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Introduction

As we can find out from [29] as well as from [15] the ordinary representation theory
of finite groups dates back in the late nineteenth century. That was the period when
F. G. Frobenius came up with his first idea on this theory while working with certain
homogeneous polynomial associated with a finite group. Among others , Burnside was
Frobenius’s most important rival at that time and contributed to the developing of
the character theory of finite groups. Basically, the idea of a representation was to use
homomorphisms of a finite group G into the group of nonzero complex numbers. This
lead to the ”birth ” of the so-called complex characters which played a significant role
in the theory. Schur’s contribution followed when he gave a new introduction to the
theory based on facts from linear algebra. Schur is mainly known for his fundamental
work on the representation as well as his work in number theory. One of the most
fundamental results which he discovered at this time is today called Schur’s Lemma.
He also introduced the concept now known as the ”Schur multiplier”. Forty years
later this multiplier turned out to be the second cohomology group with coefficients
in the nonzero complex numbers.

At this point we are forced to go deeper into the details of some of the mathemati-
cal elements mentioned above. Following [26, 8.5] we see that for a finitely generated
module M over the field of complex numbers C a representation of a finite group G
is the same as giving a CG-module structure on M. The representation in matter is
called irreducible if the associated module is simple. As far as representations can
be added, a representation is completely reducible if the corresponding CG-module
is semisimple. By Maschke’s theorem the group algebra CG is semisimple. Reformu-
lated in language of modules over the group algebra CG this theorem states that any
such module can be built from its irreducible subrepresentations, i.e. simple direct
summands. Actually this statement holds for any field, not necessarily of character-
istic zero, but of positive characteristic that does not divide the order of G. Leonard
Eugene Dickson was the one to prove that when the characteristic is positive and
does not divide the order of the group then the representation theory is similar to
that in characteristic zero.

Richard Brauer initiated from about 1940 onwards the study of linear represen-
tation of finite groups over a field that has a positive characteristic. The results
developed by R. Brauer led to a significant progress in the classification of finite
groups. Explicitly, (see [40]), Brauer suggested a direction to classify all finite non-
abelian groups. In the theory initially developed by Brauer, the link between ordinary
representation theory and modular representation theory is best exemplified by con-
sidering the group algebra of the group G over a complete discrete valuation ring O
with residue field k of positive characteristic p and field of fractions K of characteristic
0. The structure of OG is closely related both to the structure of the group algebra
kG and to the structure of the semisimple group algebra KG. Further details can be
found in [25]. Here we only mention that when Maschke’s theorem does not hold,
that is when p divides the order of G, the group algebra may be decomposed as the
direct sum of block algebras. Each block algebra corresponds to a unique primitive
central idempotent. For each indecomposable OG-module, there is only one such
primitive idempotent that does not annihilate it, and the module is said to belong
to that block. In particular, each simple module belongs to a unique block. This
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connection between blocks of the group algebra and irreducible representations of the
group are all described in Brauer’s three main theorems. Brauer’s first main theorem
concerning the blocks of the group algebra together with their defect groups is often
used in the paper.

Hidden between the lines of the proof of Brauer’s first main is the information that
the action of the finite group G on itself provides more than only conjugacy classes
representing a O-basis in the center of the group algebra. From [23] we find out that
the conjugation action of G on itself gives OG a structure of a G-algebra. Moreover,
this concept can be generalized to obtain results similar to Brauer’s first theorem on
more general G-algebras.

The paper is divided in six chapters, each of them is shortly presented in the
following:

The first chapter is devoted to some of most useful results for this thesis. We
only work with finitely generated modules over a discrete valuation ring O having
the residual field k of positive characteristic. There are only few situations in which
we assume k to be algebraically closed. For a finite group G we start by giving the
definition of a G-algebra and of some other mathematical objects such as the relative
trace map, the Brauer quotient, the Brauer map, pointed groups together with the
relations between them and the defect pointed groups of a pointed group. All of the
above are given in order to state one of the most important result in the modular
representation theory, i.e. the Lifting idempotents theorem. In the second paragraph
of the first chapter we explicitly give the structures of group graded algebras and of
the particular cases of the crossed product and of the twisted group algebra. Next,
we simultaneously deal with G-algebras and G-interior algebras and introduce two
well-known types of induction, one is due to Puig and the other to Turull. The fifth
paragraph contains basic correspondence such as The Green correspondence, The
Burry-Carlson-Puig Theorem, The Brauer correspondence for the blocks of the group
algebra and The Harris - Knörr Theorem. For the last result we actually provide a
different proof than the ones found in the literature. Further we shortly characterize
the defect pointed groups of a block in terms of the Brauer pairs associated to the same
block. In the seventh part we give the general construction of a Clifford extension
that can be done with a group graded algebra and a block of its identity component.
This is a situation often found in the work of E.C. Dade. Finally at the end of the
first chapter we introduce the fusions on G-interior algebras. These elements were
originally introduced in [35], here we only expose them such that they best fulfill our
purposes.

In the second chapter we first deal with the group algebra. Theorem 2.2.1 shows
that for a finite group G, a subgroup L and an L-algebra B, the induction to G in the
sense of Puig of the skew group algebra S = B ∗ L is isomorphic to the skew group
algebra of the induction to G in the sense of Turull of B. Moreover, the obtained
isomorphism is one of G-interior algebras.

In the first part of the third chapter we work with a G-algebra A, where G is a finite
group. We state Definition 3.1.1 which gives the conditions of a point of AG to cover
a point of AN , where N is normal in G. We then fix β, a point of AN having defect
group Q, and δ, a point of ANN (Q), the Green correspondent of β. In Theorem 3.1.2
we show that the Green correspondence for points induces a defect group preserving
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bijection between the points of AG covering β and the points of ANG(Q) covering δ.
When A is the endomorphism algebra of an OG-module M, this result matches the
main result of [2]. Working with divisors on an inductively complete G-algebra A, in
Theorem 3.1.4 we managed to give a completion of the Green correspondence.

The second part of chapter three employs p-permutation G-algebras, as general set-
ting. We give another definition for covering points, namely Definition 3.2.4, and with
this definition Theorem 3.2.7 proves that the main result of [24] can be generalized
to any p-permutation G-algebra.

In the end of the third chapter we give some connections between the Green corre-
spondence and the Brauer correspondence.

The following two chapters deal with Clifford extensions associate with blocks and
with points. The main result of Chapter 4 is actually an adaptation of the main
result of [17] in the case of an arbitrary ground field k. More explicitly, we consider a
normal subgroup K of the finite group H. We denote by G = H/K and we choose a
block b of the identity component of the G-graded centralizer

COH(OK) = (OH)K .

Then we let P denote a defect group of b in K and we consider b̄, the Brauer corre-
spondent block of b also having defect group P. It is well-known that b̄ is a block of
the identity component of the CH(P )/CK(P )-graded centralizer

CkCH(P )(kCK(P ))
NK(P ) = kCH(P )

NK(P ).

Due to the properties of the Brauer quotient in the case of group algebra we construct
two Clifford extensions, one associated with b and the other with a block e of kCH(P )
that is associated with b̄. In Theorem 4.3.1 we compute the elements that characterize
the first extension and show that the mentioned Clifford extensions are isomorphic.

Note that the group algebra OK is a K-interior H-algebra provided that K is
normal in H. The idea of the fifth chapter is to replace OK with an arbitrary K-
interior H-algebra A. In this case OH is replaced by Â =

⊕
g∈G Âg, where for all

g ∈ G we have Âg = A ⊗ x, for some representative x ∈ g. This situation only gives
the inclusion

CÂ(A) ⊆ ÂK ,

and for this matter we are forced to use the lager algebra ÂK . Hence in this case β
is a point of AK , that is a (AK)∗-conjugacy class of a primitive idempotent of AK . A
series of complications arise in this situation since we can not work with the whole
point β, for we are forced to chose an element j ∈ β. The stabilizer Gj is not the
same with the normalizer NH(Kβ) and then we must introduce some infinite groups
containing NH(Kβ). These infinite groups make it difficult to use the same techniques
as in the previous chapter in order to prove that the Clifford extensions of β and of
β̄ = BrP (β) are isomorphic. Indeed, Chapter 4 uses group graded algebra basic theory
while in the proof of Theorem 5.5.1, and in Chapter 5 we turn to the use of fusions in
G-interior algebras and to the results on lifting idempotents. At the end of Chapter 5
we reconsider de situation, but for a slight particularization. More exactly we assume
that β is generated be a central element, i.e. a singleton. This particularization serves
for obtaining an extended main result and also for using other techniques in proving
it.
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In the last chapter we return to the isomorphic Clifford extension of the Brauer
correspondent blocks b and b̄. We observe that the isomorphism between the cor-
responding Clifford extensions of b and of b̄ induces a bijection between the blocks
covering b and b̄ respectively. Moreover we prove in Theorem 6.4.1 that this bijection
preserves the defect groups and coincides with the Brauer correspondence. So that
the main result of Chapter 4 implies the main result of [24].

I would like to thank Professor Andrei Marcus for his well received guidance and
support, I am grateful for his patience and his involvement. I would also like to
acknowledge all of the members of the Department of Algebra who always offered
useful advice. Last but not least, I thank my family and all of my friends who stood
beside me throughout this entire period of time.

Ph.D. Student
Tiberiu Coconeţ
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1. General Results in Modular Representation Theory of Finite
Groups

Let p be a prime, and let O be a discrete valuation ring with residue field k of
characteristic p. We make no assumptions on the size of O and k, also allowing
O = k. In order to avoid unending field extensions, in some situations we will assume
that k is algebraically closed.

1.1. Green Theory and Defect Theory. Let G be a finite group and let A be an
O-algebra.

Definition 1.1.1. The O-algebra A is a G-algebra whenever there is a group morphism

φ : G→ AutO(A),

between the group G and the group of algebra automorphisms of A.

The action of g ∈ G on a ∈ A is denoted by

φ(g)(a) =: ag.

Definition 1.1.2. If A1 and A2 are two G-algebras a map f : A1 → A2 is a homomor-
phism of G-algebras if it is a morphism of O-algebras and satisfies

f(ag) = f(a)g

for all a ∈ A1 and all g ∈ G.

1.1.3. On an G-algebra, for any subgroup L in G we denote by AL the subalgebra of
A consisting of elements fixed under the action of L. If L′ is another subgroup of G
such that L ⊆ L′ and if [L/L′] denotes a system of representative of the classes of L′

in L, then the map
TrLL′ : AL′ → AL,

TrLL′(a) =
∑

g∈[L/L′]

ag

for any a ∈ AL′
, is the relative trace map. Obviously it is a module homomorphism.

Moreover the image AL
L′ := TrLL′(AL′

) is an ideal of AL.
Therefore a G-algebra allows the construction of the quotient

A(H) := AH/
∑
L<H

AH
L ,

for any subgroup H in G. Here the sum runs trough all the proper subgroups of H.
Employing a Sylow p-subgroup Q of H one easily checks, see [41, Lemma 11.7], that
if H is not a p-group then A(H) = 0. This leaves us with few choices of subgroups in
G such that A(H) is non-zero. So let P denote a p-subgroup of the finite group G.
We introduce the Brauer map:

BrP : AP → A(P ),

sending each a ∈ AP to

ā = a+
∑
Q<P

AP
Q.

Obviously the Brauer map is a morphism of NH(P )-algebras.
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1.1.4. Let e be a primitive idempotent of AG.

Definition 1.1.5. A p-subgroup P of G is a defect group of e if P is a minimal subgroup
such that e ∈ AG

P .

For any primitive idempotent e in AG such p-subgroups of G always exist. Indeed,
this follows from [23, 4i. Theorem]. Moreover any other defect group of e is G-
conjugate to P.

We intend to use a generalization of this definition. For that we introduce the
notion of a point. As it is used in [41] or in [34], a point of G on A is a A∗-conjugacy
class of a primitive idempotent j ∈ AG. Clearly this definition can be given for
any subgroup of G. So for any subgroup of G, hence for G itself we introduce the
notation P(AG). This denotes the set of points of AG. We denote such a conjugacy
class by β and then the pair Gβ := (G, β) is called a pointed group. If L and K are
subgroups of G such that K ⊆ L and if α and β are points of K on A and of L on A
respectively, then Kα ≤ Lβ if and only if for any j ∈ β there exists i ∈ α appearing
in a decomposition of j in AK , that is ji = ij = i. Moreover the group G acts on the
set of pointed groups of a G-algebra and the action is compatible with the inclusion
between pointed groups. That is, if g ∈ G and Kα ≤ Lβ as above then (Kα)

g ≤ (Lβ)
g

is equivalent to Kg
αg ≤ Lg

βg . Also let rLK : AL → AK denote the standard inclusion.
We shortly present all of the above statements in the next proposition

Proposition 1.1.6. On a G-algebra A the following hold.

i) For any subgroup L of G there is a bijection between the points of AL and the
maximal ideals of AL. If β ∈ P(AL) then the corresponding maximal ideal mβ

verifies β * mβ. Moreover the quotient AL/mβ is a simple NG(Lβ)-algebra
over k.

ii) If Kα and Lβ are pointed groups on A then the following are equivalent.
(1) Kα ≤ Lβ;
(2) (rLK)

−1(mα) ⊆ mβ;
(3) mα ∩ AL ⊆ mβ.

Definition 1.1.7. A local pointed group Pγ ( local means BrP (γ) ̸= 0) is a defect
pointed group of Gβ if P is a minimal subgroup such that β ∈ AG

P .

1.1.8. Instead of working with this definition sometimes we will quote [41, Proposition
18.5]. This result gives equivalent statements with Definition 1.1.7 above. Most
frequently we will verify that P is a defect group of the point β if and only if β ∈ AG

P

and BrP (β) ̸= 0.
The following theorem is a mix of [41, Theorem 3.2] and [34, Proposition 3.23].

Actually, these are the general properties of lifting idempotents in O-algebras.

Theorem 1.1.9. Let f : A → B be a surjective O-algebra homomorphism. The
following statements hold.

i) The map A∗ → B∗ is surjective.
ii) If α is a point of A such that α /∈ Ker(f), then f(α) is a point of B.
iii) There is a bijection between the sets P(A \Ker(f)) and P(B).
iv) Let I be an ideal of A. The point α belongs to I if and only if f(α) belongs to

f(I).
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Remark 1.1.10. The Mackey formula is also widely used in this paper. Let [L \G/K]
denote a set of representatives of the double cosets LgK of any two subgroups L and
K in G. Then we have

TrGK(a) =
∑

g∈[L\G/K]

TrLL∩Kg(ag).

1.2. Group graded algebras and crossed products. Let G denote a finite group.
A G-graded O-algebra is a direct sum of O-modules

Â =
⊕
g∈G

Âg,

where for all g, h ∈ G we have

Âg · Âh ⊆ Âgh.

Note that we usually have 1Â ∈ Â1 and that in most of the times, since usually it is

a group acted algebra, we will give up the hat and the index on Â1. Whenever the
equality

Âgh = Âg · Âh

holds for all g, h ∈ G , we say that Â a strongly G-graded algebra. Instead of checking
this equality one can verify

Âg · Âg−1 = Â1,

for all g ∈ G.
Then, if A := Â1 is a G-algebra we construct the so-called skew group algebra of

A and G. We denote this by Â = A ∗G. The product is as follows: for any a · g and
c · h in A ∗G we have

(a · g)(c · h) = acg · gh.
An example of all the structures that we introduced above is the twisted group algebra.
Consider the central extension of G by k∗

1 → k∗ → Ĝ→ G→ 1.

To this extension we can associate the twisted group algebra denoted kĜ, which is the
usual group algebra of the infinite group Ĝ having a basis indexed by the elements
of G. This basis is obtained by lifting the elements of G, explicitly {x̂ | x ∈ G}.
The multiplication is given by x̂ŷ = α(x, y)x̂y, where α(x, y) ∈ k∗ is the image of a
2-cocycle associated with this central extension.

1.3. G-algebras and interior G-algebras. Let L be a subgroup of a finite group
G, and consider an L-algebra A. We use the definition of the induction of A as in
[43, Section 8]. The induction of A from L to G is

IndG
L(A) = OG⊗OL A,

where an element g ⊗ a ∈ OG ⊗OL A is denoted by ga, and for b ∈ IndG
L(A) and

g ∈ G the element gb is the result of G acting on b. If a, b ∈ A and g1, g2 ∈ G, the
multiplication in this algebra is given by:

(g1a)(g2b) =

{
g(ab) if g = g1 = g2;

0 if g1L ̸= g2L.
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As noted in [31, 4.3], this is a particular case of the induction of crossed products
introduced in [27].

Definition 1.3.1. The O-algebra A is called G-interior if there is a morphism of groups

ϕ : G→ A∗,

between the group G and the group of units of A.

In this case we denote a ·g = aϕ(g) and g ·a = ϕ(g)a. Also note that any G-interior
structure gives rise to a G-algebra structure on A. Indeed, the map sending G to the
algebra automorphism a 7→ g−1 · a · g for any a ∈ A is a morphism of groups.

Definition 1.3.2. If A and B are G-interior algebras, a map f : A→ B is a morphism
of G-interior algebras if it is a morphism of O-algebras and satisfies

f(g · a · h) = g · f(a) · h,
for all a ∈ A and g, h ∈ G.

Now let A denote an L-interior algebra. There is another type of induction which
is due to Puig and which can be applied to the interior L-algebra A. Explicitly we
can construct

OG⊗OL A⊗OL OG.
Recall that its algebra structure is given by

(g ⊗ a⊗ g
′
)(g1 ⊗ a1 ⊗ g

′

1) =

{
g ⊗ a · g′

g1 · a1 ⊗ g
′
1 if g

′
g1 ∈ G

0 if g
′
g1 /∈ G,

where g, g
′
, g1, g

′
1 ∈ G and a, a1 ∈ A. The interior G-algebra structure is given by

g · (x ⊗ a ⊗ y) = gx ⊗ a ⊗ y and (x ⊗ a ⊗ y) · g = x ⊗ a ⊗ yg for all g, x, y ∈ G and
a, a1 ∈ A.

At last, if A is an G-interior O-algebra then A ∗G denotes the skew group algebra
of A. Recall that the multiplication is given by (a1 · g1)(a2 · g2) = a1a

g1
2 · g1g2 for any

a1, a2 ∈ A and g1, g2 ∈ G. Note that since A is G-interior it is an G-algebra, in this
context ag12 means g1

−1 · a2 · g1.

1.4. Basic Correspondences.

Theorem 1.4.1 (The Green correspondence). Let A be a G-algebra, let Pγ be a local
pointed group on A and let H be a subgroup of G containing

NG(Pγ) = {g ∈ G | g ∈ NG(P ) and γ
g = γ}.

There is a bijective correspondence between the sets

{α | α ∈ P(AG) such that Pγ is a defect of Gα}
and

{β | β ∈ P(AH) such that Pγ is a defect of Hβ}.
Moreover, if mα and mβ denote the corresponding maximal ideals of AG and of AH

associated with the correspondent points α and β respectively, then

mα = (rGH)
−1(mβ) = AG ∩mβ.

Even more we have Pγ ≤ Hβ ≤ Gα.
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Closely related to The Green Correspondence is the following result known as The
Burry-Carlson-Puig Theorem.

Theorem 1.4.2. Let A be an G-algebra, Pγ a local pointed group on A and H a
subgroup of G containing NG(Pγ). Take α ∈ P(AG) and β ∈ P(AH) such that Pγ ≤
Hβ ≤ Gα. Then Pγ is a defect pointed group of Hβ if and only if Pγ is a defect pointed
group of Gα. In these conditions β and α are two Green-correspondent points.

Theorem 1.4.3 (The Brauer correspondence). There is a bijective correspondence
between the set of blocks of OG having defect group P and the set of blocks of OH
having the same defect group P.

Consider a normal subgroup N of the finite group G and let b denote a block of ON.
Note that ON and OG are both G-invariant algebras. Denote by Gb the stabilizer of
b in G under the conjugation action of G on ON. The element

s =
∑

g∈[G/N ]

bg

is an idempotent of Z(ON) that also lies in Z(OG). A block B of OG is said to cover
b if we have

Bs = sB = B.

Let D be a p-subgroup of N representing a defect group of b. T

Theorem 1.4.4 (Harris-Knörr). The Brauer map determines a defect group pre-
serving bijective correspondence between the blocks of OG covering b and the blocks
of ONG(D) covering b1. Moreover this correspondence induced by the Brauer map
coincides with the Brauer correspondence.

1.5. Brauer pairs on p - permutation algebras. Let G be a finite group. A
Brauer pair (P, e) consists of a p-subgroup P of G and of a block e of kCG(P ). Let γ
be a point of OGP such that Pγ is a local pointed group. Then for any i ∈ γ, using
the Brauer map

BrP : OGP → kCG(P ),

the primitive idempotent BrP (i) is different from zero in kCG(P ). The block e de-
composes in kCG(P ) as a sum of primitive idempotents. If BrP (i)e = BrP (i) we say
that Pγ is associated with e.

The next result is a mix between [41, Lemma 40.12] and [41, Proposition 40.13]. Its
purpose is to characterize the relation between the defect pointed groups of a block
and the Brauer pairs associated with them.

Proposition 1.5.1. Let b be a block of OG and let (P, e) be a Brauer pair. Then P
is a defect group of b that satisfies BrP (b)e = e if and only if there exists a unique
defect pointed group Pγ of b which is associated with (P, e). Moreover, this relation
induces a bijection between the set of defect pointed groups of b and the set of Brauer
pairs (P, e) verifying BrP (b)e = e such that P is a defect of b.
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1.6. Group graded algebras and Clifford extensions. In this section k is alge-
braically closed . Consider a G-graded algebra Â indexed by the finite group G. This
O-algebra satisfies

Â =
⊕
g∈G

Âg.

Also let b denote a block of Â1. Then b lies in the center of

CÂ(Â1) = {a ∈ Â | aa1 = a1a for all a1 ∈ Â1}.
By [18, Paragraph 2] the centralizer

CÂ(Â1) =
⊕
g∈G

CÂ(Â1)g

has a natural structure of a G-algebra. We denote by Gb the stabilizer of b in G and
then bC := CbÂb(bÂ1) = bCÂ(Â1) has the following structure

bC =
⊕
g∈Gb

bCg,

where bCg = bC ∩ Âg for all g ∈ Gb. The set

G[b] = {g ∈ Gb | bCg · bCg−1 = bC1}
is a normal subgroup of Gb (see [17, Proposition 2.17]). In this situation

C[b] :=
⊕
g∈G[b]

bCg

is a strongly G[b]-graded Gb-invariant algebra. But bC1 = bZ(Â1) = Z(bÂ1) is a local
ring and then by applying [39, Lemma 1.1 ] we see that C[b] is actually a crossed

product of Â1 with G[b]. Taking the quotient

C[b]/Jgr(C[b]) =
⊕
g∈G[b]

bCg/bCgJ(C[b]1)

we obtain a twisted group algebra which is a crossed product of k ≃ C[b]1/J(C[b]1)
with G[b] and in the same time a Gb-algebra. This twisted group algebra corresponds
uniquely to the Clifford extension

1 → k∗ → hU(C[b]/Jgr(C[b])) → G[b] → 1.

Here hU(C[b]/Jgr(C[b])) denotes the homogeneous units of C[b]/Jgr(C[b]).

1.7. Fusions on interior algebras. Throughout this section N denotes a normal
subgroup of the finite group G. Fusions on G-interior algebras were first introduce by
Puig in [35]. Later on, dealing with N -interior G-algebras the concept was generalized
as we can see in [34].

1.7.1. Although in [34, §8] and in [35] the author deals with the so-called exomor-
phisms, here we try to avoid them and simply use group homomorphisms to define
the fusions as it is done in [38, 2.2].

Let A be a G-interior algebra and let Kβ, Hα be two pointed groups on A. If i ∈ α
then iAi is an H-interior algebra while for j ∈ β the algebra jAj is K-interior.
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Definition 1.7.2. A group isomorphism φ : K ≃ H is an A-fusion from Kβ to Hα if
there exists a ∈ A∗ such that

(y · j)a = φ(y) · i,
for all y ∈ K.

We denote by FA(Kβ, Hα) the set of A-fusions from Kβ to Hα. Note that the A-
fusions can be composed, meaning that if Lγ is another pointed group on A then
for φ ∈ FA(Kβ, Hα) and ψ ∈ FA(Hα, Lγ) we get ψ ◦ φ ∈ FA(Kβ, Lγ). If Kβ = Hα

then we denote F(Kβ) := F(Kβ, Kβ). The following results follow immediately from
Definition 1.7.2.

Proposition 1.7.3. The set FA(Kβ) together with the composition of morphisms
forms a group.

Proposition 1.7.4. If the pointed groups Kβ and Hα are fusion-related via Definition
1.7.2 then, for any j ∈ β and i ∈ α there exists a ∈ A∗ such that (K · j)a = H · i,
hence (jAj)a = iAi.

1.7.5. Now let A denote anN -interior G-algebra. As in the case of G-interior algebras
we intend to give the characterization of fusions that relies on group isomorphisms.
So let K and H be any two subgroups of G and let β and α be two points of K and
of H on A respectively.

Definition 1.7.6. Let j ∈ β and i ∈ α. A group isomorphism φ : K → H that verifies
φ(y) ∈ yN for all y ∈ K is an A-fusion from Kβ to Hα if there exists a ∈ A∗ such
that for any y ∈ K we have

ja = i, (ja)y · y−1φ(y) = ja.

Proposition 1.7.7. If the pointed groups Kβ and Hα are fusion-related via Definition
1.7.6 then for any j ∈ β and i ∈ α there exists a ∈ A∗ such that (jAj)a = iAi.

1.7.8. The group F(Kβ) has the following property.

Proposition 1.7.9. Let j ∈ β. The automorphisms φ : K → K that satisfies φ(y) ∈
yN for all y ∈ K is an A-fusion of Kβ if and only if the exists a ∈ (jAj)∗ such that
ay · y−1φ(y) = a for all y ∈ K.
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2. Induction and Skew Group Algebras

In section 1.3 we introduced the structure of a skew group algebra and the notions
of induction in the sense of Puig and in the sense of Turull. In this chapter we give
a connection between them.

2.1. Puig and Turull induction for G-algebras and interior G-algebras. Since
we work with two types of induction we will modify the notation from [30] by replacing
”Ind” with ”IndP”, and that from [43] by replacing ”Ind” with ”IndT”.

For a finite group G and for a subgroup L of G we consider an L-interior algebra
C.

We connect the two types if inductions in the following result.

Theorem 2.1.1. There is a surjective homomorphism of interior G-algebras from
IndTOG(C) ∗G onto IndPOG(C ∗ L).

2.2. An isomorphism between two types of induction. As in the second part
of [12] we consider a subgroup L of a finite group G. Now let B be an L-algebra over
O and consider the skew group algebra S := B ∗ L of B and L. Let A = IndG

L(B) be
the above induced algebra in the sense of Turull, and denote by R := A ∗G.

We have the following result.

Theorem 2.2.1. The map

φ : OG⊗OL S ⊗OL OG→ R, g ⊗ s⊗ f 7→ g · s · f,
where g, f ∈ G and s ∈ S, is an isomorphism of G-graded G-interior algebras, and
the diagram

OG⊗OL S ⊗OL OG // R

OG

OO 66nnnnnnnnnnnnnnn

of G-graded G-interior algebras is commutative.
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3. Correspondences In G-algebras

Harris and Knörr proved in [24] that there is a defect group preserving correspon-
dence between the covering blocks of two Brauer correspondent blocks. A module
theoretical version of this result exists and it is due to Alperin [2]. Here we present
the content of [9] showing that these two results still hold in a more general setting,
that is the case of points on some G-algebras over a discrete valuation ring.

3.1. The Green correspondence for covering points. Let N be a normal sub-
group of G and let α ∈ P(AG) and β ∈ P(AN) such that Nβ ≤ Gα. Suppose Pγ is a
defect pointed group of Gα.

Definition 3.1.1. IfN∩gP is the minimal subgroup ofN with the property β ∈ AN
N∩gP ,

then we say that α covers β. In this case there exists a point γ
′ ∈ P(AQ), Q = N∩gP,

such that Qγ′ is a defect pointed group of Nβ.

Let β ∈ P(AN) such that Nβ has defect pointed group Qγ
′ for some point γ

′ ∈
P(AQ). Since NN(Qγ

′ ) ⊆ NN(Q), there is a unique point δ ∈ P(ANN (Q)) corre-
sponding to β under the Green Correspondence, moreover NN(Q)δ has Qγ

′ as defect
pointed group (see 1.4.1).

Theorem 3.1.2. There is a one-to-one correspondence between points of AG covering
β and points of ANG(Q) covering δ. Moreover, if Qγ

′ is a defect pointed group of
NN(Q)δ, hence a defect pointed group of Nβ, and Pγ is a defect pointed group of
NG(Q)ϵ, hence of Gα then g(Qγ

′ ) ≤ Pγ for some g ∈ NG(Q).

Remark 3.1.3. Let M be a kG module. By applying the above theorem to the G-
algebra A := Endk(M) one obtains Alperin’s result on modules. Indeed, by [41,
Example 13.4], we see that in this case, to any point it corresponds an indecomposable
direct summand of M . Moreover, the definition of the covering points from this
paragraph applied to A yields the definition from [2].

In the case of a inductively complete G-algebra, a more precise version of the Green
correspondence holds.

Theorem 3.1.4 (The Green Correspondence). Let A be an inductively complete G-
algebra and let Pγ be a local pointed group on A, also let H be a subgroup of G
containing NG(Pγ). Then, if α is a point of G on A with defect pointed group Pγ

there exists a unique point β of H on A with the same defect pointed group such that
β ⊂ resGH(α) or equivalently α ⊂ indG

H(β).

3.2. The Harris-Knörr correspondence for covering points of permutation
algebras.

3.2.1. As before, let N be a normal subgroup of the finite group G.
Let D be a p-subgroup of N and consider the set

Q = {Q ≤ G | Q is a p-subgroup with Q ∩N = D}.

In what follows we use the ”bar” notation for the image under the Braur morphism
determined by D. With this setting we have:
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Proposition 3.2.2. The Brauer morphism

BrD : AD → A(D)

induces defect group preserving bijection between the points of G on A with defect
group in Q and the points of NG(D) on A(D) with defect group in Q. Moreover, if α
and ᾱ correspond via this bijection then, Qϵ is a defect pointed group of α if and only
if Qϵ̄ is a defect pointed group of ᾱ.

3.2.3. We consider an G-invariant subalgebra C of the p-permutation G-algebra A
such that C is a direct summand of A as O-modules and contains 1A. Let β be a point
of CN having defect group D in N and let β̄ := BrD(β) denote the correspondent
point of β lying in C(D)NN (D), also having defect group D.

Definition 3.2.4. We say that a point α of G on A covers β if α has defect group in
Q, and for any i ∈ α there is an idempotent j1 ∈ AN that lies in the conjugacy class
of β and there is a primitive idempotent f ∈ AN belonging to a point with defect
group D such that j1f = fj1 = f and if = fi = f.

3.2.5. In fact, the same definition can be given in the case of points of NG(D) on
A(D) that cover β̄.

Lemma 3.2.6. Let B ∈ AG and b ∈ CN be two primitive idempotents. Then B
covers b as in Definition 3.2.4 if and only if B covers b as blocks of the group algebra.

We are now ready to state the main result of this section:

Theorem 3.2.7. The Brauer morphism with respect to D induces a bijective corre-
spondence preserving the defect pointed groups in Q between the points of G on A
that cover β and the points of NG(D) on A(D) that cover β̄.

As a corollary we have [24, Theorem].
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4. Clifford extensions for blocks of group algebras

4.1. The Clifford extension of a block. We do not make any assumption on the
size of O and k. Let K be a normal subgroup of the finite group H, and denote
G = H/K. Consider the group algebra OH. This is a strongly G-graded algebra,
where for each g ∈ G, OHg = Og.

Let b a block of OK; this primitive central idempotent remains central in the
G-graded algebra

COH(OK) = (OH)K =
⊕
g∈G

(OH)Kg ,

where (OH)Kg = (Og)K for all g ∈ G. Then

bOHb =
⊕
g∈Gb

bOg = bOHb

is a strongly Gb-graded algebra.
Define

G[b] = {g ∈ G | b(OH)Kg · b(OH)Kg−1 = b(OH)K1 }.
It is easy to see that G[b] is a normal subgroup of Gb, and that

Â :=
⊕
g∈G[b]

b(OH)Kg

is a strongly G[b]-graded Gb-acted subalgebra of bOHb. Note that the identity com-

ponent of Â is the H-algebra A := b(OK)K .
Because A = b(OK)K = bZ(OK) is a local ring,

k̂1 := A/J(A)

is a finite extension of the field k. Consider the strongly G[b]-graded algebra

¯̂
A := Â/ÂJ(A);

for all g ∈ G[b], we have
¯̂
Ag = Âg/ÂgJ(A). By definition, the Clifford extension of

the block b is the group extension

(1) 1 → k̂∗1 → hU(
¯̂
A) → G[b] → 1

associated to the crossed product
¯̂
A of k̂1 and G[b].

4.2. The Second Clifford extension of a block. Now let Pγ denote a defect
pointed group of b in K, so γ is a local point of (OK)P determining a unique Brauer
pair (P, e).

We use the Brauer homomorphism

BrP : (OH)P → kCH(P )

and obtain b̄ := BrP (b) that satisfies b̄e = e. We use the centralizer

CkCH(P )NK (P )(kCK(P )
NK(P )) = kCH(P )

NK(P ),

in place of OHK and the block e in place of b to obtain another extension:

(2) 1 → k̂∗2 → hU(
¯̂
B) → CH(P )0/CK(P ) → 1.
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Here B is the subalgebra of ekCH(P )
NK(P ) that is strongly graded by CH(P )0/CK(P ).

4.3. A proof of Dade’s result for group algebras over an arbitrary field. We
are now ready to give an alternative proof of [17, Corollary 12.6].

Theorem 4.3.1. With the above notations, the following statements hold.

1) Gb equals NH(P )eK/K.
2) The group G[b] equals CH(P )0K/K.
3) The extensions (1) and (2) are isomorphic.
4) The isomorphism between the extensions (1) and (2) is compatible with the

natural isomorphism

G[b] → CH(P )0/CK(P ), g 7→ g ∩ CH(P )0,

and preserves the conjugation action of Gb ≃ NH(P )e/NK(P )e on the two
extensions.
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5. Clifford extension for points of K-interior H-algebras

5.1. Introduction. Our purpose is to further generalizer the constructions and the
main result of Chapter 4. In order to accomplish this purpose we considerK, a normal
subgroup of a finite group H, and a unitary K-interior H-algebra A over O. We take
a point β ∈ P(AK) having defect group P in K and its Brauer correspondent point
β̄ := BrP (β) ∈ P(A(P )NK(P )) also having defect group P in K. We intend to replace
the central primitive idempotent b of AK from the previous chapter with the point β.

5.2. The Clifford extension of a point.

5.2.1. As in the introduction, let K be a normal subgroup of the finite group H, and
let G = H/K. Let A be an unitary K-interior H-algebra over the O. As in [20, 2.1],
there exists a strongly G-graded algebra

Â := A⊗OK OH =
⊕

x∈[H/K]

A⊗ x

with structural homomorphism

OH → Â

of G-graded algebras, where for any a, b ∈ A and x, y ∈ H we have

(a⊗ x)(b⊗ y) = abx
−1 ⊗ xy.

The homomorphism that sends any x ∈ H to 1 ⊗ x endows Â with the structure of
an H-interior algebra.

5.2.2. Let AK denote the subalgebra of A consisting of elements fixed under the
conjugation action of K. For the pointed group Kβ we denote the normalizer

NH(Kβ) = {x ∈ H | βx = β}.

5.2.3. We can obtain an action of (AK)∗ ⊗H on Â. If a ⊗ x ∈ (AK)∗ ⊗H then for

any generator b⊗ h ∈ Â we have

(b⊗ h)a⊗x = (a⊗ x)−1(b⊗ h)(a⊗ x) = (a−1b)xah
−1x ⊗ x−1hx.

Thus Â is an (AK)∗ ⊗H-algebra.

5.2.4. Let j ∈ β. For any x ∈ NH(Kβ) we have

(j ⊗ 1)1⊗x = jx ⊗ 1 = jax ⊗ 1

for a suitable ax ∈ (AK)∗. We introduce the stabilizers

(AK)∗j = {a ∈ (AK)∗ | ja = aj}
and

((AK)∗ ⊗NH(Kβ))j = {a⊗ x ∈ (AK)∗ ⊗NH(Kβ) | (j ⊗ 1)a⊗x = j ⊗ 1}.
Then, setting

K̂ = (AK)∗j ⊗K, N̂H(Kβ) = ((AK)∗ ⊗NH(Kβ))j and N̄H(Kβ) = NH(Kβ)/K

we have:
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Lemma 5.2.5. The following sequence

1 → K̂ → N̂H(Kβ) → N̄H(Kβ) → 1

is exact.

5.2.6. The above choice of j ∈ β allows to denote Aβ := jAj. This O-algebra is
independent of the choice of the idempotent j in β. Moreover, the map

K̂ → (Aβ)
∗, where a⊗ x 7→ j · a · x

is a group homomorphism and Aβ becomes a K̂-interior N̂H(Kβ)-algebra. The

N̂H(Kβ)-interior algebra

Âβ := Aβ ⊗K̂ N̂H(Kβ)

is strongly N̄H(Kβ)-graded and can be identified via Lemma 5.2.5 with a NH(Kβ)-

interior subalgebra of Â.

Now we can consider the following subset of N̄H(Kβ):

G[β] = {x̄ ∈ N̄H(Kβ) | (Aβ ⊗ x̂)K · (Aβ ⊗ x̂−1)K = (Aβ ⊗ 1)K}

where x̂ ∈ N̂H(Kβ) is a lifting of x̄.

Proposition 5.2.7. The subset G[β] is a normal subgroup of N̄H(Kβ).

We denote by NA
H(Kβ) the subgroup of NH(Kβ) consisting of elements x such that

the automorphism of K induced by the conjugation action of x is an A-fusion.

Proposition 5.2.8. The subgroups G[β] and NA
H(Kβ)/K coincide.

Let us return to the algebra Âβ. Using Lemma 5.2.5 the subgroupG[β] is isomorphic

to a subgroup of N̂H(Kβ)/K̂. Then letting N̂A
H(Kβ) represent the converse image of

N̄A
H(Kβ) := NA

H(Kβ)/K in N̂H(Kβ) we obtain the strongly G[β]-graded N̂H(Kβ)-
algebra

ÂK
β := (Aβ ⊗K̂ N̂A

H(Kβ))
K .

Taking the quotient ˆ̄Aβ = ÂK
β /Jgr(Â

K
β ), where Jgr denotes the graded Jacobson rad-

ical, we obtain the strongly G[β]-graded N̂H(Kβ)-algebra that corresponds to the
unique Clifford extension (see [Paragraph 2][17])

1 → Aβ(Kβ)
∗ → ˆ̄NA

H(Kβ) → N̄A
H(Kβ) → 1.(1”)

Here Aβ(Kβ) := jAKj/J(jAKj) is a skew field whose center is a finite extension of k,

while ˆ̄NA
H(Kβ) stands for the homogeneous units of ˆ̄Aβ. We should quote [39, Lemma

1.1] which shows that ˆ̄Aβ is a crossed product of Aβ(Kβ) with G[β].

5.3. An attempt of constructing the second extension of a point. While
trying to work in a similar way with β̄ in place of β we see that the property of A(P )
being only CK(P )-interior is not enough.
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5.4. The second Clifford extension of a point.

5.4.1. As mentioned, the elements considered in Remark 5.3 above are not sufficient
for the construction of the second extension of a point. We need to employ another
exact sequence

1 → N̂K(P ) → ̂NNH(P )(NK(P )β̄) → N̄NH(P )(NK(P )β̄) → 1,

where we denoted

N̂K(P ) = (A(P )NK(P ))∗j̄ ⊗NK(P ) and

N̄NH(P )(NK(P )β̄) = NNH(P )(NK(P )β̄)/NK(P ).

Using the Brauer quotient Â(P ) =
⊕

x∈[H/K](A⊗ x)(P ) we make the identification

Â(P )β̄ :=
⊕
x̂

j̄(A⊗ x̂)(P )j̄

where x̂ ∈ N̂H(Kβ) lifts a system of representatives for N̄H(Kβ).

5.4.2. Now consider the elements x̂ such that

(Aβ ⊗ x̂)(P )NK(P ) · (Aβ ⊗ x̂−1)(P )NK(P ) = (Aβ ⊗ 1)(P )NK(P ).

Any x̂ having this property lifts an element x̄ which lies in a subgroup of N̄H(Kβ).
We denote this subgroup by G[β̄]. So by applying [39, Lemma 1.1 ] the algebra

Â(P )
NK(P )

β̄
:=

⊕
x̂

(Aβ ⊗ x̂)(P )NK(P ),

where x̂ runs through a set of representatives for G[β̄], is a crossed product whose

identity component is the local ring A(P )
NK(P )

β̄
.

5.4.3. The quotient

ˆ̄A(P )
NK(P )

β̄
:= Â(P )

NK(P )

β̄
/Jgr(Â(P )

NK(P )

β̄
)

is a crossed product, strongly G[β̄]-graded algebra. Moreover ˆ̄A(P )β̄ corresponds
uniquely to the Clifford extension

1 → A(P )β̄(NK(P )β̄)
∗ → ˆ̄N

A(P )
NH(P )(NK(P )β̄) → G[β̄] → 1.(2”)

5.5. The isomorphism between the two extensions. We keep the notations of
the previous sections of this chapter.

Theorem 5.5.1. The following statements hold.

(i) The extensions (1”) and (2”) are isomorphic.

(ii) The crossed products they correspond to are isomorphic as Ĥ1/NK(P ) ≃
N̂H(Kβ)/K-algebras.

5.6. The group algebra case. In this section we simply apply the above theory on
the group algebra.

5.7. Clifford extensions for blocks of K-interior H-algebras. Making use of
a primitive idempotent of AK the lies in Z(A) we give a deferent treatment of the
above theory.
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6. Correspondences for covering blocks

6.1. Introduction. Here we prove that the isomorphism of Clifford extensions in-
duces a defect group preserving bijective correspondence between the blocks of H
covering b and the blocks of NH(D) covering b1, which coincides with the Harris-
Knörr correspondence.

6.2. Preliminaries.

6.2.1. We use exactly the elements of Chapter 4. So we assume that the residual field
k is not algebraically closed. Then we let K be a normal subgroup of the finite group
H, denote G = H/K, and consider the group algebra OH regarded as a strongly
G-graded algebra

A := OH =
⊕
g∈G

Og,

which is also an H-algebra under the conjugation action of H. We fix a block b of
the identity component A1 := OK of A. We denote by D a defect group in K of the
block b. The centralizers bC and C[b] satisfy:

Lemma 6.2.2. The algebras (bC)Hb and C[b]Hb have the same primitive idempotents.

6.3. Remarks on defect groups.

6.3.1. We have the isomorphism

(*) Z(sOH) ≃ Z(bOHb) = Z(bOHb) = (bC)Hb .

We denote by B a block that cover b and by B′ the correspondent of B through the
isomorphism (*).

If Q is a defect group in Hb of the block B′, then Q is a defect group of the block
B and satisfies Q ∩K = D.

6.4. The Harris-Knörr correspondence. Let b1 denote the Brauer correspondent
block of b.

Theorem 6.4.1. The isomorphic Clifford extensions of b and of b1 define a defect
group preserving bijective correspondence between blocks of OH covering b and blocks
of ONH(D) covering b1.Moreover the Clifford-Dade correspondence between the blocks
covering b and b1 coincides with the Brauer correspondence.
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[41] Thévenaz, J., G-Algebras and Modular Representation Theory, Clarendon Press, Oxford

(1995).
[42] Todea, C. C., Restriction Between Cohomology Algebras of Blocks of Finite Groups, Algebr.

Represent. Theory., (2011)14, 731–749.
[43] Turull, A., Reduction theorems for Clifford classes, J. Group Theory 9 (2006), 27–47.
[44] Wenlin, H., On the cover relationship for local interior G-algebras, Journal of Mathematical

Sciences, Vol. 162, No. 5, (2009), 656–663.
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