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Abstract

In this thesis, we propose to extract high-level conceptual knowledge from databases. Our

main contribution is in the mining of different types of data dependencies (in relational

and XML data) – we also focus on dependency management, inconsistency prevention and

semantic data extraction, showing how our approaches contribute to conceptual knowledge

discovery. We propose to study how Formal Concept Analysis (FCA) can offer a natural

approach for discovering formal concepts in the data which are described in the form of formal

context, discovering the data dependencies, and visualizing them by a single conceptual

structure called the concept lattice.

First, we show how FCA can be used to characterize Functional Dependencies (FDs).

The way in which we contribute to conceptual knowledge discovery has been shown in our

approach to building inverted index files, in order to optimize the construction of the formal

context of functional dependencies.

In the second part of this thesis, we introduced our approach to dependency manage-

ment and inconsistency prevention. We have described our strategy, for finding Conditional

Functional Dependencies (CFD) and Association Rules (AR), and instead of using them to

clean dirty data we use them to prevent its appearance in the database. Our method helps

the users to prevent inconsistencies, fix bugs and optimize their queries and applications by

providing a lattice of dependencies, using usefulness as the relation.

We then present our tool which supports data extraction from various types of data

sources. The tool we have created simplifies the extraction of data, provides the possibility

of creating several extraction strategies and enables semantic searches for systems that use

the tool. Results of experiments using our tool have proved the feasibility of our approach

by enhancing extraction in terms of precision and speed.
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1
Introduction

1.1 Conceptual Knowledge Discovery in Databases

With today’s unprecedented increase in the generation and accumulation of online data, our

reliance on databases to store that data has increased too. There is an urgent demand for

new methods of addressing a long standing challenge: How do we efficiently identify, extract

and present useful information contained within those databases? and ultimately; how do

we present it in a way that is beneficial to the current and future needs of the end-user?

Finding the answers to these challenges was our inspiration for developing the approaches

that are presented in this thesis.

Knowledge Discovery in Databases (KDD) [17] is aimed at the development of meth-

ods, techniques, and tools that support human analysts in the overall process of deriving

knowledge units that can be further used in solving real-world problems. Concepts are neces-

sary for expressing human knowledge [40]. Recently, lattice theory has brought mathematical

thinking for knowledge representation and discovery of knowledge. Formal Concept Analysis

(FCA) [39; 14; 4; 5; 31; 22] offers a natural approach for discovering formal concepts in the

data which are described in the form of formal context, discovering the data dependencies,

and visualizing them by a single conceptual structure called the concept lattice. Graphical

representation of concept lattices has proved highly useful in the discovery and understand-

ing of conceptual relationships within a given set of data. The concept lattice has also

proved itself useful for other applications relating to information and knowledge processing,

such as visualization, data analysis, data mining and knowledge management. FCA provides
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1 INTRODUCTION

support for so-called Conceptual Knowledge Discovery in Databases (CKDD), which aims

to support a human-centered process of discovering knowledge from data by visualizing and

analyzing the conceptual structure of the data [19].

Our goal was to extract high-level conceptual knowledge from databases. Our main

contribution is in the mining of different types of data dependencies (in relational and XML

data) using FCA – we also focus on dependency management, inconsistency prevention and

semantic data extraction. All our research is done in the field of CKDD.

1.2 Contributions and Structure of the Thesis

In this section we outline our main contributions and how they will be presented within the

structure of this thesis.

Our main contribution concerns the mining of different types of data dependencies (in

relational and XML data) using Formal Concept Analysis – we also focus on dependency

management, inconsistency prevention and data extraction, showing how our approaches

contribute to conceptual knowledge discovery.

The thesis is divided into 7 chapters and follows our research study chronologically.

In Chapter 1 we introduce our main contributions and how they are structured in this

thesis.

In Chapter 2 we briefly summarise the main definitions that are used throughout this

thesis.

In Chapter 3 we show how FCA can be used to characterize Functional Dependencies

(FDs). A primary problem when using FCA to compute FDs is that datasets are generally

many-valued, not binary. This means that the set of data must somehow be transformed to

obtain a binary context, whose implications are equivalent to those dependencies. Unfortu-

nately, this leads to a new data representation that is quadratic in the number of objects

w.r.t. the original data, which does not allow this method to be applied on large datasets.

This provided our motivation to create a method of building inverted index files in order

to optimize the construction of the formal context of functional dependencies. Our method

allows an equivalent characterization, but with better computational properties. Also in

this chapter, we present our software (FCAFuncDepMine) which can be used in relational

database design and for detecting functional dependencies in existing tables. This software

can be considered as a conceptual knowledge discovery support environment, one that pro-

motes a human-centered approach to dependency discovery processes and the representation

of the resulting knowledge.

In Chapter 4 we propose a framework in which the XML document is parsed and the

formal context, corresponding to the flat representation of the XML data, is constructed.

It is then analysed in terms of knowledge discovery. The concept lattice obtained in this

way is a useful graphical representation of the analyzed XML document’s elements and their

hierarchy. Also in this chapter, our software (FCAMineXFD) is introduced. This software

2



1.3 PREVIOUSLY PUBLISHED CONTRIBUTIONS

finds the keys and functional dependencies in XML data which are attribute implications

in the constructed formal context. The scheme of the XML document is transformed in

GTT-XNF using the detected functional dependencies.

In Chapter 5 we introduce our approach to dependency management and inconsistency

prevention. We describe our strategy, which finds Conditional Functional Dependencies

(CFDs) [15] and Association Rules (ARs)[1], and instead of using them to clean dirty data

we use them to prevent its appearance in the database. We achieve this by differentiating

Strict from Apparent dependencies. If a dependency is Strict, then we consider all possible

exceptions to the dependency invalid, therefore upon validation, constraints are generated

which prevent inserts and updates that do not comply with the validated dependency. The

number of patterns might be very large, therefore we have introduced the More Useful (MU)

poset and in each validation instance the supremums, that is, the most useful dependencies

are taken into account. The poset of MU is extremely helpful, because it prevents flooding

the database with valid dependencies that are the consequences of more useful dependencies.

The approach of preventing the occurrence of dirty data in the database helps to maintain

the consistency of the stored data. Along with complete management of dependencies our

implemented application, DependencyManager, also uses Formal Concept Analysis methods

to analyze the Strict dependencies and draw useful conclusions; thereby helping the users

prevent inconsistencies, fix bugs and optimize their queries and applications by providing a

lattice of dependencies, using usefulness as the relation.

In Chapter 6 we present our tool which supports data extraction from various types of

data sources. Data extractors are generally difficult to maintain as they are required to cope

with an infinite number of possible data structures and endless possible ways of describing

the same thing. To simplify the difficult tasks of integrating new data sources and handling

structural changes within existing data sources, we have implemented a new approach called

RK. In RK the semantic tree generated by the semantic rules (used as input), describes

a pattern that represents the structure of the data source. This tool is feasible as it is,

but its maximum potential is attained, when collaboration is created between the owner of

the data source and the extractor, the semantic rules can then be updated whenever the

structure of the data source is changed. This would make the tool immune to structural

changes. Enabling extraction of data semantically, would enable semantic searches based on

the extracted data. Results of experiments using the RK tool have proved the feasibility of

our approach by enhancing extraction in terms of precision and speed.

1.3 Previously Published Contributions

The results presented in this thesis have already been published. Our method of building

inverted index files, to optimize the construction of the formal context of functional depen-

dencies, has appeared in [36; 22]. Our software, FCAFuncDepMine, for mining functional

dependencies that hold in a set of data using FCA, can be found in [26].

3



1 INTRODUCTION

Our framework, which offers an interactive visualization for dependency exploration in

XML data, can be found in [25; 21; 37]. Dependency management and inconsistency pre-

vention are also studied by us in [24]. Our tool, for supporting data extraction from various

types of data sources, has appeared in [23].
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2
Theoretical Foundations

In the thesis in chapter 2 we briefly summarise the main definitions that are used throughout

this thesis. First we will introduce Formal Concept Analysis as it is relevant to this thesis,

then we recall basic concepts about data dependencies which are relevant to our work.
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3
Functional Dependency (FD) Characterization

with Formal Context

In this chapter we present our first contribution, which concerns on developing optimized

approaches for FD mining using FCA. The results presented in this chapter have already

been published in [36; 22; 26].

A primary problem when computing FDs with FCA is that datasets are generally many-

valued, and not binary. This means that the set of data must be somehow transformed to

obtain a binary context, whose implications are equivalent to those dependencies. Hereth

in [18] offers a solution for this binarization. Unfortunately, in the method described in

[18], the number of objects of the resulting context is quadratic w.r.t. the original, so this

method cannot be applied to large datasets. This was our motivation for creating a method

which builds inverted index files in order to optimize the construction of the formal context

of functional dependencies. We aimed to discover conceptual knowledge but the primary

goal was to minimize the input data before applying FCA. We optimized Hereths method

by significantly reducing the size of the context file.

In the following we put forward our method for constructing the context of functional

dependencies of a database table.

In the context creation procedure we exclude tuple pairs which are symmetric and reflexive

to avoid redundancy. At the top of the concept lattice will be tuple pairs, in which there are

no common values for the corresponding attributes, so we can omit generating these pairs

of tuples. Pairs of form (t, t), where t is a tuple of the table, have all attributes in common,

these objects will arrive in the bottom of the lattice, so they can be omitted too, because

7



3 FUNCTIONAL DEPENDENCY (FD) CHARACTERIZATION WITH FORMAL
CONTEXT

they do not change the implications in the context. In order to optimize the construction

of the formal context, we build inverted index files for the values of every attribute. With

inverted indexes, the number of rows in the data file of formal context resulting from our

method is half of the same value resulting from Hereth’s method in [18]. In consequence, we

can reduce the time taken to build the concept lattice for functional dependencies and we

can eliminate useless dependencies.

3.1 Experimental Results

To evaluate our context creation method using inverted indexes we have conducted experi-

ments on different datasets.

Consider the following poorly designed table:

StudMarks [StudID, StudName, GroupID, Email, SpecID,

SpecName, Language, DiscID, DName, CreditNr, Mark]

This table contained 19500 rows and 11 columns; our method reduced the number of objects

from 380,250,000 to 110,073,342 in the context file.

Fig. 3.1: Concept lattice for FD
(
StudMarks,

−→
K(Uni)

)

We applied FCA over the reduced context; in Figure 3.1 is the resulted concept lattice for

the StudMarks table. The implications in this lattice, which are functional dependencies

in the table, can be seen as follows: the concept with label GroupID is a subconcept of

concept with labels SpecID and SpecName. This means, in every tuple pair where the

GroupID field has the same value, the specialization ID and name is the same. So we have

the following implications, which are functional dependencies:

8



3.1 EXPERIMENTAL RESULTS

GroupID →SpecID, SpecName

In the same manner the following functional dependencies can be read from the concept

lattice:

DiscID →CreditNr

DName →CreditNr

SpecID →Language

SpecName →Language

StudID →StudName

Email →StudName

We also conducted experiments used of the well-known datasets from the UCI ma-

chine learning repository http://archive.ics.uci.edu/ml/, namely, the Wisconsin breast can-

cer (WBC) and Mushroom datasets. We can conclude that using inverted indexes the number

of rows in the data file of formal context resulted by our method is half of the same value re-

sulting from Hereth’s method in [18]. Table 3.1 summarizes the performance of our method.

Thus, we can reduce the time needed to build the concept lattice for functional dependencies

and we can eliminate useless dependencies. We would like to emphasize that with context

size optimization the quality of the resulted dependency set did not deteriorate; our method

allows an equivalent characterization, but coming with better computational properties.

No. of objects with No. of objects with
Dataset Arity No. Rows our method Hereth’s method [18]
Mushroom 22 8,124 32,995,626 65,999,376
WBC 11 699 210,934 481,636
StudentMarks 11 19,500 110,073,342 380,250,000

Table 3.1: Experimental results: optimized context size

We have implemented the method presented in this section and completed it with a

software tool which analyzes an existing relational database table. Our software, named

FCAFuncDepMine, constructs an optimized formal context of functional dependencies. The

software can be used in relational database design and for detecting functional dependen-

cies in existing tables respectively. FCAFuncDepMine currently supports three types of

input data file formats: XML, comma separated values (csv) and relational database tables.

FCAFuncDepMine outputs the formal context in the widely used .cex format.

Optimisations are taking place in FCAFuncDepMine makes it worthy for converting large

datasets into formal contexts. Our software can be considered as conceptual knowledge dis-

covery support environment that promote human-centered dependency discovery processes

and representations of their findings.

9





4
XML Functional Dependencies with FCA

As a second contribution we propose a framework which parses the XML document and

constructs the Formal Context corresponding to the flat representation of the XML data.

The results presented in this chapter have already been published. [25; 21; 37]. Our method

is supported by a framework named FCAMineXFD, which finds the keys and functional

dependencies in XML data, which are attribute implications in the constructed Formal Con-

text. The obtained Concept Lattice is a useful graphical representation of the analyzed XML

document’s elements and their hierarchy. The scheme of the XML document is transformed

in GTT-XNF [42] using the detected functional dependencies.

To achieve this, XML data must be converted into FCA formal contexts. Our software

can analyze the whole XML document or a tuple class Cp given by the path p. XML data

can be converted into a fully unnested relation, a single relational table, and existing FD

discovery algorithms can be applied directly. Given an XML document, which contains the

schema of the data at the beginning, we create generalized tree tuples from it.

As a first step, we need to define the objects and attributes of interest and create models

of XML in terms of context.

• Choice of FCA Attributes: PathEnd/ElementName

– for non-leaf level nodes the name of the attribute is constructed as:

<ElementName>+”@key” and its value will be the associated key value. More

elements, which have the same path, will have the same attribute name, but the

values will be different.

11



4 XML FUNCTIONAL DEPENDENCIES WITH FCA

Fig. 4.1: Concept Lattice for tuple class Cspecialization

– the leaves (not the values of the leaves, but the element names of the leaves) of

the tree tuple.

• Choice of Objects: the objects are considered to be the tree tuple pairs, actually the

tuple pairs of the flat table. The key values associated to non-leaf elements and leaf

element values are used in these tuple pairs.

The analyzed XML document may have a large number of tree tuples. We use the same

optimization techniques as in previous chapter, we filter the tuple pairs and we leave out

those pairs in which there are no common attributes, which does not alter the conceptual

hierarchy.

Once the objects and attributes of the context are defined, we generate the concepts and

create the concept lattice in the same way as we did in case of relation databases. A concept

lattice for a university XML database (tuple class Cspecialization) can be seen in Figure 4.1,

we can interpret each concept and generate the list of all functional dependencies..

Example 4.1. In concept node with label specialization/specialization@key,

specialization/SpecID, specialization/SpecName the associated objects are tree tuple pairs,

where the values for specialization/SpecID are the same. So we have the next XML FDs:

〈Cspecialization, ./SpecID, ./SpecName〉

〈Cspecialization, ./SpecID, ./specialization@key〉

〈Cspecialization, ./specialization@key, ./SpecID〉

12



〈Cspecialization, ./specialization@key, ./SpecName〉

〈Cspecialization, ./SpecName, ./specialization@key〉

〈Cspecialization, ./SpecName, ./SpecID〉

From the concept lattice we can read the relationship between concepts. There are 1:n

relationships, from Specialization to Group, from Group to Students, from Students to

Studmark. Disciplines are in n:m relationship with Students, linked by Studmark node

in this case.

In our approach, beside XFDs, we find the XML keys of a given XML document. The

implications found by FCAMineXFD contain some FDs with RHS as ./@key values. These

can be used to detect the keys in XML. This is a big step forward in FCA based knowledge

discovery, because till now one could read only the dependencies from the resulting concept

lattice, but using our method we can find the keys too.

There are two FDs of Example 4.1 with RHS as ./specialization@key in tuple class Cspecialization,

so the detected XML keys are:

〈Cspecialization, ./SpecID〉, 〈Cspecialization, ./SpecName〉.
Given the set of keys and the set of dependencies discovered by our tool, we convert the

XML schema into a correct one.

As a second contribution we proposed a framework for parsing the XML document and

constructing the formal context, (corresponding to the flat representation of the XML data)

and its analysis in terms of knowledge discovery. As we have noted, the concept lattice pro-

duced in this way is a valuable graphical representation of the analyzed XML document’s

elements and their hierarchy. Our software, FCAMineXFD, finds keys and functional de-

pendencies within the XML data which are attribute implications in the constructed formal

context. The scheme of the XML document is transformed in GTT-XNF using the detected

functional dependencies.

13





5
Dependency Management and Inconsistency

Prevention

In this chapter we describe our third contribution, which finds Conditional Functional De-

pendencies (CFDs) [15] and Association Rules (ARs)[1], and instead of using them to clean

dirty data we use them to prevent their appearance in the database. We achieve this by

differentiating Strict from Apparent dependencies. If we know about a dependency that it

will be valid in the future, we can rely on them by creating constraints which guarantee

that the CFD-rule will not be breached by insertions or modifications. Along with complete

management of dependencies our implemented application called DependencyManager also

uses Formal Concept Analysis methods to analyze the Strict dependencies and draw useful

conclusions, helping the users of the application to prevent inconsistencies, fix bugs and op-

timize their queries and applications by providing a lattice of dependencies, using usefulness

as the relation. Dependency management and inconsistency prevention are also studied by

us in [24].

Our application learns FDs, CFDs and ARs from an arbitrary database. We can vali-

date the learned dependencies by accepting or rejecting them, thus modifying its data from

candidate to Strict(SD) or Apparent Dependencies(AD). We have created support for the

simplification of the validation by using the relation of MU as the most useful candidates

should be taken into account from all the other dependencies, therefore we drastically re-

duce the number of dependencies to be taken into account and we only store the most useful

SDs because all the other dependencies are implied by them. The result of our research is

a system which is able to prevent all the possible inconsistencies resulting from inserts or

15



5 DEPENDENCY MANAGEMENT AND INCONSISTENCY PREVENTION

updates which do not comply with the schema of the accepted SDs using constraints. We

use FCA methods to analyze the strict CFDs/ARs and draw useful conclusions. In other

words, we exploit FCA here to derive ontology containing concepts.

Our strategy is based on automatic learning, semi-automatic validation and automatic

forgetting. We have defined an algorithm which is used by the application to learn new CFDs

and ARs. To automatically accept all learned dependencies can be risky especially if the date

is critical. Validation is not always easy for users, because there can be many dependencies

learned, but we used the More Useful (MU) relation, which reduces significantly the difficulty

of validation if used properly. As we mentioned earlier, the user sees a list of most useful

CFDs/ARs, and can decide whether they are SDs or ADs. If the user accepts a dependency

D1, then all D2 will instantly become invalid which meets the criteria of D1 MUD2. As a

result any D2 less useful than D1 is redundant with D1. If the user rejects a CFD/AR D1,

then it will become invalid and all CFDs/ARs D2 which meet the criteria of

(D1 MUD2) ∧ (@D3 such that D1 MUD3 MUD2)

will be shown to the user, because they will become most useful ARs/CFDs. We estimated

the benefit of using the MU relation. If a table has n columns and a dependency has a

column for the condition, s columns in the determinant column set and d columns in the

dependent column set, then there are 2(n−s−d−1) + 2d − 1 possible dependencies which are

less useful. If we accept the given dependency, we automatically refuse all the less useful

dependencies, which optimizes by helping the system/user with the automatic reduction of

the dependencies to be taken into account by a maximum of 2(n−s−d−1)+2d−1 dependencies.

This method helps a lot in the validation and the usage of the dependencies. This is an

exponential optimization.

5.1 Experimental Results

We evaluated the efficiency and effectiveness of our algorithm on four datasets. In datasets

named Numbers1 and Numbers2 the rows were generated numbers, using formulas to guar-

antee the occurrence of CFDs and ARs. We also conducted experiments used real datasets

from the UCI machine learning repository http://archive.ics.uci.edu/ml/, namely, the Wis-

consin breast cancer (WBC). The Exceptions dataset was also generated by us using real

data.

Table 5.1. describes the parameters of the used datasets, the MinOccurrenceFrequency

and MinOccurrenceRate used in our experiments and the number of accepted/rejected de-

pendencies: SDs and ADs for each dataset.

Based on our analysis, we managed to significantly reduce the number of dependencies

to be considered, we found that only 10% -30% of dependencies were useful.

16



5.1 EXPERIMENTAL RESULTS

Dataset Arity No. Rows MOF MOR SD AD
Numbers1 6 20000 200 0.15 95 13
Numbers2 5 200000 650 0.2 118 11
WBC 11 699 37 0.06 242 21
Exceptions 5 11192 1000 0.1 43 8

Table 5.1: Experimental results (MOF = MinOccurrenceFrequency, MOR = MinOccur-
renceRate)

If an SD pattern is accepted (validated), then a constraint prevents inserts and updates

inconsistent with the accepted pattern. We quantified the amount of data protected by our

system against inconsistency violation. In our dataset Numbers1 8620, Numbers2 102034,

BCW 384, Exceptions 7083 presents the records complied to at list an SD and an arbitrary

insert or update in the future has a probability of 43.1 %, 51.01 %, 54.93 % and 63.28%

to be protected by our system against inconsistencies violating our SDs. If an error occurs

because of mishandling data where an SD is applicable, then the problem can be identified

in the error logs and potentially, bugs can be found and fixed.

In DependencyManager we have implemented an FCA module, which studies the proper-

ties of SDs discovered with our application and draw interesting conclusions, further knowl-

edge about them. Our approach was agnostic towards the nature of the content of the

database; we have implemented an FCA applicable to accepted dependencies of any database

using our system. First, we transformed existing knowledge into an FCA context based on

SDs. In this context the objects are the SDs and the attributes are possible properties for the

objects. The attributes are Weakness, Determinant Column Cluster’s Size, Column Cluster’s

Size, Frequency of Occurrence and Almost Symmetrical. We have defined the Fuzzy sets of

None, Very Low, Low, Medium, High, Very High and Total for this attribute. Second, we

created the concepts, (not only by grouping objects which have the same set of attributes,

but also comparing their value too), and then we transformed them into a concept lattice

(without binarization), which was the basis for further analysis. In other words, we ex-

ploit FCA here to derive ontology containing concepts. FCA is relevant in this study, by

providing conceptual information as the result of SD-analysis with the attributes described

previously. To our knowledge no previous work has utilised FCA implementation where the

input objects were SDs and the input attributes were properties of these dependencies.

Along with complete management of dependencies our strategy prevents the appearance

of inconsistencies instead of cleaning already existent ones. We can conclude that our ap-

plication is scalable, easy to use and powerful in preventing inconsistencies. Our algorithm

represents a new approach to CFD-handling and a novelty for FCA analysis, by analyzing

abstract database patterns.
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6
Data Extraction using Semantic Trees

A major finding of this research is a fast and precise tool which supports semantic data

extraction from various types of data sources. To simplify the difficult tasks of integrating

new data sources and handling structural changes within existing data sources, we have

implemented a new approach called RK. RK is a tool which serves as a guide for extraction

purposes; the semantic tree generated by the semantic rules (used as input), describes a

pattern that represents the structure of the data source.

The aim of our research is to simplify the labour-intensive process of data extractor

creation. We intend to motivate owners of data sources to assist data extractor teams in

the task of extracting data from their data sources. To achieve this goal, we have created

RK, a tool which utilises an interpreted semantic language to define the semantic rules

that map the concepts, including their relative structural path, parent-child relationship,

plurality, set of synonyms/keywords, priority and other attributes describing the concept.

We use the term concept here to denote all rules having the same keyword. For example,

if the information to be extracted relates to the real-estate sector, then possible concepts

might include size or price. From these rules RK generates objects serving as nodes when

building the semantic tree. The tree describes the structural-semantic pattern used as a guide

for the extraction functionalities. These methods, along with navigational functionalities are

defined for general purposes, however they can be customized, and in the case of navigational

functions, overwritten if needed. Our system supports data extraction from hierarchical-

structured data sources, such as web-pages, among others. The main benefits of our proposal

include the potential to support conceptual searches and the possibility of structural changes

without the need for changing data extractor applications that mine from data sources whose
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structure has changed.

Our tool supports portability, customizability and conceptual, semantic extraction. The

current implementation can be integrated into web-pages and serves the purpose of giving

instructions for crawlers. The extractor, after checking to see if RK is integrated to the data

source, can extract the whole data set by calling a single function.

To support the definition of semantic rules we have developed the RK semantic lan-

guage. Each rule represents a concept and is aware of its parent or ancestor concept, its

relative location to the structural position of its parent or descendant concept and the rela-

tive structural location of the value of the concept. Polymorphism is supported, as the same

concept type can take several possible shapes in the structure. This means that several rules

can describe the same concept to handle the different cases of its occurrence. In such cases

they are identified by indexes. A concept might have several potential parent or ancestor.

Synonyms are supported because of cultural divergence. There is no standard ontology; con-

cept names differ from culture to culture and many concepts have different names with-in

the same culture. The tool respects cultural diversity by providing the possibility to define

synonyms, that is, different keywords for the same concept.

The rules are stored in .rk files. Customizing the extraction is possible by their com-

bination. We call such a combination a search type. Ideally these rules are created and

maintained by the owners of the data source, but they can be defined by anybody who has

access to the .rk files or they can be generated automatically by a module. Extraction works

based on structural-semantic rules. If advertisements are not considered to be relevant con-

tent, then no semantic rules are defined to support them, so the extractors will not even

consider these parts.

The rules are converted to objects. The parent-child, ancestor-descendant relation of the

rules implies a hierarchy. By creating an abstract root node, which has all the concepts

with unspecified predecessors as children a tree is defined, where all the nodes correspond

to rules and the vertices are the predecessor-successor relation. The semantic tree describes

the structural-semantic work-plan for the extractor. Structural modifications have always

been difficult to handle with extractors. If one uses our tool, then in the case of structural

modifications, only the semantic rules have to be maintained. The extractors using the data

source will not feel the effects of this change (which they otherwise would do). Instead they

can extract data as if there was no structural modification.

As we have seen, the semantic tree describes the data structure. Because of the hi-

erarchical structure of the semantic tree, the extractor can repeatedly narrow down the

search-space, because a concept structurally holds its sub-concepts, thus when searching for

the sub-concepts of a concept, the structural representation of the concept can serve as root

of the search. The extraction task is solved by simplifying the search-space repeatedly. If a

concept is not plural, then after the first instance is found inside its parent or ancestor, no

other instances will be searched for. If it is plural, then a full search is done, searching for

all the occurrences. With our tool extraction is not more complicated than a function call.
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6.1 EXPERIMENTAL RESULTS

The tool can be integrated into a data-source by copying its source-code and creating and

publishing the .rk files. In some cases the navigational functions must be overwritten.

6.1 Experimental Results

We conducted experiments on different real life websites. The extractor, after checking to

see if RK is integrated to the data source, extracted the whole data set by calling a single

function. An additional function was used to move to the next page.

No.
of

rules

No. of
Extracted
Objects

Total
Download

Time
(millisec)

No. of
Objects/
Page

Total
Extraction

Time
(millisec)

Extraction
Time/
Page

(millisec)

Extraction
Time/
Object

(millisec)
Test RealEstate grid page 17 11376 513748 10 38372 33.72 3.37
Test RealEstate details page 21 11376 7566787 10 265288 233.12 23.32
www.boatsandoutboards.co.uk 6 7721 2586972 20 55070 148.84 7.13
http://prep-adm.cloudapp.net/ 13 160012 6840503 20 521756 65.13 3.25

Table 6.1: Experimental Results

Table 6.1. summarizes the results of the experiment. All experiments were conducted

on a machine equipped with a Pentium Dual-Core CPU T4300 working at 2.1 GHz , with 4

GB of RAM.

One of the tested website was www.boatsandoutboards.co.uk. from which we extracted

Image, Link, Title, Properties, and Description for boats. In this case the data source

contained 7721 boats or accessories and the average extraction time/object was 7.13 mil-

liseconds. During the extraction process, our tool does not perform unnecessary operations,

therefore the speed of the extraction is optimal. Instead of evaluating hundreds or even

thousands of regular expressions (like in [43]) within the whole web-page it evaluates only a

few dozen of structural-semantic rules, builds a semantic-tree and then uses that to extract

all (and only) the required data.

Another website we have tested our extraction tool on was: http : //prep−adm.cloudapp.net,

which contains the results of final exams for all Romanian pupils leaving elementary school.

From this webpage we successfully extracted the County, School, the Name and grades for

160012 pupils. For this experiment we defined 13 structural-semantic rules.

The average extraction time per page was 65.13 milliseconds, which corresponds to 3.25

milliseconds per student. This website offers the possibility to make searches on it, but if

one wants to analyse the all educational system in Romania then they need all the data

from this webpage, which is unreachable. Our method offers a solution to this by extracting

semantically all the desired data, allowing further data analysis to be applied.

We do not report precision and recall computed over the quality of extracted data, since

we did not register any loss in our experiments. The correctness of extraction was 100% as

long as the structural-semantic rules were defined correctly. The time of the extraction was
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equal to the cumulated time needed for building up the semantic tree plus extracting all the

desired data using jQuery, less than 10 milliseconds on average, (on a home computer having

the parameters described previously). Of course, we could use a dedicated super server and

multithreading to achieve even better results.

We can conclude that the tool we have created simplifies the extraction of data, provides

the possibility of creating several extraction strategies and enables semantic searches for

systems that use the tool. The extraction is optimal because with correct semantic rules the

algorithm repeatedly narrows down the search-space to increase search-performance. Instead

of text analysis, we have provided the alternative of hierarchical searches which consistently

work on the sub-tree of a particular concept to find the values of the sub-concepts based on

the semantic tree built from the rule-set. With correct rules the extracted data should be

correct, and if performed in an environment of collaboration, precision can be maintained in

the long term. Results of experiments using the RK tool have proved the feasibility of our

approach by enhancing extraction in terms of precision and speed.
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7
Future Work

In this thesis we have shown how FCA can be used to characterize Functional Dependencies

and mine conceptual knowledge from databases. In the future we aim to characterize func-

tional dependencies using the formalism of pattern structures [5], an extension of classical

FCA to handle complex data. We also propose to develop a software which will build the

tricontext of an XML tree and will give the functional dependencies from XML tree. On

the other hand, we would like to mine, in terms of FCA, other different types of dependen-

cies that may hold in a given set of data (not only in relational and XML, but in NoSQL

databases too).

In Chapter 5 we introduced DependencyManager, our approach to dependency manage-

ment and inconsistency prevention. In the future we intend to make this strategy even more

useful, we intend to find and analyze cross-table SD-candidates. We also want to generalize

the set of conditions by using more columns in the boolean functions instead of only one

and using more operator types, (our current implementation considers equality as the only

conditional operator). Automatization of the validation process would be useful; this feature

will probably be based on user-defined rules which will help the learner module to automat-

ically determine whether an SD-candidate is an AD or an SD. The system stores the errors

originating from unsuccessful inserts and updates which were prevented by the constraints

created for SDs; this will generate knowledge which can be used to determine the cause of

failure of inserts and updates. If the cause of failure is an incorrectly accepted pattern, the

pattern should be dismissed; otherwise the incorrect user action or incorrect functionality

can be detected.

Known SDs can be used to increase application performances. As a result, backup storage
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space/performance can be optimized by creating templates instead of storing all instances of

redundant data matching the valid patterns. Valid patterns can be cached, enabling client-

machines to deduce values and thus reduce the number of requests to databases. Therefore,

the size of the responses of the databases can be decreased, optimizing the communication

between client machines, application servers and database servers.

In Chapter 6 we introduced our RK tool, which supports data extraction from various

types of data-sources. Currently in RK the set of rules are easy to define, but the rules must

be typed by hand, because no automatic rule-definition module has been created yet. In the

future we plan to create browser add-ons and desktop applications which support graphical

rule definitions, generating the RK rules based on the actions of the user. The Semantic Tree

Builder reads the rules from the set of rules and creates a semantic tree, creating an abstract

root node and other nodes, forming a tree. The abstract root node exists to guarantee that

the data structure will be a tree, while the other ones represent rules. The relations between

the nodes form the vertices of the tree. Currently there is no guarantee that the graph

will not contain cycles, which means that in the case of a developer accidentally creating

a cycle, the system does not prevent it. In the future we plan to create a validator for

the semantic tree, which would consider the tree to be valid if it is really a tree and does

not contain cycles. The Extractor module of RK mines the textual representation of the

concepts located in the semantic tree. We plan to implement an upper layer, which will use

the Extractor and will support the extraction of other types of meta-data, such as sound,

video, image or other types of files based on the textual data mined by the Extractor. The

Extractor does not support the parsing of textual data; the upper layer will support textual

parsing too. The ideas behind the Semantic Tree Builder, Extractor and Navigator modules

as a whole are technology-agnostic; they support the extraction from any data source with

hierarchical data-structure, (our current implementation only supports the extraction from

web-pages). We plan to support other types of data sources as well. Synonym mapping

supports a multicultural extractor system, which helps the data miners to extract data from

multiple data sources that differ in their language and word usage.
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