
BABEŞ-BOLYAI UNIVERSITY

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Huge Distributed File Systems On Unix Platforms
Abstract

PhD student: Dan Cojocar

Scientific supervisor: Prof. Dr. Florian Mircea Boian

Cluj-Napoca

2015

List of publications

[1] Florian Mircea Boian, Darius Vasile Bufnea, Dan Cojocar, Alexandru
Ioan Vancea, and Adrian Sterca. “A Model for Efficient Session Object
Management in Web Applications”. In: Proceedings of the Symposium
Colocviul Academic Clujean de Informatica. Cluj–Napoca, Romania,
June 2006, pp. 137–142.

[2] Dan Cojocar. “Hardware Fault-Tolerant File System”. In: Proceed-
ings of the Symposium Colocviul Academic Clujean de Informatica.
Cluj–Napoca, Romania, June 2006.

[3] Ioan Lazar and Dan Cojocar. “On Model-Driven Development for
web Applications”. In: Studia Universitatis Babeş-Bolyai, Informatica
(2006), pp. 101–112.

[4] Boian Florian Mircea, Darius Vasile Bufnea, Claudiu Cobarzan, Alexan-
dru Ioan Vancea, Adrian Sterca, and Dan Cojocar. Sisteme de oper-
are. RISOPRINT, 2006.

[5] Florian Mircea Boian, Darius Vasile Bufnea, Alexandru Ioan Vancea,
Adrian Sterca, Dan Cojocar, and Rares Florin Boian. “Some For-
mal Approaches for Dynamic Life Session Management”. In: Proceed-
ings of Knowledge Engineering: Principles and Techniques Conference
(KEPT). Cluj–Napoca, Romania, June 2007, pp. 227–235.

[6] Dan Cojocar. “BBUFs: A new lookup mechanism based on IPV6”. In:
Workshosp on Global Computing Models and Technologies, co-located
with SYNASC 2008. Timisoara, Romania, 2008, pp. 358–361. (ISI
Proceedings).

[7] Dan Cojocar. “BBUFs: Synchronization Mechanism”. In: 6th Inter-
national Conference of Applied Mathematics (ICAM). Baia Mare, Ro-
mania, 2008, pp. 363–368.

[8] Rares Florin Boian and Dan Cojocar. “Moving Excess Data Into
External Peer-to-Peer Storage”. In: KEPT2009 Knowledge Engineering
Principles and Techniques Selected Papers (2009), pp. 358–365. (ISI
Proceedings).

[9] Rares Florin Boian and Dan Cojocar. “Moving Excess Data Into
External Peer-to-Peer Storage”. In: Proceedings of Knowledge Engi-
neering: Principles and Techniques Conference (KEPT). Cluj–Napoca,
Romania, July 2009, pp. 296–299.

1

[10] Dan Cojocar. “BBUFs: Architecture Overview”. In: Proceedings of
Knowledge Engineering: Principles and Techniques Conference (KEPT).
Cluj–Napoca, Romania, July 2009, pp. 276–279.

[11] Dan Cojocar. “The Architecture of BBUFs”. In: KEPT2009 Knowl-
edge Engineering Principles and Techniques Selected Papers (2009),
pp. 335–342. (ISI Proceedings).

[12] Dan Cojocar and Florian Mircea Boian. “BBUFs: Replication Strate-
gies”. In: Proceedings of Knowledge Engineering: Principles and Tech-
niques Conference (KEPT). Cluj–Napoca, Romania, July 2009, pp. 284–
287.

[13] Dan Cojocar and Florian Mircea Boian. “BBUFs: Replication Strate-
gies Comparison”. In: KEPT2009 Knowledge Engineering Principles
and Techniques Selected Papers (2009), pp. 343–350. (ISI Proceed-
ings).

[14] Dan Cojocar. “BBUFs: Routing Protocol”. In: Proceedings of the
Symposium Colocviul Academic Clujean de Informatica. Cluj–Napoca,
Romania, June 2010, pp. 116–121.

[15] Grigoreta Sofia Cojocar and Dan Cojocar. “A Comparison of AOP
Based Monitoring Tools”. In: Studia Universitatis Babeş-Bolyai, Infor-
matica (2011), pp. 65–70.

[16] Dan Cojocar. “Replication Location Decisions”. In: Nano, Informa-
tion Technology and Reliability (NASNIT), 2011 15th North-East Asia
Symposium. Macao, China, Oct. 2011, pp. 161–165. (indexed IEEE).

[17] Dan Cojocar. “Load Balance Queries in Decentralized Peer-to-Peer
File Systems”. In: Proceedings of the National Symposium ZAC2012
(Zilele Academice Clujene, 2012). 2012, pp. 105–110.

[18] Gabriel Ciobanu and Dan Cojocar. “Expressing BBUFs lookup using
the π-calculus”. In: Workshosp on Global Computing Models and Tech-
nologies, co-located with SYNASC 2014. Timisoara, Romania, 2014.
(ISI Proceedings).

2

Contents

Introduction 5

1 Distributed File Systems 7

1.1 Peer-to-Peer Systems . 7

1.2 Models to Represent Decentralized Systems 8

1.2.1 Distributed Hash Tables . 8

1.2.2 Systems that are using DHT 8

1.3 Distributed Peer-to-Peer File Systems 9

1.4 Lookup problem . 9

1.5 Query Load Balancing . 10

1.5.1 Related Approaches . 10

1.6 Replication . 10

1.7 Existing Decentralized Distributed File Systems 11

2 A new Approach for Decentralized Unstructured Peer-to-Peer Sys-

tems 12

2.1 IPv6 Anycast Addresses . 12

2.2 Proposal . 13

2.2.1 The Lookup Operation . 16

2.2.2 Communication Protocol . 17

2.2.3 Advantages/Disadvantages . 17

2.3 Balansarea cererilor . 18

2.3.1 MCP - Maximum Computing Power 18

3

2.3.2 AQK - Average Query Cost 19

2.4 BBUFs Case Study . 20

2.4.1 System Architecture . 20

2.4.2 BBUFsMapper . 21

2.4.3 BBUFs Replication . 21

2.5 Conclusions and Further Works . 22

3 New Replication Strategies 23

3.1 Location Aware Replication . 23

4 Formal Model 25

4.1 Π-calculus . 25

4.1.1 Lookup Details . 28

4.1.2 Timed π-calculus . 29

4.1.3 Model Validation . 30

4.2 Mobile Ambients . 30

4.2.1 Base Concepts . 31

4.2.2 Domain Mobile Ambients Behavior 31

4.2.3 Extending Domain Attribute of an Mobile Ambient 32

Conclusions 34

4

Introduction

This paper represents the scientific results under the operating system domain, in

special under the distributed decentralized unstructured file systems. The research

started in 2005 under the supervision of Prof. Dr. Florian Mircea Boian.

In this paper we are focusing on presenting the problems that arise on lookup

operations in such decentralized systems. Specifically we are trying to study the

problems that are related with searching the content in such systems. We are studying

how to enhance the system performance using replication and query load balancing

techniques using the created replicas. Also we are presenting a proposal of a new

formalism, used to model the interactions in such a system. The paper is structured

in 4 chapters as follows.

The Chapter 1, Distributed File Systems, presents general facts about decen-

tralized distributed peer-to-peer file systems, lookup generic problems in such systems,

the causes that are produced by such issues and how to address them.

The Chapter 2, A new Approach for Decentralized Unstructured Peer-to-

Peer Systems, presents a new original approach on the lookup problem, based on

IPv6 addressing scheme. We are presenting the novelty introduced by the IPv6, how

the anycast and multicast addressing schemes were redefined. And then how we are

using them in our proposal. Also we are presenting the architecture of a decentralized

unstructured file system, named BBUFs, that is using our proposal. In this chapter

we are presenting a new way to load balance client queries using multiple replicas.

The Chapter 3, New Replication Strategies introduces a new replication

method that allows us to select or specify the criteria used to select a replica desti-

nation.

5

The Chapter 4, Formal Model, presents a formal model for the lookup protocol

that we defined. We are presenting also some related approaches and a new enhance-

ment to the Time and Space Coordination of Mobile Agents formalism. Also we are

presenting the formal model presented in Chapter 2 and a way to validate the model.

The original contributions that were used in this paper are found in the following

chapters: 2, 3, 4, and are proposing:

• A new approach to the lookup problem in a decentralized unstructured file

system [Coj09, Coj08a] (Section 2.2).

• A design for a new decentralized distributed file system, based on the lookup

approach [Coj09, Coj08b] (Section 2.4)

• A new way to load balance the client queries using multiple replicas [Coj12,

Coj10] (Section 2.3.1).

• A new model to represent the internal structure that will allow the distribution

of the file content among multiple nodes [Coj08b] (Section 2.4.3).

• A new replication strategy that will take into account the nodes locations, using

different metrics [CB09a, Coj11] (Section 3.1).

• A formal proposal of the lookup mechanism using pi-calculus [CC14] (Sec-

tion 4.1.1).

• A new formalism by extending the domain attribute of the mobile ambients

defined in Time and Space Coordination of Mobile Agents (Section 4.2.3).

6

Chapter 1

Distributed File Systems

1.1 Peer-to-Peer Systems

Almost unknown ten years ago, peer-to-peer systems have started to be a big Internet

traffic source.

Lv [LCC+02a] classified peer-to-peer systems, based on their architecture, in the

following categories:

• centralized - systems that have a central node that manages the access trout

the system.

• decentralized - in this category none of the nodes have the absolute control.

This category has two subcategories:

– structured - between the system nodes and the data that they are managing

there is a tight coupling.

– unstructured - systems that are not structured based on the data that is

managed.

We are not trying to highlight any features but we are not able not to notice

that the unstructured systems are more popular then among the others. Especially

of their decentralized nature these systems are able to offer quality of service to their

customers, having: smaller response times and higher transfer rates [Ora01].

7

1.2 Models to Represent Decentralized Systems

Most of the decentralized implementations are using distributed hash tables to rep-

resent the nodes by adding another layer on top of the network one. The added layer

is used to resolve the lookup operations and to organize the information in the sys-

tem. But a big disadvantage of this approach is that each time a node is entering the

system or an existing one is leaving, the layer has to be updated. Next are present,

the base concepts that are involved when using a distributed network layer.

1.2.1 Distributed Hash Tables

The concept of distributed hash tables (DHT) was introduced by Litwin, Niemat and

Shneider in 1996 [LNS96]. Starting with 2001 the first drafts of distributed hash

tables that are using huge networks have emerged.

A distributed hash table is like a huge hash map that is split among multiple

interconnected computers that are scattered all over the glob. The computers, named

nodes, are forming the system network. The object set that is maintained in the DHT

is disjointly partitioned, each node being responsible of a single such partition. The

set of nodes that are involved in a DHT network has a dynamic behavior: at any

moment in time a new node can join the set or an existing one can leave.

1.2.2 Systems that are using DHT

The first systems that are using DHT started to appear in 2001 and are based on

results published in 1997:

• Consistent hashing - a special hash type, that ensures that when the hash table

is modified only K/n keys need to be involved. K beeing the key number and

n the number of free positions in the hash table.

• Plaxton Mesh scheme (or PRR) - is a concept that allows an efficient routing

at the node level, using small routing tables [PRR97].

8

The approaches used to build a distributed hash table are, usually, differentiating

among them selfs by the way that they are associating the ID to the node and on

how the DTH is associated with each node.

1.3 Distributed Peer-to-Peer File Systems

Peer-to-Peer distributed file systems are unstructured decentralized systems [Ber03],

where the nodes are hosts that use commodity hardware [LM09]. All the nodes of

the systems have the same capabilities and the same duties, the communications

being direct between nodes. The major features, that needs to be considered when

implementing a distributed decentralized file system, are:

• Data lookup.

• A plan to ensure access to data even if the systems nodes are having issues, like

hardware failures, etc.

• Efficient resource management.

• How to secure the user content.

1.4 Lookup problem

A major problem in a distributed peer-to-peer decentralized system is how to lookup

user content. How can we pinpoint the user, without having a registry or a central

node, to the proper nodes that are maintaining the his data? [BKK+03]

A simple mode to describe the lookup problem is: A client uploads a file into the

system, or a node is publishing a content; At a later moment is time another client is

willing to use that file. How is this new client able to locate the node that was used

to store the initial file or one of his replicas?

9

1.5 Query Load Balancing

1.5.1 Related Approaches

Using different replication strategies (presented in Section[LM09]), most of the sys-

tems are using a big number of replicas, mainly to offer an inproved performance, but

also as a backup option in case of hardware failures [WJH97, LSSD02, HSW94].

The existing approached can be classified in the following categories:

• Static - The system decides where to perform the operation, on each read or

write call.

• Dynamic - The systems are designed to handle a big number of user queries.

Using a static approach being difficult to handle such cases, especially if the

system needs to evaluate each call.

The dynamic approaches are mainly used by the structured systems [CDG+08,

SKRC10] since in this case they are able to take advantage of the structured nature

of the system. The central node is the node that will load balance the user queries.

When a client is making a new query, the central node will guide him to the best

node that can provide an answer. Because of this all the improvements and decisions

are done at the central node [HGM10].

1.6 Replication

Peer-to-peer unstructured and decentralized systems and applications are distributed

systems that are not having a central node or a structure to manage the activities

among the system. Also being unstructured all the decisions are done at the node

level [LCC+02b]. Because of this all the nodes in the system are having the same

level of decision.

Also, the nodes being transient (may appear or disappear from the system at any

time), the systems have to maintain multiple copied of the same content on different

nodes [PC04].

10

Even when maintaining a single copy is creating another type of problems: data

consistency. When the status of a content is altered, by updating or appending

operations, all the replicas need to be notified accordingly. To resolve such issues a

new mechanism, named data synchronization, was introduced [MK03].

1.7 Existing Decentralized Distributed File Systems

There are multiple attempts to build a distributed file system. Among them, systems

like: Netware [MMP94], NFS [SGK+85], Andrew [HKM+88] and Sprite [NWO88]

that use a central node, that is responsible to serve all the client queries. Models that

in order to ensure the good behavior of the central node is forcing performance and

security constraints. To avoid such disadvantages the peer-to-peer systems are follow-

ing the decentralized approach. Among such system we have: OceanStore [KBC+00],

Ivy [MMGC02], Freenet [CSWH01], PAST [RD01] or CFS [DKK+01]. Each of the

having their advantages and disadvantages.

11

Chapter 2

A new Approach for Decentralized

Unstructured Peer-to-Peer Systems

In this chapter we are proposing a new approach for an peer-to-peer decentralized

unstructured system that will relay on IPv6 [DH98]. In this system the nodes are

not maintaining any network structure or informations about the other nodes from

the system. In the next section we are presenting the IPv6 anycast concept, the new

approach that we are proposing and then we are presenting Babeş Bolyai University

Filesystem (BBUFs) as a case study.

2.1 IPv6 Anycast Addresses

Internet Protocol Version 6 (IPv6) [DH98] was developed to solve the problem of

address space exhaustion [Tra95] on the Internet Protocol Version 4 (IPv4) [Pos81].

IPv6 specification defines a new addressing scheme called "anycast address" that is

an identifier for a set of interfaces (typically belonging to different nodes). A packet

sent to an anycast address is routed to the "nearest" interface having that address,

depending on the distance of the routing path.

Chi-Yuan Chang et al. [CCC+05] have also used the anycast characteristics of

IPv6 and designed an active router using fuzzy logic to receive the load information.

The information can be used to determine the server mechanism used to solve the

12

load balance problem.

2.2 Proposal

In this section our approach on building a decentralized unstructured file system

based on IPv6 anycast addresses.

BBUFs differentiates itself from these file systems because is not using a structure

like Chord or DHash to build or store the overlay network of the file system. We are

using a new mechanism based on IPV6 addressing scheme. Also, each node has no

knowledge about other nodes except how to contact a node from his group.

In our approach a group is a set of nodes that are replicating the same content

(see Figure fig:multicast). This means that a node can be part of many such groups.

The group is represented by:

• an IPV6 address that will be allocated from the subnetwork dedicated to anycast

use;

• a multicast IPV6 address that will be allocated from the multicast subnetwork

corresponding to the anycast address defined above.

The BBUFs system is using three types of addresses:

• unicast - used for data communication between clients and nodes of the file

system;

• anycast - used for lookup messages between clients and system nodes;

• multicast - used between the system nodes (i.e., when synchronizing their shared

content).

In our system each node will have at least one address from each above defined

group (see Figure 2-2):

• an unicast address - representing this node on our file system network. This

address is assigned by the file system administrator.

13

• at least one anycast address - representing at least one directory shared by

this node. This address is computed automatically using the BBUFsMapper

algorithm, defined in Subsection 2.4.2.

• at least one multicast address - representing the multicast group that the current

node is registered on. This address is also computed by the BBUFsMapper

algorithm.

/dir1

/dir2

R1

R2

N1

N2 N3

N4 N5

N6

M1

M1

M1

M2

M2

M2

M1

M2

Figure 2-1: Each node is part of a group that represents the shared content.

/dir1

/dir2

R1

R2

N1

N2 N3

N4 N5

N6

M1

M1

M1

M2

M2

M2

A1

A1

A1

A2

A2

A2

U1

U3
U2

U5

U4

U6

M1

A1

M2

A2

Figure 2-2: The addresses that a node is using.

Using the IPV6 addressing scheme approach we eliminate the need of building and

maintaining an overlay network structure found in all peer-to-peer implementations

based on Chord or DHash. We also optimize the lookup mechanism [Coj08a]. As a

consequence of using IPV6 addressing scheme we gain the following benefits:

• there is no need to duplicate the routing logic;

14

• when a new node joins the system we do not have to create data migration logic

(like in DHash [DKK+01]));

• the addressing space of IPV6 is considerably larger then IPV4 based implemen-

tations;

• using anycast and multicast, the lookup is preformed only on a restricted set of

nodes.

• using replication operations the group members are grouping, but using a single

multicast request we can contact all the members [Coj08b].

Our idea is to narrow the search area in order to optimize the lookup times.

To restrict the search area we use IPV6 addressing scheme and a new manner to

categorize the shared information. In order to categorize the information we propose

a method that binds the directory name to an IPV6 address. The directory name

is transformed into an IPV6 address using a hash function (eg. SHA1 [EJ01] and

BASE64 [Jos03]) on the shared content and a prefix assigned to distinguish the file

system. We convert the directory names into anycast and multicast addresses in

order to obtain the group of nodes that share the same content. Because of the IPV6

representation, the number of bits that we have available to represent a group is

limited to 128 minus the mandatory multicast prefix, which is 16 bits long, resulting

an 112 bits to represent the prefix of the network and the value of the hash function

for a given directory (see Figure 2-3).

Figure 2-3: Representing a directory name using an IPv6 address.

15

That is why we propose that the prefix should be at most 48 bits long, that will

give us 248 different networks, and 64 bits to represent the hash result.

In order to prevent generating a lots of IPV6 addresses for a host we limit the

depth of the lookup path of the shared content to a predefined number of directories.

The value of the depth will be established by the administrator of the file system,

and it will be known by all the participants (file system nodes and clients). The node

administrator and the clients can increase the value of the depth to more precisely

categorize the shared content.

2.2.1 The Lookup Operation

In the following we present a small example on how the lookup is performed. Suppose

we have a file system represented like in Figure 2-4, where Nx are nodes (x ∈ {1..3}),

Ry are the routers (y ∈ {1..2}) and C is the client. The client C needs to perform a

lookup for file /d1/d2/f2.

Figure 2-4: File System sample.

Using the BBUFsMapper algorithm and the predefined system variables: network

prefix, depth and hash function it will determine the anycast address of a potential

node that stores the searched file.

16

2.2.2 Communication Protocol

In this subsection we present some of the most important communication details

in the BBUFs file system. We describe the steps performed for some of the most

important use cases: node joining, node leaving and client lookup.

2.2.3 Advantages/Disadvantages

In this subsection we present the advantages and disadvantages of our IPv6 based

lookup mechanism. The approach that we have proposed has the following advan-

tages:

• We do not have to build an overlay network.

• The nodes from the system do not retain links or information about other nodes.

• In order to determine the node containing the data, the number of nodes reached

is significantly lower (only the nodes from the determined group are contacted

in worst case scenario).

The disadvantages of our approach are:

• The system depends on IPV6 capable unix machines. However, nowadays all

major unix distributions are IPV6 capable.

• A node may have many IPV6 addresses resulting in big routing tables. This can

be avoided using lower values for depth in BBUFsMapper algorithm (Subsection

2.4.2).

• When hash collisions appear, the system generates multicast messages that

introduce latency. This can be avoided if we lower the number of bits allocated

to the prefix part and we increase the number of bits allocated to the hash part.

Also when a node joins and will detect that the content is different the system

will initiate a merge routing, resulting in a content synchronization.

17

2.3 Balansarea cererilor

În această secţiune descriem cum se realizează balansarea cererilor pentru abordarea

noastră de sisteme de fişiere peer-to-peer descentralizare nestructurate. Propunerea

noastră încearcă să aducă avantajele enumerate în Secţiunea 1.5.1 şi la sistemele peer-

to-peer descentralizate nestructurate. Pentru a ne asigura că noua abordare aduce

aceste avantaje, trebuie să stabilim următoarele:

• Unde se stabilesc deciziile de balansare în cazul operaţiilor de depunere sau

modificare de conţinut?

• Dacă la sistemele centralizate nodul central menţine şi foloseşte registrele care

ajută la luarea deciziei, unde vor fi gestionate aceste registre în cadrul unui

sistem nestructurat descentralizat?

2.3.1 MCP - Maximum Computing Power

The results that Dong Xuan and his team presented that using anycast addresses in

a routing algorithm is a viable solution in managing the requests for nodes that are

using such addressing schemes [XJZZ00].

Using these results, Han Zhi-nan defined two metrics to be used by such a routing

algorithm, to establish an optim path [ZnWLY11].

Similarly, we defined a new metric in [Coj10], named Maximum Computing Power

(MCP). The metric is taking into account the query type and how the system was

behaving while processing the this type of queries.

We are defining the MCP for a node n as follows: MCP (n) = ri− k ∗ no_cores,

where:

• n - Represents the node for which the value is computed.

• ri - Represent the number of running instances of BBUFsRepository module.

• k - Is a constant that the node system administrator will be able to define.

• no_cores - Is the number of cpu cores that the node has.

18

Using the same processing logic detailed in [ZnWLY11] we will be able to redirect

the client request to the “nearest” idle node and control the loading of our nodes.

2.3.2 AQK - Average Query Cost

In [Coj12] using the MCP results and the informations that are collected by the

system, we are presenting how each node is able to compute an average query cost,

for each node.

Definition 1 The cost of operation o is defined like:

operationType(o) ∗ contentSize

where:

• Operation cost (OK) - will represent the cost of the operation. Probably the

write operation will be more expensive then a read one, depending on the un-

derlying storage system capabilities.

• Content Size (CS) - the size of the query payload.

By computing and associating, such a cost for each incoming request, with the actual

time spend (AST) for handling the query, the system will be able to establish a cost

for each query (QK) and average query cost (AQK) per query type, like:

Definition 2 Average query cost AQK is defined:

AQK =

∑N
i=1 QK(i)∑N
i=1 CS(i)

where: QK(i) = OK(i) ∗ CS(i) ∗ AST (i) represent the cost of i served query.

By using the MCP values a router is able to establish what are the "idle" nodes.

Using the query type and choosing the node with the lowest AQK costs for that type,

the routing algorithm will be able to select the best "idle" node that will resolve the

query.

19

2.4 BBUFs Case Study

BBUFs (Babeş Bolyai University File System) is a peer-to-peer decentralized file

system that has similar characteristics to Ivy [MMGC02] and Pastis [BPS05]:

• highly scalable - benefit of decentralization of peer-to-peer system;

• fault tolerant - a file can be configured to have n number of replicas on different

nodes;

• highly performable - each client "talks" directly to the nearest node that is

providing the requested content.

2.4.1 System Architecture

Using the information from BBUMeta presented in Figure 2-5 [Coj08b], the funda-

mental object in BBUFs system, we are able to determine how many copies each

shared content needs our distributed system to maintain.

Figure 2-5: Metadata classes.

Another key component of the system is BBUFsRepository (see Figure 2-6).

This component is running on each node and it is responsible of serving the client

queries [CB09b].

Using the components that were presented until now we can try to answer the

following question: What is happening when we have a corrupted copy?

If one of our system goals is to be able to survive even to situations where a

whole subnetwork is not accessible, we need to focus also on where are we replicating

20

R1

N1

N2

N4 N5

N6

R2

C

Disk

N3

Figure 2-6: BBURepository - Serves client requests.

the content, not just on how to improve the client query response times and how

many replicas to create. In Chapter 3 we present our proposal on how a peer-to-peer

decentralized unstructured system can achieve this goal.

2.4.2 BBUFsMapper

In this subsection we describe the BBUFsMapper algorithm that is used to bind the

directory name to an IPV6 address.

2.4.3 BBUFs Replication

BBUFs file system is using multiple replicas to avoid data losses and to maintain a

copy as close as possible to the clients. This way ensuring that the clients will benefit

from higher transfer rates [CB09b, Coj11].

In our approach a group is a set of nodes that are replication the same content.

In this approach we are also trying to answer the following questions:

• How can we synchronize a directory?

• How to establish the replica destination?

• How to detect if a copy has modified her content?

• On what node do we have the latest version?

21

Algorithm 1 BBUFsMapper algorithm
Input:
• type - address type to be generated (anycast or multicast)
• dir - the full directory name
• depth - the predefined directory depth
• prefix - the network prefix used for this file system
• hash - the hash function
Output
• address the generated address
Algorithm BBUFsMapper is:
Begin
if computeDepth(dir) > depth then

dir ← determineParentDir(dir, depth) . extract the parent directory of dir that
has depth length.
end if
key ← hash(dir) . return the hash value of the string dir
if type is anycast then

address← ”FEC0 : ” + prefix+ key
else

address← ”FF08 : ” + prefix+ key
end if
End.

2.5 Conclusions and Further Works

In this chapter we presented a new approach in designing a decentralized unstructured

distributed file system. A system that is using the new IPv6 lookup mechanism that

we introduced in the previous chapter. We presented a part of the most important

operations that the system needs: the steps needed when a node is joining the system,

what is happening when a node is leaving the system, etc. Also we presented the

advantages and the disadvantages of our approach.

22

Chapter 3

New Replication Strategies

In this chapter we are presenting a new approach that is solving the problems pre-

sented in Section 1.6, using the BBUFs [Coj09] as a case study. BBUFs is a peer-

to-peer system that is using IPv6 [DH98] as a network layer to solve the persisting

framework. By design, the BBUFs client queries are resolved by the right node, since

the lookup mechanism has O(1) complexity in most of the cases [Coj08a]. Section 3.1

presents a new replication strategy to identify the best location for a new replica.

Some conclusions and further works, related to this topic, are presented.

3.1 Location Aware Replication

Using the BBUFsStatistics module (see Figure 3-1), a process that is collecting data

about the system behavior, the system is able to establish when we need a new

replica [CB09b].

Using SyncDaemon and BBUFsStatistics the system is able to trigger a new

replication process, based on the following strategies:

• Replication based on access counters - once a threshold values is surpassed it

will start the process.

• Replication based on weights - the system is taking into account the parent-child

hierarchy of the shared files and once a parent needs to be replicated it may

23

Stats

R1

N1

N2

N4 N5

N6

R2

C

Disk

N3

Figure 3-1: BBUStatistics - gathers informations related to the queries that arrived
on a node.

decide to replicate also all or some of its children.

• Replication based on node load - if a node detects that it is too busy serving

popular content it will request help from a new node, this way the load will be

balanced.

In this chapter we have described replication strategies used by different peer-to-

peer applications. We have also introduced a new location aware replication strategy

for the BBUFs peer-to-peer system. This strategy uses different input sources, like:

• Round trip times.

• Time to live.

• GPS coordinates in order to choose a good replica candidate.

24

Chapter 4

Formal Model

4.1 Π-calculus

Over the last decades formal models have been successfully employed to specify com-

munication protocols or systems and to verify their properties. A verification pro-

cess can be viewed in two steps: specifying a protocol/system (and so, providing

a model), and verifying these properties. A formal specification is the definition of

an entity, an object or class, using a description technique [Cho85]. Using mobile

ambients [CGG99] or other formalisms that are extending them, like Timed Mobile

Ambients for Network Protocols, we can easily express common network protocols.

In this chapter we concentrate on the process algebraic technique for expressing the

lookup mechanism.

Other formal approaches, like assertional proof method, has been used for the

problem of concurrent topologies in peer-to-peer networks [LMP04]. Krishnamurthy

et al. [KEAAH05] present an analytical study of Chord under churn using a master-

equation-based approach. Bakhshi and Gurov used a π-calculus approach to formalize

the Chord system [SMK+01]. They even verified the correctness of Chord’s stabiliza-

tion algorithm by establishing weak bisimulation between the specification of Chord

as a ring network and the implementation of the stabilization algorithm, both modeled

in the π-calculus [BG07].

Using process algebra we can express the behavior of a system in a systematic,

25

precise and modular way. The basic building blocks are processes and channels.

Process algebra is compositional, providing scalability of the formal specification by

enabling the composition of large processes using smaller ones. We refer to process

algebras like CCS [Mil99], and π-calculus [Par01].

Widely used to model dynamic and interacting systems, the π-calculus allows

to express the mobility and the connectivity among the represented processes. By

allowing to pass channels as data along other channels it is able to easily express

complex processes. The mobility is a feature that helps to express easily certain

properties that are difficult to describe in formalisms without mobility. Having a

simple semantics it is an attractable formalism for expressing network processes.

We present in this section the monadic version of the π-calculus, meaning that a

message consists of exactly one name. We consider χ to be an infinite set of names.

The elements of χ are denoted by x, y, z, The terms of this formalism are called

processes and each process is denoted by P, Q, R,

Definition 1. The processes are defined over the set χ of names by the following

grammar:

P ::= 0 | x̄〈z〉.P | x(y).P | P |Q | P +Q | !P | νxP

The process expressions are defined by guarded processes x̄〈z〉.P and x(y).P , par-

allel composition P |Q, nondeterministic choice P +Q, replication !P and a restriction

νxP creating a new channel x for the process P . 0 has a special meaning, represent-

ing the empty process. The guards represent sending (output guard) and receiving

(input guard) a message along a channel.

A structural congruence relation is defined over the set of processes. We denote

by fn(P) the set of the names with free occurrences in P , and by =α the standard

α-conversion.

Definition 2. The relation ≡ over the set of processes is called structural congru-

ence, and it is defined as the smallest congruence which satisfies:

• P ≡ Q if P =α Q,

26

• P + 0 ≡ P, P +Q ≡ Q+ P, (P +Q) +R ≡ P + (Q+R),

• P |0 ≡ P, P |Q ≡ Q|P, (P |Q)|R ≡ P |(Q|R),

• !P ≡ P |!P

• νx0 ≡ 0, νxνyP ≡ νyνxP, νx(P |Q) ≡ P |νxQ if x /∈ fn(P).

Structural congruence deals with aspects related to the structure of the processes.

The evolution of a process is described in the π-calculus by a reduction relation over

processes called reaction. This reaction relation contains those transitions which can

be inferred from a set of rules.

Definition 3. The reduction relation over processes is defined as the smallest

relation → satisfying the following rules:

(com) (x̄〈z〉.P +R1)|(x(y).Q+R2)→ P |Q {z/y}

(par) P → Q implies P |R→ Q|R

(res) P → Q implies (νx)P → (νx)Q

(str) P ≡ P ′, P ′ → Q′ and Q′ ≡ Q implies P → Q

The most studied forms of behavior equivalence in process algebras are based on

the notion of bisimulation. Among the definitions of bisimularity the open bisimu-

lation is given by using the labeled transition system defined by the reduction rules.

By studying the bisimilarity between two processes the systems can be checked au-

tomatically. Weak open bisimilarity allows a basic verification technique for proving

properties about mobile concurrent systems [VM94].

In Section 2.4.3 we present the lookup mechanism and describes the protocol using

π-calculus [CC14]. Also the Mobile Workbench agents and the verification results are

presented [VM94].

27

4.1.1 Lookup Details

The π-calculus Expressions for the Lookup Mechanism

We define Lookup(memory, network, request, response, failed, valid, address, read,

console, exists, missing, rule, verifier, check, message) as:

Lookup(memory, ...)
def
= memory(inputParam).

network〈request〉.Medium(...)

network(response).P rocessResponse(...)

The Medium process is more complex since it is able to communicate both with

the client and the system nodes, nodes that are able to serve the client requests.

Medium(...)
def
= memory1(message).verifier〈rule1〉.

check1(rule1).([rule1 = exists1]Router(network1, ...)+

[rule1 = missing1](memory2(message).verifier〈rule2〉.

check2(rule2).([rule2 = exists2]Router(network2, ...)+

[rule2 = missing2]Medium(...))))

The Node is the process that is receiving the request via the network channel from

the Medium.

We define Node(network, analyze, memory, screen, unicast, message, response,

result, valid, failed) as:

Node(network, ...)
def
= network(message).analyze〈message〉.

analyze(response).([response = failed]FailedReply(network, ...)

+ [response = valid]SuccessReply(network, ...))

This way we are able to express the interaction between the components that

are involved in the model. But we can notice that time, a key attribute in network

communication, is missing. Using only π-calculus we are not able to express what is

28

happening if a channel is interrupted, or when a subprocess is not able to respond in

a timely fashion. By using the timed extension proposed by Berger et al. in [BH03]

we can express how the system reacts in such cases too.

4.1.2 Timed π-calculus

Redefining With Timers

Since the communication is maintained using IP protocols we are using the following

timeouts:

• SO_RCV TIMEO by ProcessResponse sub-process, since the lookup is using

User Datagram Protocol (UDP) to perform the request and wait for a response.

• TIME_WAIT by Connect sub-process, since once the lookup response is re-

ceived it is connecting using Transmission Control Protocol (TCP) to establish

and maintain the connection.

We are using the User Datagram Protocol (UDP) [Pos80], part of the IP protocol

suite, for the lookup operation. Because of the decentralized nature of the system,

the client is aware that the nodes, that are holding the requested content, may be

unavailable [Coj11]. Also because we are maintaining multiple number of replicas it

is not important what node is serving the client request [CB09a].

All the subprocesses mentioned in Section 4.1.1 that are using the network channel

should be redefined with timers. The same definitions, presented in the Section 4.1.1,

are used. We are redefining only the main sub-processes that are performing time

aware operations, ProcessResponse and Connect :

29

ProcessResponse(network, ...)
def
= memory(response).

([response = failed]timerSO_RCV TIMEO

(0,memory(failedresponse).FailedResponse(...))

+ [result = valid]memory(successresponse).

SuccessfulResponse(memory, ...))

Connect(memory, ...)
def
= memory(request).network〈request〉.

network(result).memory〈result〉.memory(result).

([result = failed]timerTIME_WAIT

(0, FailedResponse(memory, ...))+

[result = valid]Connect(memory, ...))

4.1.3 Model Validation

Using MWB we are able to define and validate the Lookup model presented in Sec-

tion 4.1.1.

Using the observational equivalence (bisimulation) we can compare and see if two

agents are the same. From Figure 4-1 we can see that Lookup1 and Lookup2 are

different, since are triggered from different network locations. Also, when comparing

Node1 with Node2 and Router1 and Router2 we can see that they are having the

same behavior.

4.2 Mobile Ambients

Ambient calculus was introduced by Cardelli and Gordon in 1999 as a need to ex-

press the movement of processes or devices, even between different administrative

domains [CGG99]. The ambient calculus differs from other formalisms such as π-

calculus [Mil99] in such that the computational model is based on movement instead

of communication, like we saw in Section 4.1.1.

30

Figure 4-1: Verificarea mecanismului

In this section we extend the use of composition and choice operations, that were

defined in [CGG99] for process operations, to be used on domain attribute also.

Using these two operations we are able to express routing and addressing scheme like:

unicast, anycast and multicast.

4.2.1 Base Concepts

cMa Formal Syntax

The following table describes the syntax of coordinated mobile ambients.

4.2.2 Domain Mobile Ambients Behavior

In this section we present our proposal to extend the model presented in [Cio09].

By overloading the domain attribute, in order to enhance the local knowledge of an

ambient, we can encapsulate the domain choice of an action. We will be able to express

or formalize all sorts of actions and mechanism, like: the choices that a student has

31

Table 4.1: Coordinated Mobile Ambient Syntax
n,m,p ambient names P,Q ::= processes
C ::= capabilities 0 inactivity

in n can enter n C.P movement
out n can exit n (n∆t

(l,h,d)[P], Q) ambient
open n can open n P|Q composition
go y migration to y P+Q choice

M∆t.(P,Q) movement
(vn)P restriction
*P replication

when leaving the university location. Also we could easily formalize TCP/IP unicast,

anycast, multicast and broadcast routing schemes. Since the differences between the

routing schemes are primary on the endpoint levels, we propose to add composition

and choice operations to the domain attribute to be able to formalize all the defined

routing schemes.

4.2.3 Extending Domain Attribute of an Mobile Ambient

To represent an endpoint group, we use the notation dnm, where:

• m - represents the total number of nodes in the domain.

• n - represents the number of nodes that will be chosen by the routing scheme.

Using the above notations for each routing scheme we can define the following end-

point groups.

• unicast group = d1
1 ≡ d1 - the client request will be routed to the single node

that represents the unicast group.

• anycast group = d1
m ≡ d1 - the client request will be routed to only one node

that is part of the anycast group. Here the anycast group has m nodes, but in

this case we will contact only a single node.

32

• multicast group = dnm ≡ dn - the request will be routed to n destinations from

the total of m nodes of a network. n represents the total number of nodes in

this multicast group. n beeing less then m.

• broadcast group = dmm ≡ dm - the request is routed to all the available nodes, n

from the multicast group is equal to m.

Considering the above domain definitions we can define an ambient with an unicast

domain in the following way:

(n∆t
(l,h,d1) [P] , Q) ≡ (n∆t

(l,h,di)
[P] , Q)

where i is one of the subdomains.

Also an ambient with anycast domain has the following form:

(n∆t
(l,h,d1) [P] , Q) ≡ (n∆t

(l,h,d1+d2+...+dm) [P] , Q)

and it will use choice operation on domain field.

Likewise an ambient with multicast or broadcast domain will be represented as

follows:

(n∆t
(l,h,dn) [P] , Q) ≡ (n∆t

(l,h,d1|d2|...|dn) [P] , Q)

and it will use composition on domain field.

In this chapter we presented two ways to express the Lookup mechanism. Also

using the proposed changes we are able to write more concise and compact expressions

when describing complex network algorithms and the need of multiple domain choices

are involved. Having a concise way to express the movement is helping in validating

and comparing classic routing algorithms on all type of networks, independent of the

used addressing scheme.

The formalization and the verification of the network protocols was and still is a

hot research subject since it is allowing us to validate new or existing models.

33

Conclusions

The purpose of this thesis is to highlight that the decentralized unstructured dis-

tributed file systems are an important part of the system operation research field.

File systems are used for more then 40 years already and in all this time they have

grown into bigger and complex systems. The latest trend being to migrate all the

data in cloud. The cloud being the name of multiple complex systems that are con-

taining the file system also. Usually scattered over multiple continents in order to

offer a high performance to their users.

In this paper we presented the main results from the decentralized distributed file

system domain, the context that made them possible and the novelty that they are

offering. The thesis is presenting new approaches, that such systems are able to use,

a new way to lookup data based on IPv6, a new way to load balance user queries

and how to replicate the content. Also a new way to select replication destinations.

The formalization of such mechanism was another topic that we have addressed. By

extending the Timed Coordinated Mobile Ambients model we were able to express

mechanism like: anycast, multicast and broadcast.

For each approach that we introduced we suggested also some implementations,

that could expand the research in the decentralized unstructured file system field.

For further forks we are proposing to extend the models suggested, to improve the

proposed approaches and to present new ways to enhance the field to cope with the

client demands.

34

Bibliography

[Ber03] J. E. Berkes. Decentralized peer-to-peer network architecture: Gnutella
and freenet, 2003.

[BG07] Rana Bakhshi and Dilian Gurov. Verification of peer-to-peer algorithms:
A case study. Electronic Notes in Theoretical Computer Science, 181:35–
47, 2007.

[BH03] Martin Berger and Kohei Honda. The two-phase commitment protocol
in an extended π-calculus. Electronic Notes in Theoretical Computer
Science, 39(1):21–46, 2003.

[BKK+03] Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris,
and Ion Stoica. Looking up data in p2p systems. Commun. ACM,
46(2):43–48, 2003.

[BPS05] Jean-Michel Busca, Fabio Picconi, and Pierre Sens. Pastis: A highly-
scalable multi-user peer-to-peer file system. In Jos C. Cunha and Pe-
dro D. Medeiros, editors, Euro-Par, volume 3648 of Lecture Notes in
Computer Science, pages 1173–1182. Springer, 2005.

[CB09a] Dan Cojocar and Florian Mircea Boian. BBUFs: Replication strategies.
In Proceedings of Knowledge Engineering: Principles and Techniques
Conference (KEPT), pages 284–287, Cluj–Napoca, Romania, July 2009.

[CB09b] Dan Cojocar and Florian Mircea Boian. BBUFs: Replication Strategies
Comparison. KEPT2009 Knowledge Engineering Principles and Tech-
niques, Selected Papers:343–350, 2009.

[CC14] Gabriel Ciobanu and Dan Cojocar. Expressing BBUFs lookup using the
π-calculus. InWorkshosp on Global Computing Models and Technologies,
co-located with SYNASC 2014, 2014.

[CCC+05] Chi-Yuan Chang, Wei-Ming Chen, Han-Chieh Chao, T. G. Tsuei, and
Hong Bin Liu. Ip layer load balance using fuzzy logic under ipv6 anycast
mechanism. Int. J. Netw. Manag., 15(5):311–319, 2005.

[CDG+08] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deb-
orah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and

35

Robert E. Gruber. Bigtable: A distributed storage system for structured
data. ACM Trans. Comput. Syst., 26(2):4:1–4:26, June 2008.

[CGG99] Luca Cardelli, Andrew D. Gordon, and Giorgio Ghelli. Mobility types
for mobile ambients. In ICAL ’99: Proceedings of the 26th International
Colloquium on Automata, Languages and Programming, pages 230–239,
London, UK, 1999. Springer-Verlag.

[Cho85] Tat Choi. Formal techniques for the specification, verification and
construction of communication protocols. Communications Magazine,
IEEE, 23(10):46–52, October 1985.

[Cio09] Gabriel Ciobanu. Coordinated mobile agents. In Proceedings of the
Romanian Academy, Series A, Volume 10, Number 1, 2009.

[Coj08a] Dan Cojocar. BBUFs: A new lookup mechanism based on IPV6. In
Workshosp on Global Computing Models and Technologies, co-located
with SYNASC 2008, pages 358–361, 2008.

[Coj08b] Dan Cojocar. BBUFs: Synchronization mechanism. In 6th International
Conference of Applied Mathematics (ICAM), pages 363–368, 2008.

[Coj09] Dan Cojocar. The Architecture of BBUFs. KEPT2009 Knowledge En-
gineering Principles and Techniques, Selected Papers:335–342, 2009.

[Coj10] Dan Cojocar. Bbufs: Routing protocol. In Proceedings of the Sympo-
sium Colocviul Academic Clujean de Informatica, pages 116–121, Cluj–
Napoca, Romania, June 2010.

[Coj11] Dan Cojocar. Replication location decisions. In Nano, Information
Technology and Reliability (NASNIT), 2011 15th North-East Asia Sym-
posium, pages 161–165, Macao, China, October 2011.

[Coj12] Dan Cojocar. Load balance queries in decentralized peer-to-peer file
systems. In Proceedings of the National Symposium ZAC2012 (Zilele
Academice Clujene, 2012), pages 105–110, 2012.

[CSWH01] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.
Freenet: A distributed anonymous information storage and retrieval sys-
tem. Lecture Notes in Computer Science, 2009:46–63, 2001.

[DH98] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specifi-
cation. RFC 2460 (Draft Standard), December 1998. Updated by RFCs
5095, 5722, 5871, 6437, 6564, 6935, 6946.

[DKK+01] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion
Stoica. Wide-area cooperative storage with cfs. In SOSP ’01: Proceed-
ings of the eighteenth ACM symposium on Operating systems principles,
pages 202–215, New York, NY, USA, 2001. ACM.

36

[EJ01] Donald Eastlake and Paul Jones. Us secure hash algorithm 1 (sha1),
2001.

[HGM10] Keith B Hall, Scott Gilpin, and Gideon Mann. Mapreduce / bigtable
for distributed optimization. Neural Information Processing Systems
Workshop on Leaning on Cores Clusters and Clouds, 1(1):1–7, 2010.

[HKM+88] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols,
M. Satyanarayanan, Robert N. Sidebotham, and Michael J. West. Scale
and performance in a distributed file system. ACM Trans. Comput.
Syst., 6(1):51–81, 1988.

[HSW94] Yixiu Huang, Prasad Sistla, and Ouri Wolfson. Data replication for
mobile computers. SIGMOD Rec., 23(2):13–24, May 1994.

[Jos03] S Josefsson. Rfc 3548-the base16, base32, and base64 data encodings.
Internet Request for Comments, 2003.

[KBC+00] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski,
Patrick Eaton, Dennis Geels, Ramakrishan Gummadi, Sean Rhea,
Hakim Weatherspoon, Westley Weimer, Chris Wells, and Ben Zhao.
Oceanstore: an architecture for global-scale persistent storage. SIG-
PLAN Not., 35(11):190–201, 2000.

[KEAAH05] Supriya Krishnamurthy, Sameh El-Ansary, Erik Aurell, and Seif Haridi.
A statistical theory of chord under churn. In Peer-to-Peer Systems IV,
pages 93–103. Springer, 2005.

[LCC+02a] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and
replication in unstructured peer-to-peer networks. In Proceedings of the
16th international conference on Supercomputing, ICS ’02, pages 84–95,
New York, NY, USA, 2002. ACM.

[LCC+02b] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and
replication in unstructured peer-to-peer networks. In Proceedings of the
16th international conference on Supercomputing, pages 84–95. ACM,
2002.

[LM09] Avinash Lakshman and Prashant Malik. Cassandra: structured storage
system on a p2p network. In Proceedings of the 28th ACM symposium
on Principles of distributed computing, pages 5–5. ACM, 2009.

[LMP04] Xiaozhou Li, Jayadev Misra, and C Greg Plaxton. Brief announcement:
Concurrent maintenance of rings. In PODC, page 376, 2004.

[LNS96] W Litwin, M A Neimat, and D A Schneider. LH* - A scalable,
distributed data structure. ACM Transactions on Database Systems,
21(4):480–525, 1996.

37

[LSSD02] Houda Lamehamedi, Boleslaw Szymanski, Zujun Shentu, and Ewa Deel-
man. Data replication strategies in grid environments. In in Proceedings
of the Fifth International Conference on Algorithms and Architectures
for Parallel Processing (ICA3PP’02, pages 378–383. Press, 2002.

[Mil99] Robin Milner. Communicating and mobile systems: the π-calculus. Cam-
bridge University Press, New York, NY, USA, 1999.

[MK03] Robert W Moss and Peter Korger. Methods and structure for read data
synchronization with minimal latency, November 11 2003. US Patent
6,646,929.

[MMGC02] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie
Chen. Ivy: a read/write peer-to-peer file system. SIGOPS Oper. Syst.
Rev., 36(SI):31–44, 2002.

[MMP94] Drew Major, Greg Minshall, and Kyle Powell. An overview of the net-
ware operating system. In WTEC’94: Proceedings of the USENIX Win-
ter 1994 Technical Conference, pages 27–27, Berkeley, CA, USA, 1994.
USENIX Association.

[NWO88] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout. Caching
in the Sprite network file system. ACM Transactions on Computer Sys-
tems, 6(1):134–154, 1988.

[Ora01] Andrew Oram. Peer-to-peer: harnessing the benefits of a disruptive
technology. " O’Reilly Media, Inc.", 2001.

[Par01] Joachim Parrow. An introduction to the-calculus. Handbook of Process
Algebra, pages 479–543, 2001.

[PC04] Franjo Plavec and Tomasz Czajkowski. Distributed File Replication Sys-
tem based on FreePastry DHT. Technical report, University of Toronto,
Ontario, Canada, 2004.

[Pos80] J Postel. Rfc 768: User datagram protocol (udp). Request for Comments,
IETF, 1980.

[Pos81] J. Postel. Internet Protocol. RFC 791 (INTERNET STANDARD),
September 1981. Updated by RFCs 1349, 2474, 6864.

[PRR97] C. Greg Plaxton, Rajmohan Rajaraman, and Andrea W. Richa. Ac-
cessing nearby copies of replicated objects in a distributed environment.
In ACM Symposium on Parallel Algorithms and Architectures, pages
311–320, 1997.

[RD01] Antony Rowstron and Peter Druschel. Storage management and caching
in past, a large-scale, persistent peer-to-peer storage utility. SIGOPS
Oper. Syst. Rev., 35:188–201, October 2001.

38

[SGK+85] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and
Bob Lyon. Design and implementation of the Sun Network Filesys-
tem. In Proc. Summer 1985 USENIX Conf., pages 119–130, Portland
OR (USA), 1985.

[SKRC10] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The hadoop distributed file system. In Proceedings of the
2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), MSST ’10, pages 1–10, Washington, DC, USA, 2010. IEEE
Computer Society.

[SMK+01] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Bal-
akrishnan. Chord: A scalable Peer-To-Peer lookup service for internet
applications. In Proceedings of the 2001 ACM SIGCOMM Conference,
pages 149–160, 2001.

[Tra95] P Traina. Bgp-4 protocol analysis. 1995.

[VM94] Björn Victor and Faron Moller. The Mobility Workbench — a tool
for the π-calculus. In David Dill, editor, CAV’94: Computer Aided
Verification, volume 818 of Lecture Notes in Computer Science, pages
428–440. Springer-Verlag, 1994.

[WJH97] Ouri Wolfson, Sushil Jajodia, and Yixiu Huang. An adaptive data
replication algorithm. ACM Trans. Database Syst., 22(2):255–314, June
1997.

[XJZZ00] Dong Xuan, Weijia Jia, Wei Zhao, and Hongwen Zhu. A routing pro-
tocol for anycast messages. Parallel and Distributed Systems, IEEE
Transactions on, 11(6):571–588, 2000.

[ZnWLY11] Han Zhi-nan, Yan Wei, Zhang Li, and Wang Yue. Design and imple-
mentation of an anycast efficient qos routing on ospfv3. 2011.

39

	Introduction
	Distributed File Systems
	Peer-to-Peer Systems
	Models to Represent Decentralized Systems
	Distributed Hash Tables
	Systems that are using DHT

	Distributed Peer-to-Peer File Systems
	Lookup problem
	Query Load Balancing
	Related Approaches

	Replication
	Existing Decentralized Distributed File Systems

	A new Approach for Decentralized Unstructured Peer-to-Peer Systems
	IPv6 Anycast Addresses
	Proposal
	The Lookup Operation
	Communication Protocol
	Advantages/Disadvantages

	Balansarea cererilor
	MCP - Maximum Computing Power
	AQK - Average Query Cost

	BBUFs Case Study
	System Architecture
	BBUFsMapper
	BBUFs Replication

	Conclusions and Further Works

	New Replication Strategies
	Location Aware Replication

	Formal Model
	-calculus
	Lookup Details
	Timed -calculus
	Model Validation

	Mobile Ambients
	Base Concepts
	Domain Mobile Ambients Behavior
	Extending Domain Attribute of an Mobile Ambient

	Conclusions

