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Introduction

Intelligent autonomous vehicles have long surpassed the stage of a Sci-Fi idea, and have become

a reality [62],[1]. The main motivation behind this technology is to increase the safety of both

driver and other traffic participants. In this context, pedestrian protection systems have become

a necessity. But merely passive components like airbags are not enough: active safety, technology

assisting in the prevention of a crash, is vital. For this, a system of pedestrian detection and

classification plays a fundamental role.

Challenges

Pedestrian detection and classification in the context of intelligent vehicles in an urban environment

poses a lot of challenges:

Pedestrian Appearance and Shape. By nature, the humans have different heights and body

shapes. But this variability in appearance is further increased by different cloth types. Moreover,

human shape can change a lot in a short period of time (for example a person that bends to

tie its shoes). Also the appearance depends on the point of view of the camera, as well as the

distance between the camera and the pedestrian. Close pedestrians can bear little resemblance

with the ones situated far away.

Occlusion. Occlusions represents an important challenge for the detection of any type of object,

and in the case of pedestrians they can be divided into: self and external occlusions. Self-occlusion

are cause especially by the pose of the object, in the case of a pedestrian that has a side-way

position in relation with the point of view of the camera will certainly exhibit occlusion of some

body-parts. Moreover different objects carried by the pedestrians might have the same effect (for

example hats, bags, umbrellas). In the external occlusions category we include other pedestrians
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(especially in an urban situation), poles, other cars, as well as the situation in which the pedestrian

is too close to the camera leading certain body-parts exit the field of view.

Environmental conditions. Although some meteorological circumstances might not have a

direct impact on the quality of images (for example light rain), they can influence the appearance

of pedestrians for cameras (for example a passer-by can open an umbrella which might lead to

occlusion of the head region). Other conditions might lead to situations where the quality of

retrieved images is altered (for example situations of haze, fog, snow, heavy rain etc.). Another

factor that should be taken into consideration is the time of day, that has a direct impact over the

amount of ambient light available - usually, during daytime the problem of pedestrian detection

and classification poses less problems than during night.

Sensor choice. Each existing sensor has certain disadvantages and advantages, depending

on the situation. For example, passive sensors like visible cameras can be affected by low light

conditions, giving poor images with low variation in intensity across objects and background,

while thermal cameras might experience the same problems when the environment has a similar

temperature with the pedestrians. Active sensors, like LIDAR, have the advantage of providing

distance to all objects in a scene, but they have as output a large datasets that might be difficult

to interpret.

Other objects. Distinction between non-pedestrians and pedestrians might not be always

simple, being difficult to construct a model that differentiates between pedestrians and any other

existing objects.

Main Research Contributions

Motivated by the importance of pedestrian detection, there exist an extensive amount of work

done in connection with this field. Our objective is to study the problem across different light

spectrum and modalities, with an emphasis on disparity map.

Our main contributions can be summarised as follows:

• Creation and annotation of two databases for benchmarking of pedestrian classification,

one for Far-Infrared (Thermal) and the other one in Short-Wave Infrared (SWIR).

• In the context of Thermal images, we have proposed a new feature, Intensity Self Similarity

(ISS). The performance of ISS was compared on three different datasets with state of the

art features.
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• As a novelty, we have studied the SWIR spectrum for the task of pedestrian classification,

and we have performed a comparison with the Visible domain.

• As a low cost solution, we believe that Stereo Vision is a promising solution. In this

context, we have also focused on improving Stereo Matching algorithm by proposing new

cost functions.

• We have studied the performance of different features across different domains (Visible,

FIR) and across multiple modalities (Intensity, Motion, Disparity map)

Thesis Overview

This thesis is organized as follows (see also figure 1):

Chapter 1 presents an in-depth analysis for the motivation of a pedestrian detection system,

along with an overview of existing types of sensors. Our sensor of choice is passive sensors

represented by cameras sensitive to different light spectrums: Visible, Far Infrared and Short

Wave Infrared. We present also a short review of the steps employed in the task of pedestrian

classification and detection with an emphasise on the step of feature computation.

In Chapter 2 we study the problematic of pedestrian classification in Thermal images (Far-

Infrared Spectrum). After overviewing existing datasets of Thermal images, we have reached

the conclusion that they all have important disadvantages: either the quality of the thermal

images is poor and there is not possibility of direct comparison with the Visible spectrum; or

the datasets are not publicly available. In this context, we have acquired and annotated a new

dataset. Moreover we have proposed a feature adapted for pedestrian classification in Far-Infrared

images and compared it with other state of the art features, in different conditions.

A new spectrum that can be interesting for the task of pedestrian detection and classification

is the Short-Wave Infrared (SWIR). An analysis of this light spectrum is made in Chapter 3.

After having performed some preliminaries experiments on a restricted dataset, we have acquired

and annotated a dataset of SWIR images, along with the Visible correspondent. On this later

dataset, we have compared the two spectrums from the perspective of different features.

Infrared cameras represent an interesting alternative to Visible cameras, and in general with

better results, but remains an expensive one. In this context, StereoVision could improve the

results obtained by just the employment of Visible cameras. Chapter 4 deals with the algorithms

of Stereo Matching. We propose several improvements for this algorithm, that mostly focus on

the employed cost function.

Chapter 5 treats the problem of multi-modality pedestrian classification (Intensity, Depth
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Figure 1: Thesis structure

Figure 2: Domain-modality-feature relationship

and Optical Flow) in both Visible and FIR spectrum. In figure 2 is presented the difference

between the domains and modalities employed. Moreover we show a preliminary analysis of the

impact of the quality of the Disparity Map over the results of classification. Finally, conclusions

and future work are presented in Chapter 6.
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Summary

The main purpose of constructing Intelligent Vehicles is to increase the safety for all traffic

participants. The detection of pedestrians, as one of the most vulnerable category of road users,

is paramount for any Advance Driver Assistance System (ADAS). Although this topic has been

studied for almost fifty years, a perfect solution does not exist yet. This thesis focuses on several

aspects regarding pedestrian classification and detection, and has the objective of exploring and

comparing multiple light spectrums (Visible, ShortWave Infrared, Far Infrared) and modalities

(Intensity, Depth by Stereo Vision, Motion).

From the variety of images, the Far Infrared cameras (FIR), capable of measuring the

temperature of the scene, are particular interesting for detecting pedestrians. These will usually

have higher temperature than the surroundings. Due to the lack of suitable public datasets

containing Thermal images, we have acquired and annotated a database, that we will name RIFIR,

containing both Visible and Far-Infrared Images. This dataset has allowed us to compare the

performance of different state of the art features in the two domains. Moreover, we have proposed a

new feature adapted for FIR images, called Intensity Self Similarity (ISS). The ISS representation

is based on the relative intensity similarity between different sub-blocks within a pedestrian region

of interest. The experiments performed on different image sequences have showed that, in general,

FIR spectrum has a better performance than the Visible domain. Nevertheless, the fusion of the

two domains provides the best results.

The second domain that we have studied is the Short Wave Infrared (SWIR), a light spectrum

that was never used before for the task of pedestrian classification and detection. Unlike FIR

cameras, SWIR cameras can image through the windshield, and thus be mounted in the vehicle’s

cabin. In addition, SWIR imagers can have the ability to see clear at long distances, making it

suitable for vehicle applications. We have acquired and annotated a database, that we will name

RISWIR, containing both Visible and SWIR images. This dataset has allowed us to compare the
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performance of different pedestrian classification algorithms, along with a comparison between

Visible and SWIR. Our tests have showed that SWIR might be promising for ADAS applications,

performing better than the Visible domain on the considered dataset.

Even if FIR and SWIR have provided promising results, Visible domain is still widely used

due to the low cost of the cameras. The classical monocular imagers used for object detection

and classification can lead to a computational time well beyond real-time. Stereo Vision provides

a way of reducing the hypothesis search space through the use of depth information contained in

the disparity map. Therefore, a robust disparity map is essential in order to have good hypothesis

over the location of pedestrians. In this context, in order to compute the disparity map, we have

proposed different cost functions robust to radiometric distortions. Moreover, we have showed

that some simple post-processing techniques can have a great impact over the quality of the

obtained depth images.

The use of the disparity map is not strictly limited to the generation of hypothesis, and could

be used for some feature computation by providing complementary information to color images.

We have studied and compared the performance of features computed from different modalities

(Intensity, Depth and Flow) and in two domains (Visible and FIR). The results have showed that

the most robust systems are the ones that take into consideration all three modalities, especially

when dealing with occlusions.
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Conclusion

In this thesis we have focused on the problem of pedestrian detection and classification using

different domains (FIR, SWIR, Visible) and different modalities (Intensity, Motion, Depth Map),

with a particular emphasis on the Disparity map modality.

FIR. We have started by analysing Far-Infrared Spectrum. For this, we have annotated a large

dataset, ParmaTetravision. Because this dataset is not publicly available, we have also acquired a

new dataset called RIFIR. This has allowed us to construct a benchmark in order to analyse the

performance of different features, and in the same time to compare FIR and Visible spectrums.

Moreover, we have proposed a feature adapted for thermal images, called ISS. Altough ISS has a

similar performance with that of HOG in the far infrared spectrum, local-binary features like

LBP or LGP proved to be more robust. Moreover, in our tests, FIR consistently proved to be

superior to Visible domain. Nevertheless, the fusion between Visible and FIR gave the best

results, lowering the false positive rate with factor of ten in comparison with just using the FIR

domain.

Since one of the main advantages of thermal images is the fact that the search space for

possible pedestrians can be reduced to hot regions in the image, future work should include a

benchmark of ROI extraction algorithms. Moreover, we can extend the feature comparison by

testing different fusion techniques in order to find the most appropriate configuration.

SWIR With the advent of new camera sensors, a promising new domain is represented by Short-

Wave Infrared (SWIR). In this context, we have experimented with two types of cameras. The

preliminary experiments that were performed on a dataset that we have annotated, ParmaSWIR.

This contains images taken using different filters with the purpose of isolation of different

bandwidths. Since the results were promising, we have acquired another dataset, RISWIR, this

time using both a SWIR and a Visible camera. On RISWIR, the short-wave infrared provided
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better results than the Visible one. In our opinion, this is due to the fact that acquired images in

SWIR spectrum are sharper, having well-defined edges.

Further tests in SWIR domain should include different meteorological conditions, along with

an evaluation during night conditions. Moreover, we believe for the results to be conclusive,

SWIR cameras should be compared against several Visible cameras.

StereoVision Since Visible domain represents a low cost alternative to other spectrums, we

give a special attention to Depth modality obtained by constructing the disparity map using

different stereo matching algorithms. In this context, we have worked to improve existing stereo

matching algorithms by proposing new cost function robust to radiometric distortions. As future

work we plan on analysing the impact that post-processing algorithms have over the disparity

map. In addition, in order to incorporate the findings of chapter ??, we should improve the

information contained in the areas subject to occlusions.

Multi-domain, multi-modality. In a similar manner with the way human perception uses

clues given by depth and motion, a new direction of research is the combination of different

modalities and features. A lot of articles tacked this problem from different features point of view

for the Visible domain. Daimler Multi-cue dataset provides a way to centralize this analysis. In

this context we have extended the number of features compared on the dataset with different

modalities, along with several fusion scenarios. The best results were always obtained by fusing

different modalities. Moreover, we extended the analysis multi-modality to a multi-domain

approach, comparing Visible and FIR on ParmaTetravision dataset. Even if the FIR spectrum

continues to give the best results, the fusion between Visible and Depth manages to perform close

to the results given by FIR. Moreover, the fusion between Visible, Depth and FIR lowers the

false positive rate by a factor for thirty, than just the use of FIR information.

As future work, we want to extend the analysis to include more datasets (like ETH [43]), along

with a comparison of different new features. Moreover, in the multi-modalities experiments we

have only treated the problem of pedestrian classification, but we plan of extending the analysis

in a pedestrian detection framework.

There exist various approaches used for the task of pedestrian detection and classification task.

In this thesis, we have showed that a multi-modality, multi-domain approach, and furthermore

multi-feature, is essential for a good pedestrian classification system.
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