoulos-type functionals.
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Chapter 1

Preliminaries

In order the thesis to be self-contained as much as possible, we recall
in this chapter several results from nonsmooth analysis, variational
inequalities, subdifferential calculus, fixed points and critical points
for not necessarily smooth functionals, and Riemannian geometry. We
mainly followed the works of H. Brezis [13], F.H. Clarke [20], M.P.
do Carmo [22], D. Motreanu and P.D. Panagiotopoulos [48] and A.
Kristály, V. Rădulescu and Cs. Varga [39]. In the sequel we shall
summarize these results, keeping the sections from the thesis.

1.1 Variational principles

• Metric spaces (and b−metric spaces) with comments on Rieman-
nian and Finsler manifolds.

• Lower semicontinuous and convex functions.

• Variational principles: Theorem of K.T.W. Weierstrass, Ekeland
variational principle, Borwein-Preiss variational principle.

1.2 Subdifferentials and critical points

1.2.1 Subdifferential calculus

• Locally Lipschitz functions.

• Properties of the generalized directional derivative and general-
ized gradient.

11



12 CHAPTER 1. PRELIMINARIES

• Regularity results.

1.2.2 Critical point theory for nonsmooth func-
tionals

• Motreanu-Panagiotopoulos-type functionals. Nonsmooth Palais-
Smale condition.

• Global minimization. Nonsmooth version of the Mountain Pass
theorem.

1.3 Fixed points

• Brouwer, Begle, Banach and Caristi fixed point theorems.

1.4 Elements from Riemannian geometry

1.4.1 Geodesics, exponential map, and curvature

• Distance function. Geodesics. Levi-Civita connection.

• Exponential map.

• Differential of functions on manifolds.

• Curvature. The parallelogramoid of Levi-Civita.

• Theorem of Hopf-Rinow. Hadamard manifolds.

• Rauch comparison theorem.

1.4.2 Metric projections

• Definition of the metric projection.

• Non-expansiveness of the metric projection.

• Moskovitz-Dines property.

• Characterization of Hadamard manifolds.



Chapter 2

Stackelberg equilibria in
Euclidean spaces

In this chapter the existence and location of Stackelberg equilibria is
studied for two players by using appropriate variational inequalities
and fixed point arguments. Both compact and non-compact strategy
sets are considered in Euclidean spaces. We follow the paper by Sz.
Nagy [49] (where the results were presented in the smooth setting).

2.1 Formulation of the problem

As we already pointed out in the Introduction, the Stackelberg com-
petition can be handled by the backward induction method, i.e., to find
the best response for the follower player (the strategy action of the
leader player being a parameter at this stage) and then, to choose the
best strategy of the leader player. From above it becomes clear that
the primordial purpose is to handle the response set of the follower
player.

Without loss of generality, we assume that both players strategies
are certain sets K1, K2 in Rm. Let l : Rm×Rm → R be the payoff/loss
function of the leader, while f : Rm × Rm → R is the payoff function
of the follower player.

The first step is to determine the Stackelberg equilibrium response
set, defined by

RSE(x1) = {x2 ∈ K2 : f(x1, y)− f(x1, x2) ≥ 0, ∀y ∈ K2}

for every fixed x1 ∈ K1. Now, assuming that RSE(x1) 6= ∅ for every
x1 ∈ K1, the concluding step (for the leader player) is to minimize

13



14 CHAPTER 2. EUCLIDEAN STACKELBERG EQUILIBRIA

the map x 7→ l(x, r(x)) on K1 where r is a suitable selection of the
set-valued map RSE; more precisely, the Stackelberg equilibrium leader
set is

SSE = {x1 ∈ K1 : l(x, r(x))− l(x1, r(x1)) ≥ 0, ∀x ∈ K1} .

Our primary aim is to locate the elements of the Stackelberg equi-
librium response set. To complete this purpose, we define a slightly
larger set than the Stackelberg equilibrium response set by means of
variational inequalities. Let us assume that for the follower payoff
function f : Rm × Rm → R we have that f(x1, ·) is a locally Lipschitz
function for every x1 ∈ K1. We introduce the so-called Stackelberg
variational response set defined by

RSV (x1) =
{
x2 ∈ K2 : f 0

x2
((x1, x2); y − x2) ≥ 0, ∀y ∈ K2

}
,

where f 0
x2

((x1, x2); v) is the generalized directional derivative of f(x1, ·)
at the point x2 ∈ K2 in the direction v ∈ Rm.

We notice first that we are able to compute the Stackelberg vari-
ational response set more easier than RSE(x1), thus, we can locate
the elements of the Stackelberg equilibrium response set among these
points. Second, we may characterize the elements of the Stackelberg
variational response set by the fixed points of a suitable function which
involves the metric projection map into the set K2. Due to the latter
fact, we are able to guarantee not only existence but also location re-
sults (via projective dynamical systems) of the Stackelberg competition
model whenever the strategy sets are compact or non-compact. Re-
cently, projection-like methods for Nash equilibria have been developed
by E. Cavazzuti, M. Pappalardo, M. Passacantando [16], A. Kristály
[37], J.-S. Pang and M. Fukushima [55], Y.S. Xia and J. Wang [68], J.
Zhang, B. Qu and N. Xiu [71], and references therein. For generic equi-
librium results via variational and non-variational methods, we refer
the reader to the volumes [19], [29].

Assume further that the payoff function l : Rm × Rm → R of
the leader is a locally Lipschitz function. If RSV (x1) 6= ∅ for every
x1 ∈ K1 and once we are able to choose a suitably regular selection r :
K1 → K2 of the set-valued map RSV , we may introduce the Stackelberg
variational leader set

SSV =
{
x1 ∈ K1 : l0x1((x1, r(x1)); y − x1) ≥ 0, ∀y ∈ K1

}
.

As expected, the set SSV contains the best strategies of the first player,
i.e., the minimizers for the map x 7→ l(x, r(x)) on K1.
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The chapter is structured as follows. In Section 2.2 we present
some basic results concerning the relationship between the Stackelberg
variational response set and fixed points of a suitable projection map.
In Section 2.3 we present the main results of this chapter by considering
both the compact and non-compact cases for the strategy sets of the
players.

2.2 Stackelberg variational response set

In this section we state the basic properties of the Stackelberg varia-
tional response set.

Proposition 2.2.1 (Sz. Nagy [49]) Let Ki ⊂ Rm be two convex sets
(i = 1, 2), and let f : Rm × Rm → R be the follower payoff function
such that f(x1, ·) is locally Lipschitz for every x1 ∈ K1. Then, we have
the following assertions:

(a) RSE(x1) ⊆ RSV (x1) for every x1 ∈ K1.

(b) If f(x1, ·) is convex on K2 for some x1 ∈ K1, then RSE(x1) =
RSV (x1).

Remark 2.2.1 Note that (a) can be proved via a critical point argu-
ment. Indeed, if f(x1, y) ≥ f(x1, x2) for all y ∈ K2, then x2 ∈ K2 is a
global minimum point for the function f(x1, ·) + δK2 , where δK2 is the
indicator function of the set K2, i.e.,

δK2(y) =

{
0 if y ∈ K2;
+∞ if y /∈ K2.

Now, x2 is a critical point of f(x1, ·) + δK2 , which implies that

f 0
x2

((x1, x2); y − x2) ≥ 0, ∀y ∈ K2,

i.e., x2 ∈ RSV (x1).

We present an important observation which makes a connection
between the Stackelberg variational response set and the fixed point of
the set-valued map Ax1α : K2 → 2K2 defined by

Ax1α (x) = PK2 (x− α∂x2f(x1, x)) , (2.2.1)

where x1 ∈ K1 and α > 0 are fixed.
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Theorem 2.2.1 (Sz. Nagy [49]) Let Ki ⊂ Rm be two convex sets
(i = 1, 2), and let f : Rm × Rm → R be the follower payoff function
such that f(x1, ·) is locally Lipschitz for every x1 ∈ K1. Let x1 ∈ K1

be arbitrarily fixed. The following statements are equivalent:

(a) x2∈ RSV (x1);

(b) x2 ∈ Ax1α (x2) for all α > 0;

(c) x2 ∈ Ax1α (x2) for some α > 0.

We conclude this section by a result concerning the Stackelberg
variational leader set; more precisely, the definitions imply

Proposition 2.2.2 Let l : Rm × Rm → R be a function of class C1.
Assume that x 7→ RSV (x) is a single-valued function of class C1 on
K1. Then SSE ⊆ SSV .

Remark 2.2.2 In Chapter 4 we shall see that usually the map x 7→
RSV (x) is not single-valued; thus we have to choose a suitable selection
from the set-valued map x 7→ RSV (x) in order to apply Proposition
2.2.2.

2.3 Existence and location of Stackelberg

variational responses

Due to Theorem 2.2.1, to find elements in RSV (x1) is equivalent to find
fixed points of Ax1α , α > 0. To complete this aim, we distinguish two
cases: compact and non-compact strategy sets.

2.3.1 Compact strategies in Euclidean spaces

Theorem 2.3.1 (Sz. Nagy [49]) Let Ki ⊂ Rm be two convex sets
(i = 1, 2), K2 be compact, and let f : Rm × Rm → R be the follower
payoff function such that f(x1, ·) is locally Lipschitz for every x1 ∈ K1.
Then the following statements hold:

(a) ∅ 6= RSE(x1) ⊆ RSV (x1) for every x1 ∈ K1;

(b) If card(RSV (x1)) = 1 for every x1 ∈ K1 and the map x 7→ RSV (x)
and the leader payoff function l are of class C1, then SSV 6= ∅.
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Figure 2.1: Minimization of the function x1 7→ l(x1, RSV (x1)), x1 ∈ K1,
obtaining x1 = −1

4
(left). The response of the follower to the action

x1 = −1
4

is RSE(−1
4
) = RSV (−1

4
) =

{
−3

8

}
(right).

Example 2.3.1 Let l, f : R×R→ R be two payoff functions defined
by

l(x1, x2) = 4x1x
2
2 − x3

1;

f(x1, x2) = x2
2 + x2(x1 + 1) + 4,

and the sets K1 = K2 = [−1, 1]. It is clear that Theorem 2.3.1(a)
can be applied, and a simple computation yields (as a first step in the
backward induction method) that

RSV (x1) =

{
−x1 + 1

2

}
, x1 ∈ K1.

Note that f(x1, ·) is convex onK2 for every x1 ∈ K1; thus, on account of
Proposition 2.2.1(a), RSE(x1) = RSV (x1) for every x1 ∈ K1. Moreover,
since card(RSV (x1)) = 1 for every x1 ∈ K1, and the map x 7→ RSV (x)
is of class C1, then one has that SSV 6= ∅, see Theorem 2.3.1 (b). A
simple calculation also yields that

SSV =

{
−1

4

}
.

Now, by using Proposition 2.2.2, we can check that the Stackelberg
equilibrium leader set is SSE =

{
−1

4

}
, while the Stackelberg equilib-

rium/variational response set is RSE(−1
4
) = RSV (−1

4
) =

{
−3

8

}
, see

Figure 2.1.
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Figure 2.2: Although the point
(

1−
√

3
2
,−3−

√
3

4

)
is a Nash-Stampacchia

equilibrium point of l and f on K1 ×K2, it is not a usual Nash equi-
librium point.

Remark 2.3.1 For the same functions and sets as in Example 2.3.1,
we state that the set of Nash equilibrium points is empty. This fact can
be seen by following the arguments from the paper of A. Kristály [36]
where a very general framework is discussed for nonsmooth functions
on finite-dimensional Riemannian manifolds. More precisely, the first
step is to determine the set of Nash-Stampacchia equilibrium points,
i.e., the solutions for the system{ 〈

l′x1(x1, x2), x− x1

〉
≥ 0 for all x ∈ K1;〈

f ′x2(x1, x2), y − x2

〉
≥ 0 for all y ∈ K2.

This system has the solution

NS =

{(
1−
√

3

2
,−3−

√
3

4

)}
.

The set of Nash equilibrium points is a subset of NS, cf. A. Kristály
[37]. Note however that the above point does not fulfil the system for
Nash equilibria{

l(x, x2) ≥ l(x1, x2) for all x ∈ K1;
f(x1, y) ≥ f(x1, x2) for all y ∈ K2,

see Figure 2.2.
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2.3.2 Non-compact strategies in Euclidean spaces

If l, f : R× R→ R are the functions defined by

l(x1, x2) = f(x1, x2) = e−x1−x2 ,

and K1 = K2 = [0,∞), then for every x1 ∈ K1, one has

RSE(x1) = RSV (x1) = ∅.

Consequently, in order to guarantee existence of elements from the
Stackelberg equilibrium/variational response set in the non-compact
case, further (growth) assumptions are needed beside the regularity of
the functions.

To complete the latter problem, we introduce two dynamical sys-
tems by assuming that both payoff functions are of class C1 on Rm ×
Rm. Let x1 ∈ K1 and α > 0 be fixed elements.

(a) Let (DDS)R
m

x1
be the discrete dynamical system in the form{
yn+1 = Ax1α (PK2(yn)), n ≥ 0,
y0 ∈ Rm.

(b) Let (CDS)R
m

x1
be the continuous dynamical system in the form{
dy
dt

= Ax1α (PK2(y(t)))− y(t),
y(0) = y0 ∈ Rm.

The main theorem of the present section reads as follows:

Theorem 2.3.2 (Sz. Nagy [49]) Let Ki ⊂ Rm be two convex (not
necessarily compact) sets (i = 1, 2), and let f : Rm×Rm → R be a C1-
class payoff function of the follower. Let x1 ∈ K1 be fixed and assume
that f ′x2(x1, ·) : Rm → Rm is an L−Lipschitz and κ−strongly mono-
tone function. Then card(RSV (x1)) = 1; moreover, the orbits of both
dynamical systems, (DDS)R

m

x1
and (CDS)R

m

x1
, exponentially converge

to the unique element of RSV (x1).

Remark 2.3.2 The argument based on projective dynamical systems
has been exploited in the papers of E. Cavazzuti, M. Pappalardo, M.
Passacantando [16], Y.S. Xia and J. Wang [68], J. Zhang, B. Qu and
N. Xiu [71] for Nash-type equilibria. Note that the present result for
Stackelberg equilibria is slightly general than those in the above works.
A systematic approach to this topic can be found also in A. Kristály,
V. Rădulescu and Cs. Varga [39, Chapter III] in the context of Nash
equilibria on curved spaces.
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Example 2.3.2 Fix n ≥ 2. Let Mn(R) be the set of symmetric n×n
matrices with real entries. The standard inner product on Mn(R) is
defined as

〈U, V 〉 = tr(UV ).

Here, tr(Y ) denotes the trace of Y ∈ Mn(R). It is well-known that
(Mn(R), 〈·, ·〉) is an Euclidean space, the unique segment betweenX, Y ∈
Mn(R) is

γX,Y (s) = (1− s)X + sY, s ∈ [0, 1]. (2.3.1)

Let us consider the functions l, f : R×Mn(R)→ R defined by

l(t,X) = t3 − tdet(X), f(t,X) = tr((X − tA)2),

where A ∈Mn(R) is fixed, and

K1 = [0,∞), K2 = {X ∈Mn(R) : tr(X) ≥ 1} .

It is clear that both sets are non-compact and convex. Moreover, one
has that for every t ∈ K1, the function

X 7→ f ′x2(t,X) = 2(X − tA)

is 2−Lipschitz and 2−strongly monotone. Then, on account of The-
orem 2.3.2, card(RSV (t)) = 1 for every t ∈ K1, and both dynamical
systems, (DDS)Rt and (CDS)Rt , exponentially converge to the unique
element of RSV (t). In this particular example, one can see that

RSV (t) = {PK2(tA)}, ∀t ∈ K1.

In order to obtain the Stackelberg equilibrium leader set SSE, it re-
mains to minimize the function t 7→ l(t, PK2(tA)) = t3− tdet(PK2(tA))
on K1 = [0,∞).

We conclude this chapter with a Caristi-type result concerning the
existence of Stackelberg equilibria:

Theorem 2.3.3 (Sz. Nagy) Let Ki ⊂ Rm be two convex (not neces-
sarily compact) sets (i = 1, 2), and let f : Rm×Rm → R be a C1-class
payoff function of the follower. Let x1 ∈ K1 be fixed. If there exists a
lower semicontinuous function g : Rm → R+ and α > 0 such that

‖x− Ax1α (x)‖ ≤ g(x)− g(Ax1α (x)), ∀x ∈ Rm,

then RSV (x1) 6= ∅.



Chapter 3

Stackelberg equilibria on
Riemannian manifolds

In this chapter we present the Riemannian extension of the results from
Chapter 2; in order to avoid technicalities we shall work in the smooth
setting, following the paper written by A. Kristály and Sz. Nagy [38].

3.1 Riemannian approach to the Stackel-

berg variational response set

In the previous chapter we presented some existence and location
results for the Stackelberg variational response set in the Euclidean
framework.

The purpose of the present chapter is to extend the analytical re-
sults from Chapter 2 to games defined on strategy sets which are embed-
ded in a geodesic convex manner into certain Riemannian manifolds.
The motivation is that some strategy sets may be not convex in the
Euclidean setting. The idea to embed geodesic convexly such sets into
Riemannian/Finsler manifolds originates from T. Rapcsák [59] who ap-
plied this approach to solve various nonlinear optimization problems.
Similar studies can be found in the literature, where certain variational
arguments are applied to study equilibrium problems on Riemannian
manifolds, see G.C. Bento and J.G. Melo [7], A. Kristály [36, 37], X. Li,
N. Huang [42], C. Li, G. López, V. Mart́ın-Márquez [43], S.Z. Németh
[52] and references therein.

For simplicity, we shall consider only two players although our ar-
guments can be extended to several players as well. Let K1 ⊂ M1

21
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and K2 ⊂ M2 be two sets in the Riemannian manifolds (M1, g1) and
(M2, g2), respectively, and let l, f : M1 ×M2 → R be the payoff func-
tions for the two players. As we already know from the backward in-
duction method, the first step (for the follower) is to find the response
set

RSE(x1) = {x2 ∈ K2 : f(x1, y)− f(x1, x2) ≥ 0, ∀y ∈ K2}

for every fixed x1 ∈ K1. If RSE(x1) 6= ∅ for every x1 ∈ K1, the next
step is to minimize the map x 7→ l(x, r(x)) on K1 where r is a selection
function of the set-valued map x 7→ RSE(x); thus, the objective of the
first player is to determine the set

SSE = {x1 ∈ K1 : l(x, r(x))− l(x1, r(x1)) ≥ 0, ∀x ∈ K1} .

Similarly to Chapter 2, we shall introduce sets related to the above
ones by variational inequalities defined on Riemannian manifolds. For
simplicity, let us assume throughout of this chapter that f : M1×M2 →
R is a C1-class function1; for every x1 ∈ K1, we introduce the set

RSV (x1) =
{
x2 ∈ K2 : g2

(
f ′x2(x1, x2), exp−1

x2
(y)
)
≥ 0, ∀y ∈ K2

}
,

where f ′x2(x1, x2) is the differential of f(x1, ·) with respect to the met-
ric g2 at the point x2 ∈ K2. According to A. Kristály [36, 37], it is
more easier to determine the set RSV (x1) than RSE(x1). Moreover, we
usually have that RSE(x1) ⊆ RSV (x1), thus we shall choose the ap-
propriate Stackelberg equilibrium candidates from the elements of the
latter set. Finally, by imposing further curvature assumptions on the
Riemannian manifolds we are working on, we are able to characterize
the elements of the set RSV (x1) by the fixed points of a suitable set-
valued map which involves the metric projection map into the set K2.
In fact, we shall assume that the strategy sets are embedded into non-
positively curved Riemannian manifolds where two basic properties of
the metric projection will be deeply exploited; namely,

• the non-expansiveness of the metric projection map, and

• the Moskovitz-Dines property.

1A similar study can be done also for locally Lipschitz functions following the
nonsmooth analysis on manifolds developed by D. Azagra, J. Ferrera and F. López-
Mesas [3] and Yu. S. Ledyaev and Q.J. Zhu [41].
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The optimal geometric framework to develop the theory of Stackelberg
equilibrium theory in the Riemannian framework is provided by the
class of Hadamard manifolds. Having the fixed point characterization,
we will be able to apply various fixed point theorems on (acyclic) metric
spaces in order to find elements of the set RSV (x1).

We assume finally that the payoff function l : M1×M2 → R for the
leader is of class C1 and for every x1 ∈ K1 we have that RSV (x1) 6= ∅.
If we are able to choose a C1-class selection r : K1 → K1 of the set-
valued map RSV , we also introduce the set

SSV =
{
x1 ∈ K1 : g1

(
l′(x1, r(x1)), exp−1

x1
(y)
)
≥ 0, ∀y ∈ K1

}
.

In particular, SSV contains the optimal strategies of the leader, i.e.,
the minimizers for the map x 7→ l(x, r(x)) on K1.

3.2 Basic properties of the response sets

In the sequel we shall establish some basic properties of the response
sets by using some elements from the theory of variational inequalities
on Riemannian manifolds. The notations are from Section 3.1.

Lemma 3.2.1 (A. Kristály and Sz. Nagy [38]) Let (Mi, gi) be Rie-
mannian manifolds, l, f : M1 ×M2 → R be payoff functions of class
C1, and Ki ⊂ Mi be closed, geodesic convex sets, i = 1, 2. Then the
following assertions hold:

(a) RSE(x1) ⊆ RSV (x1) for every x1 ∈ K1;

(b) RSE(x1) = RSV (x1) when f(x1, ·) is convex on K2 for some
x1 ∈ K1;

(c) SSE ⊆ SSV when x 7→ RSV (x) is a single-valued function which
has a C1−extension to an arbitrary open neighborhood D1 ⊂M1

of K1.

For a fixed x1 ∈ K1 and α > 0, let Ax1α : K2 → K2 be defined by

Ax1α (x) = PK2

(
expx

(
−αf ′x2(x1, x)

))
. (3.2.1)

Note that Ax1α is a single-valued function whenever (M2, g2) is a Hada-
mard manifold (since PK2(x) is a Chebyshev set for every x ∈ K2).
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Theorem 3.2.1 (A. Kristály and Sz. Nagy [38]) Let (M1, g1) be a
Riemannian manifold, and (M2, g2) be a Hadamard manifold. Let f :
M1×M2 → R be a C1-class payoff function of the follower and Ki ⊂Mi

be closed, geodesic convex sets, i = 1, 2. Let x1 ∈ K1 be fixed. The
following statements are equivalent:

(a) x2∈ RSV (x1);

(b) Ax1α (x2) = x2 for all α > 0;

(c) Ax1α (x2) = x2 for some α > 0.

Remark 3.2.1 Note that

RSV (x1) =
{
x2 ∈ K2 : PK2

(
expx2

(
−αf ′x2(x1, x2)

))
= x2

}
.

3.3 Follower strategy: existence of equi-

libria

3.3.1 Compact strategies on manifolds

Theorem 3.3.1 (A. Kristály and Sz. Nagy [38]) Let (Mi, gi) be Hada-
mard manifolds, l, f : M1 ×M2 → R be C1-class payoff functions and
Ki ⊂Mi be compact, geodesic convex sets, i = 1, 2. Then the following
statements hold:

(a) ∅ 6= RSE(x1) ⊆ RSV (x1) for every x1 ∈ K1;

(b) SSV 6= ∅ whenever RSV (x1) is a singleton for every x1 ∈ K1 and
the map x 7→ RSV (x) has a C1−extension to an arbitrary open
neighborhood D1 ⊂M1 of K1.

3.3.2 Non-compact strategies on manifolds

We first assume that for some x1 ∈ K1 one has
(Hf

x1
) There exists x2 ∈ K2 such that

Lx1,x2 = lim sup
dg2 (x,x2)→∞

x∈K2

g2

(
f ′x2(x1, x), exp−1

x (x2)
)

+ g2

(
f ′x2(x1, x2), exp−1

x2 (x)
)

dg2(x, x2)
<

< −
∥∥f ′x2(x1, x2)

∥∥
g2
.

The first main result of the present section is the following theorem.
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Theorem 3.3.2 (A. Kristály and Sz. Nagy [38]) Let (M1, g1) be a
Riemannian manifold and (M2, g2) be a Hadamard manifold. Let f :
M1×M2 → R be a C1-class payoff function of the follower and Ki ⊂Mi

be closed, geodesic convex sets, i = 1, 2. Let x1 ∈ K1 and assume that
hypothesis (Hf

x1
) holds true. Then RSV (x1) 6= ∅.

In the sequel, we are dealing with another class of functions, similar
to the previous chapter. For a fixed x1 ∈ K1, α > 0 and 0 < ρ < 1 we
introduce the hypothesis:

(Hα,ρ
x1

) : dg2
(
expx

(
−αf ′x2(x1, x)

)
, expy

(
−αf ′x2(x1, y)

))
≤ (1−ρ)dg2(x, y)

for all x, y ∈ K2. For fixed x1 ∈ K1 and α > 0, we consider the following
two dynamical systems:

(a) Let (DDS)x1 be the discrete dynamical system in the form{
yn+1 = Ax1α (PK2(yn)), n ≥ 0,
y0 ∈M2;

(b) Let (CDS)x1 be the continuous dynamical system in the form{ dy
dt

= exp−1
y(t)(Ax1α (PK2(y(t)))),

y(0) = x2 ∈M2.

By exploring the Rauch comparison principle and the properties of
the metric projection, we can state the following theorem.

Theorem 3.3.3 (A. Kristály and Sz. Nagy [38]) Let (M1, g1) be a
Riemannian manifold and (M2, g2) be a Hadamard manifold. Let f :
M1×M2 → R be a C1-class payoff function of the follower and Ki ⊂Mi

be closed, geodesic convex sets, i = 1, 2. Let x1 ∈ K1 and assume
that hypothesis (Hα,ρ

x1
) holds true for some α > 0 and 0 < ρ < 1.

Then RSV (x1) is a singleton and the orbits of both dynamical systems,
(DDS)x1 and (CDS)x1, exponentially converge to the unique element
of RSV (x1).

In the sequel, inspired by A. Kristály [37], we shall provide some
examples of Hadamard manifolds and geodesic convex sets where the
previous results can be applied.

Example 3.3.1 (Euclidean space) Assume that M2 = Rm2 and the
function f ′x2(x1, ·) is an L−Lipschitz and κ−strongly monotone func-
tion for some x1 ∈ K1. Then Theorem 3.3.3 reduces to Theorem
2.3.2. Indeed, hypothesis (Hα,ρ

x1
) holds true with the constants 0 <

α <
κ−
√

(κ2−L2)+

L2 and ρ = 1−
√

1− 2ακ+ α2L2 ∈ (0, 1), respectively.
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Example 3.3.2 (Hyperbolic space) Let H = {(u, v) ∈ R2 : v > 0}
be the Poincaré upper half-plane model endowed with the Riemannian
metric defined for every (u, v) ∈ H by

gij(u, v) =
1

v2
δij, for i, j = 1, 2.

The pair (H, g) is a Hadamard manifold with constant sectional cur-
vature −1 and the geodesics in H are the semilines and the semicircles
orthogonal to the line v = 0. The Riemannian distance between two
points (u1, v1), (u2, v2) ∈ H is given by

dH ((u1, v1), (u2, v2)) = arccosh

(
1 +

(u2 − u1)2 + (v2 − v1)2

2v1v2

)
.

Let

K = {(u, v) ∈ H : u2 + v2 ≤ 9 ≤ (u− 2)2 + v2}. (3.3.1)

Note that K ⊂ R2 is not convex in the usual sense, but it is in (H, g),
see Figure ??.

Example 3.3.3 (Symmetric positive definite matrices) As in Exam-
ple 2.3.2, let Mn(R) be the set of symmetric n× n matrices with real

values, P(n,R) ⊂Mn(R) be the n(n+1)
2
−dimensional cone of symmetric

positive definite matrices. The set P(n,R) is endowed with the scalar
product

〈〈U, V 〉〉X = tr(X−1V X−1U)

for all X ∈ P(n,R), U, V ∈ TX(P(n,R)) 'Mn(R).
The pair (P(n,R), 〈〈·, ·〉〉) is a Hadamard manifold, see Lang [40,

Chapter XII]. The unique geodesic segment connecting X, Y ∈ P(n,R)
is defined by

γHX,Y (s) = X1/2(X−1/2Y X−1/2)sX1/2, s ∈ [0, 1]. (3.3.2)

In particular, d
ds
γHX,Y (s)|s=0 = X1/2 ln(X−1/2Y X−1/2)X1/2; consequently,

for each X, Y ∈ P(n,R), we have

exp−1
X Y = X1/2 ln(X−1/2Y X−1/2)X1/2.

The induced metric function on P(n,R) is given by

d2
H(X, Y ) = 〈〈exp−1

X Y, exp−1
X Y 〉〉X = tr(ln2(X−1/2Y X−1/2)). (3.3.3)
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Let a ∈ (1, e], and

K = {X ∈ P(n,R) : tr(ln2X) ≤ 1 ≤ detX ≤ a}.

On one hand, we notice that the set K is not geodesic convex with
respect to the metric 〈·, ·〉 from Example 2.3.2. Indeed, let X =
diag(a, 1, ..., 1) ∈ K and Y = diag(1, a, ..., 1) ∈ K and γX,Y be the
Euclidean geodesic connecting them, see (2.3.1); although γX,Y (s) ∈
P(n,R) and

tr(ln2(γX,Y (s))) = ln2(1 + (a− 1)s) + ln2(a+ (1− a)s) ≤ ln2 a ≤ 1

for every s ∈ [0, 1], one has that

det(γX,Y (s)) = a+ (a− 1)2s(1− s) > a, ∀s ∈ (0, 1).

On the other hand, we claim that K is geodesic convex in the
manifold (P(n,R), 〈〈·, ·〉〉). To see this, let In ∈ P(n,R) be the identity
matrix, and B̃H(In, 1) be the closed geodesic ball in P(n,R) with center
In and radius 1. On account of the above facts, we observe that

K = B̃H(In, 1) ∩ {X ∈ P(n,R) : 1 ≤ detX ≤ a}.

Indeed, for every X ∈ P(n,R), we have d2
H(In, X) = tr(ln2X). Since K

is bounded and closed in (P(n,R), 〈〈·, ·〉〉), due to the Hopf-Rinow the-
orem, K is compact. Moreover, being a geodesic ball in the Hadamard
manifold (P(n,R), 〈〈·, ·〉〉), the set B̃H(In, 1) is geodesic convex. Keep-
ing the notation from (3.3.2), if X, Y ∈ K, one has for every s ∈ [0, 1]
that

det(γHX,Y (s)) = (detX)1−s(detY )s ∈ [1, a],

i.e., K is geodesic convex in (P(n,R), 〈〈·, ·〉〉).

Remark 3.3.1 Since the elements of the Stackelberg variational re-
sponse sets are fixed points of Ax1α for some α > 0 and x1 ∈ K1,
besides the aforementioned theorems, other fixed point arguments are
expected to be applied, see D. O’Regan and R. Precup [54] and the
papers of A. Petruşel [56], A. Petruşel, I.A. Rus and M. Şerban [57],
and references therein.
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Chapter 4

Multiplicity of Stackelberg
variational responses

Contrary to the standard literature (where the Stackelberg response
function is single-valued), we provide sufficient conditions for a whole
class of functions to show that the Stackelberg variational response set
contains at least three elements.

4.1 Setting of the problem

In this section we focus our attention to a specific payoff function for
the follower player; namely, we assume that f : Rm×Rm → R is given
by

fλ(x1, x2) := f(x1, x2) =
1

2
‖x2‖2 − λf̃(x1, x2) + δK2(x2), (4.1.1)

where K2 ⊂ Rm is a nonempty, closed, non-compact set, λ > 0 is a
parameter and f̃(x1, ·) is locally Lipschitz for every x1 ∈ Rm. As usual,
δK2 denotes the indicator function of the set K2.

Let x1 ∈ Rm be arbitrarily fixed. On the locally Lipschitz function
f̃(x1, ·) we assume:

(H1
x1

) max{‖z‖ : z ∈ ∂x2 f̃(x1, x2)} = o(‖x2‖) whenever ‖x2‖ → 0;

(H2
x1

) max{‖z‖ : z ∈ ∂x2 f̃(x1, x2)} = o(‖x2‖) whenever ‖x2‖ → +∞;

(H3
x1

) f̃(x1, 0) = 0 and there exists x̃2 ∈ K2 such that f̃(x1, x̃2) > 0.

Here, o(·) is the usual Landau symbol.

29
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Remark 4.1.1 (a) Hypotheses (H1
x1

) and (H2
x1

) mean that ∂x2 f̃(x1, ·)
is superlinear at the origin and sublinear at infinity, respectively. Hy-
pothesis (H3

x1
) implies that f̃(x1, ·) is not identically zero.

(b) According to hypotheses (H1
x1

) and (H2
x1

), the number

c̃ = max
x2∈Rm\{0}

max{‖z‖ : z ∈ ∂x2 f̃(x1, x2)}
‖x2‖

(4.1.2)

is well-defined, finite, and from the upper semicontinuity of ∂x2 f̃(x1, ·)
and hypothesis (H3

x1
), we have 0 < c̃ <∞.

(c) We also introduce the number

λ̃ =
1

2
inf

f̃(x1,x2)>0
x2∈K2

‖x2‖2

f̃(x1, x2)
, (4.1.3)

which is well-defined, finite and 0 < λ̃ <∞.

It is known that the Stackelberg variational response set for the
function fλ in (4.1.1) is given by
Rλ
SV (x1) =

=
{
x2 ∈ K2 : 〈x2, y − x2〉+ λf̃ 0

x2
((x1, x2);−y + x2) ≥ 0, ∀y ∈ K2

}
.

The main theorem of the present chapter is the following.

Theorem 4.1.1 (Sz. Nagy [50]) Let Ki ⊂ Rm be two convex sets
(i = 1, 2), and let fλ : Rm×Rm → R be the follower payoff function of
the form (4.1.1) such that f̃(x1, ·) is locally Lipschitz for every x1 ∈ K1.
Assume that K2 is closed and non-compact such that 0 ∈ K2. Fix
x1 ∈ K1 and assume that the hypotheses (H i

x1
) hold true, i ∈ {1, 2, 3}.

Then the following statements hold:

(a) 0 ∈ Rλ
SV (x1) for every λ > 0;

(b) Rλ
SV (x1) = {0} for every λ ∈ (0, c̃−1), where c̃ is from (4.1.2);

(c) card(Rλ
SV (x1)) ≥ 3 for every λ > λ̃ > 0, where λ̃ is from (4.1.3).

Remark 4.1.2 (a) In fact, by using the three critical point theorem
of B. Ricceri [60] (or one of its variants, e.g. G. Bonanno [10], S.
Marano and D. Motreanu [45]) we could prove that the number of the
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Stackelberg variational response set is stable, i.e., it is invariant with
respect to small perturbations of the function f̃ .

(b) The Stackelberg variational response set could have many ele-
ments whenever the nonlinear term f̃ has certain oscillatory behavior.
Similar phenomena have been described in the theory of PDEs within
the papers by F. Faraci and A. Kristály [25], P. Omari and F. Zanolin
[44], J. Saint Raymond [61] and references therein. We notice that
these solutions appeared as local minima of certain energy functionals;
consequently, in the theory of Stackelberg equilibria one can expect to
obtain some local (but perhaps not global) variational responses.

Remark 4.1.3 By Theorem 4.1.1 (b) and (c) it is clear that c̃−1 ≤ λ̃.
We postpone some discussions on this subject to Section 4.4.

In the sequel we provide an application.

Example 4.1.1 Let K2 = [0,∞) and f̃ : R× R→ R be defined by

f̃(x1, x2) = (1 + |x1|)
(

min
(

8x3
2, (|x2|+ 3)

3
2

))
+
.

A simple calculation shows that

∂x2 f̃(x1, x2) =


{0}, if x2 < 0;
{24(1 + |x1|)x2

2} , if x2 ∈ [0, 1);
[3(1 + |x1|), 24(1 + |x1|)], if x2 = 1;{

3
2
(1 + |x1|)(x2 + 3)

1
2

}
, if x2 > 1.

We observe that hypotheses (H1
x1

), (H2
x1

) and (H3
x1

) are verified.

Let x1 ∈ R be fixed. We notice that c̃ = 24(1 + |x1|) and λ̃ =
1

16(1+|x1|) . According to Theorem 4.1.1, only the zero solution is given

for λ ∈ (0, 1
24(1+|x1|)), while for λ > 1

16(1+|x1|) there are three solutions
for the inclusion

x2 ∈ λ∂x2 f̃(x1, x2), x2 ≥ 0, (4.1.4)

which is equivalent to x2 ∈ Rλ
SV (x1); Figure 4.1 supports geometrically

these facts.
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Figure 4.1: The graph of the set-valued map ∂x2 f̃(x1, ·) (blue) and the
lines y = 1

λ
x2 for small (red) and large (green) parameters of λ. The

intersections of ∂x2 f̃(x1, ·) and the lines y = 1
λ
x2 give the elements in

the Stackelberg variational response set Rλ
SV (x1).

For λ large enough we solve the inclusion (4.1.4), obtaining that
Rλ
SV (x1) contains exactly three elements; namely, Rλ

SV (x1) = {0, xλ2 , yλ2}
where xλ2 =

9λ2(1+|x1|)2+3λ(1+|x1|)
√

9λ2(1+|x1|)2+48

8
and yλ2 = 1

24λ(1+|x1|) . Af-
ter a simple computation we conclude that the Stackelberg equilibrium
response set is Rλ

SE(x1) = {xλ2} whenever λ is large. �

In the rest of the chapter we sketch the proof of Theorem 4.1.1.
From now one, without mentioning explicitly, we assume that the hy-
potheses of Theorem 4.1.1 are fulfilled.
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4.2 Null Stackelberg response

Proof of Theorem 4.1.1 (a). By using nonsmooth analysis for lo-
cally Lipschitz functions, one can prove that 0 ∈ Rλ

SV (x1) for every λ >
0.

Proof of Theorem 4.1.1 (b). By simple estimates we can prove that
Rλ
SV (x1) = {0}, ∀λ ∈ (0, c̃−1).

Remark 4.2.1 From game-theoretical point of view, Theorem 4.1.1
(a) means that the follower has always the possibility to choose the
null strategy x2 = 0 as a Stackelberg variational response. In fact, in
this case, the follower refuses to participate at the game, his/her loss
being fλ(x1, 0) = 0.

When the parameter is small enough, described in Theorem 4.1.1
(b), the Stackelberg variational response reduces to a unique element,
which is the null strategy. In other words, he/she has no other reason-
able strategy than the null solution. According to Proposition 2.2.1,
one has that Rλ

SE(x1) ⊆ Rλ
SV (x1), thus the Stackelberg equilibrium

response set is either the null strategy or it is empty.

4.3 Geometry of Stackelberg responses

Let x1 ∈ K1 be fixed.

Lemma 4.3.1 (Sz. Nagy [50]) Let λ > 0 be fixed. The functional
fλ(x1, ·) defined in (4.1.1) is bounded from below and coercive, i.e.,
fλ(x1, x2) → +∞ whenever ‖x2‖ → +∞. Moreover, fλ(x1, ·) satisfies
the Palais-Smale condition in the sense of Motreanu-Panagiotopoulos.

Proposition 4.3.1 The number λ̃ in (4.1.3) is well-defined and

0 < λ̃ <∞.

Proof of Theorem 4.1.1 (c). Let us fix λ > λ̃.
Step 1. (First response) According to property (a), one has 0 ∈

Rλ
SV (x1), which is the first (trivial) response.

Step 2. (Second response) Combining Lemma 4.3.1 and the global
minimization argument, the validity of the Palais-Smale condition im-
plies that the Motreanu-Panagiotopoulos-type functional fλ(x1, ·) achi-
eves its infimum at a point xλ2 ∈ Rm which is a critical point in the
sense of Motreanu-Panagiotopoulos. Moreover, xλ2 6= 0.
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Step 3. (Third response) By the nonsmooth Mountain Pass theo-
rem, it follows that the number

cλ = inf
γ∈Γ

max
t∈[0,1]

fλ(x1, γ(t))

is a critical value for fλ(x1, ·), where Γ = {γ ∈ C([0, 1],Rm) : γ(0) =
0, γ(1) = xλ2}. Thus, if yλ2 ∈ K2 is the mountain pass-type critical point
of fλ(x1, ·) with cλ = fλ(x1, y

λ
2 ) > 0, we clearly have that yλ2 6= 0 and

yλ2 6= xλ2 , which is the third response.
Summing up the above three steps, we conclude that

{0, xλ2 , yλ2} ⊂ Rλ
SV (x1), ∀λ > λ̃.

Remark 4.3.1 As we pointed out in Remark 4.2.1, the Stackelberg
variational response set reduces to the null strategy whenever the pa-
rameter is small enough. However, when the parameter is beyond a
threshold value (see Theorem 4.1.1 (c)), there are three possible Stack-
elberg variational responses; in this case, the follower enters actively
into the game in order to minimize his loss. More precisely, besides
the null strategy (see Step 1), he can choose the global minimum-type
solution/response (see Step 2); in this case, his loss function takes a
negative value, i.e., he is in a winning position. In the case when the
player chooses the mountain pass-type minimax response (see Step 3),
his payoff function takes a positive value.

4.4 The gap-interval

The aim of this section is twofold, formulated in the following two
proposition.

Proposition 4.4.1 (Sz. Nagy [50]) When K2 = Rm, we have c̃−1 ≤ λ̃.

Remark 4.4.1 In general, we have that c̃−1 < λ̃. Such a situation
occurs e.g. when m = 1, K2 = [0,∞) and the payoff function f̃ :
R× R→ R is of class C1 in the second variable.

Let η > 1 and f̃ : R× R→ R be defined by

f̃(x1, x2) = (1 + |x1|)
∫ x2

0

min{(s− 1)+, η − 1}ds,

and K2 = R. For these choices we have

Proposition 4.4.2 (Sz. Nagy [50]) The gap-interval [c̃−1, λ̃] can be
arbitrarily small.
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