
BABEŞ-BOLYAI UNIVERSITY

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Machine learning based software

development

PhD Thesis Abstract

PhD student: Zsuzsanna-Edit Marian

Scientific supervisor: Prof. Dr. Gabriela Czibula

September 2014



List of publications

Publications in ISI Web of Knowledge

Publications in ISI Science Citation Index Expanded

1. [CMC14b] Gabriela Czibula, Zsuzsanna Marian and Istvan-Gergely Czibula, Soft-
ware defect prediction using relational association rule mining. Information Sciences
published by Elsevier, Vol. 264, pp. 260-278, DOI: 10.1016/j.ins.2013.12.031, 2014.
(IF = 3.643)

2. [CMC14a] Gabriela Czibula, Zsuzsanna Marian and Istvan-Gergely Czibula. De-
tecting software design defects using relational association rule mining. Knowledge and
Information Systems published by Springer, DOI: 10.1007/s10115-013-0721-z, pub-
lished on-line in January, 2014. (IF = 2.225)

3. [MCC12] Zsuzsanna Marian, Gabriela Czibula and Istvan-Gergely Czibula. Using
software metrics for automatic software design improvement. SIC Journal, Studies in
Informatics and Control, Romania, Vol. 21, Number 3, pp. 249-258, 2012. (IF =
0.578)

4. [MCC14] Zsuzsanna Marian Gabriela Czibula and Istvan-Gergely Czibula, Software
packages refactoring using a hierarchical clustering-based approach. Fundamenta In-
formaticae, Under review, 2014. (IF = 0.399)

Publications in ISI Conference Proceedings Citation Index

5. [SMV09] Adrian Sterca, Zsuzsanna Marian and Alexandru Vancea. Distortion-based
media-friendly congestion control. Proceedings of the International Conference on
Knowledge Engineering, Principles and Techniques, Cluj-Napoca, Romania, pp. 265-
267, 2009.

6. [ŢIM09] Radu Ţurcaş, Oana Iova and Zsuzsanna Marian. The autonomous robotic
tank (ART): an innovative lego mindstorm NXT battle vehicle. Proceedings of the
International Conference on Knowledge Engineering, Principles and Techniques, Cluj-
Napoca, Romania, pp. 95-98, 2009.

Papers published in international journals and pro-
ceedings of international conferences

7. [Mar12a] Zsuzsanna Marian. Aggregated metrics guided software restructuring.
Proceedings of 8th IEEE International Conference on Intelligent Computer Communi-
cation and Processing, Cluj-Napoca, Romania, pp. 259-266, 2012. (Indexed IEEE)

1



8. [Mar12c] Zsuzsanna Marian. A study on hierarchical clustering based software
restructuring. Studia Universitatis “Babes-Bolyai”, Informatica, Romania, Vol. LVII,
Number 2, pp. 20-31, 2012. (Indexed MathSciNet)

9. [Mar13b] Zsuzsanna Marian. A study on Relational Association Rule Mining Based
Software Design Defect Detection. Studia Universitatis “Babes-Bolyai”, Informatica,
Romania, Vol. LVIII, Number 1, pp. 42-57, 2013. (Indexed MathSciNet)

10. [Mar13a] Zsuzsanna Marian. On the software metrics influence in Relational Asso-
ciation Rule-based Software Defect Prediction. Studia Universitatis “Babes-Bolyai”,
Informatica, Romania, Vol. LVIII, Number 4, pp. 35-48, 2013. (Indexed Math-
SciNet)

11. [Mar14b] Zsuzsanna Marian. On evaluating the structure of software packages.
Studia Universitatis “Babes-Bolyai”, Informatica, Romania, Vol. LIX, Number 1, pp.
46-58, 2014. (Indexed MathSciNet)

12. [Mar14a] Zsuzsanna Marian. FAOS - A framework for analyzing object-oriented
software systems. Studia Universitatis “Babes-Bolyai”, Informatica, Romania, Under
review, 2014. (Indexed MathSciNet)

13. [MS10] Zsuzsanna Marian and Christian Săcărea. Using contextual topology to dis-
cover similarities in modern music. Proceedings of the IEEE International Conference
on Automation Quality and Testing, Robotics, Cluj-Napoca, Romania, vol. 3, pp. 1–6,
2010. (Indexed IEEE)

14. [TLM11] Doina Tatar, Mihaiela Lupea and Zsuzsanna Marian. Text summarization
by formal concept analysis approach. Studia Universitatis “Babes-Bolyai”, Informatica,
Vol. LVI, Number 2, pp. 7-12, 2011. (Indexed MathSciNet)

15. [MCB11] Zsuzsanna Marian, Cosmin Coman and Attila Bartha. Learning to play the
guessing game. Studia Universitatis “Babes-Bolyai”, Informatica, Vol. LVI, Number
2, pp. 119–124, 2011. (Indexed MathSciNet)

Papers published in proceedings of national con-
ferences

16. [Mar12b] Zsuzsanna Marian. Software metrics based refactoring: a case study.
Proceedings of the National Symposium ZAC 2012, Cluj-Napoca, pp. 59-64, 2012.

17. [Mar10] Zsuzsanna Marian. Solving the subset sum problem with DNA computation,
Proceedings of the National Symposium ZAC 2010, Cluj-Napoca, pp. 25-29, 2010.

In the case of co-authored publications, we have contributed to: conceiving, designing and
performing the experiments; analyzing the data; developing the structure and arguments of
the papers; writing the manuscripts; making critical revisions and approving the final versions
of the papers.



Keywords

• Machine Learning

• Clustering

• Software metrics

• Relational Association Rules

• Software Development

• Software Restructuring

• Software Defect Detection

• Design Defect Detection

• Defect Prediction

• Nasa datasets

• Software Frameworks



Contents

List of publications 1

Introduction 5

1 Machine Learning in Software Engineering 8
1.1 Computational Intelligence in Software Engineering . . . . . . . . . . . . . . . 8
1.2 Software Remodularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Software Defect Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 A Background on Related Machine Learning Methods . . . . . . . . . . . . . 11

2 New Approaches to Software Remodularization 13
2.1 Package-Level Remodularization . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Class-Level Remodularization . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Conclusions and Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 New Approaches to Software Defect Detection 21
3.1 Theoretical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Design Defect Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Defect Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Conclusions and Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 A Software Framework for Analyzing Object-Oriented Software Systems 29
4.1 The FAOS framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Comparison to similar frameworks . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Conclusions and Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Conclusions 31

Bibliography 32

4



Introduction

This Ph.D. thesis is the result of my research in the field of developing machine learn-
ing models for solving different problems related to the software development process. This
research was started in 2011, under the supervision of Prof. Dr. Gabriela Czibula.

The main research direction we are focusing on is the application of machine learning
methods and algorithms on different tasks and problems from software engineering. The
problems approached in this thesis are of major importance during the maintenance and
evolution of software systems. Solutions to these problems would help software developers
by assisting them in different software development tasks.

Machine Learning (ML) is a branch of Artificial Intelligence which seeks to answer the
question “How can we build computer systems that automatically improve with experience, and
what are the fundamental laws that govern all learning processes?” [Mit06]. Consequently,
ML is composed of a series of different approaches and algorithms that can learn from existing
data.

In 2001 with a paper of Mark Harman and Brian Jones a new research field, Search-Based
Software Engineering (SBSE ), was born [HJ01]. This paper describes that many software
engineering problems can be formulated as search problems, and search algorithms can be
applied to them. After the publication of this paper many researchers started working in this
direction and soon they realized that search methods are not the only intelligent approaches
possible for software engineering tasks. They realized that there are software engineering tasks
which can be easily formulated as clustering problems and they started applying clustering
algorithms for them. They also found that there are problems that can be formulated as
classification or prediction problems to which different classifiers can be applied.

But even if intelligent methods can be applied to software engineering tasks, why should
they be applied? Why should we develop approaches for solving tasks that can be solved
by software developers? The answer is that these tasks cannot always be solved by software
developers and developers can use the help provided by these approaches. Due to the com-
plexity and size of software systems in our days, there are many situations when people who
work on a system might not see through all the relations between elements, they might not see
which parts should be improved, or which parts should be focused on during testing. This is
why search-based, computational intelligence-based and machine learning-based approaches
are all welcome: they can help software developers with their everyday tasks.

Out of the different software engineering tasks on which intelligent methods were applied,
we have chosen two main directions to focus on in this thesis. The first direction was to
develop approaches for restructuring object-oriented software systems using clustering algo-
rithms both on package level and class level. The second main direction tackled in this thesis
is the problem of defect detection in a software system. This direction can be divided into de-
sign defect detection and defect prediction, and for each problem we have introduced a novel
relational association rule mining-based approach. Finally, an original contribution towards
the development of software systems is presented as well, in form of a software framework,
called FAOS (Framework for Analyzing Object-oriented Software systems). This framework
was developed to support the experimental evaluation of most approaches presented in this
thesis.

5



INTRODUCTION 6

The thesis is structured in four chapters, as follows.
The first chapter, Machine Learning in Software Engineering. Background, starts

with a short presentation of different computational intelligence methods in software engi-
neering. This is followed by the presentation of the two main research directions approached
in this thesis: Software Remodularization and Software Defect Detection. For both directions
the two problems that we have worked on is detailed, together with a short review of existing
methods. Finally, we give a short overview of two important machine learning methods that
we have used in our approaches: relational association rules and clustering.

Our original contributions are presented in Chapters 2, 3 and 4, where we describe the
machine learning models that we have proposed for solving the software engineering tasks
that we have chosen to focus on in this thesis.

Chapter 2, New Approaches to Software Remodularization, is original and presents
our work for the first main research direction of this thesis, namely software restructuring
using clustering algorithms. We begin with the first problem from this domain: package-
level remodularization. We present two algorithms, one which identifies a good division of
the classes into packages and one that, given an existing package structure of the software
system, can identify the suitable package for a newly added application class. This is followed
by the experimental evaluation of these two algorithms, an analysis of the approach and a
comparison to existing methods from the literature for package-level restructuring. The
second problem tackled in Chapter 2, software restructuring at the class level, is presented
next. We present three algorithms that can identify an improved class structure of a software
system, together with an experimental evaluation of them. Finally, the three algorithms are
first compared to each other, then to existing approaches from the literature. The last section
presents the conclusions of this chapter together with future work directions.

Chapter 3, New Approaches to Software Defect Detection is original and it presents
our approaches for the second main research direction of this thesis, software defect detection.
Both problems from this direction use the same theoretical model, which is described in the
first section. This is followed by the introduction of our approach for identifying classes with
design defects in a software system, using relational association rules. Next, the experimen-
tal evaluation of this approach and a comparison to existing approaches is given. We also
present a study on the effects of parameter variations on our approach. The second part of
Chapter 3, presents our approach for the second problem from this direction, namely software
defect prediction. We describe our original approach, a classifier, which can classify entities
from a software system as defective or not defective using relational association rules. The
experimental evaluation and a comparison to existing approaches is given next, followed by
two studies on the classifier. Finally we present the conclusions of this chapter.

Chapter 4, A Software Framework for Analyzing Object-Oriented Software Sys-
tems is original and it presents the FAOS (Framework for Analyzing Object-oriented Software
systems) framework, a general framework written in Java for analyzing object-oriented soft-
ware systems. The chapter presents the three main modules of the framework, one for the
analysis of compiled Java code and the extraction a list of elements (classes, methods, fields)
and the relations between them, one for computing the value of different software metrics,
and one for the implementation of our approach for package-level restructuring of a software
system. After the presentation of the modules, a short comparison to similar frameworks and
tools is given. Conclusions and directions for further work are drawn in the last section.

The original contributions introduced in this thesis are presented in Chapters 2, 3 and 4
and they are the following.

• A novel clustering-based approach for software remodularization at the package level -
the CASP (Clustering Approach for Software Package Restructuring) approach (Sub-
section 2.1.1) together with a hierarchical agglomerative clustering-based algorithm,
HASP(Hierarchical Clustering Algorithms for Software Packages Restructuring), to be



INTRODUCTION 7

used in the CASP approach (Subsection 2.1.2) [MCC14].

– The definition of seven features, which can be aggregated into a single value (called
overallScore), which can be used as a similarity measure in the HASP algorithm
(Subsection 2.1.2) and the definition of a new measure, CIP(Cohesion of Identified
Packages), which computes how close a given partition is to an apriori known good
partition (Subsection 2.1.4). [MCC14].

– The AssignClass algorithm, which can find the suitable package in a software
system for a newly added application class, using the same features and score as
the HASP algorithm (Subsection 2.1.3) [MCC14].

– An experimental evaluation of the HASP and AssignClass algorithms (Subsection
2.1.4), an analysis of the provided results (Subsection 2.1.5) and a comparison of
the overallScore measure to other existing measures (Subsection 2.1.6). [MCC14,
Mar14b].

• Three novel algorithms for software systems restructuring at the class level: ARI,
HAC (Subsection 2.2.1) and an aggregated metrics-based approach (Subsection 2.2.2)
[MCC12, Mar12c, Mar12b, Mar12a].

– Experimental evaluation of the three algorithms for class-level restructuring of a
software system, and a comparative analysis of them (Subsection 2.2.3).

• A method for design defect detection based on relational association rules discovery -
SDDRAR (Subsection 3.2.2) [CMC14a].

– A novel Apriori -like [AS94] algorithm, for mining arbitrary length relational as-
sociation rules from a dataset - DRAR (Subsection 3.2.1) [CMC14a].

– A detailed experimental evaluation of the SDDRAR approach (Subsection 3.2.3)
followed by an analysis of the approach with respect to its robustness, precision,
recall, advantages and disadvantage (Subsection 3.2.4) [CMC14a].

– A study on the effect of parameter variations on the results provided by the SD-
DRAR approach (Subsection 3.2.5) [Mar13b].

• A novel binary classification approach, which, using relational association rules, can
classify entities from a software system as defective or non-defective - DPRAR (Sub-
section 3.3.1) [CMC14b].

– A thorough experimental evaluation of the DPRAR approach, using as case study
10 NASA datasets (Subsection 3.3.2) and a comparison of the results to the results
reported in the literature for the same datasets (Subsection 3.3.3) [CMC14b].

– Studies on the effect of feature elimination and changing the score computation
formula on the results of the DPRAR approach (Subsection 3.3.4) [Mar13a].

• A generic software framework, FAOS, for the analysis of object-oriented software sys-
tems. (Section 4.1) [Mar14a]. This framework was implemented to support the original
approaches that we have developed, and it was used for almost all of the above presented
methods.



Chapter 1

Machine Learning in Software

Engineering. Background

Applying intelligent methods to software engineering tasks is a relatively new research
field, started in 2001 with a paper of Mark Harman and Bryan Jones, [HJ01]. Since then,
the application of intelligent methods for software engineering tasks has come a long way.
In [ZT05] the authors present 44 different tasks for which at least one machine learning
algorithm was applied. Similarly, a review of current trends in SBSE, [HMZ09], gathers more
than 500 publications in the domain.

1.1 Computational Intelligence in Software Engineering

In 2001 Mark Harman and Bryan Jones published a paper, [HJ01], which is considered to
be the manifesto of a new research field, called Search-Based Software Engineering (SBSE ).
They present that metaheuristic search-based optimization techniques (namely Genetic Al-
gorithms, Simulated Annealing and Tabu Search) have been applied in different engineering
fields and they would be suitable for software engineering (SE), too.

In the following years, a large number of approaches were presented in the literature,
approaches consisting of the application of search algorithms for different software engineering
tasks. Eight years after the appearance of the field, in 2009, Harman et al. published a review
of the existing trends, techniques and applications in SBSE [HMZ09] based on more than
500 publications in the field.

Search algorithms are not the only intelligent methods applied to software engineering
tasks, as presented by Harman in [Har12], where he mentions three broad areas of Artificial
Intelligence techniques used by the software engineering community: computational search
and optimization, fuzzy and probabilistic methods and classification, learning and prediction.

Besides [Har12], another recent surveys on the role of Artificial Intelligence in Software
Engineering, [AAH12], presents that Computational Intelligence methods have been applied
to requirement engineering, software architectural design, software coding and testing, soft-
ware reliability, software cost estimation and prediction and automatic bug fixing. In [DK05]
Dick and Kandel present examples of how CI and ML methods can be applied to software
quality assurance.

Machine learning algorithms have also been applied to different software engineering tasks.
In [ZT05] the authors present 44 different software engineering problems to which at least
one ML algorithm has been applied.

8



CHAPTER 1. MACHINE LEARNING IN SOFTWARE ENGINEERING 9

1.2 Software Remodularization

A software system is either changed over its lifetime to adapt to different requirements
or it will no longer be used. Changes to a software system after its release are done during
maintenance, and if only changes that add new functionalities, or correct existing errors are
done, the system will become harder and harder to maintain in the future. In order to prevent
this, another important activity to do during maintenance (and not just then) is restructuring
the code. Restructuring is the activity when the internal structure of a software system is
changed (improved), without affecting the system’s external behavior. For object-oriented
systems the term refactoring is often used as a synonym for restructuring, but, according
to Fowler, a refactoring is a simple transformation, performed in a couple of minutes, while
restructuring is more complex and can last longer (and it can be composed of a series of
refactorings) [Fow].

Software remodularization can be done on different levels of the software system. For
an object-oriented software system we can talk about method-level, class-level, package-level
and architecture-level remodularization.

1.2.1 Package-Level Remodularization

Problem statement and relevance. Nowadays software systems are becoming more
and more complex, consisting of thousands of application classes which are grouped into
software packages. Without an appropriate package structure of the software, the system
becomes hard to maintain. Thus, software remodularization at the package level is an im-
portant process in software maintenance and evolution. The more complex the system the
higher its maintenance cost is. Therefore it is very hard for software developers to decide
the appropriate package structure for the system. When the number of application classes is
large, the class assignment decision is not an easy one, since it involves a good knowledge of
the overall system design.

The problem of software packages restructuring arises from practical needs, thus intelligent
approaches can be useful for helping software developers in their daily works of restructuring
packages in software systems.

Literature review. There are several different methods reported in the literature for
identifying how classes should be grouped into packages. One such method is presented
in [AAM11], where clustering is used to find the ideal grouping of classes. A constrained
community detection algorithm-based approach is presented in [PJL13]. Even if it can not
restructure a whole system, the method presented by Bavota et al. in [BLMO10] can divide
a package, which has a low cohesion, into several, more cohesive packages. Search-based
methods were also proposed for this problem, for example [MHH03, MMCG99].

Another direction of research that should be mentioned, is the definition of different
metrics, which measure the quality of packages in a software system. Such metrics are
defined in [SKR08] and in [DABH11].

1.2.2 Class-Level Remodularization

Problem statement and relevance. Most of the approaches presented in the literature
of software remodularization identify or perform restructurings at the class level. These
approaches try to identify those classes in a software system, which do not have a good
design and they also identify those refactorings which would improve the design of these
classes.

An excellent and frequently cited book, when it comes to refactoring is Refactoring:
Improving the Design of Existing Code written by Martin Fowler [Fow99]. In this book
Fowler presents, through a set of examples, why refactoring is important and how to do it.



CHAPTER 1. MACHINE LEARNING IN SOFTWARE ENGINEERING 10

He also presents a catalog of 72 different refactorings (each with description, motivation and
example. Even with such a complete catalog of possible refactorings, there are two important
questions: when and where to refactor. To answer these questions, Fowler introduces the
notation of bad smells, which are “certain structure in the code that suggest (sometimes they
scream for) the possibility of refactoring” [Fow99]. In the book there is also a catalog of 22
different bad smells and for each of them, the list of refactorings which can remove them is
also presented.

Literature review. The identification of refactoring opportunities in a software system is
a well-researched domain. Different methods were proposed in the literature which use Game
Theory [BOL+10, HT07], Concept Analysis [ST98], Bayesian Belief Networks [KVGS09],
clustering [RR11, FTCS09, AL99] or different search methods [MC11, OC08, GWI11, SSB06,
HT07]. While most of the previous techniques also use software metrics to different extents,
there are also methods based on software metrics alone [ISIE12, SS07, HKI08, CLMM05,
SSL01, TK03, DDN00].

1.3 Software Defect Detection

Software Defect Detection is the branch of software engineering which tries to identify or
predict defects in a software system. It is an important activity, according to [Kan03], defect
detection and correction can consume about 75 % of total software life-cycle costs. Kandt in
[Kan03] presents two important and complimentary defect detection techniques: inspection
and testing. Both require a considerable amount of time and human effort, which, especially
in case of large software systems, is not always available. This lack of time, combined with
the increasing size of software systems, is the reason for which intelligent methods that could
help developers and software testers focus their attention on those parts of the system where
the problems can be found are developed.

1.3.1 Design Defect Detection

Problem statement and relevance. The internal structure of the entities within a
software system can change many times during the system life-cycle and thus has a major
impact on the maintainability of the system. Even when a software system originally has
a good design, during maintenance, the design of the system can degrade, which, in turn,
makes further maintenance harder and more costly. This is why monitoring the design of the
system and continuously identifying and correcting design defects is essential.

Software design defect detection is closely related to another software engineering task,
software restructuring or refactoring. Usually, the solution for eliminating design defects is
to restructure the software system, possibly by applying different refactorings.

What are design defects? In order to be able to detect design defects, one has to
define what a design defect is. When defining what exactly is a design defect, one can start
from a set of principles for a correct design, and look for violations of these principles. For
example, Larman in [Lar04] presents nine such principles (or patterns), known under the
name of GRASP (General Responsibility Assignment Software Patterns) patterns.

Design defects are often divided into two categories: higher-level design defects (also
called antipatterns) and lower-level design defects (also called bad smells).

Literature review. Manually identifying design errors is at least time-consuming, if not
impossible, for large software systems, so in the literature different approaches are presented
for automatically finding them. Such approaches are Marinescu’s detection strategies [Mar02],
Moha’s rule cards [MGL06, Moh06], the JDeodorant Eclipse plug-in [FTSC11] and Munro’s
metric-based approach [Mun05].



CHAPTER 1. MACHINE LEARNING IN SOFTWARE ENGINEERING 11

The application of search techniques in design defect detection is presented in [KSBW11],
while in [MKD13] multi-objective genetic programming approach to find three types of bad
smells is described. The use of change history to detect bad smells is presented in [PBP+13].

Fontana et al. present in [FBZ12] a comparison of different code smell detection tools.
They mention several existing commercial or freely available tools, but use for experiments
only four of them. These tools are applied on different systems to detect six types of smells.
One conclusions that they draw in this paper is that different tools, when applied to the same
source code, for finding the same bad smell will produce different results (the only exception
was the God Class smell).

1.3.2 Defect Prediction

Problem statement and relevance. Software defect prediction tries to pinpoint those
parts of a software system, where errors are present, so that software testers can spend
more time testing those components which are likely to contain errors, and less time on the
ones which are probably error-free. Many software defect predictors use software metricsto
measure the software quality in order to predict software defects. Thus, software defect
prediction is the task of classifying software modules into the fault-prone and the non-fault-
prone ones by using metric-based classification [BMW02]. Most defect prediction techniques
used in planning are based on historical data, hence rely on supervised classification.

The NASA datasets. Many approaches for defect prediction from the literature use
for evaluation the so-called NASA datasets. These can be found at [Nas], which is a software
engineering repository where the datasets are available to anyone in order to help researchers
create repeatable, verifiable, and improvable predictive models of software engineering.

Literature review. One of the early software defect prediction methods is the CBA
method, presented in [LHM98], where class association rules are used. [LMW01] presents an
extension of this method, CBA2, which tries to solve the data imbalance problem. A hybrid
model, combining association rule mining and logistic regression is presented in [KMMiM08].
Another rule-based method is, EDER-SD, which is based on evolutionary computation and
generates rules describing only fault-prone modules [RRRAR12].

Besides rule-based methods, many different machine learning algorithms have been ap-
plied to the problem of defect prediction. One such work is [MGF07], in which they evaluate
the Naive Bayes classifier, OneR and J48. Challagulla et al. evaluate in [CBYP05] some
predictor models on four NASA datasets. Haghighi et al. provide in [HDF12] a comparative
analysis of 37 different classifiers in fault detection systems and use the NASA datasets for
performing experiments.

Another direction is the use of disagreement-based semi-supervised learning methods.
Such approaches are ROCUS [JLZ11], ACoForest [LZWZ12] and the use of Random Forests
presented in [GMCS04].

1.4 A Background on Related Machine Learning Methods

1.4.1 Relational Association Rules

Association rule mining of itemsets in large databases of transactions was first described
by Agrawal et. al in 1993 [AIS93]. An association rule is an implication of the form X ⇒ Y ,
where X and Y are disjoint sets of items and it means that the presence of the itemset X
implies the presence of the itemset Y as well.

One of the disadvantages of association rules is that they are only interested in the presence
or absence of an item in an itemset, but they completely ignore any possible relationships
that might exist between these items. In order to overcome this disadvantage, Marcus et



CHAPTER 1. MACHINE LEARNING IN SOFTWARE ENGINEERING 12

al. proposed in [MML01], an extension of association rules, called ordinal association rules,
where ordinal relations are defined between the elements of an itemset.

Still, in datasets ordinal relationships are not always sufficient, many different, not ordinal,
relationships can exist between items. This is why relational association rules, an extension
of ordinal association rules, were introduced in [SCC06]. Relational association rules allow
any kind of relation between elements of an itemset, not just ordinal ones.

Formally, as presented in [SCC06], let us consider that R = {r1, r2, . . . , rn} is a set of
instances. Each instance from R is characterized by a list of m attributes, (a1, . . . , am). The
value of attribute ai for the instance rj is denoted by Φ(rj , ai). For each attribute ai there is
a domain Di, where its values come from. This domain contains the empty value denoted by
ε as well. Between two domains Di and Dj relations can be defined (not necessarily ordinal
relations), such as less or equal (≤), equal (=) and greater or equal (≥). The set of all
possible relations that can defined on Di x Dj is denoted by M .

Definition 1 [SCC06] A relational association rule is an expression (ai1 , ai2 , ai3 , . . . , aiℓ) ⇒
(ai1 µ1 ai2 µ2 ai3 . . . µℓ−1 aiℓ), where {ai1 , ai2 , ai3 , . . . , aiℓ} ⊆ A = {a1, . . . , am}, aij 6= aik ,
j, k = 1..ℓ, j 6= k and µi ∈ M is a relation over Dij × Dij+1

, Dij is the domain of the
attribute aij if the attributes ai1 , ai2 , ai3 , . . . , aiℓ occur together (are non-empty) in s% of the
n instances (we call s the support of the rule) and we denote by R′ ⊆ R the set of instances
where ai1 , ai2 , . . . , ail occur together and Φ(rj, aik) µk Φ(rj , aik+1

) holds for each 1 ≤ k ≤ l−1
for each instance rj from R′ (we call c = |R′|/|R| the confidence of the rule).

Besides support and confidence, a rule can also by characterized by its length, which is
the number of attributes in it. In a dataset a great number of relational association rules
can be found, but we are usually interested only in the rules whose support and confidence is
greater than some user provided threshold smin and cmin. Such rules are called interesting.

1.4.2 Clustering

Clustering is an unsupervised learning method, considered the most important one, whose
main goal is to group entities from a data set in different groups (called clusters) in a way in
which entities in a cluster are more similar to each other than to those outside their cluster.

Let O = {O1, O2, . . . , On} be the set of objects to be clustered. During the clustering
process, a cluster C is a nonempty set of entities from O, which belong together based on a
distance function d. A partition P = (C1, C2, ..., Ck) is a set of clusters, such that each entity
from O belongs to one and only one cluster from P .

Clustering algorithms can in general be divided into two big groups: hierarchical and
partitional algorithms, while hierarchical clustering algorithms can further be divided into
agglomerative or divisive algorithms [Han05]. In case of an agglomerative clustering algorithm
the process starts with a partition where each entity is in its own cluster and the number of
clusters is decreased until all entities are in the same cluster.

An important step in hierarchical clustering is determining the distance between two clus-
ters, denoted by dist(Ci, Cj), because this distance decides which clusters will be merged. The
most well-known distance metrics for two clusters in the literature are: simple-link - where
the minimum distance between two entities from Ci and Cj is considered -, complete-link -
where the maximum distance is considered - and average-link, where the average distance is
considered.

Partitional clustering algorithms [Han05] instead of creating a series of partitions (as
hierarchical algorithms do), create a single partition containing K clusters. In this case, the
algorithm starts with K initial cluster centers, and each entity is added to the cluster which
is closest to it. Then the cluster centers are recomputed the entities are added again to the
closest cluster. These steps are usually repeated until the clusters become stable.



Chapter 2

New Approaches to Software

Remodularization

In this chapter, which is entirely original, we are approaching the problem of software
remodularization. Software remodularization means changing the internal structure of a
software system, without affecting its external behavior, and it is an important activity,
because it helps maintain a good design and modularization of a software system. In this
chapter we will present our approaches for package-level remodularization and class-level
remodularization, using hierarchical clustering.

The approaches presented in this chapter are original works published in [Mar14b], [MCC12],
[Mar12c], [Mar12b], [Mar12a], or under review: [MCC14].

Motivation. Software systems nowadays have to adapt to the changing requirements of
the users, or to the changing environment in which they are used. Most changes related to
adaptation are done after the release, and in many cases affect negatively the quality of the
software system, which can make further maintenance more complicated and costly. In order
to avoid these costs, maintaining the quality of the system is also an important goal, but due
to the size of most software systems it is almost impossible for a developer to see through
the whole structure of the system, and decide about the necessary modifications. This is
why different methods and tools which determine which refactorings should be applied for
improving the quality of the systems are gaining importance.

We have started from the idea that a software system can be considered a data set,
containing records, which can be elements of the software system. In such a setting the
application of a clustering algorithm to group together those entities that belong together
seems natural. To guide the clustering process, we have decided to use software metrics,
because they have been proven useful in other approaches.

2.1 Package-Level Remodularization

In this section we will present our original approach for package-level restructuring of a
software system. It takes an existing software system and remodularizes it at the package
level using hierarchical clustering, in order to obtain better-structured packages. Considering
an existing package structure of a software system, the method proposed in this section
would also be useful for suggesting the developer the appropriate package for a newly added
application class.

2.1.1 The CASP approach

In this subsection we introduce the clustering-based approach (CASP - Clustering Ap-
proach for Software Packages Restructuring) for package-level software remodularization,

13



CHAPTER 2. NEW APPROACHES TO SOFTWARE REMODULARIZATION 14

which consists of two steps:

• Data collection - The existing software system is analyzed in order to extract from
it relevant information about application classes, methods, attributes and the existing
relationships between them.

• Grouping - The set of classes from the software system, considering the relevant in-
formation extracted at the previous step, are grouped in clusters (packages) using a
clustering algorithm (HASP in our approach). The goal of this step is to obtain a
partitioning of the software system into packages.

2.1.2 Grouping into packages

In the following we introduce a novel hierarchical agglomerative clustering algorithm
(HASP - Hierarchical Clustering Algorithm for Software Packages Restructuring), which aims
at identifying a partition of a software framework S, that corresponds to a good structure of
packages of the software system. From the partition created with this algorithm, each cluster
will correspond to a package of the software system.

We have identified a set of seven different features that we considered relevant for the
package clustering problem. These features measure the cohesion, coupling, reuse potential
of a possible package, but also how similar the elements of a package are. These seven features
were aggregated into a single value, called score in the following way:

score(Ki

⋃

Kj ,K
∗) =

2
∑

i=1

wi · Fi − w3 · F3

|Ki

⋃

Kj |2 − 1
+

7
∑

i=4

wi · Fi (2.1)

where Ki and Kj represent the two clusters that are going to be merged, K∗ represents
the partition without Ki and Kj , Fi, 1 ≤ i ≤ 7, are the values of the seven features and wi

(0 ≤ wi ≤ 1) are the weights associated to these features. These weights were determined
using a grid search method and a software system for which a good package structure is
known. To guide the grid search process we have introduced the CIP (Cohesion of Identified
Package) measure, which computes how close two partitions of a software system are to each
other.

HASP is based on the idea of hierarchical agglomerative clustering. At a given step, the
pair of clusters that have the maximum associated score are merged. The agglomerative
hierarchical clustering process is performed until a single cluster is obtained and creates
a series of partitions with decreasing numbers of clusters. In order to identify the “best”
partition from all the generated partitions, we introduced a new measure, overallScore, which
is computed considering the value of a slightly modified version of the score measure.

2.1.3 Assigning application classes to packages

Another problem that software engineers can often encounter is finding the suitable pack-
age for a newly added application class. For solving this problem we have introduced the
AssignClass algorithm. Let us consider that K = {K1,K2, ...,Kv} is the actual partition
into packages of the software system S. A new application class C is added to the sys-
tem. In order to find the best package for the application class C, we compute the value of
score(Ki

⋃

C, K∗) for every current package Ki ∈ K. The package where this score is the
maximum is the one where C should be placed.



CHAPTER 2. NEW APPROACHES TO SOFTWARE REMODULARIZATION 15

2.1.4 Experimental evaluation

For the experimental evaluation of our approach, we used two open-source software frame-
works, Commons DbUtils [DbU] and a Reinformcement Learning framework [rlf]. For both
frameworks we performed two experiments: we executed the HASP algorithm, to identify a
good division of application classes into packages, and we identified the suitable package for
some application classes using the AssignClass algorithm.

2.1.4.1 Commons DbUtils. Results

We applied the HASP algorithm on the DbUtils framework and it returned a partition
with 4 clusters (packages) as the optimal one, instead of the original structure, composed of
3 packages. Analyzing the results of the HASP algorithm, we concluded that the partition
suggested by the HASP algorithm is better than the original one.

During the second experiment, we repeatedly executed the AssignClass algorithm, each
time removing one class from DbUtils and trying to find the suitable package where it should
go. Out of 19 runs in 16 cases it identified the correct package, which is an accuracy of 84.2
%.

2.1.4.2 Reinforment Learning. Results

We applied the HASP algorithm for the Reinforcement Learning framework and it re-
turned a partition with 11 packages instead of the original correct partition with 10 packages.
Still, the two partitions are very similar so we computed the value of the CIP metric to see
how close the partition generated by the HASP algorithm is from the original, correct, par-
tition and it was 0.95 which is a quite high value.

For the second experiment we created three new application classes and used the Assign-
Class algorithm to suggest the suitable package from them. All three classes were placed in
the correct package by the AssignClass algorithm.

2.1.5 Discussion and comparison to related work

Besides the experimental evaluation presented above we have conducted some additional
experiments to investigate the effectiveness of the HASP algorithm. Besides the DbUtils
framework, we have used two other open-source software systems, Email [Ema] and EL [EL].

During this analysis we have computed the value of different metrics and measures from
the literature for both the original package structure of the considered frameworks, and for
the package structure suggested by the HASP algorithm. There were a total of 29 evaluation
measures and in 25 cases the partition provided by the HASP algorithm had a better or equal
value than the original partition.

Out of the methods reported in the literature, the closest to our method is the approach
from [AAM11], which uses hierarchical clustering, just like our method. It presents two
approaches, and we applied both of them on the DbUtils system. The first approach is based
on the number of class initializations, but this might not be a good direction in case of
software frameworks, which usually contain many abstract classes and interfaces which are
never initialized.For the DbUtils framework this approach does not suggest modifications.

The second method presented in [AAM11] uses a vector-space representation based on
method-call dependencies. In [AAM11] three linkage metrics are used for clustering and a
new algorithm is introduced as well, with a lower complexity. We tried the three clustering
algorithms for the vector-space representation created for classes from the DbUtils system,
using as stopping criteria the point where the distance between all clusters was one. Then we
computed the CIP measure between the results and the original and the HASP partition. It
had values between 0.3 and 0.43, suggesting that these partitions are far from both of them.



CHAPTER 2. NEW APPROACHES TO SOFTWARE REMODULARIZATION 16

2.1.6 A comparison of the overallScore measure to other measures

In the following we will present a study performed in order to evaluate how well packages
in a software system are structured using the evaluation measures introduced previously:
overallScore and CIP. Through the performed experiments we aim at emphasizing that the
overallScore measure is well-correlated with the CIP measure. Thus, instead of CIP, which
requires the apriori knowledge of a good partition, overallScore can be used for evaluating a
software package structure.

For the experiments, we have considered the three open-source software systems that
were used before: DbUtils, Email and EL. For each of these software frameworks we have
considered four different package structures: the original, the one generated by the HASP
algorithm, and two “wrong partitions” created manually by modifying the original package
structure.

During the experimental evaluation we have computed the values of the overallScore
and CIP measures for each partition. We have then computed two rank-based correla-
tion measures between them: the Spearman correlation [Spe04], and Spearman’s footrule
[DG77]. Both correlation measures suggest that the overallScore and the CIP measure are
well-correlated.

In order to compare our evaluation measure with other measures from the literature, we
computed the value of the seven metrics introduced in [DABH11] for the four partitions of the
three software systems. Then we computed the Spearman’s footrank between these metrics
and the overallScore measure. A visual comparison of the footrule is presented on Figure 2.1.

Figure 2.1: Comparison of footrule values.

Considering the comparison of the footrule values presented in Figure 2.1 we can conclude
that the overallScore measure is more suitable for evaluating a partition of a software system
than the other metrics considered. Moreover, overallScore can be used instead of CIP since
the two values are strongly positively correlated.

2.2 Class-Level Remodularization

In this section we will present our original approaches for class-level remodularization
of a software system [MCC12, Mar12c, Mar12b, Mar12a]. We will present methods that
are capable of automatically identifying an improved internal structure of a software system
using different software metric values. This improved internal structure can be achieved by
applying different refactorings on the original software system.



CHAPTER 2. NEW APPROACHES TO SOFTWARE REMODULARIZATION 17

2.2.1 Metrics-based Software Restructuring

In the next subsections the following notations will be used: we will consider a software
system S to be a set S = {s1, s2, ..., sn} where si, 1 ≤ i ≤ n, is called an entity and it
can be an application class or a methods from an application class. We wanted to use the
values of software metrics for representing these entities, so we needed software metrics that
can be computed for both an application class and a method. We have chosen the following
five metrics: Relevant Properties (RP), Depth in Inheritance Tree (DIT ) [CK91], Number
of Children (NOC ) [CK91], Fan-In (FI ) [HK81, Mai09], Fan-Out (FO) [HK81, Mai09]. Out
of these metrics, RP has as value a set, while the other have integer values.

2.2.1.1 Vector Space Model and Distance Function

The main idea of our approach was to characterize each entity from the software system
S by a list of values for the above described metrics. Thus, each entity si (1 ≤ i ≤ n) from
the software system S will be represented as a 5-dimensional vector, having as components:
(rp(si), dit(si), noc(si), f i(si), fo(si)). The values in the vector are scaled to [0,1], where
necessary. In order to perform clustering in this vector-space representation of the entities,
we defined a distance function, which expressed in Formula 2.2.

d(si, sj) =























0 if i = j,
√

√

√

√
1

5
·

(

1−
|si1∩sj1|
|si1∪sj1|

+
5
∑

k=2

(sik − sjk)2

)

if si1 ∩ sj1 6= ∅

∞ otherwise

, (2.2)

2.2.1.2 The ARI algorithm

Using the above presented software metrics, the vector space model and the distance
function we have defined the Automatic Refactoring Identification (ARI ) algorithm. The
main idea is to identify a partition K = {K1,K2, ...,Km} of the software system S, which
corresponds to an improved structure of the software system. Each cluster Ki corresponds
to an application class in this improved structure.

The ARI algorithm starts with an empty partition. Than for each method we search for
the class which is closest to it (considering the distance function from Formula 2.2). If there
is a class with distance less than ∞ the method is either placed in the cluster where the class
appears (if there is such a cluster) or a new cluster is created for them. If the distance to all
classes is ∞, we are searching in the clusters without classes for the method closest to this
method. If there is no such cluster, or all distances are ∞, we create a new cluster and put
the method in it. Otherwise, we add it to the found cluster. Finally, when all methods were
added, we compute the distance between all pairs of classes. If there is a pair with distance
less than ∞ the corresponding clusters are merged.

2.2.1.3 The HAC algorithm

Using the same metrics, vector space representation and distance function, we have also
introduced an extension of the ARI algorithm, named Hierarchical Agglomerative Clustering
(HAC ) algorithm. It is based on hierarchical agglomerative clustering and uses a heuristic
function which expresses that two clusters are merged only if their distance is less than 1.
The reason for this function is that distances greater than 1 are obtained for entities that are
not cohesive.



CHAPTER 2. NEW APPROACHES TO SOFTWARE REMODULARIZATION 18

2.2.1.4 Identified Refactorings

Both the ARI and the HAC algorithms create a partition of the software system S, which
corresponds to a good internal structure. Comparing this partition to the original structure of
the software system, a set of refactorings can be identified, which would improve the structure
of the software system. For both methods these refactorings are: Move Method, Inline Class
and Extract Class.

2.2.2 Aggregated Metrics-based Software Restructuring

This subsection presents our third algorithm for software restructuring, which, like the
previous two algorithms, uses software metrics, but the values of these metrics are aggregated
into a single value.

For this approach we needed metrics whose value can be computed for an application class.
Also, since the aggregated value of these metrics will be used to characterize the quality of
an application class (and the quality of a software system through its application classes) our
intention was to choose metrics that measure the size, coupling and cohesion in a software sys-
tem. We have studied the list of software metrics implemented by different plugins and tools
and have selected the following 16 metrics: Afferent Coupling (CA) [BJWD99], Coupling Be-
tween Objects (CBO) [CK94], Data Abstraction Coupling (DAC) [LH93], Information Flow
Based Cohesion (ICH) [LLWW95], Instability (INS), Tight Class Coupling (TCC) [BK95],
Loose Class Coupling (LCC) [BK95], Lack of Cohesion in Methods 1 (LCOM1) [CK94],
Lack of Cohesion in Methods 2 (LCOM2) [HS96], Lack of Cohesion in Methods 4 (LCOM4)
[HM95], Lack of Cohesion in Methods 5 (LCOM5), Locality of Data (LD) [HM95], Message
Passing Coupling (MPC) [LH93], Number of Attributes (NOA) [LH93], Number of Methods
(NOM) [LH93], Response for a Class (RFC) [CK94].

2.2.2.1 Case Study

Since good values for these software metrics are not known, we have performed a study,
to analyze how the value of these metrics changes as we improve the software system. We
have taken four different case studies, each of them being a small example with 2 or 3 classes,
and in each case there was at least one method placed in a different class, than it should be.

We have computed the value of each metric presented in the previous subsection for the
above presented examples. Then, we have ”corrected” the examples, by moving the methods
to the classes where they should be, and computed the value of the metrics again. We were
interested in how the value of the metrics changes for the two versions. The result of this
case study is presented on Table 2.1, where the label Same means the value did not change,
Up means that the value of the metric increased for the correct version of the example, and
Down means that the value of the metric decreased for the correct version.

The most important thing to notice when analyzing Table 2.1 is that for each metric the
direction of change is consistent: for each example it either did not change or if it changed it
always did in the same direction. This is important, because it allows the comparison of two
versions of the same system based on the change in the values.

2.2.2.2 Aggregated Metrics-based Software Restructuring algorithm

The main idea of our algorithm is to characterize each class from a software system by a
single aggregated value of these software metrics. In order to do so, we first had to normalize
the value of these metrics. We performed the normalization in such a way that lower values
of the metrics correspond to a better design.

After normalizing the metric values, we introduced a metric, M(C), defined for an appli-
cation class C as the sum of the normalized value for the above presented 16 software metrics.



CHAPTER 2. NEW APPROACHES TO SOFTWARE REMODULARIZATION 19

Metric Ex 1 Ex 2 Ex 3 Ex 4 Metric Ex 1 Ex 2 Ex 3 Ex4

NOA Same Same Same Same ICH Up Same Same Same

NOM Up Same Same Up CA Same Same Same Same

CBO Same Same Same Same INS Same Same Same Same

DAC Same Same Same Same LCOM1 Same Down Down Down

TCC Same Up Up Up LCOM2 Same Down Down Down

LCC Same Up Up Up LCOM4 Same Same Down Down

MPC Down Same Down Down LCOM5 Same Up Same Up

RFC Up Same Up Same LD Same Same Up Same

Table 2.1: The direction of change for metric values for the original and correct version of
the examples.

Since the metric values are normalized in such a way that small values correspond to a better
design, the smaller the value of the M(C) metric for a class, the better its internal structure
is. Since a software system S is a set of n application classes, we have defined an aggregated
metric AM(S), as the average of the values of the M(C) metric computed for all classes of
the software system.

Using the AM(S) metric and hierarchical agglomerative clustering, our approach will first
place every method from the software into its own cluster (representing an application class
with only one method), and will keep merging clusters that lead to the partition with the
lowest value for AM(S) until all methods will be in the same application class. Out of the
generated partitions, the one with the lowest AM(S) will be reported as solution.

2.2.3 Experimental Evaluation

ARI algorithm. In order to evaluate the performance of the ARI algorithm, we have used
two different case studies. The first case study is a simple example with two classes, where
one class contains a method, which should be placed into the other class. For this example
the ARI algorithm identifies that the method should be placed into the other class.

The second case study that we used to evaluate the ARI algorithm is the open-source
software JHotDraw, version 5.1 [Gam]. We chose JHotDraw because it is a well-known
example for the use of design patterns and for good design and because it is a complex
project, consisting of 173 classes, 1375 methods and 475 attributes.

After applying the ARI algorithm for the JHotDraw case study, 20 Move Method refac-
torings were identified. After an analysis of the results, we concluded that 11 of them are
justifiable, while 9 are misplaced.

HAC algorithm. We have used the JHotDraw project as case study for the HAC algo-
rithm, too. The result returned by the algorithm contained only 3 clusters (i.e., application
classes) that did not correspond to the existing structure of the framework. These three
clusters represent possible Extract Class refactorings, meaning that new classes should be
created, and the selected methods should be moved to the classes. After an analysis we con-
cluded that out of three suggested Extract Class refactorings one is justifiable, and the other
two are partially justifiable, meaning that some of the suggested methods should indeed be
moved to a new class.

Aggregated metrics-based method. The evaluation of the aggregated metrics based
method was, so far, performed only for small examples (namely, the four case studies pre-
sented in Subsection 2.2.2). The main reason for this is that some steps of the algorithm
have to be done manually. This is caused by the fact, that, in order for the results of our



CHAPTER 2. NEW APPROACHES TO SOFTWARE REMODULARIZATION 20

approach to be valid, at each step of the algorithm, we have to keep the behavior of the
system unchanged and we did not find yet a good way of automating this step.

We applied the algorithm for three case studies from Subsection 2.2.2 and in all three
cases it identified the partition corresponding to the correct design of the software systems.

2.2.3.1 Comparative analysis

Comparative analysis of the three algorithms. The ARI and HAC algorithms are
quite similar, they use the same vector space model to represent entities from a software
system, and they use the same software metrics as well. Still, the HAC algorithm uses an
unsupervised learning method, hierarchical agglomerative clustering.

Both algorithms identified most of the JHotDraw system as correctly designed, as we
have expected, since JHotDraw is considered an example of good design. Out of the reported
refactorings, the HAC algorithm had only 5 misplaced methods, while the ARI algorithm
had 9. Also, the HAC algorithm identified 3 Extract Class refactorings, which were not
identified by the ARI algorithm, thus showing that using unsupervised learning for automatic
restructuring of a software system is beneficial, since they can find hidden patterns in data.

In case of the aggregated metrics-based software restructuring algorithm, there is one
common case study with the ARI, the small artificial example which was the first case study
for the former, and the second example for the latter. For this example both algorithms
found the correct restructuring.

Comparison to related work. Seng et al. apply in [SSB06] a weighted multi-objective
search, in which metrics are combined into a single objective function. This approach partially
gives the results obtained on JHotDraw, but the ARI algorithm has less misplaced methods,
it is deterministic and has lower running time.

In [CS06] an approach is introduced that uses clustering for improving the class structure
of a software system and a partitional clustering algorithm, kRED (k-means for REfactorings
Determination), is presented. Unlike the kRED algorithm, our algorithm also identifies the
Extract Class refactoring. Compared to [RR11] and [FTCS09], the HAC and ARI algorithms
are capable of identifying three types of refactorings (not just the Extract Class).

The closest to these two methods is the HARS algorithm, in [CS07], which uses only
the set of relevant properties for computing the distance between two entities, and considers
attributes as entities, too. [CS07] uses JHotDraw as a case study too, and it finds only
one out of the three Extract Class refactorings that HAC finds (but it finds also two Move
Attribute refactorings, which neither ARI nor HAC can find).

2.3 Conclusions and Further work

This chapter presented different methods for automatically restructuring a software sys-
tem to improve its quality. We have started with the presentation of the CASP approach
and the HASP algorithm, which is a package-level restructuring method. We have experi-
mentally evaluated our approach using two open-source case studies, and the results show
that the HASP algorithm is capable of finding a good package structure.

We have also described three different algorithms which use the values of software metrics
and hierarchical clustering, for class-level restructuring of a software system. The experi-
mental evaluation of the presented methods shows that these methods can indeed identify a
partition of a software system that corresponds to a better design.

As further work we would like to extend the experimental evaluation of all approaches for
other open-source software systems. We would also like to address the shortcomings of our
approaches to improve them.



Chapter 3

New Approaches to Software

Defect Detection

In this chapter, which is entirely original, we are approaching the problem of software
defect detection, an important problem in software engineering, since the increasing size and
complexity of software systems makes finding defects manually harder and harder. Conse-
quently, different intelligent approaches, which help software developers to identify which
parts of a software system are defective and need attention, are welcome. Machine learning-
based methods are presented in the literature for both directions, design defect detection and
defect prediction. In this chapter we will present a novel approach, namely how relational
association rules can be used both for design defect detection and defect prediction.

The two approaches presented in this chapter are original works published in [CMC14a],
[Mar13b], [CMC14b] and [Mar13a].

Motivation. Each software system goes through many changes during its lifetime, other-
wise it becomes obsolete and will no longer be used. These changes, mostly done during
maintenance, can be performed to add new functionalities, to correct existing defects or to
adapt to changing environments in which the system is used. These modifications can de-
grade the structure of the system, which, in turn, will make the next modifications even
more complicated. In order to avoid this vicious circle, the identification of defective software
entities is of major importance.

A software system may be represented as a dataset where the elements are the application
classes, using a high-dimensional representation based on software metrics. From this dataset
significant information can be extracted from the software metrics values characterizing the
application classes. Different types of relationships between the numerical feature values can
be defined and a relational association rule mining process can be performed on the dataset
representing the software system. Such a mining process can provide interesting patterns,
such as patterns indicating classes with a defective design, or it can provide rules which
describe defective and non-defective entities from the software system.

3.1 Theoretical model

In this section we will present the theoretical model that is used in the approaches for
both design defect detection and defect prediction.

The main idea of this approach is to represent the entities (classes, modules, methods,
functions) of a software system as a multidimensional vector, whose elements are the values
of software metrics applied to the given component. We consider that a software system
S is a set of components (called entities) S = {s1, s2, ..., sn}. As we aim at identifying ill-
structured software entities, we consider a set of software metrics relevant for characterizing

21



CHAPTER 3. NEW APPROACHES TO SOFTWARE DEFECT DETECTION 22

the internal structure of a software entity. Consequently, we have a feature set of software
metrics SM = {sm1, sm2, ..., smk} and thus each entity si ∈ S from the software system can
be represented as a k-dimensional vector, having as components the values of the software
metrics from SM.

3.2 Design Defect Detection

This section presents our approach for detecting design defects in a software system, called
SDDRAR (Software Design Defect detection using Relational Association Rules) [CMC14a].

3.2.1 DRAR algorithm

As presented in Subsection 1.4.1 relational association rules represent an extension of
ordinal association rules, but they allow more general relations to be defined between the
attributes, not just ordinal ones. In [CSTM06] an Apriori-like algorithm, called DOAR (Dis-
covery of Ordinal Association Rules), was presented, an algorithm which can find efficiently
all ordinal association rules of any length that hold over a dataset.

The DOAR algorithm was extended in [CMC14a] towards the DRAR algorithm (Discov-
ery of Relational Association Rules) for finding interesting relational association rules of any
length.

3.2.2 The SDDRAR approach

A set of well-designed software systems, Sgood, is considered. Using the theoretical model
described in Section 3.1, let us consider that DS = {ds1, ds2, . . . , dsn} is the dataset of k-
dimensional software entities extracted from the software systems from Sgood. The feature
set characterizing the dataset consists of a set of software metrics SM = {sm1, sm2, ..., smk}
identified to be relevant in the mining process.

For detecting ill-structured application classes using relational association rule mining,
the following steps will be performed:

1. Data collection and preprocessing.

2. Building the SDDRAR model.

3. Testing.

3.2.2.1 Data collection and preprocessing

During this step, a statistical analysis is carried out on the (training) dataset DS in
order to find a subset of features that are relevant for the considered task. To determine the
dependencies between features, the Pearson correlation coefficient is used [Tuf11]. For each
software metrics sm, we compute its absolute average correlation (denoted by avg(sm)) as
the average of the correlation of the metric to the other software metrics. We compute the
mean (denoted by m) and standard deviation (denoted by stdev) of these values, and remove
those metrics for which |avg(sm)−m| > stdev.

3.2.2.2 Building the SDDRAR model

The first step of building the SDDRAR model is to define the possible relations between
the software metrics, which will be needed for the relational association rule mining process.
Then the interesting relational association rules of any length, having a minimum support
smin and a minimum confidence cmin are discovered in the dataset DS. The set of these rules
is denoted by RAR. These rules will be used to identify badly designed software entities.



CHAPTER 3. NEW APPROACHES TO SOFTWARE DEFECT DETECTION 23

3.2.2.3 Testing

At the detection stage, a new software system, Snew, has to be analyzed in order to
detect software entities that have a bad design. First, Snew is analyzed and the k-dimensional
representation of the software entities from Snew is computed. Then the following three steps
are executed:

1. Errors computation step. For each entity ei from the analyzed software system the
number of errors, err(ei), is computed as the number of relational association rules from
RAR that are not verified in the k-dimensional representation. Then, the percentage
of errors, peei , is also computed as the number of errors divided by the number of rules.

2. Detection step. After determining the number of errors corresponding to each soft-
ware entity, we report as possibly badly designed entities those that do not verify a
large enough number of rules from RAR.

3. Defect analysis. For the ill-designed software entities reported at the previous step,
we compute for each software metrics the number of errors, as the number of binary
relational association rules fromRAR that are not verified by the entity. These numbers
of errors are further analyzed to determine the cause of the defect.

3.2.3 Experimental evaluation

For the experimental evaluation of the SDDRAR approach, we have chosen to consider as
entities the application classes from the software systems. As indicated in Section 3.1, using
the vector space model approach, a set of software metrics relevant for characterizing the
design of application classes has to be selected. We have chosen the same 16 software metrics
that were used for our aggregated metrics-based restructuring approach (Section 2.2.2).

3.2.3.1 Training data

As presented above, for the training part of our approach a set of well-designed software
systems Sgood has to be considered in order to collect from it the k- dimensional representation
of the application classes. For the current implementation we have selected a single well-
designed software system, the open-source case study JHotDraw version 5.1 [Gam].

For the first steps of the SDDRAR approach we have first analyzed the JHotDraw software
system and extracted from it the dataset DS consisting of the 16-dimensional representation
of the application classes. We have scaled the value of the software metrics to the interval
[0,1] and have performed the statistical analysis, which led to the elimination of four software
metrics: CA, NOM, RFC and TCC.

The second step of the SDDRAR approach consists of the mining of the interesting rela-
tional association rules of any length, having a minimum support smin = 0.9 and a minimum
confidence cmin = 0.85 from the dataset DS.

3.2.3.2 Case studies

The third step of the SDDRAR approach is Testing, where the SDDRAR model, built at
the previous steps, is used in order to detect ill-designed entities in a software system. For
this step we considered six case studies, the first two were simple, artificial examples, while
the other four were open-source softwares taken from the SourceForge repository. The results
for the six case studies are presented below:

• First simple case study taken from [SSL01] - the SDDRAR method identified the ap-
plication class having a design defect.



CHAPTER 3. NEW APPROACHES TO SOFTWARE DEFECT DETECTION 24

• Second simple case study taken from [Fow99] pages 22-26 - the SDDRAR method
identified the application class having a design defect.

• FTP4J open-source software [FTP13] versions 1.5, 1.5.1, 1.6 and 1.6.1 - for all versions
the FTPClient class was identified as having design defects. Our analysis showed that
it is a God Class, so it was correctly identified by the SDDRAR method.

• ISO8583 open-source software [ISO13] versions 1.5.2, 1.5.3 and 1.5.4 - for all versions
the MessageFactory class was identified as having design defects. Our analysis showed
that it is a God Class, so it was correctly identified by the SDDRAR method.

• Profiler4J-Agent open-source software [Pro13] versions 1.0-alpha5, 1.0-alpha6, 1.0-alpha7
and 1.0-beta1 - for version 1.0-alpha5 the Server class is reported; for version 1.0-alpha6
the MemoryInfo class is reported; for the last two versions the Config class is reported.
Our analysis showed that the Server class is too coupled to the rest of the classes,
and MemoryInfo and Config are Data Classes, so they were correctly identified by the
SDDRAR method.

• WinRun4J open-source software [Win13] versions 0.4.0, 0.4.1, 0.4.2, 0.4.3 and 0.4.4.
- for all versions the NativeBinder class was identified as having design defects. Our
analysis showed that this class has some problems and could be improved, but it does
not have one serious design defect, so we considered it a borderline decision.

3.2.4 Discussion and comparison to related work

In this subsection we will present an analysis the SDDRAR approach from multiple view-
points and a comparison with similar approaches from the software engineering literature.

Detection precision. We have considered that for the first five case studies we have
a precision of 1 (the identified classes had design defects) and for the last case study we
considered a precision of 0.5, since it was a borderline decision. Thus, the average detection
precision was 0.917 on the six considered case studies.

Average error measure. Besides determining the potentially badly designed software
entities, the SDDRAR method was applied for conducting a study as follows. For each version
of each open-source software system we have computed the average number of errors of the
application classes. This value decreases (or remains the same) for each new version of the
systems. This confirms that smaller values for the error indicate better designs, since we
expect that higher number of versions of a software system have better design.

Robustness. As the process of detecting ill-structured entities that we propose is depen-
dent on the initial entities from DS that are assumed to be well-designed, we studied what
happens if we introduce noise in this dataset. We have introduced some ill-designed entities
in the dataset DS and applied the SDDRAR method to the above presented case studies.
As we have expected, the SDDRAR approach is robust, the presence of a small number of
ill-designed entities did not influence the results.

Set of relations. The last perspective is the set of relations R considered in the process
of relational association rule discovery. We have experimented with different combinations
of the possible relations and concluded that these combinations are also capable of finding
design defects in the datasets.

3.2.4.1 Comparison to related work

In order to compare our approach to the approaches presented in the literature, we have
chosen two openly available tools: the JDeodorant Eclipse plugin [JDe13] and the iPlasma
tool, presented in [Mar02] and available at [IPl13]. The classes reported as having design
defects by the JDeodorant and iPlasma tools and our method for the first version of three



CHAPTER 3. NEW APPROACHES TO SOFTWARE DEFECT DETECTION 25

Ftp4J ISO8583 WinRun4J

SDDRAR FtpClient MessageFactory NativeBinder

JDeodorant FtpClient (36) ISOMessage (28) Launcher (28)
NVTASCIIWriter (0) MessageFactory (38) FileAssociation (23)
NVTASCIIReader (0) RegistryKey (0)

FTPProxyConnector (2)
FTPCommunication -

- Channel (0)

iPlasma FTPClient - MessageFactory - Closure -
Brain Class (36) God Class (38) God Class (27)

FTPFile - FileVerb -
Data Class (19) Data Class (26)

NativeBinder -
God Class (31)

Table 3.1: Classes with design defects reported by the JDeodorant, iPlasma tools and SD-
DRAR method.

open-source systems are presented in Table 3.1. For JDeodorant, we only considered the
God Class defects. For iPlasma we specified after each class the defect that was reported.
Also, after each class, between parenthesis, we added the number of errors that the SDDRAR
method reports for the given class.

From Table 3.1, we can see that not even the two tools agree on which classes have defects
and which do not. Like most other approaches, we decided to manually verify the reported
classes, to decide which tool’s results to use for comparison. In case of the iPlasma project,
we agree with the reported classes. In case of the JDeodorant tools, it seems like it rather
tries to find Extract Class opportunities, instead of finding real God Classes.

Comparing our results to the ones reported by the iPlasma tool, we can observe that the
application classes reported by the SDDRAR approach are reported by iPlasma as well, and
for the other classes reported by iPlasma our approach reports a high number of errors as
well (even if the number is not high enough to report the classes as defective). Using the
results reported by iPlasma we computed the recall of the SDDRAR approach, which is 0.85.

3.2.5 Study on parameter variations

The SDDRAR method depends on a couple of different parameters, whose values can
influence the results, so we have performed a study to investigate the following aspects:

• Using the original or normalized values for software metrics.

• Using binary or any length relational association rules.

• Using only maximal relational association rules, or using all mined rules.

• The effect of modifications for the τ parameter and the minimum confidence on the
detection accuracy.

As a result of this study we have concluded that it is better to use normalized software
metric values, to mine relational association rules of any length, and to use the maximal
association rules only. For the last aspect, if τ was lowered, more application classes were
reported as defective, and most of these classes were defective to a given extent. Lowering
the value of the minimum confidence led to more application classes reported as well, and
many of them were Data Classes.



CHAPTER 3. NEW APPROACHES TO SOFTWARE DEFECT DETECTION 26

3.3 Defect Prediction

This section presents our supervised learning approach for predicting defects in a software
system, called DPRAR - Defect Prediction using Relational Association Rules [CMC14b].
For this approach we will use the theoretical model presented in Section 3.1 and the DRAR
algorithm for mining the relational association rules.

In our approach, the problem of defect prediction is considered a supervised binary classi-
fication problem, since each entity should be classified as either defective also noted with “+”
or non-defective noted with “-”. And, like many other approaches, our model is built based
on training data, i.e., a dataset containing data about entities for which we know whether
they are defective or not, thus we have a supervised classification problem.

3.3.1 The DPRAR classifier

Since defect prediction is a supervised classification problem, we have a training and a
testing step. For the training we consider two datasets: DS+ consisting of the defective
k-dimensional entities and DS− consisting of the non-defective k-dimensional entities. For
classifying a a software entity as being or not defective, the following steps will be performed:

1. Data preprocessing.

2. Training/building the DPRAR classifier.

3. Testing/classification.

3.3.1.1 Data preprocessing

During this step, the training data are scaled to [0,1] and a statistical analysis is carried
out on the training datasets DS+ and DS− in order to find a subset of features that are
correlated with the target output. To determine the dependencies between features and the
target output, the Spearman’s rank correlation coefficient [Spe04] is used.

In order to decide which feature(s) to remove for each feature (software metric) smi ∈ SM
we compute the Spearman correlation (cor(smi, target)) between the feature and the target
output (defect or non-defect). Let us denote by m the average value and stdev the standard
deviation of the correlations between all features and the target output. A feature smi is
removed from the feature set if the absolute value of its correlation is less than m − stdev,
i.e., abs(cor(smi, target)) < m− stdev.

3.3.1.2 Training/building the DPRAR classifier

First, we define a set of relations between the feature values that will be used in the
relational association rule mining process. Then we perform the relational association rule
mining on the two training datasets separately, resulting in two sets of relational association
rules: RAR+ and RAR−. For each rule r from these sets we associate a value, called ratio(r),
computed by dividing its confidence to its support.

3.3.1.3 Testing/classification

At the classification stage, after the training was completed and the DPRAR classifier
was built, when a new software entity e has to be classified, we calculate two scores score+(e)
(the similarity of e to the positive class) and score−(e) (the similarity of e to the negative
class). For computing score+(e) we consider the average ratio of rules from RAR+ which are
verified by the entity e and the average ratio of rules from RAR− which are not verified by
e. Score−(e) is computed similarly.



CHAPTER 3. NEW APPROACHES TO SOFTWARE DEFECT DETECTION 27

Name Description Defective Non-defective
entities entities

CM1 NASA spacecraft instrument written in C 42 (12.84 %) 285 (87.16%)

KC1 Storage management for receiving and 314 (26.54%) 869 (73.46%)
processing ground data

KC3 Processing and delivery of satellite metadata 36 (18.56 %) 158 (81.44 %)

PC1 Built for functions from a flight software 61 (8.65 %) 644 (91.35%)
for earth orbiting satellite

JM1 Real-time predictive ground system 1672 (21.49 %) 6110 (78.51 %)

MC2 Video guidance system 44 (35.2 %) 81 (64.8%)

MW1 Zero gravity experiment related to combustion 27 (10.67%) 226 (89.33 %)

PC2 Dynamic simulator for attitude control systems 16 (2%) 729 (98%)

PC3 Flight software for earth orbiting satellite 134 (12.4%) 943 (87.6 %)

PC4 Flight software for earth orbiting satellite 177 (13.8%) 1110 (86.2 %)

Table 3.2: The NASA datasets used for the experiments.

Case study c+min c−min Length Acc Pd Spec Prec AUC

CM1 0.927 0.94 any 0.8716 0.929 0.8632 0.5 0.896
KC1 0.8 0.822 2 0.823 0.818 0.825 0.628 0.822
KC3 0.885 0.96 2 0.83 0.889 0.8165 0.5246 0.85225
PC1 0.95 0.995 2 0.956 0.885 0.963 0.692 0.924
JM1 0.95 0.995 any 0.96 0.842 0.992 0.967 0.917
MC2 0.96 0.99 any 0.896 0.773 0.9632 0.919 0.868
MW1 0.97 0.975 any 0.941 0.889 0.947 0.667 0.918
PC2 0.95 0.995 any 0.984 0.938 0.985 0.577 0.962
PC3 0.95 0.995 2 0.967 0.85 0.983 0.877 0.917
PC4 0.95 0.995 2 0.961 0.814 0.985 0.894 0.899

Table 3.3: Obtained results for all datasets for the DPRAR classifier.

At the classification stage of a new instance e if score+ > score− e will be classified as a
positive instance (defect), otherwise it will classified as a negative instance (non defect).

3.3.2 Experimental evaluation

For the experimental evaluation of our approach we have used ten NASA datasets [Nas].
The names and characteristics of these datasets are presented in Table 3.2.

For evaluating the performance of the DPRAR classifier, a cross-validation using a “leave-
one-out” methodology was applied and the following performance measures were used: ac-
curacy, probability of detection, specificity, precision and AUC. Table 3.3 presents the best
results obtained by the DPRAR classifier for all datasets considered for evaluation.

3.3.3 Discussion and comparison to related work

We have compared the results of the DPRAR method to the results reported in the
literature for other approaches, for which the experimental evaluation was performed on the
same datasets. We have chosen the CBA2 method [BDVB11], the 1R classifier [CBYP05],
the Bagging classifier [HDF12] and EDER-SD [RRRAR12].

Not all approaches were tested on all 10 datasets that we used, and not all approaches
report all the performance measures that we used. Taking into account all evaluation mea-
sures for all considered case studies, DPRAR performed better in 45 measures, similarly in



CHAPTER 3. NEW APPROACHES TO SOFTWARE DEFECT DETECTION 28

1, and worse in 23 out of the 69 evaluation measures. Moreover, the AUC measure reported
by the DPRAR classifier (considered in the literature one of the best evaluation measures
for classifiers) outperforms the average AUC value reported by existing defect detectors on
all considered case studies. This indicates a very good efficiency of the DPRAR classifier.

3.3.4 A study on DPRAR classifier

We have performed a study on the DPRAR classifier to analyze the influence of feature
elimination on its results, and to analyze the effects of using an alternative formula for
computing the scores on which the classification of a new entity is based.

The first step of the DPRAR classifier is data preprocessing, when different software
metrics can be eliminated. For the DPRAR classifier we have chosen to eliminate those
features whose Spearman correlation to the target value is less than the difference between
the average correlations, m, and the standard deviation of the correlations, stdev. In this
study we compared this to three other approaches (no feature elimination, eliminate features
whose correlation is greater than m+ stdev, eliminate feature whose correlation is less than
m− stdev or greater than m+ stdev). For the experiments we have used the PC3 dataset.

The used performance measures suggested that the best option is to eliminate those
features whose correlation is less than m− stdev or greater than m+ stdev, while the worst
option is to use no feature elimination at all.

We have performed another study, this one on the score computation of the DPRAR
method, considering as case study the PC3 dataset, and using the feature elimination tech-
nique that provided the best results in the previous study. Instead of using the ratio of rules
to compute the scores on which the classification is based, we used the number of rules. The
performance measures suggested that this new score computation method is better.

We have also compared the results of the two score computation techniques to four meth-
ods presented in the literature: CBA2, ROCUS, Random Forests with one - against - one
coding and Dynamic AdaBoost.NC. The DPRAR classifier with score computation based
on the number of rules had the best results, followed by the DPRAR classifier with score
computation based on the ratio of rules.

3.4 Conclusions and Further work

This chapter presented our relational association rule mining-based approaches for soft-
ware defect detection. Software defect detection has two main directions, software design
defect detection and software defect prediction, and we have worked on both directions.

In the first part of the chapter we described the SDDRAR approach, which is capable
of identifying entities with design defects in a software system. The experimental evaluation
of the approach was performed using 6 case studies and the manual analysis of the results
showed that the SDDRAR approach is capable of identifying entities with design defects in a
software system. We have compared our approach to two other approaches from the literature
JDeodorant and iPlasma, and the results were similar to those reported by the iPlasma tool.
These results show the potential of our proposed approach.

In the second part of the chapter we presented the DPRAR approach, a binary classifica-
tion model based on relational association rules for defect prediction. For the experimental
evaluation of this model, 10 NASA datasets were used. Comparing the results of our model
with results reported in the literature, shows that the DPRAR approach is better than, or
comparable to, the classifiers already applied for software defect detection.

As further work we would like to extend the experimental evaluation of these approaches
to other software systems, datasets and software metrics. We would also like to extend our
approaches to use fuzzy relational association rules.



Chapter 4

A Software Framework for

Analyzing Object-Oriented

Software Systems

We have presented in the previous chapters within the search-based software engineering
domain several computational intelligence-based techniques for solving problems of great im-
portance during software maintenance and evolution. For the development of most of these
techniques, we have used the FAOS framework (Framework for Analyzing Object-oriented
Software systems), which we have designed to be generic enough to offer a support for ana-
lyzing an object-oriented software system and to easily extract from it relevant information,
as well as to provide reference implementation for several software metrics which are useful to
measure the software quality. In this chapter we will present this framework in more detail.

4.1 The FAOS framework

The FAOS framework is currently composed of three main modules, Analyzer, Metrics
and PackageRestructuring.

The Analyzer module. The first module of the FAOS framework is the Analyzer,
whose current implementation can analyze software systems written in Java, and it requires
either the compiled .class files or a jar archive for the analysis. We have defined a datamodel
which consists of classes to represent an application class, a method, a field or a package
from the analyzed software system. The main role of the Analyzer module is to perform the
analysis of a software system and extract a list of the application classes together with their
methods and fields and the relations between them. For the actual analysis of the compiled
Java code we used the ASM bytecode manipulation framework [ASM13].

The Metrics module. The second module of the FAOS framework is the Metrics mod-
ule, which contains the implementation of different software metrics. This module is divided
into two main packages, the classLevel package contains the implementation of 17 software
metrics computed for a class, while the packageLevel package contains the implementation of
20 software metrics and measures computed for a software package.

The PackageRestructuring module. The third module of the FAOS framework
is called packageRestructuring and the package-level restructuring approach presented in
Section 2.1 is implemented in it, so, it is a little less abstract that the previous two modules.

29



CHAPTER 4. FAOS - A FRAMEWORK FOR ANALYZING SOFTWARE SYSTEMS 30

4.2 Comparison to similar frameworks

In computational intelligence-based software engineering researchers often implement
their approaches in the form of different tools or frameworks that can be used both by
researchers for the comparison of results, but also by software developers to get help with
their everyday tasks. While there is no other framework with the exact same functionalities
as FAOS, there are some frameworks in the literature which are similar to parts of it, like
JDeodorant - an Eclipse plug-in for identifying bad smells in a software system -, iPlasma -
an environment designed for the quality analysis of object-oriented software systems - and
the Bunch tool - which tries to find a good partition of a software system using search algo-
rithms. The first two have their own internal representation (similar to our datamodel), while
the Bunch tool needs only the Module Dependency Graph of the system to be restructured.
Thus, Bunch is programming language independent, JDeodorant works for systems written
in Java and iPlasma can analyze both Java and C++ code. Their advantage over the FAOS
framework is that they are complete tools, ready to be used. On the other hand, the FAOS
framework is more flexible, it can be easily extended to perform other kinds of analyses, not
just the currently implemented ones.

In conclusion, JDeodorant and iPlasma are suitable for situations when somebody wants
just to analyze the source code, look for abnormal metric values or bad smells. The FAOS
framework is suitable when somebody wants to analyze a system, and perform some tasks
on the resulting list of entities. Thus the main advantage of FAOS can be considered that it
is easily extendable: new software metrics can easily be added to it, and the list of entities
returned by the Analyzer module can be used for further analysis. Such a case can be observed
in the PackageResturcturing module, where this list is used to find a suitable division into
packages of the classes.

4.3 Conclusions and Further work

In this chapter we have presented the FAOS framework, a framework for analyzing object-
oriented software systems. The FAOS framework was developed to support most of the
machine learning-based approaches that were presented in the previous chapters. Thus, the
Analyzer module was used for all approaches, with the exception of defect prediction, where
the NASA datasets were used as input. The Metrics module was used both for class-level
and package-level restructuring of a software system, but it was used in our design defect
detection approach as well. Finally, the PackageRestructuring module is the implementation
of our approach for package-level restructuring of a software system.

As future work, we would like to make the FAOS framework openly available, so that
other people can use and extend it according to their needs. In order to make working with
it easier, we are thinking about developing an Eclipse plugin based on FAOS. We would also
like to extend the analysis part to other programming languages as well, because once the
internal representation of the entities is built, the other parts of the framework can be used.



Conclusions

In this thesis we have presented our original work for the application of machine learning
methods and algorithms for solving different software engineering tasks. Such intelligent
approaches are needed because software systems in our days are quite complex, composed of
many elements with many relations between them and approaches that suggest which parts
of such systems need attention can be of great help for software developers. Therefore, we
can say that such approaches can be considered important tools that are welcome by software
developers.

We have chosen two software engineering tasks that represented the main research direc-
tions of this thesis and from each we have tackled two problems. The first main research
direction is the application of clustering algorithms for software remodularization both on
package- and class-level. The second main research direction was the application of relational
association rule mining for the detection of defects in software systems. From this research
direction we have worked on two problems: design defects detection and software defect pre-
diction. Finally, we presented our contribution towards the development of software systems,
the FAOS framework, developed for the analysis of object-oriented software systems.

The experimental evaluation of the approaches developed for the first primary research
direction show that clustering approaches, in combination with a good measure of the similar-
ity/dissimilarity between the entities, can indeed identify a good partitioning of application
classes into packages, or a good partitioning of methods and fields into classes.

In the second main research direction we have used relational association rules for defect
detection in a software system. The first problem from this direction was the identification of
classes with design defects. The performed experiments showed that the classes identified by
our approach did have different design defects. We have compared our results to the results of
existing tools and the comparison showed that application classes considered to have design
problems by our approach are identified by the iPlasma tool [IPl13] as well. Regarding
defect prediction, a classification task, our approach was tested on the NASA datasets [Nas].
We have performed a comparison to other approaches over many datasets and evaluation
measures, and it showed that the performance of our classifier is better than or comparable
with the existing approaches, thus demonstrating the potential of our approach.

The FAOS framework presented in this thesis for the analysis of object-oriented software
systems was primarily developed to support the experimental evaluation of our proposed
approaches. Nevertheless, it was designed to be general and easily extensible so that others
can use it as well. The framework offers support for the analysis of a software system, through
which an internal representation of the analyzed system is built. This can later be used for
different tasks, the tasks being currently implemented allow the computation of different
software metrics and the package-level restructuring of the software system.

Regarding future research directions, we intend to address the drawbacks of our ap-
proaches in order to improve them. We are also planning on extending the experimental
evaluation of these approaches, to use other software systems or datasets. We will also con-
sider the application of the fuzzy version of the proposed approaches, where possible. Finally,
we want to develop new approaches for other software engineering tasks, either by using the
same machine learning approaches presented in this thesis or by developing new ones.

31



Bibliography

[AAH12] H. H. Ammar, W. Abdelmoez, and M. S. Hamdi. Software engineering using artificial
intelligence techniques: Current state and open problems. In Proceedings of First Taibah
University International Conference on Computing and Information Technology, 2012.

[AAM11] A. Alkhalid, M. Alshayeb, and S.A. Mahmoud. Software refactoring at the package level
using clustering techniques. IET Software, 5(3):274–286, 2011.

[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules between
sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, pages 207–216, 1993.

[AL99] Nicolas Anquetil and Timothy Lethbridge. Experiments with clustering as a software
remodularization method. In Proceedings of 6th Working Conference on Reverse Engi-
neering, pages 235–255, Atlanta, USA, October 1999.

[AS94] R. Agrawal and R. Srikant. Fast algorithm for mining association rules. In Proceeding
of the 20th VLDB Conference, pages 487–499, 1994.

[ASM13] ObjectWeb: Open Source Middleware, 2013. http://asm.objectweb.org/.

[BDVB11] Ma Baojun, Karel Dejaeger, Jan Vanthienen, and Bart Baesens. Software defect predic-
tion based on association rule classification. Technical report, Katholieke Universiteit
Leuven, February 2011.

[BJWD99] L.C. Briand and and al. J. W. Daly. A unified framework for coupling measurement in
object-oriented systems. 25(1):91–121, 1999.

[BK95] J. M. Bieman and B. K. Kang. Cohesion and reuse in an object-oriented system. ACM
SIGSOFT Software Engineering Notes, 20(SI):259–262, 1995.

[BLMO10] Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco Oliveto. Software re-
modularization based on structural and semantic metrics. In 17th Working Conference
on Reverse Engineering, pages 195–204, 2010.

[BMW02] Lionel C. Briand, Walcelio L. Melo, and J. Wust. Assessing the applicability of fault-
proneness models across object-oriented software projects. IEEE Trans. Softw. Eng.,
28(7):706–720, July 2002.

[BOL+10] Gabriele Bavota, Rocco Oliveta, Andrea De Lucia, Giuliano Antoniol, and Yann-Gaël
Guéhéneuc. Playing with refactoring: Identifying extract class opportunities through
game theory. In Software Maintenance, 2010 IEEE International Conference, pages
1–5, 2010.

[CBYP05] Venkata U. B. Challagulla, Farokh B. Bastani, I-Ling Yen, and Raymond A. Paul.
Empirical assessment of machine learning based software defect prediction techniques.
In Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems, WORDS ’05, pages 263–270, Washington, DC, USA, 2005. IEEE
Computer Society.

[CK91] Shyam R. Chidamber and Chris F. Kemerer. Towards a metrics suite for object-oriented
design. In Conference Proceedings on Object Oriented Programming Systems, Languages,
and Applications, pages 197–211, 1991.

[CK94] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, June 1994.

32



CONCLUSIONS 33

[CLMM05] Yania Crespo, Carlos López, Esperanza Manso, and Raúl Marticorena. Language inde-
pendent metric support towards refactoring inference. In Proceedings of the 9th Work-
shop on QAOOSE, pages 18–29, 2005.

[CMC14a] Gabriela Czibula, Zsuzsanna Marian, and Istvan Gergely Czibula. Detecting soft-
ware design defects using relational association rule mining. Knowledge and In-
formation Systems, 2014. DOI: 10.1007/s10115-013-0721-z (available online at
http://link.springer.com/article/10.1007/s10115-013-0721-z.

[CMC14b] Gabriela Czibula, Zsuzsanna Marian, and Istvan Gergely Czibula. Software defect pre-
diction using relational association rule mining. Information Sciences, 264:260–278,
2014.

[CS06] I.G. Czibula and G. Serban. Improving systems design using a clustering approach.
International Journal of Computer Science and Network Security, 6(12):40–49, 2006.

[CS07] Istvan Gergely Czibula and Gabriela Serban. Hierarchical clustering for software systems
restructuring. INFOCOMP Journal of Computer Science, 6(4):43–51, 2007.

[CSTM06] Alina Campan, Gabriela Serban, Traian Marius Truta, and Andrian Marcus. An algo-
rithm for the discovery of arbitrary length ordinal association rules. In Proceedings of
the 2006 International Conference on Data Mining (DMIN), pages 107–113, 2006.

[DABH11] Stéphane Ducasse, Nicolas Anquetil, Usman Bhatti, and Andre Cavalcante Hora. Soft-
ware metrics for package remodularization. Technical report, Institut National de
Recherche en Informatique et en Automatique, 2011.

[DbU] Commons dbutils. http://commons.apache.org/proper/commons-dbutils/index.html.

[DDN00] Serge Demeyer, Stephance Ducasse, and Oscar Nierstrasz. Finding refactorings via
change metrics. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applications, pages 166–177, 2000.

[DG77] Persi Diaconis and R. L. Graham. Spearman’s footrule as a measure of disarray. Journal
of the Royal Statistical Society, 39(2):262–268, 1977.

[DK05] Scott Dick and Abraham Kandel. Computational Intelligence in Software Quality As-
surance. Series in Machine Perception and Artificial Intelligence. World Scientific Pub-
lishing, 2005.

[EL] El. http://commons.apache.org/proper/commons-el/.

[Ema] Email. http://commons.apache.org/proper/commons-email/.

[FBZ12] Francesca Arcelli Fontana, Pietro Braione, and Marco Zanoni. Automatic detection of
bad smells in code: An experimental assessment. Journal of Object Technology, 11:5:1–
38, 2012.

[Fow] Martin Fowler. Refactoring malapropism. http://martinfowler.com/bliki/RefactoringMalapropism.html.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, 1999.

[FTCS09] Marios Fokaefs, Nikolaos Tsantalis, Alexander Chatzigeorgiu, and Jorg Sander. Decom-
posing object-orietend class modules using an agglomerative clustering technique. In
Proceedings of International Conference on Software Maintenance, pages 93–101, Ed-
monton, Canada, 2009.

[FTP13] Ftp4j, 2013. http://sourceforge.net/projects/ftp4j/.

[FTSC11] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander Chatzigeorgiou.
Jdeodorant: Identification and application of extract class refactorings. In Proceedings
of the 33rd International Conference on Software Engineering, ICSE, pages 1037–1049,
2011.

[Gam] E. Gamma. JHotDraw Project. http://sourceforge.net/projects/jhotdraw.

[GMCS04] Lan Guo, Yan Ma, Bojan Cukic, and Harshinder Singh. Robust prediction of fault-
proneness by random forests. In ISSRE, pages 417–428, 2004.



CONCLUSIONS 34

[GWI11] Isaac Griffith, Scott Wahl, and Clemente Izurieta. Truerefactor: An automated refac-
toring tool to improve legacy system and application comprehensibility. In Proceedings
of the ISCA 24th International Conference on Computer Applications in Industry and
Engineering, pages 316–321, 2011.

[Han05] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2005.

[Har12] Mark Harman. The role of artificial intelligence in software engineering. In 1st Interna-
tional Workshop on Realizing Artificial Intelligence Synergies in Software Engineering,
2012.

[HDF12] A.A. Shahrjooi Haghighi, M. Abbasi Dezfuli, and S.M. Fakhrahmad. Applying mining
schemes to software fault prediction: A proposed approach aimed at test cost reduction.
In Proceedings of the World Congress on Engineering 2012 Vol I, WCE 2012,, pages 1–5,
Washington, DC, USA, 2012. IEEE Computer Society.

[HJ01] Mark Harman and Bryan F. Jones. Search-based software engineering. Information and
Software Technology, 43(14):833–839, 2001.

[HK81] S. Henry and D. Kafura. Software structure metrics based on information flow. IEEE
Transactions on Software Engineering, 7(5):510–518, September 1981.

[HKI08] Yoshiki Higo, Shinji Kusumoto, and Katsuro Inoue. A metric-based approach to identi-
fying refactoring opportunities for merging code clones in a java software system. Journal
of Software Maintenance and Evolution: Research and Practice, 20:435 – 461, 2008.

[HM95] M. Hitz and B. Montazeri. Measuring coupling and cohesion in object-oriented systems.
In Proceedings of International Symposium on Applied Corporate Computing, Monterrey,
Mexico, October 1995.

[HMZ09] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. Search based software en-
ginerring: A comprehensive analysis and review of trend techniques and applications.
Technical report, Department of Computer Science, King’s College, London, 2009.

[HS96] B. Henderson-Sellers. Object-Oriented Metrics Measures of Complexity. Prentice-Hall,
1996.

[HT07] Mark Harman and Laurence Tratt. Pareto optimal search based refactoring at the design
level. In Conference on Genetic and Evolutionary Computation, pages 1106–1113, 2007.

[IPl13] iplasma, 2013. http://loose.upt.ro/reengineering/research/iplasma.

[ISIE12] Safwat M. Ibrahim, Sameh A. Salem, Manal A. Ismail, and Mohamed Eladawy. Iden-
tification of nominated classes for software refactoring using object-oriented cohesion
metrics. International Journal of Computer Science Issues, 9(2):68–76, 2012.

[ISO13] Iso8583, 2013. http://sourceforge.net/projects/j8583/.

[JDe13] Jdeodorant, 2013. http://www.jdeodorant.com/.

[JLZ11] Yuan Jiang, Ming Li, and Zhi-Hua Zhou. Software defect detection with rocus. Journal
of Computer Science and Technology, 26(2):328–342, 2011.

[Kan03] Ronald Kirk Kandt. A software defect detection methodology, 2003.

[KMMiM08] Yasutaka Kamei, Akito Monden, Shuji Morisaki, and Ken ichi Matsumoto. A hybrid
faulty module prediction using association rule mining and logistic regression analysis.
In Proceedings of the International Symposium on Empirical Software Engineering and
Measurements(ESEM), pages 279–281, 2008.

[KSBW11] Marouane Kessentini, Houari Sahraoui, Mounir Boukadoum, and Manuel Wimmer.
Search-based design defects detection by example. In Proceedings of the 14th Interna-
tional Conference on Fundamental Approaches to Software Engineering, pages 401–415,
2011.

[KVGS09] Foutse Khomh, Stéphane Vaucher, Yann-Gaël Guéhéneuc, and Houari Sahraoui. A
bayesian approach for the detection of code and design smells. In Proceedings of the 9th
International Conference on Quality Software, pages 305–314, 2009.



CONCLUSIONS 35

[Lar04] Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented Anal-
ysis and Design and Iterative Development. Addison Wesley Professional, third edition,
2004.

[LH93] Wei Li and Sallie Henry. Object oriented metrics which predict maintainability. Journal
of Systems and Software, 23(2):111–122, 1993.

[LHM98] Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classification and association rule
mining. In Proceedings of the 4th International Conference on Knowledge Discovery and
Data Mining (KDD), pages 80–86, 1998.

[LLWW95] Y. S. Lee, B. S. Liang, S. F. Wu, and F. J. Wang. Measuring the coupling and cohesion
of an object-oriented program based on information flow. In Proceedings of International
Conference on Software Quality, Maribor, Slovenia, 1995.

[LMW01] Bing Liu, Yiming Ma, and Ching-Kian Wong. Data Mining for Scientific and Engi-
neering Applications, chapter Classification Using Association Rules: Weaknesses and
Enhancements. Kluwer Academic, 2001.

[LZWZ12] Ming Li, Hongyu Zhang, Rongxin Wu, and Zhi-Hua Zhou. Sample-based software defect
prediction with active and semi-supervised learning. Automated Software Engineering,
19(2):201–230, 2012.

[Mai09] Sayyed Garba Maisikeli. Aspect Mining Using Self-Organizing Maps With Method Level
Dynamic Software Metrics as Input Vectors. PhD thesis, Graduate School of Computer
and Information Sciences Nova Southeastern University, 2009.

[Mar02] Radu Marinescu. Measurement and Quality in Object-Oriented Design. PhD thesis,
Politechnica University Timisoara, Faculty of Automatics and Computer Science, 2002.

[Mar10] Zsuzsanna Marian. Solving the subset sum problem with dna computation. In Proceed-
ings of the National Symposium ZAC, pages 25–29, 2010.

[Mar12a] Zsuzsanna Marian. Aggregated metrics guided software refactoring. In Proceedings of
the 8th IEEE International Conference on Intelligent Computer Communication and
Processing, pages 259–266, 2012.

[Mar12b] Zsuzsanna Marian. Software metrics based refactoring: a case study. In Proceedings of
the National Symposium ZAC, pages 59–64, 2012.

[Mar12c] Zsuzsanna Marian. A study on hierarchical clustering based software restructuring.
Studia Universitatis “Babes-Bolyai” Informatica, LVII(2):20–31, 2012.

[Mar13a] Zsuzsanna Marian. On the software metrics influence in relational association rule-
based software defect prediction. Studia Universitatis “Babes-Bolyai” Informatica,
LVIII(4):35–48, 2013.

[Mar13b] Zsuzsanna Marian. A study on association rule mining based software defect detection.
Studia Universitatis “Babes-Bolyai” Informatica, LVIII(1):42–57, 2013.

[Mar14a] Zsuzsanna Marian. Faos - a framework for analyzing object-oriented software systems.
Studia Universitatis “Babes-Bolyai” Informatica, 2014. Under review.

[Mar14b] Zsuzsanna Marian. On evaluating the structure of software packages. Studia Universi-
tatis “Babes-Bolyai” Informatica, LIX(1):46–58, 2014.

[MC11] Iman Hemati Moghadam and Mel Ó. Cinnéide. Code-imp: A tool for automated search-
based refactoring. In Proceeding of the 4th Workshop on Refactoring Tools, pages 41–44,
Honolulu, USA, 2011.

[MCB11] Zsuzsanna Marian, Cosmin Coman, and Attila Bartha. Learning to play the guessing
game. Studia Universitatis “Babes-Bolyai” Informatica, LVI(2):119–124, 2011.

[MCC12] Zsuzsanna Marian, Gabriela Czibula, and Istvan-Gergely Czibula. Using software met-
rics for automatic software design improvement. SIC Journal, Studies in Informatics
and Control, 21(3):249–258, 2012.



CONCLUSIONS 36

[MCC14] Zsuzsanna Marian, Gabriela Czibula, and Istvan Gergely Czibula. Software packages
refactoring using a hierarchical clustering-based approach. Fundamenta Informaticae,
2014. Under review.

[MGF07] Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code attributes to
learn defect predictors. IEEE Transactions on Software Engineering, 33(1):2–13, 2007.

[MGL06] Naouel Moha, Yann-Gaël Guéhéneuc, and Pierre Leduc. Automatic generation of detec-
tion algorithms for design defects. In Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering, pages 297–300, 2006.

[MHH03] Kiarash Mahdavi, Mark Harman, and Robert Mark Hierons. A multiple hill climbing
approach to software module clustering. In Proceedings of the International Conference
on Software Maintenance, pages 315–324, 2003.

[Mit06] Tom M. Mitchell. The discipline of machine learning. Working paper, 2006.

[MKD13] Usman Mansoor, Marouane Kessentini, and Slim Bechikhand Kalyanmoy Deb. Code-
smells detection using good and bad software design examples. Technical report, Uni-
versity of Michigan, 2013.

[MMCG99] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner. Bunch: A clustering tool
for the recovery and maintenance of software system structures. In In Proceedings of the
IEEE International Conference on Software Maintenance, pages 50–59, 1999.

[MML01] Andrian Marcus, Jonathan I. Maletic, and K. I. Lin. Ordinal association rules for
error identification in data sets. In Proceedings of the 10th International Conference on
Information and Knowledge Management, pages 589–591, 2001.

[Moh06] Naouel Moha. Detection and correction of design defects in object-oriented architectures.
In Doctoral Symposium, 20th edition of the European Conference on Object-Oriented
Programming, 2006.

[MS10] Zsuzsanna Marian and Christian Săcărea. Using contextual topology to discover simi-
larities in modern music. In Proceedings of the IEEE International Conference on Au-
tomation Quality and Testing, Robotics, volume 3, pages 1–6, 2010.

[Mun05] Matthew James Munro. Product metrics for automatic identification of “bad smell”
design problems in java source code. In Proceedings of the 11th IEEE International
Software Metrics Symposium, 2005.

[Nas] Nasa software defect datasets.

[OC08] Mark O’Keeffe and Mel Ó. Cinnéide. Search-based refactoring for software maintenance.
The Journal of Systems and Software, 81:502–516, 2008.

[PBP+13] Fabio Palomba, Gabriele Bavota, Massimiliani Di Penta, Rocco Oliverto, Andrea de Lu-
cia, and Denys Poshyvanyk. Detecting bad smells in source codeusing change history
information. In Proceedings of the 28th IEEE/ACM International Conference on Auto-
mated Software Engineering, 2013.

[PJL13] Wei-Feng Pan, Bo Jiang, and Bing Li. Refactoring software packages via community
detection in complex software networks. International Journal of Automation and Com-
puting, 10(2):157–166, 2013.

[Pro13] Profiler4j, 2013. http://sourceforge.net/projects/profiler4j/.

[rlf] Reinforcement learning framework. http://www.cs.ubbcluj.ro/∼gabis/rl.

[RR11] Akepogu Ananda Rao and Kalam Narendar Reddy. Identifying clusters of concepts in a
low cohesive class for extract class refactoring using metrics supplemented agglomerative
clustering technique. International Journal of Computer Science Issues, 8(2):185–194,
2011.

[RRRAR12] D. Rodŕıguez, R. Ruiz, J. C. Riquelme, and J. S. Aguilar-Ruiz. Searching for rules
to detect defective modules: A subgroup discovery approach. Information Sciences,
191:14–30, May 2012.



CONCLUSIONS 37

[SCC06] Gabriela Serban, Alina Câmpan, and Istvan Gergely Czibula. A programming interface
for finding relational association rules. International Journal of Computers, Communi-
cations & Control, I(S.):439–444, June 2006.

[SKR08] Santonu Sarkar, Avinash C. Kak, and Girish Maskeri Rama. Metrics for measuring the
quality of modularization of large-scale object-oriented software. IEEE Transactions on
Software Engineering, 34(5):700–720, 2008.

[SMV09] Adrian Sterca, Zsuzsanna Marian, and Alexandru Vancea. Distortion-based media-
friendly congestion control. In Proceedings of the International Conference on Knowledge
Engineering, Principles and Techniques, pages 265–267, 2009.

[Spe04] C. Spearman. The proof and measurement of association between two things. Amer. J.
Psychol.15, pages 72–101, 1904.

[SS07] Konstantinos Stroggylos and Diomidis Spinellis. Refactoring - does it improve software
quality? In Proceedings of the 5th International Workshop on Software Quality, 2007.

[SSB06] Olaf Seng, Johannes Stammel, and David Burkhart. Search-based determination of
refactorings for improving the class structure of object-oriented systems. In Conference
on Genetic and Evolutionary Computation, pages 1909 – 1916, 2006.

[SSL01] Frank Simon, Frank Steinbrückner, and Claus Lewerentz. Metrics based refactoring. In
Proceedings of the 5th European Conference on Software Maintenance and Reengineering,
pages 30–38, 2001.

[ST98] Gregor Snelting and Frank Tip. Reengineering class hierarchies using concept analysis.
In Proceedings of the 6th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 99–110, 1998.

[ŢIM09] Radu Ţurcaş, Oana Iova, and Zsuzsanna Marian. The autonomous robotic tank (art):
an innovative lego mindstorm nxt battle vehicle. In Proceedings of the International
Conference on Knowledge Engineering, Principles and Techniques, pages 95–98, 2009.

[TK03] Ladan Tahvildari and Kostas Kontogiannis. A metric-based approach to enhance the
design quality through meta-pattern transformations. In Proceedings of the European
Conference on Software Maintenance and Reengineering, pages 183–192, 2003.

[TLM11] Doina Tatar, Mihaiela Lupea, and Zsuzsanna Marian. Text summarization by formal
concept analysis approach. Studia Universitatis “Babes-Bolyai” Informatica, LVI(2):7–
12, 2011.

[Tuf11] Stphane Tuffry. Data Mining and Statistics for Decision Making. John Wiley and Sons,
2011.

[Win13] Winrun4j, 2013. http://sourceforge.net/projects/winrun4j/.

[ZT05] Du Zhang and Jeffrey J. P. Tsai. Machine Learning Applications in Software Engi-
neering. Series on Software Engineering and Knowledge Engineering. World Scientific
Publishing, 2005.


