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Introduction

The concept of distance is fundamental to the human experience. In daily life we

need to understand the closeness between two objects in different physical contexts.

The mathematical understanding of the concept of distance is concentrated in the

notions of metric and metric space. These notions were introduced by M. Fréchet

(1906) and F. Hausdorff (1914), generating special cases of topological spaces. The

works of K. Menger (1928) and L.M. Blumenthal (1953) opened the prospect of

deep research of the geometry of a metric space, reviewing at this level concepts,

relationships and configurations of the Euclidean geometry.

The symmetries of geometric configurations, crystals and other microscopic phys-

ical objects had been observed and studied for a long time. In a modern expression,

the symmetries of an object form a group, an algebraic notion which first appears

at the beginning of the nineteenth century in the works of E. Galois and N. Abel.

Thanks to the work of S. Lie, G.Frobenius, W. Killing and E. Cartan, I. Schur,

H. Weyl, and many others, group theory has grown enormously, both in itself and

in its applications. Applications in quantum mechanics and particle physics were

investigated in the Twentieth century.

H. Weyl said that in order to understand a mathematical structure, it is necessary

to study its group of symmetries. In the case of metric spaces, this idea naturally

leads us to the study of their associated isometry groups. The study of isometries

is a major subject in geometry, in connection with transformations that preserve

angles, distances or different simple configurations. If the origin of the theory of

Banach spaces is to be identified with the year of S. Banach’s monograph (1932),

then we can say that the study of the isometries of a Banach space, a particular

metric space, starts at this time. The description of the isometry group of a given
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metric space is a problem that has attracted the attention of many mathematicians.

This work fits into this research direction and is divided into three chapters,

which provide content unity and research topic relevance. The paper is based on a

bibliography of 65 references. We will briefly present each chapter, focusing on the

personal contributions of the author.

Chapter 1, entitled Elements of metric space theory is structured into five para-

graphs and is mainly monographic. The main objective of this chapter is to present,

in a succinct form, basic notions and results that will be used in later chapters. In

paragraph 1.1, notions of metric space, metric and distance are defined, and exam-

ples of metric spaces are given. Definition 1.1.1 fixes notations for the Euclidean

metric denoted d2, the taxicab metric denoted d1, the l∞ metric, denoted d∞, the

spherical metric denoted dS2, and the intrinsic metric denoted S ⊂ R3. The notion

of metric space is defined in Paragraph 1.2 and examples of subspaces are given.

The notion of product space is defined and an example of a metric space using

the distance function is given. In paragraph 1.3, the notions of convergent sequence,

Cauchy sequence, and complete space are defined (Definitions 1.3.1, 1.3.2). Two the-

orems about convergent sequences are presented (Theorems 1.3.1, 1.3.2). Paragraph

1.4 introduces the notions of continuous function, uniformly continuous function,

Lipschitz function, bi-Lipschitz function, and isometry, presented in Definition 1.4.1.

Theorem 1.4.1 shows that a Lipschitz function is uniformly continuous. In paragraph

1.5, the notions of homeomorphism, homeomorphic spaces, bi-Lipschitz eqiuvalent

maps, and isometric spaces (Definition 1.5.1) are defined. Theorem 1.5.1 shows the

relationship between such spaces. This chapter is based on the monograph by D.

Burago, Y. Burago, S. Ivanov [19].

Chapter 2, entitled The isometry group of a metric space is divided into eight

paragraphs and contains original results of the author. The monographic part of

the chapter is based on the works of D.J. Schattschneider [59], E.F. Krause [35], G.

Chen [20], R. Kaya [32], M. Ozcan, R. Kaya [43], S. Mazur, S. Ulam [39], A. Vogt

[63], M. Albertson, D. Boutin [1], M.M. Patnaik [46], M. Willar Jr. [64], H. Coxeter

[22], D. Asimov [6], A. Papadopoulos [44]. The original part of the chapter is based

on the works of D. Andrica, V. Bulgărean [3], [4], V. Bulgărean [14], [16], [17], [18],
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[15]. In the introduction to this chapter, the set of all isometries of a metric space,

(X, d), and the stabilizer of x or isotropy group of x (Definition 2.0.1) are defined.

Theorem 2.0.1 establishes that Iso(X, d) is a group with respect to composition and

Iso(x)(X, d) is a subgroup of Iso(X, d). Section 2.1 contains Theorem 2.1.1, which

states that if the (X, dX) and (U, dY ) metric spaces are isometric then their isometry

groups, Iso(X, dX) and Iso(Y, dY ), are isomorphic. Corollary 2.1.1 states that if the

Iso(X, dX) and Iso(Y, dY ) groups are not isomorphic then the two spaces are not iso-

metric. Corollary 2.1.3 builds an isomorphism between Iso(X, dX) and Iso(X, dX),

where dX is the metric defined on V by the scalar product and d2 is the Euclidean

metric on Rn. In subparagraph 2.1.1 we define the notions of displacement of f , min-

imal displacement of f , minimal set of f , parabolic function, elliptical function, and

hyperbolic function. Paragraph 2.2 presents Theorem 2.2.1, which states that the

isometry group of (R, d1) is isomorphic with the semi-direct product of the groups

Z2 and (R,+). Remark 2.2.1 contains three examples of such isomorphisms. Sec-

tion 2.3 contains the description of the Euclidean plane isometries. In subparagraph

2.3.1, we define the notions of linear transformation and affine linear transformation

(Definition 2.3.1) for the Euclidean plane. As an example, a linear affine transforma-

tion is the composition of a translation and a linear transformation. A linear affine

transformation transform a line into a line, a plane into a plane, etc. Subparagraph

2.3.2 defines translation, rotation and reflection (Definition 2.3.2). Subparagraph

2.3.3 contains Theorem 2.3.1, which states that an isometry f : (R2, d) → (R2, d) is

a linear affine transformation, i.e. there exists a vector b ∈ R2 and a square matrix,

such that f(x) = Ax + b, for any x ∈ R2. The proof of this theorem is done in

two ways, using Lemmas 2.3.1 and 2.3.2. Paragraph 2.4 studies the isometries of the

n-dimensional Euclidean space. Subparagraph 2.4.1 presents definitions for orthog-

onal matrices, proper isometries, improper isometries, the linear part of mapping f

(Definitions 2.4.1 and 2.4.2). This paragraph also presents Theorem 2.4.1, about the

E(n), SE(n), O(n) and SO(n) groups, which are: the isometry group on Rn, the

isometry group on Rn with det(A) = 1, the group of orthogonal matrices, and the

group of orthogonal matrices with determinant 1 respectively. In subparagraph 2.4.2

we define the notions of fixed point, axis of symmetry, axis of reflection, invariant
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line, glide axial symmetry. The main result of this section is given in Theorem 2.4.2.

As a conclusion, isometries other than 1R2 can be classified as follows: rotations and

central symmetries are fixed point isometries, and translations and glide symmetries

are isometries without a fixed point. Symmetries are the basic isometries of R2,

meaning that all isometries can be obtained by compositions of symmetries. Corol-

lary 2.4.1 states that every isometry of R2 can be obtained by the composition of

at most three isometries. In particular, the E(2) group is generated by symmetries.

In subparagraph 2.4.3 we present the symmetries of the O(n) group and Cartan’s

theorem. Cartan’s Theorem 2.4.4 states that the O(n) group is generated by its

symmetries and in its proof, Theorem 2.4.3 is also used. Corollary 2.4.2 states that

any isometry of the Rn Euclidean space is a composition of at most n + 1 sym-

metries. An isometry that fixes at least one point, is a composition of at most n

symmetries. In paragraph 2.5 we study the isometry group of the R2 plane endowed

with the Chinese checkers metric dc . In Subparagraph 2.5.1, Proposition 2.5.1 is

proved, which states that any translation of the Euclidean plane is an isometry of

the R2
c plane. Lemma 2.5.1 is useful for the determination of the axial symmetries

in R2
c which are isometries. Corollaries 2.5.1 and 2.5.2 show that the middle of a

segment relative to the two metrics, dE and dc, is the same, and that the ratio de-

fined by the distance dc coincides with the ratio defined by dE. Proposition 2.5.2

states that an axial symmetry with respect to the axis y = mx is an isometry in

R2
c if and only if m ∈ {0,±1,±(

√
2 − 1),±(

√
2 + 1),∞}. Proposition 2.5.3 shows

that there are only 8 Euclidean rotations that preserve dc-distances, i.e., the set of

isometric rotations in R2
c , is Rc =

{
rθ : θ = k

π

4
, k = 0, 1, 2, . . . , 7

}
. Theorem 2.5.1

states that if f : R2
c → R2

c is an isometry then there exist TA ∈ T (2) and g ∈ Oc(2)

such that f = TA ◦ g, and these transformations are unique. This is proved by us-

ing Propositions 2.5.4, 2.5.5 and Corollary 2.5.3 respectively. Finally we obtain an

important result, presented in Corollary 2.5.4, showing that Iso(R2
c) is the semi-

direct product of the R2 and D8 gropus. In Subparagraph 2.5.2, Theorem 2.5.2 is

proved, the theorem for the calculation of the area of a triangle in the R2
c plane. In

paragraph 2.6 we describe the Isodp(R
n), p 6= 2 group. In Subparagraph 2.6.1 we

present and prove the Mazur-Ulam theorem (Theorem 2.6.1), which states that any
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isometry f : E → F between real normal spaces is affine. In Subparagraph 2.6.2 we

present original results of the author concerning the determination of the Isodp(R
n)

group. It is proven that if p 6= 2, all these groups are isomorphic and therefore they

do not depend on the number p. These results appear in the papers D. Andrica, V.

Bulgărean [4] and V. Bulgărean [15]. Theorem 2.6.2 states that for p 6= 2, p ≥ 1 and

fA : Rn → Rn, a linear function defined by the matrix A ∈ Mn(R), fA ∈ Isodp(R
n) if

and only if A is a permutation matrix i.e. each row and each column of A has exactly

one nonzero element and this element is equal to ±1. This result is shown in proven

in the papers D. Andrica, V. Bulgărean [4] and V. Bulgărean [15]. In Subparagraph

2.6.3, the Isod∞(Rn) group is determined. Although the result is formulated in the

same manner, we prefer to present it separately for the case p = ∞, because the

proof is completely different from the one given in Theorem 2.6.2. Theorem 2.6.3

shows that for a linear function fA : Rn → Rn defined by the matrix fA ∈ Isod∞(Rn),

A ∈ Mn(R) if and only if A is a permutation matrix, i.e. each row and each column

of A has exactly one nonzero element and this element is equal to ±1. Subparagraph

2.6.4 draws common conclusions for the Isodp(R
n) and Iso∞(Rn) groups. These con-

clusions, together with the results of subparagraphs 2.6.2 and 2.6.3, lead us to the

following common result for the Isodp(R
n) and Isod∞(Rn) groups (Corollary 2.6.1):

for p ≥ 1, p 6= 2, a real number or p = ∞, the Isodp(R
n) group is isomorphic to

the semi-direct product of groups (Rn,+) and Sp × Zn
2 , where Sn is the group of

permutations of the set {1, 2, . . . , n}. The subgroup of linear isometries of Isod∞(Rn)

consists of 2n · n! linear mappings defined by the permutation matrices in Theorem

2.6.3. Subparagraph 2.6.5 introduces the d-isometric dimension of a finite group. The

notion of d-isometric dimension of a group is defined. Theorem 2.6.4 shows that for

a finite group G, the d2-isometric dimension δd2(G) equals the minimum dimension

of the real representation of G. As a consequence of this theorem, Corollary 2.6.2

states that for finite groups G1, . . . , Gs the following inequality holds:

δd2(G1 ⊕ . . .⊕Gs) ≤ δd2(G1) + . . .+ δd2(Gs).

Theorem 2.6.5 shows that for any p ≥ 1, p 6= 2, a real number or p = ∞ the inequality

δdp(Sn × Zn
2 ) ≤ n holds. Theorem 2.6.6 shows that the equality δc(D8) = 2 holds,

where δc is the isometric dimension relative to the dc metric of the R2
c plane and
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D8 is the dihedral group. Two open problems are presented: The determination of

δdp(Z
n
2 ); is it true that δdp(Sn × Zn

2 ) = n holds?. In paragraph 2.7 we study the

problem of the geometric realization of finite groups. Theorem 2.7.1 shows that

there exists a Riemann metric on the sphere Sk−1 such that the associated isometry

group is isomorphic with G. This theorem is due to D. Asimov and is proven using

the following results: Proposition 2.7.1, which states that with the metric induced

from Rk on the sphere Sk−1, the metric space X has its isometry group isomorphic

with G, and Proposition 2.7.2 which shows the relationship Iso(M) ≃ G. Corollary

2.7.1 shows that any finite group G is isomorphic to the isometry group of a finite

subset XG of a Euclidean space. If card (G) = k, then XG can be chosen with

card (XG) = k2 − k, in a Euclidean space of dimension k− 1. This result is followed

by some examples that illustrate the geometric realization of some finite groups,

through isometries. All these examples are original contributions and are presented

in the paper V. Bulgărean [16]. In paragraph 2.8 we present original results related

to the isometry group of the French railway metric. These results are presented in

paper V. Bulgărean [14]. Subparagraph 2.8.1 presents two theorems: Theorem 2.8.1,

which shows that Iso(p)(X, d) is a subgroup of Iso(X, dF,p), and in particular the

inclusion Iso(p)(X, d) ⊆ Iso(X, dF,p) holds; and Theorem 2.8.2, which states that

for any isometry f ∈ Iso(X, dF,p), p is a fixed point, i.e. the relationship f(p) = p

holds. Corollary 2.8.1 shows that for any metric space (X, d) and for any point

p ∈ X , the metric space (X, dF,p) is elliptical, i.e. all its isometries are elliptical. In

subparagraph 2.8.2 we are present comments regarding Theorem 2.8.2 in the case

X = Rn and d = d2.

Chapter 3, entitled Special problems related to isometries consists of four para-

graphs. Paragraph 3.1 presents the notion of frieze, strips in the plane in which geo-

metric patterns are repeated infinitely. In subparagraph 3.1.1 we present the notions

of generators, words, the length of a word, reduced word, relationships, and group

presentation. Lemma 3.1.1 shows that for TG a subgroup of G, t a generator for T ,

and r ∈ G, there exists r−1tr, a generator for the group r−1Tr = {r−1xr : x ∈ T}.
In Subparagraph 3.1.3 we present the classification of frieze groups. The notions of

discrete subgroup of E(2) are defined (Definitions 3.1.1, 3.1.2). We introduce two
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lemmas that illustrate some properties of translation (Lemma 3.1.2, 3.1.3). There are

exactly seven frieze groups, given in Theorem 3.1.1. We also show some realizations

of the 7 frieze groups, taking note that the horizontal axis is the axis of translation

and the image is repeaded infinitely. Paragraph 3.2 studies mappings that preserve

certain geometric properties. In Subparagraph 3.2.1,the general Aleksandrov-Rassias

problem is presented, which states that if (X, dX) and (Y, dY ) are metric spaces and

f : X → Y is a continuous mapping, surjective, and preserving distance 1, it fol-

lows that f is an isometry. Even if we impose additional conditions on f the answer

to this general problem can be negative. A good example in this regard (Example

3.2.1) is shown next. We also present an example in which the answer to the problem

could be negative in the infinite dimensional case, even for Hilbert spaces. In sub-

paragraph 3.2.2 we study mappings that transform cubes into cubes. Lemma 3.2.1

is presented, which states that for an injective map f : R3 → R3 that transforms any

cube into a cube, for any cubes of side length 1, A and B, if Int(A) ∩ Int(B) = ∅,
then Int{f(A)} ∩ Int{f(B)} = ∅. Theorem 3.2.1 states that if the injective map

f : R3 → R3 transforms any cube into a cube, then f is a linear isometry up to a

translation. Paragraph 3.3 shows results on the isometry group of the sphere. The-

orem 3.3.1 is presented, which states that any isometry f : S2 → S2 is a rotation or

an axial symmetry. Theorem 3.3.2 shows that every isometry f : S2 → S2 is a planar

symmetry, rotation or rotosymmetry (composition of a rotation and a symmetry).

Theorem 3.3.3 states that any isometry f : Sn → Sn is a composition of rotations

and possibly a symmetry. In Theorem 3.3.4 shows that Iso(Sn) ≃ O(n+ 1). Theo-

rem 3.3.5 states that any isometry f ∈ Iso(Sn) is a composition of at most

[
n+ 1

2

]

proper rotations of Sn and possibly a symmetry with respect to a hyperplane pass-

ing through the origin. Remark 3.3.1 shows that the Iso(Sn) group is generated by

rotations and symmetries. Theorem 3.3.6 states that for f : Sn → S2, n ≥ 2, a

function which preserves angles θ, mθ, where mθ < π and m is a positive integer

greater than 1, then f is an isometry, i.e. f preserves all angles. Theorem 3.3.7 shows

that if f : Sn → Sp, p ≥ n > 1, is a continuous map which preserves angles θ, mθ,

where m > 1 and mθ < π, then f is an isometry. Theorem 3.3.8 states that for

f : Sn → Sn a map that preserves angle θ, or arccos

(
1

m+ sec θ

)
is irrational for
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0 ≤ m ≤ n−1, then f is an isometry. In paragraph 3.4 we study the isometry groups

of locally compact metric spaces. Theorem 3.4.1 shows the general properties of the

isometry group of a locally compact metric space (X, d). Example 3.4.1 shows such

a space which is not a locally compact space. Example 3.4.2 shows a locally compact

space. In subparagraph 3.4.1 we give properties related to the local compactness of

the Iso(X, d) group. Lemma 3.4.1 states that if (X, d) is a locally compact space,

F ⊆ Iso(X, d) and K(F ) = {x ∈ X : F (x) = {f(x) : f ∈ F} is relatively compact},
then K(F ) is an open and closed subset of X . Lemma 3.4.2 states that for (X, d) a

locally compact metric space with quasi-compact connected component space Σ(X),

then condition (a) of Theorem 3.4.1 is satisfied. Example 3.4.3 shows an example of

a limit of a sequence of isometries which is not surjective. Lemma 3.4.3 states that

if Σ(X) is quasi-compact and (fn), fn ∈ Iso(X, d) is a sequence such that fn → f

with respect to punctual convergence topology, then f(X) is open and closed in X .

Proposition 3.4.1 shows the following result: if (X, d) is a locally compact metric

space and Σ(X) is quasi-compact, then Iso(X, d) is closed in C(X,X). Proposi-

tion 3.4.2 asserts that there exists a subsequence {Snk
}k∈N of {Sn} such there exists

xk ∈ Sk with xk → x0, where x0 ∈ X . Theorem 3.4.2 states that if Σ(X) is quasi

compact, then Iso(X, d) is locally compact. Subparagraph 3.4.2 studies the proper

action of the Iso(X, d) group on the space X . Proposition 3.4.3 states that if (X, d)

is locally compact and connected, then the Iso(X, d) group is locally compact and

its action on X is proper, so the quasi-compactness of Σ(X) is not required for local

compactness of Iso(X, d). The chapter is based on the works of A.D. Aleksandrov

[2], F.S. Beckman, D.A. Quarles [9], Th. M. Rassias [50], [51], [53], [54], B. Mielnik,

Th. M. Rassias [40], [55], S.M. Jung [26], [27], S.M. Jung, Ki-Sik Lee [30], Th. M.

Rassias, P. Semrl [56], D. van Dantzig, B.L. van der Waerden [23].

I would not wish to end this introduction without thanking Prof. Dorin Andrica,

my scientific advisor, for his remarks, suggestions, substantial support and the amia-

bility with which he has always answered my requests during the preparation of this

work. I would also like to thank all the members of the Department of Geometry

of the Babes-Bolyai University in Cluj-Napoca, for their trust and support given

during the elaboration of this thesis.
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Chapter 1

Elements of metric space theory

In this chapter we introduce the basic notions on metric spaces. We present spe-

cific examples and constructions that are useful in the development of the following

chapters.

1.1 Metric spaces. Examples

A metric space is a pair (X, d) formed by a nonempty set X and a function

d : X ×X → R that satisfies the properties:

(1) (Positivity and nondegeneracy). For any x, y ∈ X , d(x, y) ≥ 0. In addition,

we have d(x, y) = 0 ⇔ x = y.

(2) (Symmetry) For any x, y ∈ X , d(x, y) = d(y, x).

(3) For any x, y, z ∈ X the inequality holds: d(x, z) ≤ d(x, y) + d(y, z) (the

triangle inequality).

The function d is called the metric. It is also called the distance function.

Below we give some examples of metric spaces. In most of the examples conditions

(1) and (2) of the above definition are easy to check. We mention these conditions

only if there are problems in their establishment. It is usually more difficult to prove

the triangle inequality and this is done in detail in some examples.

Example 1.1.1 Let X = R and the distance function d(x, y) = |x− y|.

11



Example 1.1.2 Let X = R2 and the usual Euclidean distance function

d2(x, y) =
√

(x1 − y1)2 + (x2 − y2)2,

where x = (x1, x2), y = (y1, y2).

Example 1.1.3 Let X = Rn and the usual Euclidean distance

d2(x, y) =
√

(x1 − y1)2 + . . .+ (xn − yn)2,

where x = (x1, . . . , xn), y = (y1, . . . , yn).

Example 1.1.4 Let X = Rn and d1(x, y) = |x1 − y1|+ . . .+ |xn − yn|, the taxicab

metric. For n = 2, d is the usual distance that we use when we drive the car in a

city where the street network is parallel to two perpendicular directions.

If we have x and z, the set of points y for which d1(x, z) = d1(x, y) + d1(y, z) is

called the metric segment in Menger sense.

Example 1.1.5 Let X = Rn and d∞(x, y) = max{|x1 − y1|, . . . , |xn − yn|}.

In order to prove the triangle inequality d∞(x, z) ≤ d∞(x, y) + d∞(y, z), we

suppose that d∞(x, z)= max
1≤i≤n

{|xi−zi|}= |xk−zk|, for k fixed, 1 ≤ k ≤ n. Then we

have the relations:

|xk − zk| ≤ |xk − yk|+ |yk − zk|, |xk − yk| ≤ d∞(x, y), |yk − zk| ≤ d∞(y, z).

So we have: d∞(x, z) ≤ d∞(x, y) + d∞(y, z).

We will not discuss the equality case at this point, as we will study in detail in

Chapter 2.

Example 1.1.6 Let X = S2 = {x ∈ R3 : ‖x‖ = 1}, be the unit sphere in the

Euclidean space R3. Let d(x, y) be the lenght of the small arc that connects points

x and y. This is how distances on Earth’s surface are measured. An explicit formula

for d(x, y) is easily obtained. Let θ be the angle between the unit vectors x and y.

The arc joining x to y belongs to the intersection of S2 with the plane generated by

x and y and the length of this arc is θ (see Figure 1.2). Therefore we have cos θ = x·y
(Euclidean scalar product in R3), so d(x, y) = arccos(x · y). It immediately follows

that d is a metric on S2.
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arccos

Figure 1.2. The distance on the sphere

Let x1, . . . , xm vectors in Rn, where m ≤ n. The Gram matrix defined by these

vectors x1, . . . , xm is the square matrix of order m, A with elements xi · xj . We

remark that A is a symmetric matrix since we have xi · xj = xj · xi.

Theorem 1.1.1 If A is the Gram matrix of vectors x1, . . . , xm, then

det(A) ≥ 0.

Additionally, we have det(A) = 0 if and only if the set {x1, . . . , xm} is linearly

dependent.

Remark 1.1.1 Note that if m = 2, meaning that we have two vectors x, y ∈ Rm,

then Theorem 1.1.1 reduces to

det(A) = (x · x)(y · y)− (x · y)2 ≥ 0,

which is the Cauchy-Schwarz inequality. In Examples 1.1.2 and 1.1.3 we have used

this inequality to prove the triangle inequality for the Euclidean metric. We see that

in the case m = 3 Theorem 1.1.1 is useful to prove the triangle inequality for the

metric on the sphere in Example 1.1.6.

Example 1.1.7 Let X be a nonempty set and d defined as follows:

d(x, y) =





0, if x = y

1, if x 6= y.

This distance is called the discrete metric and (X, d) is called the discrete metric

space.
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Example 1.1.8 Let (X, d) be a metric space and p ∈ X a fixed point. We define a

metric on X , called the French railway metric, denoted dF,p, where

dF,p(x, y) =





0 if and only if x = y

d(x, p) + d(p, y) if x 6= y

We obtain a new metric space (X, dF,p). This metric is studied in paper V. Bulgărean

[14] and in section 2.8.

Figure 1.3. French railways metric in the Euclidean plane R2

The name of this metric comes from the following hypothetical situation. We are

in a country (called France) in which there are railway lines passing through every

town. We can travel between any two cities only if we pass through Paris.

Definition 1.1.1 Next we fix the notations that we have used so far the in metric

spaces introduced. These will be used extensively in the following chapters.

(1) The metric in Example 1.1.3 is called the Euclidean metric and is denoted

d2. Then we have the relation:

d2(x, y) =
√

(x1 − y1)2 + . . .+ (xn − yn)2.

(2) The metric in Example 1.1.4 is called the taxicab metric or l1 metric and is

denoted d1. The formula for d1 is:

d1(x, y) = |x1 − y1|+ . . .+ |xn − yn|.

(3) The metric in Example 1.1.5 is called the l∞ metric and is denoted d∞. The

formula is:

d∞(x, y) = max{|x1 − y1|, . . . , |xn − yn|}.

(4) The metric in Example 1.1.6 is called the spherical metric and is denoted

dS2.
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1.2 Construction of metric spaces

There are some standard constructions of new metric spaces using the ones given

so far. The most common constructions for spaces are the subspaces.

1.2.1 Subspaces

Let (X, d) be a metric space and let Y ⊂ X . We consider d′ = d|Y×Y : Y ×Y → R,

the restriction of d to Y ×Y . Then (Y, d′) is the metric space called the subspace of

(X, d). Usually the restriction d′ is simply denoted d.

Examples of subspaces

(1) Q is a subspace of R.

(2) Any subset of R is a subspace of R. For example (0,+∞) is a subspace of R.

(3) S2 is a subspace of R3. But the metric of this subspace is not the same as

the spherical metric from Example 1.1.6. If d′ is the restriction to S2 × S2 of the

Euclidean metric d2 on R3 and dS2 is the spherical metric on S2, then we have the

inequality d′(x, y) ≤ dS2(x, y), for all x, y ∈ S2, with equality if and only if x = y.

1.2.2 Product spaces

If (X1, d1) and (X2, d2) are metric spaces, their product is the space (X1 × X2, d),

where:

d((x1, x2), (y1, y2)) = max{d1(x1, y1), d2(x2, y2)},

for all (x1, x2), (y1, y2) ∈ X1 ×X2.

Remark the analogy with the d∞ metric from Definition 1.1.1. Other metrics are

possible on the product space, but this is a convenient choice.

1.2.3 Distance functions

Suppose that (X, d) is a metric space and the function f : [0,+∞) → R is strictly

increasing with the property f(0) = 0 and is subadditive, satisfying the relation

f(a+ b) ≤ f(a) + f(b), for all a, b ∈ [0,+∞).
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It is not difficult to see that f ◦ d : X ×X → R is a metric on X , so (X, f ◦ d)
is a metric space.

1.3 Limits

The notion of metric space allows in this context the reformulation of many con-

cepts and results of real analysis. We give some useful examples in the development

of the following chapters. By sequence in a metric space (X, d) we understand, as

usual, a function N → X and use the notation {xn}.

Definition 1.3.1 Let {xn} be a sequence in metric space (X, d).

(1) Let x ∈ X . We say that lim
n→∞

xn = x if and only if for all ε > 0 there exists

N = N(ε) ∈ N such that d(x, xn) < ε, for all n ≥ N .

(2) We say that {xn} converges if and only if there exists x ∈ X such that we

have lim
n→∞

xn = x.

(3) We say that {xn} is a Cauchy sequence if and only if for all ε > 0 there exists

N ∈ N such that d(xm, xn) < ε, for all m,n ≥ N .

Theorem 1.3.1 Every convergent sequence is a Cauchy sequence.

Theorem 1.3.2 If the sequence {xn} is convergent, then its limit is unique.

Definition 1.3.2 A metric space (X, d) is called complete if every Cauchy sequence

is convergent.

The space Rn, n ≥ 1, is complete, while Q is not complete, with the usual

Euclidean metric.

1.4 Mappings between metric spaces

Let (X, d) and (Y, d′) be metric space and let the function f : X → Y .

Definition 1.4.1 (1) Let x ∈ X . The mapping f is continuous at x if and only if

for any ε > 0 there exists δ > 0, such that for all y ∈ X , if we have d(x, y) < δ, then

d′(f(x), f(y)) < ε.
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(2) The mapping f is continuous on X if and only if it is continuous at any point

x ∈ X . Explicitly, f is continuous if and only if for any x ∈ X and ε > 0, there

exists δ = δ(x, ε) such that d′(f(x), f(y)) < ε for all y ∈ X with d(x, y) < δ.

(3) The mapping f is uniformly continuous if and only if for any ε > 0 there

exists δ = δ(ε) such that d′(f(x), f(y)) < ε for all x, y ∈ X with d(x, y) < δ.

(4) The mapping f is a Lipschitz map if and only if there exists a constant C > 0

such that d′(f(x), f(y)) ≤ Cd(x, y) for all x, y ∈ X . The constant C is a Lipschitz

constant for f .

(5) The mapping f if bi-Lipschitz if and only if there exist the constants C1, C2 >

0 such that

C1d(x, y) ≤ d′(f(x), f(y)) ≤ C2d(x, y)

for all x, y ∈ X .

(6) The mapping f is isometric if and only if d′(f(x), f(y)) = d(x, y), for all

x, y ∈ X .

In the following chapters we will thoroughly study these mappings.

Theorem 1.4.1 If f : (X, d) → (Y, d′) is a Lipschitz map, then f is uniformly

continuous.

1.5 Equivalence between metric spaces

We will define several types of equivalence between metric spaces, with the ad-

ditional assumption that the maps defined in the previous section are bijective, and

with any further assumptions when appropriately needed.

Definition 1.5.1 Let (X, d) and (Y, d′) be metric spaces and let f : X → Y be a

mapping. We say that:

(1) The map f is a homeomorphism if f is continuous, bijective and f−1 is

continuous. If there exists such a map, we say that the spaces (X, d) and (Y, d′) are

homeomorphic.

(2) The mapping f is bi-Lipschitz equivalent if and only if f is surjective and

bi-Lipschitz. If there exists a bi-Lipschitz equivalence, we say that the spaces (X, d)

and (Y, d′) are bi-Lipschitz equivalent.
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(3) The spaces (X, d) and (Y, d′) are isometric if and only if there exists a sur-

jective isometry f : (X, d) → (Y, d′).

Theorem 1.5.1 Let (X, d) and (Y, d′) be metric spaces.

(1) If (X, d) and (Y, d′) are isometric, then they are bi-Lipschitz equivalent.

(2) If (X, d) and (Y, d′) are bi-Lipschitz equivalent, then they are homeomorphic.
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Chapter 2

The isometry group of a metric

space

Let (X, d) be a metric space and let f, g be two isometries of (X, d). Then the

composition f ◦ g preserves distances, as for all x, y ∈ X we have:

d(f ◦ g(x), f ◦ g(y)) = d(f(g(x)), f(g(y))) = d(g(x), g(y)) = d(x, y).

We also have the property that the inverse f−1 preserves distances, because

d(f−1(x), f−1(y)) = d(f(f−1(x)), f(f−1(y))) = d(x, y).

This means that the set of all isometries is a group with respect to the usual

operation of function composition.

Definition 2.0.1. Let

Iso(X, d) = {f : X → X : f is an isometry of space (X, d)}

the set of all isometries of (X, d). If x ∈ X , we denote by

Iso(x)(X, d) = {f ∈ Iso(X, d) : f(x) = x},

the set of isometries of X for which x is fixed. Iso(x)(X, d) is a subgroup of Iso(X, d)

called the stabilizer of x, or isotropy group of x.

Theorem 2.0.1. The set Iso(X, d) is a group with respect to the usual composition

operation. The subset Iso(x)(X, d) is a subgroup of Iso(X, d).
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2.1 General properties of the Iso(X, d) group

Let (X, dX), (Y, dY ) be two metric spaces. The map α : X → Y preserves

distances if for all x, x′ ∈ X the relation dY (α(x), α(x
′)) = dX(x, x

′) holds. It is

obvious that any mapping that preserves distances is injective.

The application α : X → Y is called an isometry if it satisfies the following two

properties:

1) α is surjective;

2) α preserves distances.

Obviously, an isometry α : X → Y is a bijection.

The following result shows that the group of isometries of a metric space is

invariant with isometric transformations.

Theorem 2.1.1 If the metric spaces (X, dX) and (Y, dY ) are isometric, then their

isometriy groups Iso(X, dX) and Iso(Y, dY ) are isomorphic.

Corollary 2.1.1 Consider the metric spaces (X, dX) and (Y, dY ). If the groups

Iso(X, dX) and Iso(Y, dY ) are not isomorphic, then the two spaces are not isometric.

Let u : X → X be a bijective map.

We define on the set X the metric du : X ×X → R, by du(x, y) = d(u(x), u(y)).

Corollary 2.1.2 The relation Iso(X, du) ≃ Iso(X, d) holds.

Corollary 2.1.3 Let V be a real n-dimensional linear space endowed with the scalar

product 〈·, ·〉. Then Iso(V, dV ) ≃ Iso(Rn, d2), where dV is the metric defined on V

by the inner product and d2 is the Euclidean metric on Rn.

2.1.1 General classification of the elements of Iso(X, d)

Let (X, d) be a metric space and f : X → X . The function x 7→ d(x, f(x)) is

called the displacement of f . The number λ(f), defined by

λ(f) = inf
x∈X

d(x, f(x))
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is called the minimal displacement of f . The minimal set of f , denoted Min(f), is

the subset of X defined by

Min(f) = {x ∈ X : d(x, f(x)) = λ(f)}.

The following general classification of isometries on a metric space (X, d) with

respect to invariants λ(f) and Min(f) is given in the monograph by A. Papadopoulos

[44]. Let f ∈ Iso(X, d). Then

1. f is parabolic if Min(f) = ∅;
2. f is elliptical if Min(f) 6= ∅ and λ(f) = 0. Then f is elliptical if and only if

Fix(f) 6= ∅, where Fix(f) denotes the set of fixed points of f .

3. f is hyperbolic if Min(f) 6= ∅ and λ(f) > 0.

2.2 The isometry group of the line

Consider the Euclidean line R endowed with the usual d1 metric, where d1(x, y) =

|x− y|. Then the following result holds.

Theorem 2.2.1 The isometry group (R, d1) is isomorphic to the semidirect product

of the groups Z2 and (R,+), i.e. we have

Iso(R, d1) ≃ R⋊ Z2.

Remark 2.2.1 1) The set of matrices of the form

 1 k

0 1


 ,


 −1 k

0 1


 , k ∈ R

form a non-commutative group with respect to multiplication. It is shown immedi-

ately that Iso(R, d1) is isomorphic to this group.

2) From Theorem 2.2.1 it follows that Iso(R, d1) is a nonconnected Lie group

with two connected components. The connected component of the unit is the normal

subgroup N = {fk : k ∈ R}, where fk(x) = x + k. This is the subgroup of

translations of group Iso(R, d1).

3) Considering the metric space X = (0,∞) with the Euclidean metric d1, the

isometry group Iso(X, d1) reduces to the trivial group {1X}. It is obvious that
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all isometries determined in Theorem 2.2.1 preserve distances, but only the map

1X : (0,∞) → (0,∞) is surjective.

2.3 Euclidean plane isometries

The isometry group of a metric space can be very small, in fact it can be trivial,

only containing the identical mapping. Next we study the case when the group is

large.

We start with the study the group of isometries of R2 with Euclidean metric

d2. In this section we simply denote d instead of d(2), because it is the only metric

considered. The goal is to determine all the isometries of the space (R2, d) and to

describe the group Iso(R2, d).

2.3.1 Affine transformations of the Euclidean plane

We first recall some notions and results from linear algebra.

A transformation L : R2 → R2 is called a linear transformation if and only if for

every r ∈ R, and for every x, y ∈ R2 we have the relations:

L(rx) = xL(x) and L(x+ y) = L(x) + L(y).

The previous definition is equivalent with the fact that for all r, s ∈ R and for

all x, y ∈ R2 we have the relation:

L(rx+ sy) = rL(x) + sL(y).

Definition 2.3.1 A map f : Rn → Rn is called an affine linear transformation if

there exists a matrix A of size n× n and a vector b ∈ Rn such that

f(x) = Ax+ b, x ∈ Rn.

An affine linear transformation is the composition of a linear transformation and

a translation. An affine linear transformation transforms lines into lines, planes into

planes, etc..
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2.3.2 Classes of isometries of the Euclidean plane

The usual isometries of R2 are translations, rotations and symmetries. These are

affine linear transformations on R2 of the form f(x) = Ax + b, where b is a vector

and A is a 2× 2 matrix. We use the following terminology:

Definition 2.3.2 An affine linear transformation f(x) = Ax+ b on R2 is called a:

(1) translation by b, denoted tb if A = I2, where I2 is the identity matrix. Then

we have

f(x) = tb(x) = x+ b.

(2)counterclockwise rotation by an angle θ about the origin , denoted Rθ, if b = 0

and

(2.3.1) A =


 cos θ − sin θ

sin θ cos θ




(3) reflection about a line defined parametrically by
{
t

(
cos

θ

2
, sin

θ

2

)
: t ∈ R

}
,

denoted by Sθ, if b = 0 and

(2.3.2) A =


 cos θ sin θ

sin θ − cos θ


 .

2.3.3 Euclidean plane isometry group determination

We want to prove that the examples of the form f(x) = Ax+ b discussed above

give all isometries of the plane R2. The only difficulty is proving that an isometry

of the plane R2 is an affine linear transformation.

Theorem 2.3.1 Let f : (R2, d) → (R2, d) be an isometry. Then f is affine linear

transformation, i.e. there is a vector b ∈ R2 and a square matrix such that f(x) =

Ax+ b, for all x ∈ R2.

Lemma 2.3.1 Let a, b be positive real numbers. We define the set E(a, b) of triplets

of points in R2

E(a, b) = {(x, y, z) : x, y, z ∈ R2, d(x, y) = a, d(y, z) = b and d(x, z) = a+ b}.

23



Suppose that (x1, y1, z1), (x2, y2, z2) ∈ E(a, b) and assume that two of the three

equalities x1 = x2, y1 = y2, z1 = z2 are true. Then the third equality also holds.

Lemma 2.3.2 Suppose f : R → R2 is an isometry, with f((0, 0)) = (0, 0),

f((1, 0)) = (1, 0) and f((0, 1)) = (0, 1). Then f = 1R2.

2.4 The isometries of the n-dimensional

Euclidean space

2.4.1 The E(n), SE(n), O(n), SO(n) groups

Definition 2.4.1 We denote by O(n) the set of orthogonal matrices, by SO(n) the

set of orthogonal matrices with determinant 1, by E(n) the set of isometries on

Rn and by SE(n) the set of isometries of Rn, f(x) = Ax + b with det(A) = 1.

The elements of SE(n) are called proper isometries (or isometries that preserve

orientation) of Rn. The elements of E(n) that are not in SE(n) are called improper

isometries (or isometries which do not preserve orientation) of Rn.

The notations O(n), SO(n) are standard.

We will use the notation fA,b for the isometry fA,b(x) = Ax+ b on Rn.

Definition 2.4.2 We define the map l : E(n) → O(n) by l(fA,b) = A. The matrix

l(f) defines the linear part of f .

Theorem 2.4.1 (1) The sets E(n), SE(n), O(n), SO(n) are groups (with respect

to composition or matrix multiplication, depending on the case).

(2) The map l : E(n) → O(n) is a group morphism and Ker l is the group of

translations of Rn, which is isomorphic with the group (Rn,+).

(3) The map det : O(n) → {1,−1} is a morphism of groups with kernel SO(n).

(4) The composition E(n)
l−→ O(n)

det−→ {−1, 1} is a morphism of groups with

kernel SE(n).
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2.4.2 The classification of Euclidean plane isometries

In the following section we classify the isometries of the plane R2, dividing them

into four classes with respect to their fixed points.

Let f ∈ SE(2) be a proper isometry of R2, and suppose f 6= 1R2. A point x ∈ R2

is called a fixed point of f if the relation f(x) = x holds. To find the fixed points,

it is more convenient to use the identification of R2 with the complex plane C, and

the general form of isometries in this context given by the equation

Rθ(z) = eiθz.

Theorem 2.4.2 The composition of two reflections of R2 is:

(1) A translation if the axes of the two symetries are parallel. More precisely,

if b is a vector perpendicular to both axes and of length the distance between them,

then their composition is the translation t±b (the sign depends on the order of com-

position).

(2) A rotation of angle ±2α and centered at the intersection of the two axes, if

they meet at an angle α (the sign depends on the order of composition).

The composition of three reflections is either a reflection or a glide-reflection.

Every glide-reflection can be obtained by composing three reflections, two of the axes

being parallel and the third perpendicular to both.

Corollary 2.4.1 Every isometry of R2 can be obtained by the composition of at most

three reflections. In particular, the Euclidean group E(2) is generated by symmetries.

2.4.3 The symmetries of the O(n) group. Cartan’s theorem

Symmetries with respect to hyperplanes of the Rn Euclidean space play an es-

sential role in the generation of the orthogonal group O(n). Consider a hyperplane

H passing through the origin of Rn, with respect to which we define the symmetry.

Let L = H⊥ be the 1-dimensional space complementary to H . We have the

decomposition Rn = H ⊕ L, so any vector v ∈ Rn can be uniquely written in the

form v = w + u, where w ∈ H şi u ∈ L. We define the symmetry with respect to H

of the space Rn as the map

sH : Rn → Rn, sH(v) = sH(w + u) = w − u.
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It is clear that sH fixes the points of hyperplane H , and the point u ∈ L transforms

into −u, its symmetric with respect to the origin. Also, sH is a linear map and

because w ⊥ u, we have ‖sH(v)‖2 = ‖w‖2 + ‖u‖2 = ‖v‖2, that is ‖sH(v)‖ = ‖v‖,
v ∈ Rn. Therefore ‖sH(v)− sH(v

′)‖ = ‖sH(v− v′)‖ = ‖v − v′‖, for all v, v′ ∈ Rn, so

sH ∈ Iso(Rn).

Theorem 2.4.3 Let w and w′ be two distinct points in Rn. There exists a unique

symmetry s′H of Rn such that s′H(w) = w′. Additionally, we have s′H ∈ O(n) if and

only if ‖w‖ = ‖w′‖.

Theorem 2.4.4 (Cartan) The group O(n) is generated by its symmetries.

Corollary 2.4.2 Any isometry of Euclidean space Rn is a composition of at most

n + 1 symmetries. An isometry that fixes at least one point, is a composition of at

most n symmetries.

The group Sn is found as a subgroup of O(n), by identifying σ 7→ Xσ, where Xσ

is the matrix that has one element 1 on each row and on each column, and the others

equal to 0. Moreover, considering this morphism of groups as being u : Sn → O(n),

we have

detu(σ) = detXσ =
∑

τ∈Sn

(−1)sgn(τ)a1τ(1) . . . anτ(n)

= (−1)sgn(τ)a1σ(1) . . . anσ(n) = (−1)sgn(σ),

where Xσ = (aij)1≤i,j≤n. This calculation shows that the following diagram is com-

mutative

Sn

u
- O(n)

{−1, 1}
�

de
tsgn

-

Therefore, if σ ∈ An, then det u(σ) = 1, so we have u|An
→ SO(n), which shows

that the alternate group An identifies with a subgroup of SO(n).
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2.5 The isometries of the CC plane

2.5.1 The isometry group of the CC plane

One of the main problems in the geometric investigations of the metric space X

endowed with the metric d, is describing the Iso(X, d) group of isometries. If X is

the Euclidean plane with the usual Euclidean metric, we saw that Iso(X, d) consists

of all translations, rotations, central symmetries and axial symmetries. Moreover, a

consequence of Theorem 2.4.1 is that for the Euclidean plane, the isometry group

E(2) is the semi-direct product of its two subgroups, O(2) (the orthogonal group)

and T (2) (the translation group). The taxicab plane isometry group was determined

by D.J. Schattschneider the paper [59], a result which we will reobtain in a general

context. The taxicab metric provides an important first example of metric that does

not come from a scalar product, which decisively affects the structure of its group

of isometries.

In this section we study the general problem of the above isometry group, for

the R2 plane endowed with the Chinese checkers game metric dc defined by:

dc(X, Y ) = max{|x1 − x2|, |y1 − y2|}+ (
√
2− 1)min{|x1 − x2|, |y1 − y2|},

where X = (x1, y1) şi Y = (x2, y2).

Proposition 2.5.1 Any translation of the Euclidean plane is an isometry of R2
c .

Definition 2.5.1 Let P be a point and l be a Euclidean line in R2
c . Let Q be a

point on l such that PQ ⊥ l. If P ′ is a point in the opposite half-plane defined by

the line l, such that we have dc(P,Q) = dc(P
′, Q), then P ′ is called the reflection on

P with respect to l. The line l is called the axis of symmetry.

Lemma 2.5.1 Let l be the line determined by the points A(x1, y1), B(x2, y2) in the

Euclidean plane and dE be the usual Euclidean metric. If we denote by m the slope

of l, then we have the relation:

dc(A,B) =
M√

m2 + 1
dE(A,B),
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where

M =





1 + (
√
2− 1)|m| if |m| ≤ 1

|m|+
√
2− 1 if |m| ≥ 1.

Corollary 2.5.1 If A, B and X are three collinear points in R2, then

dE(X,A) = dE(X,B)

if and only if dc(X,A) = dc(X,B), i.e. the middle of a segment is the same, relative

to the two metrics considered.

Corollary 2.5.2 If A, B and X are three distinct collinear points in the Euclidean

plane, then we have dc(X,A)/dc(X,B) = dE(X,A)/dE(X,B), i.e. the ratio defined

by the distance dc coincides with the ratio defined by distance dE.

Remark 2.5.1 The last corollary shows the validity of the well-known theorems of

Menelaus and Ceva in the R2
c plane.

The next result determines the axial symmetries which are isometries of the R2
c

plane.

Proposition 2.5.2 An axial symmetry with axis of equation y = mx is an isometry

in R2
c if and only if

m ∈ {0,±1,±(
√
2− 1),±(

√
2 + 1),∞}.

Proposition 2.5.3 There are only 8 Euclidean rotations that preserve dc-distances.

In other words, the set of isometric rotations in R2
c , is

Rc =
{
rθ : θ = k

π

4
, k = 0, 1, . . . , 7

}
.

Thus we have determined the ”orthogonal group” of plane R2
c , consisting of 8

axial symmetries and 8 rotations, i.e. we have Oc(2) = Rc ∪ Sc. This is the dihedral

group D8, the Euclidean symmetry group of a regular octagon. Now we show that

the group Iso(R2
c) is isomorphic to T (2) ⋊ Oc(2), the semi-direct product of these

groups.
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Definition 2.5.2 Let A = (a1, a2) and B = (b1, b2) be two fixed points in R2
c . The

dc-segment determined by the points A and B is the set

ÂB = {X : dc(A,X) + dc(B,X) = dc(A,B)}.

Proposition 2.5.4 Let φ : R2
c → R2

c be an isometry and let ÂB be the standard

parallelogram of the points A and B. The relation holds:

φ(ÂB) = ̂φ(A)φ(B).

Corollary 2.5.3 Let φ : R2
c → R2

c be an isometry and let ÂB be the standard

parallelogram of the points A and B. The mapping φ transforms its vertices into

vertices and preserves the lengths of the sides of ÂB.

Proposition 2.5.5 Let f : R2
c → R2

c be an isometry which fixes the origin, i.e.

satisfies f(O) = O. Then f ∈ Rc or f ∈ Sc.

Theorem 2.5.1 Let f : R2
c → R2

c be an isometry. Then there exists TA ∈ T (2) and

g ∈ Oc(2) such that f = TA ◦ g, and these transformations are unique.

Corollary 2.5.4 The relation holds:

Iso(R2
c) ≃ R2 ⋊D8.

2.5.2 The area formula for CC triangles

The area of a triangle in the Euclidean plane can be calculated by using the

well-known formula

A =
b · h
2

,

which in general is not true in the R2
c plane. Formulas for calculating the area of a

triangle in the taxicab metric are given by R. Kaya in [32] and M. Ozcan, R. Kaya

in [43]. If we know the dc-lengths bc and hc of the base, and of the corresponding

height of a triangle in plane R2
c , we are interested in the calculation of its area. The

following theorem answers this question and provides the formula for the Euclidean

surface area of a triangle in terms of dc-distances.
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Theorem 2.5.2 Let bc and hc, be the dc-lengths of a base, and the height of a

triangle in the plane R2
c respectively. If we denote by m the slope of the base, then

the area of the triangle is given by the formula

A =
1 +m2

2M2
bchc,

where

M =





1 + (
√
2− 1)|m| if |m| ≤ 1

|m|+
√
2− 1 if |m| ≥ 1.

2.6 The Isodp(R
n) , p 6= 2 group

2.6.1 The Mazur-Ulam theorem: a powerful tool for the

investigation of isometry groups

In this subsection, E and F denote two real normal spaces. We consider the

metrics dE and dF induced on E and F by the norms that define the two spaces.

We have dE(x, y) = ‖x− y‖E but since there is no danger of confusion, we simplify

by using the same notation for the two norms. A function f : E → F is an isometry,

if it is surjective and preserves distances, i.e. we have

‖f(x)− f(y)‖ = ‖x− y‖, ∀ x, y ∈ E.

The function f is affine if it satisfies the relation

(2.6.1) f((1− t)a + tb) = (1− t)f(a) + tf(b),

for all a, b ∈ E and 0 ≤ t ≤ 1. Obviously, f is affine if and only if the function

T : E → F , T (x) = f(x)− f(0) is linear.

Theorem 2.6.1 (Mazur-Ulam) Any isometry f : E → F , between real normed

spaces is affine.

30



2.6.2 Determination of the Isodp(R
n) group

In this subsection we consider X = Rn and for all real numbers p ≥ 1 we define

the dp metric by:

(2.6.4) dp(x, y) =

(
n∑

i=1

|xi − yi|p
)1/p

,

where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. If p = ∞, then the d∞ metric is

defined by

(2.6.5) d∞(x, y) = max{|x1 − y1|, . . . , |xn − yn|}.

In the case p = 2, we obtain the well-known Euclidean metric on Rn. In this case

the Ulam theorem says that Isod2(R
n) is isomorphic to the semidirect product of

the orthogonal group O(n) and T (n), where T (n) is the group of translations of Rn.

The case p 6= 2 is very interesting. The main purpose of this chapter is to describe

the groups Isodp(R
n) for p ≥ 1 and p = ∞. We prove that if p 6= 2, all these groups

are isomorphic and hence they do not depend on the number p. These results appear

in the paper D. Andrica, V. Bulgărean [4].

Theorem 2.6.2 Let p 6= 2 be a real number, p ≥ 1, and let fA : Rn → Rn a linear

function defined by the matrix A ∈ Mn(R). Then fA ∈ Isodp(R
n) if and only if A

is a matrix of permutations, i.e. each row and each column of A has exactly one

nonzero element and this element is equal with ±1.

2.6.3 Determination of the Isod∞(R
n) group

For p = ∞ the unit sphere is

(2.6.10) Sn−1
d∞

= {x ∈ Rn : max{|x1|, . . . , |xn|} = 1}.

Theorem 2.6.3 Let fA : Rn → Rn a linear function defined by the matrix A ∈
Mn(R). Then fA ∈ Isod∞(Rn) if and only if A is a matrix of permutation, i.e. each

row and each column of A has exactly on nonzero element and this element is equal

to ±1.
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2.6.4 Common conclusion for the Isodp(R
n) and Isod∞(R

n)

groups

Summing up the results of subparagraphs 2.6.2 and 2.6.3 we obtain the following

common result for the Isodp(R
n) and Isod∞(Rn) groups:

Corollary 2.6.1 Let p ≥ 1, p 6= 2, a real number or p = ∞. Then the group

Isodp(R
n) is isomorphic with the semidirect product of groups (Rn,+) and Sn ×Zn

2 ,

where Sn is the group of permutations of the set {1, 2, . . . , n}.

Remark 2.6.1 One can show directly that the Iso(R2, d1) and Iso(R2, d∞) groups

are isomorphic, considering the isometry α : (R2, d1) → (R2, d∞), defined by

α(x1, x2) = (x1 + x2, x1 − x2) and the applying Theorem 2.1.1.

The subgroup of linear isometries of Isodp(R
3) consists of 48 linear maps defined

by the corresponding matrices described in Theorem 2.6.3. Also, these linear func-

tions define all symmetries of the sphere S2
dp
. For p = 1, the sphere S2

d1
is the border

of an octahedron with vertices at points (±1, 0, 0), (0,±1, 0), (0, 0,±1).

The subgroup of linear isometries of Isod∞(Rn) consists of 2nn! linear maps

defined by the matrices of permutations in Theorem 2.6.3. These linear maps define

all the symmetries of the sphere Sn−1
d∞

, which is the border of the n-cube with vertices

at points (±1, . . . ,±1), for all choices of signs + and −.

2.6.5 The d-isometric dimension of a finite group

For a finite group G we define the d-isometric dimension of G as the smallest

integer n with the property that the group can be realized as an isometry group of

a subset of Rn, where d is a given metric on Rn.

Theorem 2.6.4 Let G be a finite group. Then the d2-isometric dimension δd2(G)

equals the minimum dimension of the real representation of G.

As a consequence of Theorem 2.6.4, the following result is proved in [46]:

Corollary 2.6.2 If G1, . . . , Gs are finite groups, then the inequality holds

δd2(G1 ⊕ . . .⊕Gs) ≤ δd2(G1) + . . .+ δd2(Gs).
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Theorem 2.6.5 Let p ≥ 1, p 6= 2, a real number, or p = ∞. The inequality holds

δdp(Sn × Zn
2 ) ≤ n,

where Sn is the group of permutations of the set {1, 2, . . . , n}.

Theorem 2.6.6 The relation holds

δC(D8) = 2,

where δC is the isometric dimension relative to the metric dc of the plane R2
c , and

D8 is the dihedral group.

2.7 The geometric realization of a finite group.

Asimov’s Theorem

The problem of the realization a group as an isometry group of a metric space

is important. In this section we present the results of D. Asimov [6], which contain

affirmative solution of this problem in the case of finite groups.

Let G be a finite group with k + 1 elements {1, g1, . . . , gk}.

Theorem 2.7.1 There exists a Riemann metric on the sphere Sk−1 such that the

associated isometry group is isomorphic to G.

Proposition 2.7.1 With the metric induced from Rk on the sphere Sk−1, the metric

space X has its isometry group isomorphic to G.

Proposition 2.7.2 The relation holds Iso(M) ≃ G.

Corollary 2.7.1 Any finite group G is isomorphic with the group of isometries of

a finite subset XG of a Euclidean space. If card (G) = k, then XG can be chosen

with card (XG) = k2 − k, in a Euclidean space of dimension k − 1.

Example 2.7.1 Consider the triangle ABC in the Euclidean plane, having unequal

sides and let X = {A,B,C} with the induced Euclidean metric. It is clear that the

only isometry f : X → X is f = 1X , so we have Iso(X) ≃ 0.
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Example 2.7.2 If ABC is an isosceles triangle, AB = AC 6= BC, then the space

X = {A,B,C} has two isometries, namely 1X and g : X → X defined by g(A) = A,

g(B) = C, g(C) = B. In this case, we obtain

Iso(X) ≃ Z2.

Example 2.7.3 If ABC is an equilateral triangle, then the space X = {A,B,C}
has 6 isometries, namely 1X , three axial symmetries with axes the heights of the

triangle, 2 rotations of angle
2π

3
and center in the center of the triangle. In this case

we have

Iso(X) ≃ D3,

the dihedral group of order 6. In this case the geometric realization of the group D3

is optimal. Indeed, from Corollary 2.7.1 we have k = 6, so the set XD3
may contain

36 − 6 = 30 points, and can be considered in the space R5, which is far from the

case of the example above.

2.8 Remarks on the isometry group of the French

railway metric

France is a centralized country in terms of railways, almost any train traveling

between two cities having to pass through Paris. This motivates the name of the

French railway metric for the next construction. Let (X, d) be a metric space and

p ∈ X , a fixed point. We define a new metric on X , denoted dF,p, by

dF,p(x, y) =





0 if and only if x = y

d(x, p) + d(p, y) if x 6= y

and called the French railway metric.

Following the work of V. Bulgărean [14], in this section we study the properties

of isometries with respect to the dF,p metric. Let us begin by noticing that the

geometry generated by the metric dF,p is very poor, all geometrical properties being

concentrated at point p.
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2.8.1 The isometry group of the dF,p metric

Let (X, d) be a metric space and p ∈ X , a fixed point. Consider Iso(p)(X, d) the

subgroup of Iso(X, d) defined by all isometries of the space (X, d) that fix the point

p, i.e.

Iso(p)(X, d) = {f ∈ Iso(X, d) : f(p) = p}.

Theorem 2.8.1 Iso(p)(X, d) is a subgroup of Iso(X, dF,p). In particular, the inclu-

sion Iso(p)(X, d) ⊆ Iso(X, dF,p) holds.

Theorem 2.8.2 For any isometry f ∈ Iso(X, dF,p), the point p is fixed, i.e. the

relation f(p) = p holds.

Taking into account the classification of isometries presented in subsection 2.1.1,

we obtain the following result:

Corollary 2.8.1 For any metric space (X, d) and any point p ∈ X, the metric space

(X, dF,p) is elliptical, i.e. all its isometries are elliptical.
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Chapter 3

Special problems related to

isometries

3.1 Frieze groups in the Euclidean plane

The notion of frieze is defined in DEX as ”an ornament in the form of a horizontal

strip with paintings or reliefs, around a bowl, a room, a coffin, and so on”. We will

consider such strips, in the plane, in which some simple geometric pattern repeats

indefinitely. In this section we describe, in the language of group theory, the possible

configurations, a central role being played by symmetries and translations in the

Euclidean plane.

3.1.1 Generators and relations in a group

We leave aside for now the Euclidean plane isometries to discuss the concepts

that will be used to describe and classify the Frieze groups.

We denote G = 〈X|R〉, where the symbols X,R,G have the following signifi-

cance:

The set X of generators consists by symbols, usually finite, x1, . . . , xn, n ∈ N ∪
{0}. We think of the symbols x±1

i , 1 ≤ i ≤ n, as being the letters in an alphabet

X±, used to form words. The length of a word is the number of letters used. This

number is finite, and zero if the word is ”empty”, denoted e. A word is reduced if
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it doesn’t contain the letters x±1
i on neighboring places, for all i ∈ {1, . . . , n}. We

denote by F (X) the set of reduced words.

The set R consists of relations, meaning equations between words, usually finite

in number, of the form ui = vi, where ui, vi ∈ F (X), i ∈ {1, . . . , m}, m ∈ N ∪ {0}.
We say that 〈X|R〉 is a presentation of the group G, or equivalently, G = 〈X|R〉, if
the following three conditions hold:

(i) every element of G can be written as a word in X±;

(ii) the equations of R occur between elements of G;

(iii) any equation between words in X± of G is obtained from the relations

contained in R.

Lemma 3.1.1 Let T be a cyclical subgroup of G, t a generator for T and r ∈ G.

Then r−1Tr = {r−1xr : x ∈ T} is cyclical subgroup of G and r−1tr is its generator.

3.1.2 Composition of reflections across different axes

Back to isometries in Euclidean plane, we analyze in detail the composition of

symmetries of different axes.

3.1.3 Classification of frieze groups

Definition 3.1.1 A subgroup G of E(2) is discrete if for any point O ∈ R2, any

disk of center O contains a finite number of points from the set {gO : g ∈ G}.

Definition 3.1.2 A frieze group is a discrete subgroup of E(2) which has infinite

subgroups of cyclic translations, i.e. a subgroup of E(2) that has subgroups of trans-

lations generated by a single translation.

There are exactly seven frieze groups. Before we begin to classify them, we give

two lemmas that illustrate some properties of translations.

Lemma 3.1.2 Let r be a glide symmetry and t be a translation such that the axes

of r and t are parallel. Then r and t commute.

Lemma 3.1.3 Let T ≤ G ≤ E(2), where T is a subgroup of translations of G. Then

T is normal subgroup of G.
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Theorem 3.1.1 If F is a frieze group, then F is one of the following 7 possible

groups:

F1 = 〈t|〉
F 2
1 = 〈t, r|r2 = 1, r−1tr = t〉

F 2
1 = 〈t, r|r2 = 1, r−1tr = t−1〉

F 3
1 = 〈t, r|r2 = 1, r−1tr = t〉

F2 = 〈t, s|ts = t−1, s2 = 1〉
F 1
2 = 〈t, s, r|s2 = 1, ts = t−1, r2 = 1, tr = t, (sr)2 = 1〉

F 2
2 = 〈t, s, t|s2 = 1, ts = t−1, r2 = t, tr = t, (sr)2 = 1〉.

3.2 Mappings that preserve some geometric

properties

3.2.1 The Aleksandrov-Rassias problem

Let (X, dX), (Y, dY ) be two metric spaces and the function f : X → Y . We say

that f preserves distances r > 0, if we have dY (f(x), f(y)) = r, for all x, y ∈ X with

dX(x, y) = r. Evidently, f is an isometry if and only if f is surjective and preserves

any distance.

In 1970, A.D. Aleksandrov [2] raised the question that if f preserves a single

distance, does it follow that it is an isometry? The answer was given in the case

of Euclidean spaces, by F.S. Beckman and D.A. Quarles [9]. They considered the

function f : R → R, defined by

f(x) =





x+ 1 if x ∈ Z

x if x ∈ R \ Z.

The Aleksandrov-Rassias problem. If (X, dX) and (Y, dY ) are metric spaces

and f : X → Y is a continuous applications, surjective, and preserves distance 1,

does it follow that f is an isometry?

Example 3.2.1 Consider the function f : R → R, defined by

f(x) = x+
1

7
sin 2πx.
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This is a diffeomorphism, preserving distance 1, but it is not an isometry.

B. Mielnik and Th. M. Rassias [40] proved the following result: Any homeomor-

phism f : Rn → Rn (n ≥ 3) which preserves a distance r, is an isometry of Rn.

Regarding the isometries between different spaces, Th. M. Rassias [50] proved that

the following property holds: For any natural number n ≥ 1, there exists a natural

number mn such that for N ≥ mn there exist maps f : Rn → RN which are not

isometries but preserve distance 1.

3.2.2 Mappings in R3 that transform cubes into cubes

It is very interesting to investigate whether the distance conservation property,

r > 0, can be replaced by conservation properties of simple geometric configurations,

in order to have an affirmative answer to the appropriate Aleksandrov-Rassias prob-

lem.

S.M. Jung has shown that if we have an injective map f : Rn → Rn (n ≥ 2) which

transforms any equilateral triangle (quadrilateral or hexagon) with side length a > 0

in a figure of the same type but with side length b > 0 then, up to a translation,

there exists a linear isometry g : Rn → Rn such that we have

f(x) =

(
b

a

)
g(x).

Furthermore, the authors of paper [29] proved that if an injective map f : Rn →
Rn transforms any circle of radius 1 into a circle of radius 1, then f is a linear

isometry up to a translation. We extend the results of [28] to the 3-dimensional case

and we prove the following result: if we have an injective map f : R3 → R3 that

transforms any cube into a cube, then f is a linear isometry up to a translation.

Lemma 3.2.1 Let the injective map f : R3 → R3 that transforms any cube into

a cube. For any cubes with side length 1, A and B, if Int(A) ∩ Int(B) = ∅, then
Int{f(A)} ∩ Int{f(B)} = ∅.

Next we show that if an injective function transforms cubes into cubes, then it

is an isometry. More precisely we have the theorem:
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Theorem 3.2.1 If the injective map f : R3 → R3 transforms any cube into a cube,

then f is a linear isometry up to a translation.

3.3 The isometry group of the sphere. Results on

isometries between spheres

Given two metric spaces X and Y , an important problem is finding minimal

conditions for an map f : X → Y to be an isometry. There is a rich literature in

this direction, in the case when the domain and codomain of the map have the same

size and the map preserves only one distance.

Let Sn be the unit n-dimensional sphere in Rn+1. We determine the group of

isometries Iso(Sn), with the induced metric of Rn+1. For the cases n = 1 and n = 2,

we give geometric proofs for the classification of isometries. Also, we show that a map

f : Sn → Sp, p ≥ n > 1, which preserves two distances and keeps an angle invariant,

is an isometry. This problem was proposed by Th. M. Rassias. The general proof

for Rn does not work in this context because it uses the properties of equilateral

triangles and the rhombus, geometric properties of the Euclidean plane. In this

section we present a proof for the problem mentioned above. Assuming continuity

of f , we show that, assuming that it preserves an irrational angular distance, then

f is an isometry. For simplicity we use the notations A,B,C, . . . for the points from

the domain and A′, B′, C ′, . . . for their corresponding images through f .

Theorem 3.3.1 Any isometry f : S1 → S1 is a rotation or an axial symmetry.

Theorem 3.3.2 Any isometry f : S2 → S2 is a planar symmetry, a rotation or a

roto-symmetry (composition of a rotation and a symmetry).

Theorem 3.3.3 Any isometry f : Sn → Sn is a composition of rotations and

possibly a symmetry.

Theorem 3.3.4 The relation holds Iso(Sn) ≃ O(n+ 1).

Theorem 3.3.5 Any isometry f ∈ Iso(Sn) is a composition of at most

[
n+ 1

2

]

proper rotations of Sn and possibly a symmetry with respect to a hyperplane passing

through the origin.
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Remark 3.3.1 1. The above results show that the Iso(Sn) group is generated by

rotations and symmetries.

2. Theorem 3.3.2 implies that the isometry group of a regular polyhedron

may contain only proper rotations of the S2 sphere, planar symmetries and roto-

symmetries (compositions of proper rotations with planar symmetries). In fact, ac-

cording to Hessel’s theorem, there are only 14 possible types of such groups.

Theorem 3.3.6 There not exist functions f : Sn → S2, n ≥ 3, that preserves angles

θ,mθ, where mθ < π and m is a natural number ≥ 2.

Remark 3.3.2 1) By the above proof it results that every application f : S2 → S2,

that preserves angles θ, mθ, where mθ < π and m is a natural number ≥ 2, is an

isometry of the sphere S2.

2) The above proof is valid, with appropriate modifications, if we replace

codomain S2 with Sp, p ≥ 2. Suppose that f preserves angles θ and 2θ. If

we fix the images of A, B, in the plane X1Xp with A as the north pole and

B = (sin θ, 0, . . . , 0, cos θ), where ÂOB = B̂OC = θ and ÂOC = 2θ as above, then

a possible position for C ′ would be the intersection of (p− 1)-spheres of equations

x2
1 + x2

2 + . . .+ x2
p−1 = sin2 2θ, xp = cos 2θ

and

(x1 − sin θ cos θ)2 + x2
2 + . . .+ (xp − cos2 θ)2 = sin2 θ.

Theorem 3.3.7 Let f : Sn → Sp, p ≥ n > 1, be a continuous map that preserves

angles θ,mθ, where m > 1 and mθ < π. Then f is an isometry.

Theorem 3.3.8 Let f : Sn → Sn be a map that preserves angle θ. Suppose

arccos
(

1
m+sec θ

)
is irrational for 0 ≤ m ≤ n− 1. Then f is an isometry.

Remark 3.3.3 If there exists an angle θ such that arccos

(
1

n + sec θ

)
is irrational

for all n ≥ 0, then any continuous map f : Sn → Sn that preserves angle θ is an

isometry.
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3.4 The isometry group of a locally compact

metric space

It is well known from the classical work of D. van Dantzig and B.L. van de

Waerden [23] that if (X, d) is a locally compact and connected metric space, then

its Iso(X, d) group of isometries equipped with punctual convergence topology is

locally compact and acts properly onX . Recently it was shown that punctual closure

of Iso(X, d) is locally compact if the space Σ(X) of connected components of X

is quasi-compact (is compact but not necessarily Hausdorff) with respect to the

quotient topology. The problem of whether Iso(X, d) is closed in C(X,X) (the

space of all continuous mappings from X to X , endowed with punctual convergence

topology) is still unresolved. The purpose of this section is to show that if Σ(X) is

quasi-compact then Iso(X, d) coincides with his Ellis semigroup. More precisely, we

prove the following result.

Theorem 3.4.1 Let (X, d) be a locally compact metric space. We denote by

Iso(X, d) the isometry group endowed with punctual convergence topology and by

Σ(X) the space of connected components of X, endowed with the quotient topology.

Then:

1. If Σ(X) is not quasi-compact, then it is not necessary that Iso(X, d) be locally

compact, or to act properly on X.

2. If Σ(X) is quasi-compact, then the following properties hold:

(a) Iso(X, d) is locally compact;

(b) the action of Iso(X, d) on X is not always proper;

(c) the action of Iso(X, d) on X is proper under the assumption that the space

X is connected.

Our approach is based on the sets (x, Vx) = {g ∈ Iso(X, d) : g(x) ∈ Vx}, where
Vx is a neighborhood of x ∈ X . These sets form a subbase of neighborhoods of the

identity (unit group) with respect to punctual convergence topology, which is the

natural topology of Iso(X, d).

The following two simple examples establish claims 1 and 2 (b) of the theorem

stated above.
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Example 3.4.1 Let X = Z endowed with the discrete metric. Obviously Σ(X) is

not a quasi-compact space. It can be easily seen that Iso(X, d) is the group of all

bijections of Z. This is not locally compact with respect to the punctual convergence

topology, so it cannot act on its own on a locally compact space.

Example 3.4.2 Let X = Y ∪ {(1, 0)} ⊂ R2 where Y = {(0, y) : y ∈ R} şi d =

min{1, δ}, where δ is the Euclidean metric. As we shall see, the group Iso(X, d) is

locally compact. However, the action of Iso(X, d) on X is not proper, because the

isotropy group of point (1, 0) is not compact, since it contains the translations of

Y . Thus, the action of Iso(X, d) on X is not proper, even if X has two connected

components.

3.4.1 Local compactness of the Iso(X, d) group

The next result is essential for the investigation of the conditions (a) and (b)

above:

Lemma 3.4.1 Let (X, d) be a locally compact metric space, F ⊆ Iso(X, d) and

K(F ) = {x ∈ X : F (x) = {f(x) : f ∈ F} is relatively compact}.

Then K(F ) is an open and closed subset of X.

Lemma 3.4.2 Let (X, d) be a locally compact metric space with quasi-compact space

of connected components Σ(X). Then condition (a) is satisfied.

Example 3.4.3 Let X = Z be endowed with the discrete metric. If fn(z) = z for

−n < z < 0, fn(−z) = 0, and fn(z) = z + 1 in other cases, then fn → f , where

f(z) = z for z < 0, and f(z) = z + 1 for z ≥ 0. It follows that fn is an isometry for

all n, but f is not surjective because 0 6∈ f(Z).

Lemma 3.4.3 If Σ(X) is quasi-compact and (fn), fn ∈ Iso(X, d) is a sequence

such that fn → f with respect to the punctual convergence topology, then f(X) is

open and closed in X.
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Proposition 3.4.1 If (X, d) is a locally compact metric space and Σ(X) is quasi-

compact, then Iso(X, d) is closed in C(X,X).

Proposition 3.4.2 There exists a subsequence {Snk
}k∈N of {Sn} such that there

exists xk ∈ Sk with xk → x0, where x0 ∈ X.

Theorem 3.4.2 If Σ(X) is quasi-compact, then Iso(X, d) is locally compact.

3.4.2 The proper action of the Iso(X, d) group on the

space X

In this section, applying the methods previously used, we present a complete

proof of the following result:

Proposition 3.4.3 If (X, d) is locally compact and connected, then the Iso(X, d)

group is locally compact and its action on X is proper.
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(2013) - The Fourteenth International Conference on Applied Mathematics and

Computer Science, Cluj-Napoca, August 29-31, 2013.
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