
Babeş–Bolyai University
Faculty of Mathematics and Computer Science

1, M. Kogǎlniceanu Street
400084, Cluj–Napoca, România

http://www.ubbcluj.ro

Metrics in Software Assessment

PhD Thesis Abstract

PhD Student: Camelia Şerban

Advisor: Prof. Dr. Militon Frenţiu

2012

http://www.ubbcluj.ro

ACKNOWLEDGMENTS

I would like to thank all people which have made this work possible.

I express my sincere gratitude to my supervisor, Professor Militon Frenţiu, for his
help during these years.

I also thank Professor Horia F. Pop for research opportunities offered and valuable
ideas.

The passion for research, encouragements and many ideas came from my coleague
Andreea Vescan to whom I am deeply grateful.

I thank from all my heart my parents and my sister for the enormous help that they
offered. They helped me move forward when I have lost all hope. Throughout these
years, my husband was beside me, and I thank him for his help and encouragements
he offered. I dedicate this thesis to my daughter, Emilia, with all my love.

I thank all my colleagues from the Computer Science Department, which helped
me and with whom I collaborated.

i

Contents

1 Introduction . 1
2 Setting the context . 5

2.1 Software Measurement . 5
2.2 Metrics in Object Oriented Design Assessment 5
2.3 Metrics in Component-Based Development 6
2.4 Fuzzy Analysis in Measurement Results Interpretation 6

3 A conceptual framework for Object Oriented Design Assessment 7
3.1 A model for object oriented design 7
3.2 Formal definition of OOD Metrics 8
3.3 The problem of design assessment. Setting the objectives 9
3.4 Assessment Results Analysis . 9
3.5 Conclusions . 12

4 Experimental Evaluation of the Proposed Model 13
4.1 Design Flaws Detection. Case - Study 13
4.2 Tool Support . 15
4.3 Conclusions . 15

5 Metrics-Based Approach for Component Selection 16
5.1 Component selection problem. Formal statement 16
5.2 Metrics-based Component Evaluation. Theoretical Background . . . 16
5.3 A New Component Selection Algorithm based on Metrics and Fuzzy

Clustering Analysis . 17
5.4 A conceptual framework for CBS Assessment 18
5.5 Conclusions . 21

6 Components Assembly Evaluation . 22
6.1 Components Assembly as a Graph 22
6.2 Adapted and defined metrics . 22
6.3 Metrics-based selection of a component assembly 23
6.4 Conclusions . 25

7 Conclusions and Future Research Directions 26
Bibliography . 27

ii

Contents of the Thesis

1 Introduction 1
1.1 Problem Outline . 1
1.2 Approach . 2
1.3 Structure of the Thesis . 5

2 Setting the context 8
2.1 Software Measurement . 8

2.1.1 Measurement concepts . 8
2.1.2 Representational Theory of Measurement 10
2.1.3 Software metrics taxonomy . 14
2.1.4 The role of software measurement 15

2.2 Metrics in Object Oriented Design Assessment 16
2.2.1 Object Oriented Design . 16
2.2.2 The Need for Design Assessment 22
2.2.3 Metrics for Object Oriented Design 23
2.2.4 The shortcomings of software metrics 27

2.3 Metrics in Component-Based Development 30
2.3.1 Component Definition and Specification 30
2.3.2 Component integration and component composition 31
2.3.3 Metrics for component-based development 32

2.4 Fuzzy Analysis in Measurement Results Interpretation 35

3 A conceptual framework for Object Oriented Design Assessment 37
3.1 A model for object oriented design . 39

3.1.1 Design entities . 40
3.1.2 Properties of design entities . 42
3.1.3 Relations between design entities 44
3.1.4 Example . 46

3.2 Formal definition of OOD Metrics . 50
3.2.1 Coupling metrics. Formal definitions 50
3.2.2 Cohesion metrics. Formal definitions 52
3.2.3 Inheritance metrics. Formal definitions 54
3.2.4 Measurement of Size and Structural Complexity. Formal definitions 55

3.3 The problem of design assessment. Setting the objectives 57
3.3.1 The problem of design assessment 60

3.4 Assessment Results Analysis . 60
3.4.1 Using fuzzy clustering analysis in the interpretation of measure-

ment results . 62
3.4.2 Design Flaw Entropy Metric . 64

3.5 Conclusions . 68

4 Experimental Evaluation of the Proposed Model 70
4.1 Design Flaws Detection. Case - Study 70

4.1.1 Domain Assessment Identification 70
4.1.2 Setting the Assessment Objectives 71

iii

4.1.3 Formal Definitions of Selected Metrics 73
4.1.4 Fuzzy Partitions Determination. Results Analysis for “God Class”

Design Flaw . 75
4.1.5 Fuzzy Partitions Determination for “Shotgun Surgery” Design

Flaw . 83
4.2 Tool Support . 87

4.2.1 Overview . 88
4.2.2 Metrics Arhitecture . 88

4.3 Conclusions . 89

5 Metrics-Based Approach for Component Selection 91
5.1 Component selection problem. Formal statement 93
5.2 Metrics-based Component Evaluation. Theoretical Background 94

5.2.1 Case Study . 96
5.2.2 Conclusions . 98

5.3 A New Component Selection Algorithm based on Metrics and Fuzzy
Clustering Analysis . 98
5.3.1 Algorithm Description . 98
5.3.2 Example . 100

5.4 A conceptual framework for CBS Assessment 104
5.4.1 A model for Component-Based System 104
5.4.2 Assessment Objectives . 110
5.4.3 Formal Definition of Metrics . 112
5.4.4 Mesurement Results Analysis 115
5.4.5 Steps in Applying the Evaluation Model 117

5.5 Related Work . 117
5.6 Conclusions . 119

6 Components Assembly Evaluation 120
6.1 A Formal Approach for Components Assembly Evaluation 120

6.1.1 Components Assembly Definition 120
6.1.2 Components Assembly as a Graph 122
6.1.3 Adapted and defined metrics . 126
6.1.4 Example: PDA - Personal Digital Assistant 127

6.2 Metrics-based selection of a component assembly 128
6.2.1 Problem statement . 128
6.2.2 Proposed Metrics . 129
6.2.3 The influence of metrics values on quality attributes 129
6.2.4 Example and Results Analysis 129

6.3 Conclusions . 132

7 Conclusions and Future Research Directions 133

iv

List of author’s publications

• [Ser11]C. Serban. God Class Design Flaw Detection In Object Oriented Design.
A Case–Study. Studia Universitas Babes-Bolyai, Seria Informatica, LVI(4):33-
38, 2011. (MathSciNet)

• [Ser10]C. Serban. A Conceptual Framework for Object-Oriented Design Assess-
ment. In UKSim 4th European Modelling Symposium on Mathematical Modelling
and Computer Simulation, pages 90-95, 2010. (IEEE paper)

• [SVP10b]C. Serban, A. Vescan, and H. F. Pop. A Formal Model for Component-
Based System Assessment. In Second international conference on Computa-
tional Intelligence, Modelling and Simulation, pages 261-266, 2010. (IEEE paper)

• [SVP10a] C. Serban, A. Vescan, and H. F. Pop. A conceptual framework for
component-based system metrics definition. In 9th RoEduNet International Con-
ference, Sibiu, Romania, pages. 73–78, 2009. (ISI Proceeding)

• [Ser09b] C. Serban. High coupling detection using fuzzy clustering analysis.
Knowledge Engineering: Principles and Techniques (Post-proceedings of KEPT
2009), International Conference, Babes-Bolyai University, Presa Universitara
Clujeana, pages 258-265, 2009. (ISI Proceeding)

• [SVP09] C. Serban, A. Vescan, and H.F. Pop. A new component selection
algorithm based on metrics and fuzzy clustering analysis. In Proceedings of the
4th International Conference on Hybrid Artificial Intelligence Systems, LNCS
Vol. 5572, pages 621-628, 2009. (ISI Proceeding)

• [Ser09a]C. Serban, A formal approach for OOD metrics definition. Proceedings
of the First International Conference on Modelling and Development of Intelligent
Systems, Lucian Blaga University Press, pages 262-269, 2009. (MathSciNet)

• [Ser09c]C. Serban. High coupling detection using fuzzy clustering analysis. Spe-
cial Issue of Studia Universitatis Babes-Bolyai Informatica: Proceedings of The
International Conference on Knowledge Engineering: Principles and Techniques,
pages 223-226, 2009. (MathSciNet)

• [SP08] C. Serban and H.F. Pop. Software quality assessment using a fuzzy clus-
tering approach. Studia Universitas Babes-Bolyai, Seria Informatica, LIII(2):27-
38, 2008. (MathSciNet)

• [SVP08] C. Serban, A. Vescan, and H.F. Pop. Component selection based on
fuzzy clustering analysis. Creative Mathematics and Informatics, 17(3):505-510,
2008.

• [SV07b] C. Serban and A. Vescan. Metrics for component-based system devel-
opment. Creative Mathematics and Informatics, pages 143-150, 2007. (Math-
SciNet)

v

• [SV07a] C. Serban and A. Vescan. Metrics-based selection of a component
assembly. Special Issue of Studia Universitatis Babes-Bolyai Informatica: Pro-
ceedings of The International Conference on Knowledge Engineering: Principles
and Techniques, pages 324-331, 2007. (MathSciNet)

• [SC06] C. Serban and C. Cretu. Impact on design quality of refactorings on
code via metrics. In Proceedings of the Symposium Zilele Academice Clujene,
pages 39-44, 2006.

• [Ser06] C. Serban. Coupling measurement for compiled .Net code. In Proceed-
ings of the Symposium Zilele Academice Clujene, pages 21-26, 2006.

• [SM05] C. Serban and A. Mihis. Software quality assurance. In Proceedings of
the Symposium Zilele Academice Clujene, pages 207-212, 2005.

List of keywords

Software metric, object oriented design, component based development, object oriented
design assessment, component based systems assessment, fuzzy clustering analysis.

vi

1 Introduction

This PhD thesis is the outcome of the research which I have conducted in Software
Engineering, particularly in the field of Software Metrics, since 2004.

Programs have continuously increased in size and complexity leading to higher
development costs and lower productivity. Software systems have become inflexible
(difficulty in adding new functionality), monolythical (provided functionality not based
on components), and difficult to maintain (any change comes with an unending chain
of adjustments in multiple places) [Mih03].

The need for quality in the software system has become more and more evident
on the market. Quality improvement is only possible through quality control. As De
Marco underlines: “you cannot control what you cannot measure” [DeM82]. Therefore,
the interest for software measurement has vitally increased.

Measurement is not only useful but also necessary. It is essential to check up the
status of the projects being developed and to find out the resources and processes
involved. It is also difficult to state whether a project is good or bad, if measurements
of its features (goodness, health, quality, etc.) are not performed [Bar02]. In other
words, projects need to be controlled rather than just developed.

So it is obvious that software measurement has become essential in the field of
Software Engineering. Software developers measure software characteristics to make
sure the requirements are consistent and complete, the design is of high quality, and
the code is ready to be tested. Project managers are keen on constantly measuring
the process and the product to be able to tell when the software is ready for delivery
making also efforts not to exceed the budget. Informed customers measure different
aspects of the final product to determine whether it meets the requirements and the
quality standards. Maintainers should have the background required for the product
assessment to decide what should be upgraded and improved [FP97].

As a consequence to the development above, software metrics have become a concern
for many researchers. They measure different aspects of software and therefore play
an important part in understanding, controlling and improving software quality.

A lot of metrics have been proposed so far and new metrics continue to appear in
the literature regularly. In spite of their great number, there are still some relevant
issues raised. Many of these issues will be tackled as they are relevant for this work.

Very often definitions of metrics are incomplete, ambiguous and open to a variety of
different interpretations [BDW99, Mar97, MP08]. For instance, the definition of NOM
metric given by Li and Henri [LH93b] sounds like this: “the number of local methods
of a class”. The problem is that they do not explain the term “local method”. He
makes no reference about inherited methods neither about class methods or re-defined
methods. Has the method’s visibility (public, private etc.) been considered? Many of
these questions haven’t been answered yet; however this metric was validated by their
authors as a predictor for maintenance effort [Rei01].

Of greater importance is the issue related to the interpretation of results’ measure-
ment rather than the definition of the metrics. In most cases there are no interpretation
models or they are very empirical, so that applicability and reliability of measurement
results is seriously hampered. A very long standing issue related to interpreting mea-
surements’ results of any metrics-based approach is that of setting the metrics threshold

1

values [Mar02]. So, what are the “correct” threshold values to be used and how can
they be determined?

As metrics is a widely elaborate issue in any software domain, our research shall be
limited to approaching fields such as Object Oriented Design (OOD) and Component
Based Systems (CBS).

The goal of this work is that of investigating the way metrics can be applied to the
assessment of software systems, mainly to the assessment of Object-Oriented Design
and of Component-Based Systems. It will also be looking at methods and techniques
with a view to offering a relevant interpretation of the obtained measurement results.

This thesis focuses on the activity of metrics based software assessment. It contains
132 bibliographical references and is divided into seven chapters (an introduction, a
background chapter, four chapters containing original contributions and a concluding
one) as follows.

Chapter 1 introduces the context, motivation and goals of this work. It summarizes
also the contributions brought within it and provides an outline of its contents.

Chapter 2 introduces the background to be further used in this dissertation. It
covers the fundamental concepts of the domain the thesis is related to (object-oriented
paradigm and component-based systems), the key concepts of software measurement,
a state of the art in the measurement field and quality assurance related to object-
oriented design and component-based systems. The current chapter also presents the
fuzzy clustering analysis method, used in measurement results interpretation. After
pointing out the limitations of the current existing approaches, the chapter defines the
goals and requisites of the thesis.

Chapter 3 introduces a new conceptual framework for object-oriented design assess-
ment. The framework defines four abstraction layers that are used in object-oriented
design assessment: the Object-Oriented Design Model – formally defines the assessment
domain, specifying the elements to be evaluated, their properties and the relationships
between them; Formal Definitions of OOD Metrics – consisting of a library of OOD
metrics definitions; Specifications of the Assessment Objectives – that specifies in a for-
mal manner the assessment objectives using a metrics based approach; Measurement
Results Analysis – uses the fuzzy analysis method in order to interpret the measurement
results obtained in the assessment process.

Chapter 4 evaluates the methods and techniques introduced in the previous chap-
ter, based on a relevant case-study and presents the toolkit intended to support the
automation of the design assessment methodology introduced in Chapter 3. It also
includes a comparison with related approaches that use threshold values for software
metrics, that are found in the literature;

Chapter 5 proposes an evaluation framework for component based systems, frame-
work used in the problem of component selection with the aim of assessing the compo-
nents for building a software system that meets the client’s requirements. The approach
defines a metamodel for CBS used as a contextual input in order to formally define
metrics and to specify the assessment objectives. Additionally, it contains a robust
method, based on fuzzy analysis, for the interpretation of the obtained measurement
results. The steps for applying the evaluation model are also described. The proposed
model is similar to the conceptual framework introduced in Chapter 3, but it has a
different granularity level, of software components instead of that of classes.

2

Chapter 6 proposes an evaluation of the components assembly. In this chapter the
system coupling is studied, because it captures the interactions between the compo-
nents and is related to quality attributes. The selection of metrics is made and new
metrics are proposed for quantifying the interaction issues between the components, by
studying the influence of metrics values on quality attributes. Also, the assessment in
question offers support in selecting the optimum solution from a set of possible solution
configurations.

Chapter 7 concludes our work and offers an overview of all contributions reported
within it.

The personal contributions introduced by this thesis are included in Chapters 3,
4, 5, and 6. They are divided into two research areas for the assessment of Object-
Oriented Design and Component-Based Systems, and can be summarized as follows.

Contributions to object-oriented design assessment

• A new formalization of object-oriented design model [Ser09a] (Section 3.1). This
formalization defines the theoretical background of OOD evaluation, to be used
at formally defining metrics, stating the assessment objectives and interpreting
the obtained assessment results.

• A new library of object-oriented design metrics formal definitions [Ser09a, Ser10]
(Section 3.2). Metrics are formally defined by using the context delineated for
the OOD model and expressing them in terms of algebraic sets and relations,
knowledge assumed as familiar since the first stages of our studies.

• A new formalism for the specification of the assessment objectives (Section 3.3).
The assessment objectives are specified using a metrics based approach.

• A new method for the interpretation of measurement results based on fuzzy
clustering techniques [SP08] (Section 3.4). Fuzzy clustering analysis is used to
overcome the limitations of the existing approaches which use threshold values
for metrics.

• A new metric regarding design flaw entropy distribution [Ser09b, Ser09c] (Section
3.4.2).

• A complete framework for object-oriented design assessment [Ser10] (Chapter 3).

• A new case-study which experimentally validates the proposed methodology re-
garding object-oriented design assessment [Ser11, Ser09b, SP08] (Chapter 4). It
also includes a comparison with related approaches to be found in literature,
approaches that use threshold values for software metrics.

Contributions to component-based systems assessment

• A new method for component selection based on metrics and fuzzy clustering
analysis [SVP08] (Section 5.2).

3

• A new component selection algorithm based on metrics and fuzzy clustering anal-
ysis [SVP09] (Section 5.3).

• A new formalization for the definition of metrics for component based systems
[SVP10a] (Section 5.4.3).

• A new method for the interpretation of measurement results based on fuzzy
clustering techniques [SVP10b] (Section 5.4.4).

• A complete framework for component-based system assessment [SVP10b] (Sec-
tion 5.4). The conceptual framework formally addresses the problem of compo-
nents’ evaluation, including a model for CBS assessment, model that offers the
contextual input for formal definitions of metrics and for formal specification of
the assessment objectives; the steps involved in applying the proposed model are
also included in this framework;

• A new formal approach of component assembly as a graph [SV07b] (Section 6.1.2).

• A set of new metrics to quantify quality attributes of component assembly [SV07b]
(Section 6.1.3).

• A new set of metrics to best select a component assembly from a set of configu-
rations [SV07a] (Section 6.2.2).

• A study of the influence of metrics values on quality attributes [SV07a] (Section
6.2.3).

4

2 Setting the context

This work is going to tackle the issue of using measurement in two major fields of
software engineering: object-oriented design and component-based systems. Thus, the
current chapter presents the fundamental concepts of these domains, given a particu-
lar emphasis to the manner in which measurement supports research in the software
engineering area.

2.1 Software Measurement

Fenton’s conceptual framework for measurement [Fen95] is widely accepted by the
software engineering community and we believe it provides adequate support for this
research.

2.2 Metrics in Object Oriented Design Assessment

Evaluation of software system design is a time-consuming activity due to its complexity.
Therefore, special methods and techniques are needed in order to assess the design in
an automatic manner. Software metrics are consequently an alternative solution, being
a means for quantifying those aspects considered important for the assessment.

2.2.1 Object Oriented Design

In order to meet quality attributes an object-oriented application has to follow different
design principles [Rie96, JF88], design heuristics [Mey88, Mar] and design patterns
[GHJV94]. Object-oriented systems that does not observe to rules that ensure a good
design and which were mentioned above, encounter a lot of problems which hamper
their evolution.

Riel [Rie96] proposes a set of heuristic design guidelines and argues on some of the
flawed structures that result when these guidelines are broken. Fowler in [FBB+99]
completes with some deviations from a good design and their consequences. In [Mar]
Martin comments on object orientation main design principles arguing that their break-
down causes a rotting design.

2.2.2 Metrics for Object Oriented Design

The literature offers a significant number of object-oriented metrics. Of these, the
metrics proposed by Abreu [Abr93, AR94], those of Chidamber and Kemerer [CK94],
Li and Henry [LH93a], the MOOD metrics [Abr95], Lorenz and Kidd [LK94] metrics
are the most widely used. Marinescu [Mar02] has classified these metrics according
to four internal characteristics that are essential to object-orientation: - i.e. coupling,
inheritance, cohesion and structural complexity.

Several authors [Mar02, MP08, Rei01, BBA02, MSL06, BDW99, WBD98] discussed
some important problems encountered when a metrics based approach is used in soft-
ware assessment. The most important of these issues are related with imprecise defi-
nition of metrics and measurements results interpretation.

5

2.3 Metrics in Component-Based Development

At present, Component-Based Software Development (CBSD) has been accepted as a
new effective development paradigm in the industry. It brings forward the design and
construction of a software system by selecting and integrating appropriate components,
previously developed, and then assembling them to obtain the functionality expected.

2.3.1 Component Definition and Specification

Several definitions of a component are found in literature [Spa00, Mic, DW98, Szy98]
over time. Although these definitions may contain dissimilarities, they generally state
that a component is a software module providing functionality through well specified
interfaces.

2.3.2 Metrics for component-based development

When building a component-based software system, there may be different components
to provide the same needed functionality. In order to differentiate components with
similar functional properties, knowledge about quality attributes is generally regarded
as information of utmost importance, if specified. As a result in this direction, software
metrics are very important, being a mean to quantify those aspects that are consid-
ered important for the assessed entities (software components) in order to obtain high
quality solution [SKG07]. On the other hand, software metrics can be used to assess a
system solution in order to select beetwen alternative solutions.

The realm of traditional software metrics are not applicable to component based
systems. This is due mainly to the black-box nature of a component [GG03a]. Gill
[GG03a] proposes some aspects that need to be considered when we define component
based metrics.

2.4 Fuzzy Analysis in Measurement Results Interpretation

As we have argued before software metrics pose some problems, the most important
being the ability to give relevant interpretation of the measurement results which in
turn is due to the fact that threshold values for the metrics are difficult to set. In
order to overcome this limitation, we propose an alternative approach for the prob-
lems regarding measurement results interpretation and setting up the software metrics
threshold values. The proposed approach uses fuzzy clustering analysis. This allows us
to place the assessed software entity in more than one group, with different membership
degrees.

In our approach, the objects considered to be clustered are the design entities of the
software that we aim to assess or the software components selected in order to build
a component based system. The attributes or the relevant features of the analyzed
objects are the corresponding values of the metrics selected for the assessment.

6

3 A conceptual framework for Object Oriented De-

sign Assessment

The current chapter is focused on developing a methodology for quantitative evaluation
for object-oriented design. The methodology we are proposing is based on static anal-
ysis of the source code and is described by a conceptual framework of four abstraction
layers: Object-Oriented Design Model, Formal Definitions of OOD Metrics, Specifica-
tions of the Assessment Objectives, Mesurement Results Analysis. These elements are
briefly described in the next sections.

3.1 A model for object oriented design

The OOD Model proposed by Marinescu [Mar02] is formalized in our approach for
design assessment using terms of algebraic sets and relations.
Definition 3.1.1 ([Ser09a, Ser10]) The 3-tuple D(S) = (E,Prop(E), Rel(E)) is called
a model for an object-oriented design corresponding to a software system S, where:

• E represents the design entities set of S;

• Prop(E) defines the properties of the elements from E;

• Rel(E) represents the relations between the design entities of the set E.

The elements E,Prop(E), Rel(E), referred in Definition 3.1.1 will be detailed in
what follows.

3.1.1 Design entities

Let E = {e1, e2, ..., enoE} be the set of design entities of the software system S, where
ei, 1 ≤ i ≤ noE can be a package, a class, a method from a class, an attribute from a
class, a parameter from a method, a local variable declared in the implementation of
a method or a global variable. Thus, the design entities set is defined by the following
formula:

Design Entities = Package(E) ∪ Class(E) ∪Meth(E) ∪ V ar(E), where:

V ar(E) = Attr(E) ∪ Param(E) ∪ LocV ar(E) ∪GV ar(E).

Each notations are described in details in the thesis.

3.1.2 Properties of design entities

As we have mentioned before, the second element of our model is the set of properties of
the design entities, denoted by Prop(E). Because current approach refers to six types
of design entities: class, method, attribute, parameter, local variable, global variable,
each type having its own set of properties, we define a model in order to specify the
properties of entities of a generic type T . Then, we apply this model for our concrete
types of design entities enumerated above.

As an example, we apply this model to specify the properties for design entities of
type class, the abbreviation used for this type is C.

7

Definition 3.1.4 ([Ser09a, Ser10]) The 4-tuple PropC,Class(E) = [C,Class(E), P ropC ,
P ropV alC] is called specification of properties for entities of type “class”, where:

• PropC = {Abstraction, V isibility, Reusability};

• Abstraction = {concrete, abstract, interface};

• V isibility = {package, inner, public};

• Reusability = {user − defined, user − extended, library}.

3.1.3 Relations between design entities

In this section we summarize the type of relations that exist between the entities of
object oriented design model. We mention here that for each entity, we consider only
those relations in which the entity directly interacts with other entities.

Inheritance relations between classes. Consider a, b ∈ Class(E). There are two
types of direct relations among classes:

• “a extends b”, if class a is a specialization of class b (class a inherits the
structure and behavior of class b);

• “a implements b”, if class a is an implementation of the interface class b (class
a implements the behavior of the interface class b).

Method invocation relation. Coupling metrics for a class c can be defined, on
condition we know the set of methods called by every method m ∈ Meth(E) and the
set of variables referenced by any method of the class c [Mar02]. Briand in [BDW99]
has introduced the definition of method call relation and this is adapted to our thesis
framework.
Attributes reference relation. Attributes may be referenced by methods. As at-
tribute references are not determined dynamically, it is enough to consider the static
type of the object for which an attribute is referenced.

3.2 Formal definition of OOD Metrics

As a proof of concept regarding the applicability of our proposed model for OOD, we
present the definitions of metric Method Coupling – MC.

Definition 3.2.1 ([RL92]) Method Coupling – MC
Informal statement. MC metric is defined as “the number of non-local references”
in a method.
Formal Definition. ∀c ∈ Class(E), ∀m0 ∈ Meth(c), MC(c,m0) is defined as
follows:

MC(c,m0) = card(A ∪B), where :

A = {m ∈ Meth(E)−Meth(c)|m0 call m})
B = {a ∈ ARefRel(m)|a /∈ Attr(c)}

Comments. “A non-local reference” is defined by the authors as that reference of
method or variable which are not defined in the class to which the method belong.

8

3.3 The problem of design assessment. Setting the objectives

Object-oriented software assessment is aimed at verifying whether the built system
meets quality factors such as maintainability, extensibility, scalability and reusability.
Fenton’s axiom [Fen94] states that good internal structure should provide good external
quality. According to this axiom, the assessment objectives are reduced to verifying if
there is conformity between the software system internal structure and the principles
and heuristics of good design, which are related with the internal quality attributes of
the system design (such as coupling, cohesion, complexity and data abstraction).

The community of researchers was interested in setting a relation between the
principles of good design with the design flaws. They wanted to seek what the violated
principles or rules were for a certain design flaw or vice versa, what were the design
flaws that could propagate in code if a design principle was violated.

Our objective is to develop a quantitative assessment approach and for this reason
we also have to correlate design flaws or design principles with metrics that quantify
those design flaws or design principles. Consequently, the evaluation objectives may
be defined by two approaches:

1. In the first approach, we start from a set of design principles, for each of them
we identify the corresponding design flaws, and for each design flaw a set of
appropriate metrics; this approach will be referred in what follows as Principle-
Flaw-Metric Objectives Specification;

2. In the second approach, we start from a set of design flaws, for each of them we
identify the corresponding design principles, and than for each design principle
we establish a set of appropriate metrics; this approach will be reffered in what
follows as Flaw-Principle-Metric Objectives Specification.

The problem of design assessment

Informally, the problem of design assessment or design assessment problem (DAP)
is to identify a list of design entities, called “suspects” which capture deviations from a
specified design principle/heuristic/rule or are affected by a specified design flaw. The
notations used for formally defining DAP are described in the thesis.

3.4 Assessment Results Analysis

We have already stated in the previous chapter that the most critical step in any assess-
ment activity is probably the result analysis or, to put it otherwise, the interpretation
of measurement results. This is because this activity cannot be fully automatized, like
for instance that of metrics computation. Interpretation is based on specificities of the
analyzed software system.

For the interpretation of measurement results, Marinescu used an automated mech-
anism, called “detection strategy” which combines different code metrics, filters the
result and associates this information in order to detect problems in the design archi-
tecture. He defined a detection strategy as: “the quantifiable expression of a rule by
which design fragments that conform to that rule can be detected in the source code”
[Mar02].

9

A limitation of this approach is that of choosing proper threshold values for metrics,
which is not addressed. In order to overcome this limitation, we propose a new approach
for measurement result interpretation based on fuzzy clustering analysis. Thus, we
started from the approach proposed by Marinescu, using the first part of so called
detection strategy which correlates design flaw or design principles with metrics, and
instead of the filtering and composition mechanisms we propose fuzzy analysis with
the main goal of avoiding the thresholds for metrics.

3.4.1 Using fuzzy clustering analysis in the interpretation of measurement
results

Consider the problem of design assessment previously mentioned. The results of the
assessment are a set of design entities that were evaluated AEp, together with their
corresponding values of the selected metrics Mp = {m1,m2, ...,mnoMp}. Formally, the
results of the assessment can be described as follows:

• AEp = {e1, e2, ..., en}, the assessed entities set AEp ⊆ AE,

• ei = (ei1, ei2, ..., ei(noMp)), the corresponding values of metrics m1,m2, ...,mnoMp ,
mj ∈ Mp, 1 ≤ i ≤ n, 1 ≤ j ≤ noMp,

• (eij)i=1,n;j=1,noMp
, the assessment results matrix.

Based on the metrics values, we will select from AEp the suspect entities. Fuzzy
clustering analysis is used to partition the entities in clusters, each entity having dif-
ferent membership degree to a cluster.

Definition 3.4.1 ([Ser10]) A set UAEp,Mp = {U1, U2, ..., Uc} is called a fuzzy partition
of the design entities set AEp = {e1, e2, ..., en}, entities characterized by the values of
metrics the Mp = {m1,m2, ...,mnoMp} iff:

• Ui = (ui1, ui2, ..., uin), 1 ≤ i ≤ c;

• uij ∈ [0..1], 1 ≤ i ≤ c, 1 ≤ j ≤ n, uij represents the membership degree of the
design entity ej to cluster i;

•
c∑

i=1

uij = 1, 1 ≤ j ≤ n, the sum of each column of U is constrained 1.

The fuzzy clustering genetic algorithm applied to obtain this partition, named Fuzzy
c-means clustering, is described in [Bez81]. This algorithm has the drawback that the
optimal number of classes corresponding to the cluster substructure of the data set, is
an input data. To avoid this drawback, we considered the Fuzzy Divisive Hierarchic
Clustering (FDHC) algorithm [Dum88]. The FDHC algorithm produce a binary tree
hierarchy that provides an in-depth analysis of the data set, by deciding on the optimal
number of clusters and the optimal cluster substructure of the data set. The partitions
obtained by applying the FDHC algorithm are presented below.

Definition 3.4.2 ([Ser10]) A set BTFPAEp,Mp = {N1, N2, ..., Nl} is called binary tree
fuzzy partition of the design entities set AEp = {e1, e2, ..., en}, entities characterized by
the corresponding values of metrics Mp = {m1,m2, ...,mnoMp} iff:

10

• ∀i ∈ {1, 2, ..., l}, Ni = (fi, Ui), where fi is the father of i
th cluster, fi ∈ {0...l} and

Ui = (ui1, ui2, ...uin), uijrepresentsthemembershipdegreesofthedesignentitiesej
to cluster i, uij ∈ [0..1], j ∈ {1, 2, ..., n};

• ∃! i ∈ {1, 2, ..., l} such that fi = 0 ∧ uij = 1, ∀j ∈ {1, 2, ..., n}, Ni - the root node;

• ∀i ∈ {1...l}, fi ̸= 0, ∃!j, k such that fi = k ∧ fj = k ∧ Ui + Uj = Uk, where
Ui + Uj = (ui1 + uj1, ui2 + uj1, ..., ui(n) + uj(n)).

Definition 3.4.3 ([Ser10]) Consider a binary tree fuzzy partition BTFPAEp,Mp =
{N1, N2, ..., Nl}. A node Ni = (fi, Ui) ∈ BTFPAEp,Mp is called terminal or leaf node
iff:

∀j ∈ {1, 2, ..., l}, j ̸= i and Nj = (fj, Uj) ∈ BTFPAEp,Mp ⇒ fj ̸= i.

Definition 3.4.4 ([Ser10]) Consider a binary tree fuzzy partition BTFPAEp,Mp. A
subset OFPAE,M = {G1, G2, ..., Gk} ⊂ BTFPAEp,Mp is called optimal fuzzy partition
of the design entities set AEp with respect to a set of software metrics Mp iff: Gj is a
terminal(leaf) node from BTFPAEp,Mp, ∀j ∈ {1, 2, ..., k}.

The next section introduces a new metric, called Design Flaw Entropy (DFE), which
measures the dispersion of analyzed design principles or design flaws on a set of design
entities.

3.4.2 Design Flaw Entropy Metric

DFE metric is defined considering the notion of entropy adapted from communication
information theory of Shannon [SW49]. Starting from this concept many researchers
[EGH02, BDE99, MBA04, KSW95] have developed new measures for the assessment
of software products.

Let us consider a fuzzy partition UAEp,Mp = {U1, U2, ..., Uc} of the design entities
AEp = {e1, e2, ..., en}, entities characterized by the values of metrics Mp = {m1,m2, ...,
mnoMp}, metrics selected in order to quantify a specified design principle or design flaw
p.

Definition 3.4.5 ([Ser09b]) We say that an entity ej ∈ AE, 1 ≤ j ≤ n, have dominant
membership degree to cluster Ui, 1 ≤ i ≤ c, if uij = max{urj|r = 1, c}.
Definition 3.4.6 ([Ser09b]) The relative frequency of occurrence or the probability of
a cluster Ui ∈ UAEp,Mp, denoted by p(Ui), represents the ratio between the number of
entities from AEp that have dominant membership degree to cluster Ui and the total
number of entities from AEp.

We will denote by PUAEp,Mp
= {p(U1), p(U2), ..., p(Uc)} the probability distribution

per clusters of the partition UAEp,Mp .

Definition 3.4.7 ([Ser09b]) A measure of the information (self-information) contained
in a cluster Ui ∈ UAEp,Mp is defined as I(Ui) = − log2 p(Ui).

In the context of the previous definitions and notations, we can now introduce the
definition of the proposed metric.

Definition 3.4.8 ([Ser09b]) Design Flaw Entropy (DFE) Metric.
Design Flaw Entropy (DFE) corresponding to fuzzy partition UAEp,Mp is defined as the

11

average of the self-information associated to each cluster Ui ∈ UAEp,Mp. Formally:

DFE : FP (AEp,Mp) → [0..∞], DFE(UAEp,Mp) =
c∑

i=1

p(Ui) · I(Ui)

where FP (AEp,Mp) is the set of all fuzzy partitions of the design entities set AEp, en-
tities characterized by the values of metrics Mp = {m1,m2, ...,mnoMp}, metrics selected
in order to quantify a specified design principle or design flaw p.

As we have mentioned earlier, this metric measures the distribution or the variety
of the analyzed design principle or design flaw p on a set of design entities AEp. It
also offers a deep analysis in the interpretation of measurement results regarding the
assessment of an object-oriented design D(S) = (E,Prop(E), Rel(E)) corresponding
to a software system S.

3.5 Conclusions

In the current chapter we have proposed an quantitative evaluation methodology for
object-oriented design. The proposed methodology, based on static analysis of the
source code, is described by a conceptual framework which has four layers of abstrac-
tion. We have approached two major issues regarding object oriented design assess-
ment and the proposed solutions have provided. The chapter is based on the papers
[Ser09a, Ser10, Ser09c, Ser09b, SP08].

12

4 Experimental Evaluation of the Proposed Model

The current chapter presents the experimental evaluation of our proposed model for
OOD assessment introduced in Chapter 3 and the tool developed by us that supports
the automation of metrics computation and fuzzy partitions determination.

4.1 Design Flaws Detection. Case - Study

Our starting point, i.e., the input data, is the source code of an open source object-
oriented software system, called log4net [log]. It consists of 214 classes grouped in 10
packages.

4.1.1 Domain Assessment Identification

We parse the source code with our own developed tool and produce the domain of
the assessment D(log4net) = (E,Prop(E), Rel(E)), an object-oriented model of the
software system log4net.

4.1.2 Setting the Assessment Objectives

The objective of the proposed assessment is to identify those design entities affected by
“God Class” [FBB+99] and “Shotgun Surgery” [FBB+99] design flaws. Consequently,
the assessed entities AE are the set of classes from our system. In what follows, we
aim to identify the other two components from the assessment objectives specification,
AO2(log4net) = (AE,FPG, PMG), the elements of flaws-principles graph FPG and
the elements of principles-metrics graph PMG.

God Class Design Flaw. To detect a God Class, Salehie et al. [MSL06] have
related this design flaw to a set of three heuristics from Riel’s book [Rie96]: distribute
system intelligence horizontally as uniformly as possible, beware of classes with much
non-communicative behavior, beware of classes that access directly data from other
classes.

The selected heuristics are then related with the following metrics: Weighted Method
per Class (WMC) [CK94], Tight Class Cohesion (TCC) [BK95] and Access to Foreign
Data (ATFD) [Mar02].

Analyzing the definitions of these metrics, we can conclude that a possible “God
Class” suspect will have high WMC and ATFD metric values and low TCC metric
values. Fuzzy clustering analysis is used to solve the problem of setting software metric
threshold values. Thus, an entity may be placed in more than one group, with various
membership degrees.

Shotgun Surgery. A class that is coupled to a large number of other classes and
that produces a large number of changes throughout the system in case of an internal
change, can be considered a possible supect of Shotgun Surgery design flaw [FBB+99].
In brief, this design flaw approaches the issue of “strong implementation coupling”
[Mar02].

In order to identify metrics which capture the meaning of this design flaw, fur-
ther analysis of these principles and heuristics are needed. In this respect, Marinescu
[Mar02] have identified three potential “victims” of changes in a class: methods directly

13

accessing an attribute that has changed, methods calling for a method whose signature
has changed, methods which override a method whose signature has changed.

Therefore, the selected metrics [Mar02] which quantify the above mentioned aspects
are Changing Methods (CM) [Mar02], Weighted Changing Methods (WCM) [Mar02]
and Changing Classes (CC) [Mar02].

In order to better emphasize the specification of the assessment objectives regarding
the analyzed design flaws, Figure 1 describes the above mentioned sets.

Design flaws

God Class: One class is used more extensively

than others

Shotgun Surgery: every time you make a

change in a class; you have to make many tiny

changes in lots of different classes.

Distribute system intell igence

horizontally as uniformly as possible

Beware of classes with much non-

communicative behavior

Beware of classes that access

directly data from other classes

Design principles,

heuristics or rules

WMC

TCC

ATFD

CM

WCM

CC

Minimize the Number of Messages in

the protocol of a class

Flaws - GraphPrinciples Principles - Metrics Graph

Metrics

Figure 1: Assessment objectives specification for the proposed case-study.

4.1.3 Formal Definitions of Selected Metrics

The formal definitions of metrics used in this case study are presented in the thesis.

4.1.4 Fuzzy Partitions Determination. Results Analysis for “God Class”
Design Flaw

The third step in the proposed evaluation consists of applying the fuzzy clustering
analysis with the goal of identifying those design entities affected by “God Class”
design flaw. The manner in which we apply the fuzzy clustering analysis method can
be described in two steps as follows:

• Binary tree fuzzy partition determination using Fuzzy Divisive Hierarchic Clus-
tering (FDHC) algorithm [Dum88].

• The analysis of the obtained partitions in order to determine those clusters that
contain suspects entities.

A comparison with similar approach proposed by Marinescu [Mar02], based on
detection strategies, is proposed in Section 4.1.4.3.

14

4.1.5 Fuzzy Partitions Determination for “Shotgun Surgery” Design Flaw

While the previous section deals with fuzzy partition determination for “God Class”
design flaw, the current one aims to determine the fuzzy partition related with the
second assessment objective that of “Shotgun Surgery” design flaw and starting from
this partition our goal is to identify “suspect” design entities. In order to attain this
goal, we proceed in the same manner as in “God Class” case.

A comparison with similar approach proposed by Marinescu [Mar02], based on
detection strategies, is proposed in Section 4.1.5.3.

4.2 Tool Support

In order to reduce the time spent on design assessment we need tools that automatize
the problem of design flaws. In this respect, we have developed a tool called Metrics.

4.3 Conclusions

In this chapter we have presented a new case-study in order to experimentally validate
the theoretical methodology regarding object-oriented design assessment, methodology
introduced in Chapter . The proposed case-study addressed the issue of “God Class”
and “Shotgun Surgery” design flaws detection and it is based on metrics and on fuzzy
clustering techniques. The chapter is based on the paper [Ser11].

15

5 Metrics-Based Approach for Component Selection

This chapter addresses the problem known in literature as the Component Selection
Problem (CSP). Informally, our goal is to select a subset of components from the avail-
able component set satisfying the system requirements. Selecting the best component
alternative among components that sometimes provide similar functionalities needs to
appeal to knowledge on quality attributes which often is the most significant informa-
tion for this operation. So, evaluation of these components is of utmost importance
and software metrics are a means to quantify those attributes considered important for
the system that will be built.

5.1 Component selection problem. Formal statement

An informal definition of a Component Selection Problem is given below: considering
a repository of components and a specification of the component system to be built
(set of system requirements), components should be chosen and connected in such a
way that component system resulted fulfills the specification. A system requirement is
in fact a service provided by a component.

In what follows, we will describe the notations used to formally define CSP, accord-
ing to [FBR04, Ves08b] with a few minor changes. Consider SR = {r1, r2, ..., rn} the
set of system requirements (target requirements) and CR = {c1, c2, ..., cm} the repos-
itory of components available for selection. Each component c ∈ CR is specified as
a set of provided interfaces (functionalities, services) PIc = {pic,1, pic,2, ..., pic,noPIc}, a
set of required interfaces RIc = {ric,1, ric,2, ..., ric,noPIc} and the dependencies (context)
between the services provided and required by component c. A dependency states that
in order to offer a service, a component requires a service from other component.

The goal is to find a set (subset) of components Sol in such a way that to every
requirement r from the set SR, a component c from Sol can be assigned, where r is in
PIc.

5.2 Metrics-based Component Evaluation. Theoretical Back-
ground

Let us consider the component selection problem defined in previous section. As we
already mentioned, selecting the best component alternative among components that
sometimes provide similar functionalities needs to appeal to knowledge on quality at-
tributes which often is the most significant information for this operation. So, evalu-
ation of these components is of utmost importance and software metrics are a means
to quantify those attributes considered important for the system that will be built.
Based on the interpretation of the measurements results obtained, we can decide what
component best satisfies the system need.

The current research proposes a new method for components selection, which is
based on metrics and fuzzy analysis.

16

5.3 A New Component Selection Algorithm based on Metrics
and Fuzzy Clustering Analysis

5.3.1 Algorithm Description

The current section presents a new algorithm for constructing a software system by as-
sembling components. In this context we address the problem of component selection.
Informally, our problem is to select a subset of components satisfying the system re-
quirements. The difficulty resides in the fact that each component had a related set of
components that share similar functionalities and our goal is to select the best solution.
Metrics are defined to quantify some important attributes of components (criteria used
for selection). Fuzzy clustering analysis is used for components classification based on
metrics values and an algorithm for the decision process is proposed.

Two alternative approaches are possible for the proposed algorithm:

• one that uses only one partition based on initial system requirements SR;

• the second alternative recomputes metrics based on the update of system require-
ments SR and reclassifies the candidate components at each step of a component
selection (from a set of candidates).

This algorithm is described in the thesis in Section 5.3.1.

5.3.2 Comparative analysis of the obtained solutions by other approaches

To compare our approach with similar approaches found in literature, we have proposed
a case study [SVP09] described in the thesis in Section 5.3.2. Table 1 comparatively
presents the obtained solutions with all approaches. The solutions obtained by our
proposed algorithm are comparable with the ones provided by the others approaches,
the main advantages being: the search space dimension is drastically reduced, the
obtained partition suggesting the component that should be selected at a given step;
the execution time needed for selecting the best component is reduced due to the
reduced search space; the selection criteria of the components are based on several
characteristics of components (several metrics may be defined).

Algorithm Solution cost reusability

Greedy c4, c0, c7, c1 35 5
Branch and Bound c4, c2, c6, c1 34 3
Genetic algorithm (only cost) c2, c6, c8 28 2
Genetic algorithm (only PSU and RSU) c0, c7, c8 29 4

MFbCSwSPA c0, c1, c5, c8 32 5
MFbCSwCPA c2, c6, c8 28 2

Table 1: Obtained solutions using different approaches

17

5.4 A conceptual framework for CBS Assessment

The current section proposes a formal approach concerning component based systems
assessment. More precisely, we aim to define a general, scalable and integrated frame-
work for a quantitative evaluation regarding both individual components and the sys-
tem obtained by connecting components. This framework is a formalization and a
generalization of our previous work [SVP08, Ves09, SVP09, SVP10a]. It is composed
of four layers of abstraction: A model for CBS, Assessment objectives, Formal defini-
tions of metrics, A measurement results analysis method. These elements are briefly
described in the next sections.

5.4.1 A model for Component-Based System

Every measurement activity have to be preceded by the specification of the elements
that will be evaluated, their properties and relationship between them. These elements
are grouped into a model of the analyzed system. In what follows, we will define a
model for a component-based software system.
Definition 5.4.1 ([SVP10b]) The 3-tuple (E,Prop(E), Rel(E)) is called a model for
Component Based System, where:

• E represents the set of system entities;

• Prop(E) defines the properties of the elements from E;

• Rel(E) signifies the set of relations between the entities of E set.

The elements E,Prop(E), Rel(E), referred in Definition 5.3.1 will be detailed in
what follows, using terms of algebraic sets and relations.
System entities. Consider a repository of components CR = {c1, c2, ..., cnoCR} . A
subset of components Comp(S) = {c′1, c′2, ..., c′noComp}, Comp(S) ⊆ CR are selected in
order to construct a software system S that has to provide a set of services Serv(S) =
{s1, s2, ..., snoServ} .

Each component c ∈ CR is specified as:

• a set of provided interfaces PIc = {pic,1, pic,2, ..., pic,noPIc};

• a set of required interfaces RIc = {ric,1, ric,2, ..., ric,noPIc};

• the dependencies (context) between its interfaces provided and required.

Properties of system entities. We identify three types of system entities (compo-
nent, interface and parameter). To specify their properties we use the model proposed
in Section 5.4.1.2 in the thesis.
Relations between system entities. Two types of relations (dependency and con-
nection) between the system entities are defined in this approach. These relations are
described in the thesis in Section 5.4.1.3.

18

5.4.2 Assessment Objectives

When building a component-based software system two kinds of requirements must be
fulfilled: firstly the system has to provide a set of functionalities/services and secondly
it has to meet certain non-functional properties or quality attributes, such as security,
performance and reliability. Thus, the main objectives in component based system
assessment are related with these two kinds of requirements.

The objectives regarding system functionalities/services are simply to verify if they
are attained by the final system. Therefore, this research thesis proposes a quantitative
approach related to the nonfunctional assessment objectives, on the basis of Factor
Criteria Metric (FCM) model [BR88]. Thus, each quality attribute is refined into
several criteria each suggesting relevant metrics. Consequently, each quality attribute
will be linked to one or more metrics that best capture its meaning.

It is easily noticeable that the quality of individual components influences, directly
or indirectly, the quality of the final system. The compositional reasoning reveals that
the system’s properties are influenced to a greater extent by the interaction of its
components than by the properties of a single component. A better and more worthy
evaluation of components may be obtained in the context of the system in which they
are to be integrated. As a consequence, the assessment objectives we propose are
reported to the target product: the component assembly [GA04b].

Another issue related to the quality attributes is that they may influence each other
in many different ways; for instance, the increase of one attribute (maintainability) can
diminish another attribute (performance). This means that for each of the selected
metrics, we have to establish a weight factor (wf) with the role of defining a priority
in the component selection process. Thus, between two components that offer similar
services it is possible to select a component with a low reusability value instead of
a component with a high value of this attribute, if other quality attribute is more
important for the client.

5.4.3 Formal Definition of Metrics

In the thesis in Section 5.4.3 are presented some metrics for CBD, their formal defini-
tions are based on the model proposed in Section 5.4.1.

5.4.4 Mesurement Results Analysis

Formally, we described the results of the proposed assessment as follows:

• CR, the set of assessed entities;

• each component ci ∈ CR being identified as a vector ci = (ci1 , ci2 , ..., cinoM
)

with the corresponding values of metrics m1,m2, ...,mnoM , mj ∈ Metrics(S),
1 ≤ j ≤ noM .

An interpretation of these results is needed, in order to use them as input data
in the component selection algorithm. As we have stated before with regard to the
interpretation of measurement results there is an issue which resides in the difficulty
to set threshold values for metrics. In order to overcome this limitation we have
used fuzzy clustering analysis. This allows us to place an object in more than one

19

group, with different membership degrees, giving us the possibility to take into account,
when choosing between two similar components, some specific elements of the analyzed
system by reducing the rigidity of the threshold values.

In what follows, we will introduce some definitions, in order to emphasize how we
apply the fuzzy analysis in the proposed assessment.

Definition 5.4.3 A set U = {U1, U2, ..., Uk} is called a fuzzy partition of a set of
components CR = {c1, c2, ..., cnoComp}, each component ci ∈ CR being identified as
a vector ci = (ci1 , ci2 , ..., cinoM

) with corresponding values of metrics m1,m2, ...,mnoM ,
mj ∈ Metrics(S), 1 ≤ j ≤ noM , iff:

• Ui = (ui1, ui2, ..., ui(noComp)), 1 ≤ i ≤ k;

• uij ∈ [0..1], 1 ≤ i ≤ k, 1 ≤ j ≤ noComp, uij represents the membership degree
of the component cj to cluster i;

•
k∑

i=1

uij = 1.

Due to the fact that the number of clusters is an input data for a partitional
clustering algorithm, we considered the Fuzzy Divisive Hierarchic Clustering (FDHC)
algorithm [Dum88]. This algorithm produces a binary tree fuzzy partition that provides
an in-depth analysis of the data set, deciding the optimal subcluster cardinality and
the optimal fuzzy partition of the data set. In the following we formally define these
two partitions.

Definition 5.4.4 ([SVP10b]) A set BTFP = {N1, N2, ..., Nl} is called a Binary tree
fuzzy partition of a components set CR = {c1, c2, ..., cnoComp}, each component ci ∈ CR
being identified as a vector ci = (ci1 , ci2 , ..., cinoM

) with corresponding values of metrics
m1,m2, ...,mnoM , mj ∈ Metrics(S), 1 ≤ j ≤ noM , iff:

• ∀i ∈ {1, 2, ..., l}, Ni = (fi, Ui), fi-the father of ith cluster, fi ∈ {0...l}; Ui =
(ui1, ui2, ..., ui(noComp)), uij ∈ [0..1], uij represents the membership degree of the
component cj to cluster i;

• ∃i, i ∈ {1, 2, ..., l} such that fi = 0 ∧ uij=1,∀j ∈ {1, 2, ..., noComp}, Ni - the root
node (cluster);

• ∀i ∈ {1...l}, fi ̸= 0, ∃! j, k : fi = k ∧ fj = k ∧ Ui + Uj = Uk, where Ui + Uj =
(ui1 + uj1, ui2 + uj1, ..., ui(noComp) + uj(noComp)).

Definition 5.4.5 ([SVP10b]) Consider a binary tree fuzzy partition BTFP = {N1, N2,
..., Nl}. A node Ni = (fi, Ui) ∈ BTFP is called terminal or leaf node iff:

∀j ∈ {1, 2, ..., l}, j ̸= i and Nj = (fj, Uj) ∈ BTFP ⇒ fj ̸= i.

Definition 5.4.6 ([SVP10b]) Consider the binary tree fuzzy partition BTFP . A subset
OFP = {G1, G2, ..., Gk} ⊂ BTFP is called an optimal fuzzy partition iff: Gj is a
terminal(leaf) node from BTFP , ∀j ∈ {1, 2, ..., k}.

Starting from the fuzzy partitions which are described by the definitions above, in
our previous work [SVP09] we have constructed an algorithm for component selection
problem. This algorithm is presented in the thesis in Section 5.3.

20

5.5 Conclusions

In this chapter we have proposed a new metrics based approach concerning component-
based systems assessment. The proposed approach aims to overcome the problems
encountered in a software measurement activity:

• metrics definition; the metrics that can be expressed using our framework have
definitions that are unambiguous, simple and language independent.

• measurement results interpretation; fuzzy clustering analysis is used in order to
overcome the problem of setting up the software metrics threshold values and to
select appropriate components.

Some of the original results presented in this chapter have been reported in the
papers [SVP08, SVP09, SVP10a, SVP10b].

21

6 Components Assembly Evaluation

The previous chapter introduced the issue of metrics based component selection with
the aim of obtaining a system solution to better satisfy customer requirements. The
solution obtained by us has some limitations, for instance, it does not take into ac-
count the interactions between components, because we have full knowledge of these
interactions only after the system has already been built. The overall quality of the
assembly depends on the interaction among components. Consequently, this is topic
of ongoing analysis in order to assess the system as a whole, to assess its quality and
to make comparisons between possible alternative solutions.

In this respect the current chapter proposes an evaluation, mainly focused on the
components assembly. We have looked at the coupling of the system, because coupling
captures the interactions between components and it is related with quality attributes.
We have selected the metrics and proposed new metrics in order to quantify the in-
teractions between components and study the influence of metrics values on quality
attributes. The proposed assessment provides support for the selection of an optimum
solution from a set of configurations representing possible solutions/candidates.

6.1 Components Assembly as a Graph

Definition 6.1.1 ([SV07b]) Components Assembly. An assembly is a binary
relation denoted by DR = (C,D), D ⊆ C × C, where C is a set of components and
D is the relation graph that contains the dependences between components. There is a
component c0 ∈ C with a special role: to start the system execution.

Definition 6.1.2 ([SV07b]) A dependency is a pair d = (c1, c2) ∈ D with the meaning
that the execution of c1 needs some services provided by c2 (in other words, c1 depends
of c2).

We model a component based system (an assembly of components) as a directed
graph (DR), in which the vertices are the components (the set C) and the edges are
the dependences (the set D) between components. In this way we map each assembly
to a directed graph.

Using directed graph view of the assembly is difficult to provide the depth and
breath of the dependences between involved components. A better view implies the
transformation of the directed graph into a tree. The dependency tree construction
[SV07b] is described in detail in the thesis by Dependency Tree Algorithm (DTA).

To obtained an optimal tree that contains all the paths from the directed graph rep-
resentation, an additional algorithm that completes the tree is required. The proposed
algorithm is called Complete Dependency Tree Algorithm (CDTA).

6.2 Adapted and defined metrics

In the following the existing metrics for object-oriented design [LK94, CK93] that
were adapted for component assemblies are presented. Metrics for the component-
based system hierarchy are proposed, based on the same new approach of component
interaction. The new metrics help us to assess quality attributes of the system.

In an object-oriented design, coupling is “the interconnectedness between its pieces”
[CY91]. By declaring an object of a remote class, a potential collaboration between

22

the two classes is created. This is measured by CBO metric [CK93].
We consider an assembly of components DR = (C,D), where C is a set of compo-

nents and D is the relation graph that contains the dependences between components.

Definition 6.2.1 ([SV07b]) A component c1 is coupled with component c2 if (c1, c2) ∈
D.
Definition 6.2.2 ([SV07b]) Coupling Between Components (CBC) metric mea-
sures the number of components with which a given component is coupled.

CBC(c) = card({d ∈ C|(c, d) ∈ D}), c ∈ C.

We study the coupling between components in order to assess the system quality.
It is known that an excessive coupling has a negative impact many on external quality
attributes [Mar02]: reusability, modularity, understandability and testability.
Definition 6.2.3 ([SV07b]) Depth Dependence Tree (DDT) metric. Let us
consider a component cn ∈ C and the corresponding elementary chain c0, c1, ..., cn,
where c0 is the root node. The metric value is DDT = n. In other words, DDT
measures the length chain dependences from a given component to the root.

Definition 6.2.4 ([SV07b]) Breadth Dependence Tree (BDT) metric represents
the number of chains dependences from the root to all the leafs.

These metrics are evaluated considering the impact on quality attributes. From this
point of view, a high value of DDT metric makes the component difficult to be reused
in a different context. In addition, understandability, maintainability and testability
are also affected. Understanding of an entity is based on a recurrent understanding
of all components the entity depends on. Moreover any change in a component may
require changes in all components depending on this. Maintainability and some of
its criteria (understandability) are influenced by the high value of these metrics. The
system records a tendency to increase in complexity.

Subsection 6.1.4 contains a system example, PDA - Personal Digital Assistant, to
study the applicability of the adapted and proposed metrics.

6.3 Metrics-based selection of a component assembly

When the construction of a system is based on a set of components, there are two
approaches used:

1. building only the solution that meets the system requirements, the nearest pos-
sible to the best solution, by adopting heuristics methods;

2. building all possible configurations and then analyzing each of these assemblies
in order to select the best solution to meet our goal.

While the previous chapter dealt with the first approach, the current chapter adopt
the second solution. Software metrics based on the assembly-centric evaluation ap-
proach are used in the selection (from among the obtained assemblies) of the solution
that best represents the system requirements.

23

6.3.1 Proposed Metrics

We have proposed the following two metrics for measuring coupling between compo-
nents.
Definition 6.3.1 ([SV07a]) Component Coupling Grade. The Component Cou-
pling Grade (CCG) of a component X which is dependent on a component Y, represents
the number of services provided by Y that X uses. In what follows we will denote this
value by CCG(X,Y).
Definition 6.3.2 ([SV07b]) Component Coupling Total Grade. The Component
Coupling Total Grade (CCTG) of a component X which is dependent by a set of compo-
nents C1,C2,...,Cn, represents the number of services provided by all these components
that X uses,

CCTG = CCG(X,C1) + CCG(X,C2) + ...+ CCG(X,Cn). (1)

6.3.2 The influence of metrics values on quality attributes

We stated before that our aim is to define metrics that are relevant in measuring
the quality attributes which we are interested in. We need these informations for
choosing the solution that best represents the system requirements. Table 2 presents
the influence of metrics values on the quality attributes which we consider important
for the assembly evaluation. We use the following notations: m for metric low value,
M for high value of the metric, + for positive influence and − for negative influence.
For example a low value of IDC influences positively the reusability of the component.

Reusability Functionality Understandability Maintainability Testability

PSU m/+ m/- m/+ m/+ m/+
RSU m/+ - m/+ m/+ m/+
CPSU m/+ m/- m/+ m/+ m/+
CRSU m/+ - m/+ m/+ m/+
IDC m/+ m/- m/+ m/+ m/+
IIDC m/+ - m/+ m/+ m/+
OIDC m/+ m/- m/+ m/+ m/+
AIDC m/+ - m/+ m/+ m/+
CCG M/- M/+ M/- M/- M/-
CCTG M/- M/+ M/- M/- M/-

Table 2: The influence of metrics values on quality attributes

A threshold is a limit (high or low) placed on a specific metric. All the above
metric values scale between 0 and 1, except the CCTG and CCG. We set the value of
the threshold at 0.5.

An example to illustrate the above metrics and our approach based on metrics for
the best solution selection is presented. In this example, nine components have been
found as candidates. We add two more components to complete the final system: a
Read (R) and aWrite (W) component. The used algorithms [FMD06, VM06] provided

24

several solutions. We only present two of them and discuss the different metrics values
for each system-solution and their influences on the quality attributes.

The first solution contains only six of them (without taking into consideration
the R and W components). It has the values for the metrics around the medium
value, for all quality attributes. For example, the majority of the components have
a very high functionality in the system (PSU, CPSU, OIDC and IDC values are very
close to 1) and at the same time they can offer new functionalities for the future
improvement by adding new provided services (which influences the maintainability
attribute). Regarding the coupling metrics we can remark that there is a maximum
limit that is not very high and we can say that the maintainability and reusability are
not strongly influenced. The assembly values metrics suggest that the solution is not
considered to be the “best” for every quality attribute, but a medium “best” solution
for the overall system. The value of the AIDC metric is close to 1 but we must take
also into consideration the CCTG metric to decide which solution best represents our
future needs (if we would like to improve and add new functionality or if we just want
to have a good functionality for the system).

The second solution contains only three internal components form the set of candidate-
components. The metrics values that influence the functionality attribute are close to 1
revealing a good functionality of each component inside the system, but the other met-
rics values influence negatively the other quality attributes. The 0.50 chosen threshold
is exceeded for all the computed metrics. In Table 2 we can see that a high value
influences negatively almost all the quality attributes discussed. The values of CCTG
metric are relatively high considering that there are few components in the solution.
The CCTG value for the ninth component is considered to be high yielding a very
hard understandability and testability.

6.4 Conclusions

The current chapter approaches the problem of metrics based components assembly
evaluation. Metrics are selected and new metrics are proposed in order to quantify
these aspects of interactions between components, studying the influence of metrics
values on quality attributes. The proposed assessment provides decision support in the
selection of optimum solution from a set of configurations which represents possible
solutions. The chapter is based on the published papers [SV07b, SV07a].

25

7 Conclusions and Future Research Directions

The main goal of this thesis, as stated at the beginning of this work, is to investigate
how metrics can be applied in the assessment of software systems, in particular in the
assessment of Object-Oriented Design and of Component-Based Systems. We also aim
to investigate methods and techniques in order to offer a relevant interpretation of the
obtained measurement results.

In this context, our work introduced A quantitative evaluation methodology for
object-oriented design. This methodology, based on static analysis of the source code,
is described by a conceptual framework which has four layers of abstraction: i) Object-
Oriented Design Meta-Model – formally defines the domain of the assessment, speci-
fying the elements that are evaluated, their properties and the relationships between
them; ii) Formal Definitions of OOD Metrics – consists of a library of OOD metrics
definitions; iii) Specifications of the Assessment Objectives – specifies in a formal man-
ner the assessment objectives using a metrics based approach; iv) Measurement Results
Analysis – uses the fuzzy analysis method in order to interpret the measurement results
obtained in the assessment process.

Another direction that was investigated is in the field of Component Based Sys-
tems. The selection of a component (within a set of possible candidates which offer
similar functionalities) requires the evaluation of the candidate components using ob-
jective methods. The evaluation results help developers in the selection task. The
thesis proposes a formal approach concerning component based systems assessment.
More precisely, we have defined a general, scalable and integrated model for a quan-
titative evaluation regarding both individual components and the system obtained by
connecting components. The proposed model provides a standard terminology in order
to formally define metrics. Fuzzy clustering analysis is used as a robust method for the
interpretation of the obtained measurements results.

New software metrics are defined and introduced to predict the quality attributes
for the whole system and to best select a solution from a set of found configurations.
We have proposed some quality attributes (reusability, functionality, understandabil-
ity, maintainability, testability) to consider when to analyze the quality of an assembly.
New software metrics (CCG - Component Coupling Grade, CCTG - Component Cou-
pling Total Grade) are used to select, among all obtained configurations, the solution
that best represents the system requirements.

For each original approach we have suggested possible developments and new re-
search directions in the assessment of software systems.

26

Bibliography

[Abr93] F.B. Abreu. Metrics for Object Oriented Environment. In Proceedings
of the 3rd International Conference on Software Quality, Tahoe, Nevada,
EUA, October 4th - 6th, pages 67–75, 1993.

[Abr95] F.B. Abreu. The MOOD Metrics Set. In 9th European Conference on
Object-Oriented Programming (ECOOP’95) Workshop Metrics, 1995.

[AC99] C. Alves and J. Castro. Pore: Procurement-oriented requirements engi-
neering method for the component based systems engineering development
paradigm. Int. Conf. Software Eng. CBSE Workshop, 1999.

[AC01] C. Alves and J. Castro. Cre: A systematic method for cots component se-
lection. In Brazilian Symposium on Software Engineering, Rio De Janeiro,
2001.

[AR94] F.B. Abreu and Carapuca Rogerio. Candidate Metrics for Object- Ori-
ented Software within a Taxonomy Framework. In Journal of systems
software 26, pages 359–368, 1994.

[BA04] M. A. S. Boxall and S. Araban. Interface Metrics for Reusability Anal-
ysis of Components. In Proceeding of Australian Software Engineering
Conference ASWEC’2004, pages 40 – 51, 2004.

[Bar02] A.L. Baroni. Formal Definition of Object-Oriented Design Metrics. PhD
thesis, Ecole des Mines de Nantes, 2002.

[BBA02] A. Baroni, S. Braz, and F. Abreu. Using OCL to Formalize Object-
Oriented Design Metrics Definitions. In ECOOP’02 Workshop on Quan-
titative Approaches in OO Software Engineering, 2002.

[BBeA03a] A. Baroni, S. Braz, and F. Brito e Abreu. A formal library for aiding
metrics extraction. Proceedings of ECOOP Workshop on Object-Oriented
Re-Engineering, 2003.

[BBeA03b] A. Baroni, S. Braz, and F. Brito e Abreu. Using OCL to formalize object-
oriented design metrics defnitions. Proceedings of ECOOP Workshop on
Quantative Approaches in Object-Oriented Software Engineering, 2003.

[BBM96] V. Basili, L. Briand, and W. Melo. A validation of object-oriented design
metrics as quality indicators. 20(10):751–761, 1996.

27

[BDE99] J. Bansiya, C. Davis, and L. Etzkorn. An entropy-based complexity mea-
sure for object-oriented designs. Theory an Practice of Object Systems.,
5(2):111–118, 1999.

[BDW99] L. Briand, J. Daly, and J. Wust. A Unified Framework for Coupling Mea-
surement in Object-Oriented Systems. IEEE Transactions on Software
Engineering, 25(1):91–121, 1999.

[Bez81] J. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, New York, 1981.

[BHSS06] Paul Baker, Mark Harman, Kathleen Steinhofel, and Alexandros Skalio-
tis. Search Based Approaches to Component Selection and Prioritization
for the Next Release Problem. In ICSM ’06: Proceedings of the 22nd
IEEE International Conference on Software Maintenance, pages 176–185,
Washington, DC, USA, 2006. IEEE Computer Society.

[BK95] J.M. Bieman and B.K. Kang. Cohesion and Reuse in an Object-Oriented
System. ACM Symposium on Software Reusability, 1995.

[BME07] G. Booch, R. A. Maksimchuk, and Michael W. Engel. Object-Oriented
Analysis and Design with Applications. Addison-Wesley, 2007.

[Boo94] G. Booch. Object-Oriented Analysis and Design with Applications. Ben-
jamin Cummings, Redwood City, 2 edition, 1994.

[BR88] V. Basili and D. Rombach. The TAME project: Towards Improvement-
Oriented Software Environments. IEEE Transactions on Software Engi-
neering, 14(6), 1988.

[BTV06] M.F. Bertoa, J.M. Troya, and A. Vallecillo. Measuring the Usability of
Software Components. Journal of Systems and Software. IEEE Software,
79(3):427–439, 2006.

[CK93] S. R. Chidamber and C. F. Kemerer. A Metrics suite for Object Oriented
design. IEEE Transactions on Software Engineering, 20(6):476 – 493,
1993.

[CK94] S.R. Chidamber and C.F. Kemerer. A Metric Suite for Object- Oriented
Design. IEEE Transactions on Software Engineering, 20(6):476–493, 1994.

[CL02] I. Crnkovic and M. Larsson. Building Reliable Component-Based Software
Systems. Artech House publisher, 2002.

[Crn03] I. Crnkovic. Component-based Software Engineering - New Challenges in
Software Development. In Proceeding of the 25th International Conference
on Information Technology Interfaces, pages 9 – 18, 2003.

[CS01] Philip T Cox and Baoming Song. A Formal Model for Component-Based
Software. In Proceedings of the IEEE 2001 Symposia on Human Centric
Computing Languages and Environments (HCC’01), pages 304–311, 2001.

28

[CS03] A. Chatzigeorgiou and G. Stephanides. Entropy as a Measure of Object-
Oriented Design Quality. In 1st Balkan Conference on Informatics
(BCI’2003), Thessaloniki, Greece, November 21-23, 2003.

[CSSW04] I. Crnkovic, H. Schmidt, J. A. Stafford, and K. Wallnau. Message from the
Chairs. In Proceedings of The 6th ICSE Workshop on Component-Based
Software Engineering: Automated Reasoning and Prediction, pages 1 – 7,
2004.

[CXS04] Alexander Chatzigeorgiou, Spiros Xanthos, and George Stephanides. Eval-
uating Object-Oriented Designs with Link Analysis. In Proceedings of
the 26th International Conference on Software Engineering, pages 23–28,
2004.

[CY91] P. Coad and E. Yourdon. Object-Oriented Design. Prentice Hall, London,
2 edition, 1991.

[DDN00] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refactorings via
change metrics. In In Proceedings of OOPSLA 2000, ACM SIGPLAN
Notices, pages 166 – 178, 2000.

[DeM82] T. DeMarco. Controlling Software Projects; Management, Measurement
and Estimation. Yourdan Press, New Jersey, 1982.

[Des] Software Design Pattern. http://en.wikipedia.org/wiki/Software_

design_pattern.

[Dum88] Dan Dumitrescu. Hierarchical pattern classification. Fuzzy Sets and Sys-
tems 28, 1988.

[DW98] D. F. D’Souza and A. C. Wills. Objects, Components, and Frameworks
with UML: The Catalysis Approach. Addison-Wesley, Reading, MA, 1998.

[EGH02] L. H. Etzkorn, S. Gholston, and W. E. Hughes. A semantic entropy metric.
Journal of Software Maintenance: Research and Practice., 14(4):293–310,
2002.

[EWEBBF] Mohamed El-Wakil, Ali El-Bastawisi, Mokhtar Boshr, and Ali Fahmy.
Software Metrics - A Taxonomy. Technical report.

[FBB+99] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:
Improving the Design of Existing Code. Addison-Wesley, 1999.

[FBR04] Michael Roy Fox, David C. Brogan, and Jr. Paul F. Reynolds. Approxi-
mating component selection. In WSC ’04: Proceedings of the 36th confer-
ence on Winter simulation, pages 429–434. Winter Simulation Conference,
2004.

[Fen94] N. Fenton. Software Measurement: A Necessary Scientific Base. IEEE
Transactions on Softw. Engineering, 20(3), 1994.

29

http://en.wikipedia.org/wiki/Software_design_pattern
http://en.wikipedia.org/wiki/Software_design_pattern

[Fen95] N.E. Fenton. Software Metrics: A Rigorous Approach. International
Thomson Computer Press, London, UK, 1995.

[FMD06] A. Fanea, S. Motogna, and L. Diosan. Automata-based Component Com-
position Analysis. Studia Universitas Babes-Bolyai, Seria Informatica,
LI(1):13–20, 2006.

[FP97] N. Fenton and S.L. Pfleeger. Software Metrics: A Rigorous and Practical
Approach. International Thomson Computer Press, London, UK, second
edition, 1997.

[FP02] M. Frentiu and H.F. Pop. A study of dependence of software attributes
using data analisys techniques. Studia Universitas Babes-Bolyai, Seria
Informatica, L(2):53–66, 2002.

[GA04a] Miguel Goulo and O Brito E Abreu. Formalizing Metrics for COTS. In
Proceddings of the ICSE Workshop on Models and Processes for the Eval-
uation of COTS Components, pages 37–40, 2004.

[GA04b] Miguel Goulo and O Brito E Abreu. Software Components Evaluation:
an Overview. In In Proceedings of the 5th Conferncia da APSI, 2004.

[GA05a] M. Goulao and F.B. Abreu. Formal Definition of Metrics upon the
CORBA Component Model. In First International Conference on the
Quality of Software Architectures, 2005.

[GA05b] M. A. Goulo and F. B. Abreu. Composition Assessment Metrics for CBSE.
In Proceedings of The 31st Euromicro Conference, Component-Based Soft-
ware Engineering Track, pages 96 – 103, 2005.

[GG03a] N. S. Gill and P. S. Grover. Component-based measurement: few useful
guidelines. SIGSOFT Softw. Eng. Notes, 28(6):1–4, 2003.

[GG03b] N. S. Gill and P. S. Grover. Reusability Issues in Component-based De-
velopment. SIGSOFT Softw. Eng. Notes, 28(4):1–4, 2003.

[GG04] N. S. Gill and P. S. Grover. Few important considerations for deriving in-
terface complexity metric for component-based systems. SIGSOFT Softw.
Eng. Notes, 29(2):1–4, 2004.

[GG07] L. Gesellensetter and S. Glesner. Only the Best Can Make It: Optimal
Component Selection . Electronic Notes in Theoretical Computer Science,
176(2):105–124, 2007.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[Hai] System.Reflection-based ILReader. http://blogs.msdn.com/b/haibo_

luo/archive/2006/11/06/system-reflection-based-ilreader.aspx.

30

http://blogs.msdn.com/b/haibo_luo/archive/2006/11/06/system-reflection-based-ilreader.aspx
http://blogs.msdn.com/b/haibo_luo/archive/2006/11/06/system-reflection-based-ilreader.aspx

[HDM03] A. v. d. Hoek, E. Dincel, and N. Medvidovic. Using Service Utilization
Metrics to Assess and Improve Product Line Architectures . In In Proceed-
ings of the 9th IEEE International Software Metrics Symposium Metrics,
pages 0 – 0, 2003.

[HK01] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers, 2001.

[HS96] B. Henderson-Sellers. Object-Oriented Metrics-Measures of Complexity.
Prentice Hall, Sydney, 1996.

[JD98] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1998.

[JF88] R.E. Johnson and B. Foote. Designing reusable classes. Journal of Object-
Oriented Programming, 1(2):22–35, 1988.

[JMF99] A. Jain, M. N. Murty, and P. Flynn. Data clustering: A review. ACM
Computing Surveys, 31(3):264–323, 1999.

[Kel89] W. T. Kelvin. Popular Lectures and Addresses. 1889.

[Kon95] J. Kontio. OTSO: A Systematic Process for Reusable Software Compo-
nent Selection. Technical report, Technical report, University of Maryland,
1995.

[KSW95] K. Kim, Y. Shin, and C. Wu. Complexity Measures for Object-Oriented
Program Based on the Entropy. In In Proceedings of the Second Asia
Pacific Software Engineering Conference, 1995.

[Lak96] J. Lakos. Large-Scale C++ Software Design. Addison-Wesley, 1996.

[LD02] Michele Lanza and Stphane Ducasse. Beyond Language Independent
Object-Oriented Metrics: Model Independent Metrics. In F. Abreu, Mario
Piattini, Geert Poels, and Houari A. Sahraoui, editors, Proceedings of
the 6th International Workshop on Quantitative Approaches in Object-
Oriented Software Engineering, pages 77–84, 2002.

[LH89] K.J. Lieberherr and I.M. Holland. Assuring good style for object-oriented
programs. IEEE Software, 6:38–48, 1989.

[LH93a] W. Li and S. Henry. Maintenance Metrics for the Object Oriented
Paradigm. IEEE Proc. First International Software Metrics Symp, pages
52–60, 1993.

[LH93b] W. Li and S. Henry. Object-oriented metrics that predict maintainability.
Journal of Systems and Software, 23(2):111–122, 1993.

[Lis87] Barbara Liskov. Keynote address - data abstraction and hierarchy. In
OOPSLA ’87 Addendum to the proceedings on Object-oriented program-
ming systems, languages and applications (Addendum), NY, USA, 1987.

31

[LK94] M. Lorenz and J. Kidd. Object-Oriented Software Metrics. Prentice-Hall
Object-Oriented Series, Englewood Cliffs, NY, 1994.

[LM06] M. Lanza and R. Marinescu. Object-Oriented Metrics in Practice. Springer
Verlag, 2006.

[log] Open Source Project: log4net. http://logging.apache.org/log4net.

[Lor93] M. Lorenz. Object-Oriented Software Development: A Practical Guide.
Prentice-Hall, NJ, 1993.

[LR06] M. Lippert and S. Roock. Refactoring in Large Software Projects. John
Wiley & Sons, 2006.

[LTGP02] A. Lozano-Tello and A. Gomez-Perez. ABAREMO: how to choose the
appropriate software component using the analytic hierarchy process. In
The 14th international conference on Software engineering and knowledge
engineering, pages 781–788, ACM , New York, 2002.

[Mar] Robert Martin. Design Principles and Patterns. http://www.

objectmentor.com/resources/articles/Principles_and_Patterns.

pdf.

[Mar97] R. Marinescu. The Use of Software Metrics in the Design of Object-
Oriented Systems. Technical report, Politehnica University Timisoara,
1997.

[Mar02] R. Marinescu. Measurement and Quality in Object Oriented Design.
PhD thesis, Faculty of Automatics and Computer Science, University of
Timisoara, 2002.

[Mar09] Cristina Marinescu. Towards Understanding and Quality Assessment of
Enterprise Software Systems. PhD thesis, Faculty of Automatics and Com-
puter Science, University of Timisoara, 2009.

[MBA04] A. Marcus, M. Boxall, and S. Araban. Interface Metrics for Reusability
Analysis of Components. In Proceedings of the 2004 Australian Software
Engineering Conference (ASWEC’04), 2004.

[McC76] T.J. McCabe. A Complexity Measure. IEEE Transactions on Software
Engineering, 2(4), pages 308–320, 1976.

[Mey88] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
Englewood Cliffs, 1988.

[Mic] Microsoft Corporation. Definition of the term compo-
nent. http://www.msdn.microsoft.com/repository/OIM/

resdkdefinitionofthetermcomponent.asp.

[Mih03] Petru Florin Mihancea. Optimizarea detectiei automate a carentelor de
proiectare n sistemele software orientate pe obiecte. Technical report, Fac-
ultatea de Automatica si Calculatoare, Universitatea Tehnica Timisoara,
2003.

32

http://logging.apache.org/log4net
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
http://www.msdn.microsoft.com/repository/OIM/resdkdefinitionofthetermcomponent.asp
http://www.msdn.microsoft.com/repository/OIM/resdkdefinitionofthetermcomponent.asp

[ML02] T. Mens and M. Lanza. A graph-based metamodel for object-oriented soft-
ware metrics. Electronic Notes in Theoretical Computer Science, 72:57–68,
2002.

[MP06] Jacqueline McQuillan and James Power. Towards the re-usability of
software metrics definitions at the meta level. In Proceedings of the
ECOOP’2006 Doctoral Symposium, 2006.

[MP08] Jacqueline A. McQuillan and James F. Power. A Metamodel for the Mea-
surement of Object-Oriented Systems: An Analysis using Alloy. In IEEE
International Conference on Software Testing Verification and Validation,
pages 288–297, 2008.

[MSL06] S. Mazeiar, Li. Shimin, and T. Ladan. A Metric-Based Heuristic Frame-
work to Detect Object-Oriented Design Flaws. In Proceedings of the 14th
IEEE International Conference on Program Comprehension (ICPC06),
2006.

[NH04] V. L. Narasimhan and B. Hendradjaya. A New Suite of Metrics for the
Integration of Software Components. In The First International Workshop
on Object Systems and Software Architectures WOSSA 2004, 2004.

[OC08] Mark O’Keeffe and Mel Cinnide. Search-based refactoring: an empirical
study. Journal of Software Maintenance and Evolution: Research and
Practice, 20(5):345–364, 2008.

[OCBZ09] Steffen Olbrich, Daniela S. Cruzes, Victor Basili, and Nico Zazworka. The
Evolution and Impact of Code Smells: A Case Study of Two Open Source
Systems. In Proceedings of the 3rd International Symposium on Empirical
Software Engineering and Measurement (ESEM 2009), Lake Buena Vista,
Orlando, Florida, 2009.

[P.F05] P.F. Mihancea and R. Marinescu. Towards the optimization of automatic
detection of design flaws in object-oriented software systems. In In Proc.
of the 9th European Conf. on Software Maintenance and Reengineering,
pages 92–101, 2005.

[Pfl98] S.L. Pfleeger. Software Engineering – Theory and Practice. Prentice Hall,
1998.

[Rei01] R. Reiing. Towards a model for object-oriented design measurement.
Proceedings of ECOOP Workshop on Quantative Approaches in Object-
Oriented Software Engineering, 2001.

[RH00] L. Rosenberg and L. Hyatt. Software Quality Metrics for Object-Oriented
System Environments. Technical report, NASA Goddard Space Flight
Center, Greenbelt, Maryland, 2000.

[Rie96] A.J. Riel. Object-Oriented Design Heuristics. Addison-Wesley, 1996.

33

[RL92] C. Rajaraman and M.R. Lyu. Some Coupling Measures for C++ Pro-
grams. Proceedings of TOOLS USA-92, Prentice-Hall, Englewood Cliffs,
NJ, 1992.

[Ros98] Linda H. Rosenberg. Applying and Interpreting Object Oriented Metrics.
In In Software Technology Conference (April 1998), 1998.

[SC06] C. Serban and C. Cretu. Impact on Design Quality of Refactorings on Code
via Metrics. In Proceedings of the Symposium Zilele Academice Clujene,
pages 39–44, 2006.

[Sch03] Jean-Guy Schneider. Component Scripts and Glue: A Conceptual frame-
work for software composition. PhD thesis, Institute fr Informatik (IAM),
Universitt Bern, Berne, Switzerland, 2003.

[Ser06] C. Serban. Coupling measurement for compiled .Net code. In Proceedings
of the Symposium Zilele Academice Clujene, pages 21–26, 2006.

[Ser09a] C. Serban. A Formal Approach for OOD Metrics Definition. First Interna-
tional Conference on Modelling and Development of Intelligent Systems,
Sibiu, Romania, pages 262–269, 2009.

[Ser09b] C. Serban. High Coupling Detection Using Fuzzy Clustering Analysis.
Knowledge Engineering: Principles and Techniques (Post-proceedings of
KEPT 2009), International Conference, Babes-Bolyai University, Presa
Universitara Clujeana, pages 258 – 264, 2009.

[Ser09c] C. Serban. High Coupling Detection Using Fuzzy Clustering Analysis.
Special Issue of Studia Universitatis Babes-Bolyai Informatica: Proceeding
of The International Conference on Knowledge Engineering: Principles
and Techniques, pages 223 – 226, 2009.

[Ser10] C. Serban. A conceptual framework for object-oriented design assessment.
In UKSim 4th European Modelling Symposium on Mathematical Modelling
and Computer Simulation, Pisa, 17 - 19 November, pages 90–95, 2010.

[Ser11] C. Serban. God Class Design Flaw Detection In Object Oriented De-
sign. A Case–Study. Studia Universitas Babes-Bolyai, Seria Informatica,
LVI(4):33–38, 2011.

[Sha09] Arun Sharma. Design and Analysis of Metrics for Component-Based Soft-
ware Systems. PhD thesis, School of Mathematics and Computer Appli-
cations, Thapar University, India, 2009.

[SKG07] Arun Sharma, Rajesh Kumar, and P. S. Grover. A Critical Survey of
Reusability Aspects for Component-Based Systems. World Academy of
Science, Engineering and Technology, 2007.

[SM05] C. Serban and A. Mihis. Software quality assurance. In Proceedings of the
Symposium Zilele Academice Clujene, pages 207–212, 2005.

34

[SP08] C. Serban and H.F. Pop. Software Quality Assessment Using a Fuzzy
Clustering Approach. Studia Universitas Babes-Bolyai, Seria Informatica,
LIII(2):27–38, 2008.

[Spa00] M. Sparling. Lessons Learned Through Six Years of Component–Based
Development. 43(10):47–53, 2000.

[SRM+10] Amjan Shaik, R. K. Reddy, B. Manda, C. Prakashini, and K. Deepthi.
An Empirical Validation of Object Oriented Design Metrics in Object
Oriented Systems. Journal of Emerging Trends in Engineering and Applied
Sciences, 2(1):216–224, 2010.

[SV07a] C. Serban and A. Vescan. Metrics-based selection of a component as-
sembly. Special Issue of Studia Universitatis Babes-Bolyai Informatica:
Proceeding of The International Conference on Knowledge Engineering:
Principles and Techniques, pages 324 – 331, 2007.

[SV07b] C. Serban and A. Vescan. Metrics for Component-Based System Devel-
opment. Creative Mathematics and Informatics, pages 143 – 150, 2007.

[SVP08] C. Serban, A. Vescan, and H.F. Pop. Component Selection based on Fuzzy
Clustering Analysis. Creative Mathematics and Informatics, 17(3):505 –
510, 2008.

[SVP09] C. Serban, A. Vescan, and H.F. Pop. A new component selection algorithm
based on metrics and fuzzy clustering analysis. In Proceedings of the 4th
International Conference on Hybrid Artificial Intelligence Systems, pages
621–628, 2009.

[SVP10a] C. Serban, A. Vescan, and H. F. Pop. A conceptual framework for
component-based system metrics definition. In 9th RoEduNet Interna-
tional Conference, June 2010, Sibiu, Romania, pages 73–78, 2010.

[SVP10b] C. Serban, A. Vescan, and H. F. Pop. A Formal Model for Component-
Based System Assessment. In Second International Conference on Com-
putational Intelligence, Modelling and Simulation, Bali, 28 - 30 September
2010, pages 261–266, 2010.

[SW49] C.E. Shannon and W Weaver. The Mathematical Theory of Communica-
tion. Urbana, IL, University:University of Illinois Press, 1949.

[Szy98] C. Szyperski. Component Software, Beyond Object-Oriented Program-
ming. ACM Press, Addison-Wesley, 1998.

[TS92] D.P. Tegarden and S.D. Sheetz. Object-oriented system complexity: an
integrated model of structure and perceptions. In OOPSLA92 Workshop
on Metrics for Object-Oriented Software Development (Washington DC),
1992.

[TSM92] D. Tegarden, S. Sheetz, and D. Monarchi. Effectiveness of Traditional
Software Metrics for Object-Oriented Systems. In 25th Hawaii Interna-
tional Confernce on System Sciences, pages 359–368, 1992.

35

[Ves08a] A. Vescan. An evolutionary multiobjective approach for the Component
Selection Problem. In Proc. of the First IEEE International Conference
on the Applications of Digital Information and Web Technologies, 4 - 6
August, Ostrava, Czech Republic, pages 252–257, 2008.

[Ves08b] A. Vescan. Construction Approaches for Component-based Systems. PhD
thesis, Department of Computer Science, Babes-Bolyai University, 2008.

[Ves09] A. Vescan. A Metrics-based Evolutionary Approach for the Component
Selection Problem. in Proceedings of the 11th International Conference on
Computer Modelling and Simulation, 2009.

[VM06] A. Vescan and S. Motogna. Syntactic automata-based component com-
position. In The 32nd EUROMICRO Software Engineering and Advanced
Applications (SEAA), Proceeding of the Work in Progress session, pages
13–14, 2006.

[VP08] A. Vescan and H. F. Pop. The Component Selection Problem as a
Constraint Optimization Problem. in Software Engineering Techniques
in Progress, pages 203–211, 2008.

[WBD98] J. Wust, L. Briand, and J. Daly. A Unified Framework for Cohesion
Measurement in Object-Oriented Systems, journal = Empirical Software
Engineering: An International Journal. 3(2):65–117, 1998.

[Wet04] Richard Wettel. Automated Detection of Code Duplication Clusters.
Technical report, Faculty of Automatics and Computer Science, Po-
litehnica University of Timisoara, 2004.

[WM96] Arthur H. Watson and Thomas J. McCabe. Structured Testing: A Test-
ing Methodology Using the Cyclomatic Complexity Metric. In National
Institute of Standards and Technology NIST Special Publication, pages
500–235, 1996.

[WYF03] H. Washizaki, H. Yamamoto, and Y. Fukazawa. A Metrics Suite for
Measuring Reusability of Software Components. In In Proceedings of 9th
IEEE International Software Metrics Symposium METRICS 2003, pages
211 – 223, 2003.

[XHC+00] T. Xie, H. Huang, X. Chen, H. Mei, and F. Yang. Object Oriented Software
Quality Evaluation Technology. Department of Computer Science and
Technology, Peking University, 2000.

[Zad65] L.A. Zadeh. Fuzzy sets. Information and Control 8, 1965.

36

	1 Introduction
	2 Setting the context
	2.1 Software Measurement
	2.2 Metrics in Object Oriented Design Assessment
	2.3 Metrics in Component-Based Development
	2.4 Fuzzy Analysis in Measurement Results Interpretation

	3 A conceptual framework for Object Oriented Design Assessment
	3.1 A model for object oriented design
	3.2 Formal definition of OOD Metrics
	3.3 The problem of design assessment. Setting the objectives
	3.4 Assessment Results Analysis
	3.5 Conclusions

	4 Experimental Evaluation of the Proposed Model
	4.1 Design Flaws Detection. Case - Study
	4.2 Tool Support
	4.3 Conclusions

	5 Metrics-Based Approach for Component Selection
	5.1 Component selection problem. Formal statement
	5.2 Metrics-based Component Evaluation. Theoretical Background
	5.3 A New Component Selection Algorithm based on Metrics and Fuzzy Clustering Analysis
	5.4 A conceptual framework for CBS Assessment
	5.5 Conclusions

	6 Components Assembly Evaluation
	6.1 Components Assembly as a Graph
	6.2 Adapted and defined metrics
	6.3 Metrics-based selection of a component assembly
	6.4 Conclusions

	7 Conclusions and Future Research Directions
	Bibliography

