
"BABES-BOLYAI" UNIVERSITY OF CLUJ-NAPOCA
FACULTY OF MATHEMATICS AND INFORMATICS

Laura Florentina Cacovean

Formal verification of models for

discrete event systems

THESIS SUMMARY

Scientific coordinator:
Prof. PhD. Florian Mircea Boian

2014

2

The thesis contains the following chapters 1:

1 Introduction
1.1. Actual approaches to verifying models
1.2. Symbolic versus explicit verification
1.3. Remarkable Tools for CTL model verification
1.4. Remarkable Tools for ATL model verification
1.5. Motivation and objectives
1.6. Research directions of the thesis
1.7. Structure of the thesis
1.8. Original contributions of the thesis

2 Fundamental theoretical concepts

2.1. Kripke structures. Temporal logics
2.2. Fundamental algebraic concepts

2.2.1. Sigma algebras
2.2.2. Sigma languages

2.3. Conclusions

3 CTL model checking using the algebraic methodology

3.1. The Model Checking
3.1.1. CTL model checking

3.2. Algebraic description of a CTL model checker
3.2.1. Algebraic structure of the CTL language
3.2.2. Algebraic description of the CTL model checker

3.3. The algorithm for verification of CTL formulas
3.4. Design of the algebraic CTL model checker

3.4.1. Algebraic specification of a context-free language
3.4.2. Implementation of the algebraic compiler through semantic actions

3.5. Grammar specification of −language Lctl
3.5.1. Specifying semantic actions. Automatic generation of CTL model checker
3.5.2. Case study - mutual exclusion of two processes

3.6. Conclusions

4 CTL model checking through attributive grammars
4.1. Development model checkers through algebraic compilers based on macroprocessing. Alternative
solutions.
4.2. ANother Tool for Language Recognition

4.2.1. Code generation with ANTLR
4.2.2. Eliminating nondeterminism
4.2.3. Semantic actions

4.3. Attribute grammars
4.4. Definition of the semantics of CTL by using fixed point theorems
4.5. Analysis of the complexity of CTL model checking algorithm
4.6. Algebraic compiler implementation through ANTLR attribute grammar
4.7. Development of attribute grammar in ANTLRWorks
4.8. Conclusions

5 Architecture of the CTL model checker. Applications. Experimental results

5.1. Web Services
5.2. Publishing the CTL model checker as Web Service
5.3. C# Client - CTL Designer

1 In this summary are not detailed all sections of Chapters

3

5.4. Architecture of the CTL model checker tool
5.5. CTL model checker for concurrent execution of two processes
5.6. Performance evaluation of the CTL model checker tool

5.6.1. Modeling the game
5.6.2. The algorithm for determining the optimal strategy
5.6.3. Experimental results

5.7. Conclusions

6 ATL model checking using algebraic description

6.1. The description of the ATL model checking
6.2. Concurrent game structure
6.3. ATL logic

6.3.1. ATL syntax
6.3.2. ATL semantics

6.4. ATL model checker algorithm
6.5. Algebraic description of an ATL model

6.5.1. Algebraic structure of the ATL language
6.5.2. Algebraic description of the ATL model checker

6.6. Design of the algebraic ATL model checker
6.7. Grammar specification of −language Latl

6.7.1. Specifying semantic actions
6.7.2. Case study - mutual exclusion of two processes

6.8. Example of an ATL model for alternative concurrent synchronous game structure
6.9. Relational algebra concepts
6.10. Using the relational algebra in the model checking algorithm
6.11. Conclusions

7 Architecture of ATL model checker. Applications. Performance evaluation

7.1. Publishing the ATL model checking tool as Web Service
7.2. ATL API for building models
7.3. Design of strategies for multi-agent systems using ATL logic

7.3.1. The algorithm for determining the optimal strategy
7.3.2. Case study about ATL model checker performance

7.4. Verification of JADE agents using ATL models
7.4.1. The construction and verification of ATL models for agent-based systems
7.4.2. JADE agents with FSM behaviors
7.4.3. Formal modeling of behaviors of type FSMBehaviour
7.4.4. The ATL model for FSMBehaviour
7.4.5. Checking JADE agents with ATL Library

7.5. Conclusions

8 CONCLUSIONS

REFERENCES

ANNEX A
ANNEX B
ANNEX C
ANNEX D
ANNEX E
ANNEX F
ANNEX G

4

Publications associated with doctoral thesis

The research results and original contributions presented in the doctoral thesis were published in
proceedings of international conferences where I attended, in the Studia journal of "Babes Bolyai" University -
Informatica or are under review at various ISI journals, classified by CNATDCU.

Published papers (3 conferences of category B, 1 conference of category C, 3 conferences of category D, 1
journal of category D):

1. Laura Florentina Stoica, Florian Mircea Boian and Florin Stoica. A Distributed CTL Model Checker.

Proceeding of 10th International Conference on e-Business, Reykjavik Iceland, paper 33, pg. 379-386, 29-
31 July, 2013. Indexed in ISI Thomson. Conference classified by CNATDCU in B category. [SBS13]
(http://www.bibsonomy.org/bibtex/2ec9b93632cd56d6c8daea8db853c41d9/dblp)

2. Florin Stoica and Laura Florentina Stoica. Building a new CTL model checker using Web Services.
Proceeding The 21th International Conference on Software, Telecommunications and Computer Networks
(SoftCOM 2013), At Split-Primosten, Croatia, 18-20 September, pg. 285-290, 2013. ISBN: 978-1-4799-
1122-6. DOI: 10.1109/SoftCOM.2013.6671858. Indexed in ISI Thomson. Conference classified by
CNATDCU in B category. [SS13]
(http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6671858)

3. Laura Florentina Stoica, Florin Stoica and Florian Mircea Boian. Using ATL model checking in agent-
based applications. Proceeding of Third International Conference on Modelling and Development of
Intelligent Systems, Sibiu, Romania, 10–12 October, pg. 127-135, 2013. Indexată Zentralblatt Math. Anul
publicării 2014. Conference classified by CNATDCU in D category. [SSB13]

4. Laura Florentina Stoica and Florian Mircea Boian. Algebraic approach to implementing an ATL model
checker. STUDIA UNIV. BABEŞ BOLYAI, INFORMATICA, Cluj-Napoca, Romania. Volume LVII,
Number 2, pg. 73–82, 2012. Journal classified by CNATDCU in D category. [SB12]
(http://www.studia.ubbcluj.ro/arhiva/cuprins.php?id_editie=710&serie=INFORMATICA&nr=2&an=2012)

5. L.F. Stoica, F. Stoica and D. Simian. Client/Server Implementation of an ATL Model Checker Using Web
Services. Proceedings of the 16th WSEAS International Conference on Computers, Kos Island, Greece, pg.
359–364, July 14-17, 2012. ISBN: 978-1-61804-109-8. [SSS12]
(http://www.wseas.us/e-library/conferences/2012/Kos/COMCOM/COMCOM-00.pdf)

6. L.F. Cacovean, F. Stoica and D. Simian. A New Model Checking Tool. Proceedings of the European
Computing Conference (ECC’11). Paris, France, pg. 358–364, April 28-30, 2011.
Indexată Scopus. Conference classified by CNATDCU in C category. [CSS11]
(http://dl.acm.org/citation.cfm?id=1991016.1991081&coll=DL&dl=GUIDE&CFID=413406545&CFTOKE
N=34793924)

7. Laura Florentina Stoica and Florin Stoica. Considerations about the implementation of an ATL model
checker. Second International Conference on Modelling and Development of Intelligent Systems, MDIS.
Sibiu, Romania, pg. 170–179, 2011.
Indexată Zentralblatt Math. Conference classified by CNATDCU in D category. [SS11]
(http://conferences.ulbsibiu.ro/mdis/2011/Doc/Proceeding_mdis2011.pdf)

8. Laura Florentina Cacovean and Florin Stoica. Modeling the Broker Behavior Using a BDI Agent.
Proceedings of the 14th WSEAS International Conference on Computers (CSCC). Corfu, Grecia, pg. 699–
703, 2010. Indexată Scopus. [CS10]
(http://dl.acm.org/citation.cfm?id=1984366.1984415&coll=DL&dl=GUIDE&CFID=413406545&CFTOKE
N=34793924)

9. F. Stoica and L. F. Cacovean. Interoperability Issues in Accessing Databases through Web Services.
Proceedings of the 11th WSEAS International Conference on Evolutionary Computing (EC '10). Iaşi,
Romania, pg. 279–284, 2010. Indexată Scopus, ISI Thomson. [SC10]

5

(http://dl.acm.org/citation.cfm?id=1863431.1863478&coll=DL&dl=GUIDE&CFID=413406545&CFTOKE
N=34793924)

10. Laura Florentina Cacovean. Using CTL Model Checker for Verification of Domain Application Systems,
Proceedings of the 11th WSEAS International Conference on Evolutionary Computing (EC '10), 13-15
iunie 2010, Iaşi, Romania, ISSN: 1790-2769, ISBN: 978-960-474-194-6. Indexată ISI Thomson.
(http://dl.acm.org/citation.cfm?id=1863431.1863475&coll=DL&dl=GUIDE&CFID=413406545&CFTOKE
N=34793924)

11. Laura F. Cacovean and Florin Stoica. CTL Model Update Implementation Using ANTLR Tools.
Proceedings of the 13th WSEAS International Conference on COMPUTERS, Rhodos, Greece, pg. 169–
174, 2009. ISSN: 1790-5109, ISBN: 978-960-474-099-4. Indexată ISI Thomson. [CS09]
(http://dl.acm.org/citation.cfm?id=1627733)

12. Laura Florentina Cacovean. An Algebraic Specification for CTL with Time Constraints. First International
Conference on Modelling and Development of Intelligent Systems, MDIS’09, Sibiu, Romania, pg. 46–55,
2009. ISSN 2067 - 3965.
Indexată Zentralblatt Math. Conference classified by CNATDCU in D category. [Ca09]
(http://www.zentralblatt-math.org/zbmath/search/?q=an%3A1240.65005)

13. Laura F. Cacovean and Florin Stoica. Algebraic Specification Implementation for CTL Model Checker
Using ANTLR Tools. WSEAS International Conferences, Computers and Simulation in Modern Science -
Volume II, Bucharest, Romania, pages 45–50, 2008. ISSN: 1790-5117, ISBN: 978-960-474-032-1. [CS08]
(http://www.wseas.us/e-library/conferences/2008/tomos2/papers/vol00.pdf)

14. Laura Florentina Cacovean, Marian Pompiliu Cristescu, Corina Ioana Cristescu, Ciprian Cucu.
Construction of a generalized model for determination the broker behaviour for capital market. Proceedings
of the 4th International Conference on Knowledge Management: Projects, Systems and Technologies
Knowledge is power - KIP 2009 Bucureşti, 6-7 noiembrie 2009, ISBN: 978-973-663-783-41.
(http://econpapers.repec.org/paper/romconfkm/17.htm)

15. Laura F. Cacovean, Iulian Pah, Emil M. Popa and Cristina I. Brumar. Algorithm and an elevator control
system example for the CTL model checker. ICE-B 2008, International Conference on E-Business, Porto,
Portugal, July 26-29, pg. 77–80, 2008, ISBN: 978-989-8111-58-6.
Indexată ISI Thomson. Conference classified by CNATDCU in B category. [CPPB08]
(http://www.ice-b.icete.org/Abstracts/2008/ICE-B_2008_Abstracts.htm)

16. L.F. Cacovean, E.M. Popa, C.I. Brumar and I. Pah. An application CTL formula based on Problem Solving
Methodology. New Aspects of Computers from Proceedings of the 12th WSEAS International Conference
of Computers. Heraklion, Greece, pg. 218–223, 2008. ISSN: 1790-5109, ISBN: 978-960-6766-85-5.
Indexată ISI Thomson. [CPBP08]
(http://dl.acm.org/citation.cfm?id=1513605.1513646&coll=DL&dl=GUIDE&CFID=413406545&CFTOKE
N=34793924)

Papers under review in ISI journals classified by CNATDCU:

1. Florin Stoica and Laura Stoica. Design, implementation and evaluation of a new ATL model checking tool.

Journal of Logical Methods in Computer Science. Nr: LMCS-2013-927. Decembrie 2013, ISSN 1860-5974
(http://www.lmcs-online.org/index.php), Journal classified by CNATDCU in B category.

2. Laura F. Stoica, Florin Stoica and Florian M. Boian. Verification of JADE agents using ATL model
checking. International Journal of Computers Communications & Control. ID 803, 10.12.2013, ISSN 1841-
9836 (http://journal.univagora.ro/), Journal classified by CNATDCU in C category.

6

1. Introduction

1.1. Actual approaches in verifying models

Testing and simulation can give us only confidence in the implementation of a software system, but

cannot prove that all bugs have been found. However testing is neither exhaustive nor very effective for
software, especially concurrent software, which is much more complex than sequential software. Thus, there has
been a tremendous push for efficient algorithms and techniques that allow one to prove that a program satisfies
certain properties. The process of stating and proving properties about programs is known as program
verification.

Verification of a software system involves checking whether the system in question behaves as it was
designed to behave. Design validation involves checking whether a system design satisfies the system
requirements. Both of these tasks, system verification and design validation can be accomplished thoroughly
and reliably using model-based formal methods, such as model checking [Roz11].

Model checking is particularly well-suited for the automated verification of finite-state systems, both for
software and for hardware.
Main concern of formal methods in general, and model checking in particular, is helping to design correct
systems [BBCR10]. Detecting and eliminating bugs as early in the design cycle as possible is clearly an
economic imperative. For example, the Pentium FDIV bug (a bug in the Intel P5 Pentium floating point unit
discovered in 1994) cost Intel Corporation a half billion dollars.

Model checking is the formal process through which a given specification representing a desired
behavioral property is verified to hold for a given system (the model).

A Computation Tree Logic (CTL) specification is interpreted over Kripke structures, which are
graph-like structures, in which nodes represent states and arcs represent transitions between states.

The set of all paths through a Kripke structure is assumed to correspond to the set of all possible
computations of a system. CTL logic is branching-time logic, meaning that its formulas are interpreted over
all paths beginning in a given state of the Kripke structure.

A CTL formula encodes properties that can occur along a particular temporal path as well as to the
set of all possible paths. A path in a CTL model is interpreted as sequences of successive states of
computations. The CTL syntax includes several operators for describing temporal properties of systems: A

(for all paths), E (there is a path), ○ (at the next moment),  (in future), □ (always) and U (until).
A Kripke structure offers a natural model for the computations of a closed system, whose behaviour is

completely determined by the state of the system. The compositional modelling and design of reactive systems
requires each component to be viewed as an open system [SS11].

The branching time temporal logic CTL has a limited value when applied to open systems [HW02].
An open system is a system that interacts with its environment and whose behaviour depends on the state of
the system as well as the behaviour of the environment. In order to construct models suitable for open
systems, the Alternating-time Temporal Logic (ATL) was defined [AHK02]. ATL represents an extension
of CTL, which is interpreted over concurrent game structures (CGS).

ATL replaces path quantifiers A and E by cooperation modalities of the form A φ (where A is a

group of agents). Informally, A φ means that agents A have a collective strategy to enforce φ,

regardless of the actions of all the other agents [KP05].
The state explosion problem is widely agreed to be the most formidable challenge facing the application

of model checking to large and complex real-world systems. In short, the number of states required by the
model grows exponentially with the number of system components (or state variables), constituting the main
practical limitation of model checking. Reducing the time required to verify models remains also a big
challenge. This naturally raises interest in using parallelism to improve the performance of many formal model

7

checkers. Much of the extensive research on the parallelization of model checking algorithms followed the
distributed memory programming model which appeared from the necessity to eliminate the memory constraints
of a single computer system.

The aim of our research was to develop a reliable, easy to maintain, scalable model checker tool to
improve applicability of CTL/ATL model checking in design of general-purpose computer software.

1.1.1. Remarkable Tools for CTL model verification

Some examples of well-known explicit-state parallel model checkers are DiViNe and PSPIN. DiVinE
[BBCR10], [BBR10] is a distributed model checker for explicit state LTL (Linear Temporal Logic) model
checking and is able to handle large systems consisting of as many as 419 million states, as stated in
[BBPESR10]. PSPIN has also been used for performing distributed model checking with the capability of
handling up to around 2.8 million states [LS99].

The basic idea behind symbolic model checking is to use a more efficient “symbolic” representation for
the Kripke structure being checked and for sets of states of the Kripke structure. Since the sizes of these
representations is typically the limiting factor in applying model checking, an efficient representation can
potentially allow much larger structures to be checked.

Symbolic model checkers, such as CadenceSMV (Mir, 2000), NuSMV [CCGR02] analyse the state space
symbolically using binary decision diagrams (BDDs). The binary decision diagram is a data structure for
representing Boolean functions. With appropriate labelling of each state of the Kripke structure, any expression
on the Boolean variables represents a set of states of the structure. In contrast with explicit-state model
checking, states in symbolic model checking are represented implicitly, as a solution to a logical equation. This
approach saves space in memory since syntactically small equations can represent comparatively large sets of
states [Roz11]. A symbolic model checker represents the Kripke structure itself symbolically using BDDs to
represent transition relations by Boolean expressions. The key to symbolic model checking is to perform all
calculations directly using these Boolean expressions, rather than using the Kripke structure explicitly.

1.1.2. Remarkable Tools for ATL model verification

ATL has been implemented in several symbolic tools for the analysis of open systems.
In [AHMQRT98] is presented a verification environment called MOCHA for the modular verification of

heterogeneous systems. The input language of MOCHA is a machine readable variant of reactive modules.
Reactive modules provide a semantic glue that allows the formal embedding and interaction of components with
different characteristics [AHMQRT98].

In [LR06] is described MCMAS, a symbolic model checker specifically tailored to agent-based
specifications and scenarios. MCMAS supports specifications based on CTL and ATL, implements OBDD-
based algorithms optimized for interpreted systems and supports fairness, counter-example generation, and
interactive execution (both in explicit and symbolic mode). MCMAS has been used in a variety of scenarios
including web-services, diagnosis, and security.

 MCMAS takes a dedicated programming language called ISPL (Interpreted Systems Programming
Language) as model input language. An ISPL file fully describes a multi-agent system (both the agents and the
environment).

1.1.3. Comparing Symbolic and Explicit Model Checking

Two most common methods of performing model checking are explicit enumeration of states of the

model and respectively the use of symbolic methods.
There are two measures of the size of the model under model checking. One is the number of the states in

reachable state space (state space size), while the other is represented by the number of bits needed to represent

8

a state size. In symbolic model checking, the space used to represent a state is limited by the internal data
structures. However, because a symbolic approach uses a compact representation of the set of states, it can
handle a larger state space size. In explicit model checking, the state size is not strictly limited, but is related
with state space size in the total memory consumption. In [EP02] is presented a comparison between
RULEBASE, a symbolic model checker developed at IBM Haifa Research Laboratory and the explicit LTL
model checker SPIN [Hol97]. The software verified was a distributed storage subsystem software application.
The state space size handled by SPIN was 108 in a 3-process model. Using symbolic model checking,
RULEBASE keeps a compressed representation of the state space and thus was able to manage 10150 states. On
the other hand, because of the limit on state size, RULEBASE could not represent a state large enough to
include the information needed for more than 2-process configuration [EP02].

An important reason why software model checking is still predominantly performed using explicit-state
model checkers such as SPIN, is that these methods gain much of their efficiency from state-reduction
techniques such as partial-order reduction (POR). The POR methods explore a reduced state space in a property-
preserving way [MP11]. Partial-order reduction is useful only when the system has an asynchronous model of
composition.

Most hardware designs are based on a clocked-approach and thus are synchronous. For these systems, the
symbolic model checking approach is more appropriate [LST03].

On the other hand, for nondeterministic, high-level models of hardware protocols, it has previously been
argued that explicit model checking is better than symbolic model checking [Hu95]; this is because the
communication mechanisms inherent in protocols tend to cause the BDDs in symbolic model checking to blow
up [BBPESR10].

In their basic form, symbolic approaches tend to perform poorly on asynchronous models where
concurrent interleaving are the main source of explosion, and explicit-state model-checkers with POR have been
the preferred approach for such models [BBPESR10].

A detailed experimental comparison between performance of explicit-state model checkers and symbolic
model checkers can be found in [Tab95]. The study follows an automata-theoretic approach in program

verification, originally proposed by Vardi and Wolper [VW86]. Given a program P and a property ϕ, the task is

to check whether the program satisfies the property ϕ. If the program P is viewed as a finite-state generator of

words, and the specification ϕ as a finite-state acceptor, the model-checking problem is reduced to an automata-
theoretic question: whether the automaton PA A

j
Ç is empty. A non-deterministic automaton A defined over a

nonempty finite alphabet S is said to be universal if it accepts *S . The universality problem is to check if A is
universal. If ܣ௉ is a universal automaton, the model checking problem is reduced to check whether Aj is also

universal. The study presented in [Tab95] uses two approaches, explicit and symbolic, for solving the
universality problem. For evaluating the explicit approach, author has used Java tool Automaton.brics.dk

[M∅l04] and the model-checker SPIN. To solve universality symbolically were used Cadence SMV [Mir00]
and NuSMV [CCGPRST02] as symbolic BDD-based model checkers.

In order to present a full comparison between the symbolic and the explicit algorithms, was performed a
scaling comparison of Cadence SMV, NuSMV and respectively SPIN. The direct comparison of the three model
checkers shows that the explicit one (SPIN) is much faster than the symbolic ones. In conclusion, experimental
results show that the explicit approach scales better than the symbolic one, which was rather surprising but
confirms similar statements from [BBPESR10], [Hu95].

1.2. Motivation and objectives

The broad goal of our research was to develop a reliable, easy to maintain, scalable model checker tool to

improve applicability of CTL (Computation Tree Logic) model checking in design of general-purpose computer
software.

9

Concurrent software is asynchronous as the different components might be running on different
processors or be interleaved by the scheduler of the operating system. Taking into account the above
considerations, in our tool we are using an explicit-state model technique.

The most pressing challenge in model checking today is scalability [Roz11]. A model-checking tool must
be efficient, in terms of the size of the models it can reason about and the time and space it requires, in order to
scaling its verification ability to handle real-world applications.

To address the state explosion problem, our tool is based on an efficient data structure for internal
representation of the model to be verified [GrStr12].

An orthogonal approach to increase the capacity of an explicit-state model checker tool is to exploit the
memory and computational resources of multiple computers in a distributed computing environment
[BBPESR10]. Following this idea, our tool is based on Web Services technology to address the time constraints
in verification of large models

1.3. Structure of the thesis

Chapter 1 presents the current state of research in using the temporal logics in verification of systems
and an analysis of the advantages / disadvantages of explicit verification in relation to symbolic verification.
Also, are analyzed briefly some dedicated tools for the CTL model checking, respectively ATL model checking.
Further, is presented the motivation of the study undertaken, objectives and directions of research in the thesis.

In chapter 2 are described the fundamental algebraic concepts used in the algebraic methodology of
development of the algebraic compilers, in generally, and implementation of the model checkers, in particular.

 Chapter 3 contains a comprehensive description of all aspects that must be considered in using the
algebraic methodology to implement a software tool able to automatically verify systems modeled using
temporal logic. This chapter begins with an overview of the concept of model checking based on temporal logic
and the stages of the verification process of a model. In the following is described the algebraic methodology
proposed by Rus [Rus91, CPBP08] for the design of compilers using algebraic specifications and their
applications in the implementation of CTL model checkers. Section 3.2 includes the theory of algebraic
compiler definition which is in fact a CTL model checker. In Section 3.3 is presented the abstract
implementation level of a homomorphism between syntax algebra of source, respectively target languages. This
homomorphism performs practically the checking of the CTL formulas in a given model. Section 3.4 contains
the algebraic specification of a context-free language, which constitutes the premises of design the CTL model
checker from context-free grammars which generate the language of the CTL formulas (process detailed in

Section 3.4.2). Grammar specification of a −language of CTL formulas is presented in section 3.5, and the
chapter ends with the complete specification of algebraic compiler (CTL model checker). In the case study
presented in Section 3.5.2, a CTL model for mutual exclusion of two processes, is showed the step by step
execution of the designed algebraic compiler in the verification process of the modeled system, where
specifications are expressed as CTL formulas. Although follows the same principles of the algebraic
methodology proposed by Rus, our CTL model checker presents the following structural differences from the
one shown in [Wyk98]: supports full syntax of CTL formulas, respectively all modal operators (in [Wyk98],
CTL model checker supports only four temporal operators); differs the set of operations dependent on model, in
our solution we opted for a set of operations that have a similar syntax used in ATL model checker, presented in
chapter 6; algebraic compiler is generated using ANTLR, based on attribute grammars (described in chapter 4),
and the parser is top-down, as opposed to the one provided by TICS tool used in [Wyk98], which is bottom-up
and is based on macro processing in the translation process.

In chapter 4 is shown the ANTLR parser generator, upon which is based the implementation of our
CTL model checker and is justified the choice of this tool in the detriment of others (YACC, FLEX, BISON,
BYACC/J, etc.). The attribute grammars are presented as an alternative for algebraic compiler development
through macro processing (TICS system solution adopted, and applied in [Wyk98]) and are enumerated the
arguments which recommended the ANTLR attribute grammars in implementing model checkers. Are

10

presented the ANTLR advanced concepts used in parser generation: LL(k), LL(*), PEG type analysis, flexible
meta-language for specifying grammars, allowing placement of a semantic actions before and/or after
specification of production rules, syntactic predicates, semantic predicates, memoization, finite automata
decision with the role of prediction in the parsing, auto-backtracking for non-LL(*) grammars, techniques to
eliminate nondeterminism. Also, is presented the technique of implementing the semantic actions in ANTLR,
which is the concept of connection between attribute evaluation in the grammar that generates the language of
CTL formulas and algebraic compiler implementation that represents the CTL model checker. Thus, the
semantic action associated with a production rule represents the implementation of the derivate operation
associated with the CTL operator for which it was defined that production. At the same time, the role of the
semantic action is to compute the attribute value of the nonterminal which is rewritten by that production rule.

In chapter 5, for making available the CTL algebraic compiler implementation as reusable component
of the CTL model checking tool, was achieved its publication as a Web Service. The CTL algebraic compiler,
encapsulated in an Web service and based on the Java code generated by ANTLR on the basis of our original
CTL attribute grammar, will perform the verification of CTL formulas in a given model, providing at the same
time the signaling of any lexical/syntactic errors in the verified formula. The algorithm for determining a
winning strategy for X0 game was used to evaluate the performance of the new CTL model checking tool.

In chapter 6 is presented a CTL extension, named ATL (Alternating-time Temporal Logic). ATL
temporal logic is used in modeling of open systems, and describe in a naturally way the processing of multi-
agent systems, multi-user games, etc. Within the chapter it is shown how algebraic methodology can be used in
the development of ATL model checking tool. In section 6.2 is formally defined the concurrent game structure.
In section 6.3 is presented the ATL logic with its syntax and semantics. Sub-chapter 6.5 contains algebraic
structure and description of an ATL model. Algebraic structure description of ATL language has as its starting
point the definition of language of ATL formulas as Σ–language. The algebraic methodology to design a CTL
model checker, presented in detail in chapter 3, has been successfully applied for the algebraic design of an ATL
model checker. The ATL algebraic compiler specification was detailed in section 6.7, by defining the EBNF
syntax and semantic actions corresponding to the production rules of context-free grammar which specify the Σ-
language of ATL formulas. In sections 6.9 and 6.10 is accomplished the formalization of the Pre() function,
used in all derivate operations corresponding to ATL modal operators, using concepts of Relational Algebra. A
concrete call of this function (which in terminology of algebraic methodology is a model-dependent operation)
was exemplified in the verification of specifications formulated in our original ATL model for the critical
section problem solved using a mutex.

In chapter 7 is presented the client / server architecture of the ATL model checker, which is based on the
Web services technology to expose the functionality of its core component, the algebraic compiler developed in
the previous chapter. The ATL model checker tool is composed by a client application which allows building of
interactive ATL models, a server part (the Web service) and two API libraries (available for C# and Java
languages) that allow the programmatically specification of an ATL model in XML format and checking the
ATL formulas by invoking the Web service. Also, was evaluated the performance of our model checker tool in
relation to three database servers: MySql, SQL Server and H2. Have been achieved two applications of ATL
model checker tool, for determining the optimum strategies in multi-agent systems modeled as synchronous
structures of alternative concurrent games and respectively for validating Finite State Machine behaviors of
JADE agents.

Chapter 8 contains the conclusions of the thesis and presents directions for future research.

Within the doctoral thesis, tables and figures are numbered with consecutive numbers prefixed by the
number of section in which they appear.

11

1.4. Original contributions of the thesis

The main original contributions of the thesis and the papers where they were published are:

• Expanding the syntax algebra Sinctl of Lctl language presented in [Wyk98] with the set of operators {→, AG,

AF, EG, EF}. Construction of TMC : Sinctl → SinM homomorphism was also extended by defining a derived

operation ()MCd op in the word algebra SinM of target language for each new operator introduced [CS08,

CS09, Ca09];

• Defining two model - dependent operations, ݁ݎ݌∀() and respectively 	݁ݎ݌∃() which are used in all derived
operations associated to CTL modal operators; this allowed simplification of the syntax of derived
operations from SinM algebra [SBS13, SS13];

• Expanding the algebraic specification of a context-free language for the case in which the production rules
of the grammar which generates that language are specified in EBNF syntax. This extension was necessary

because ANTLR grammar for specification of the Lctl −language uses EBNF syntax for some production
rules associated to CTL operators in order to eliminate the left recursion;

• Proof of obtaining denotation (the set of satisfaction) for ܩܣ	݂ CTL formula as fix point of ݃(ܺ) =	⟦݂⟧	⋂ ;function (ܺ)∀݁ݎ݌

• The analysis of the complexity of CTL model checking algorithm;

• Implementation/generation of algebraic compiler through ANTLR attribute grammar for specification of the

Lctl −language [CS08, CS11];

• Exposure of algebraic compiler functionality through a Web Service – CTL Checker [CSS11];

• CTL Designer – The client component of the CTL model checking tool, a GUI application developed in C#
which allows the interactive construction and verification of CTL models [CSS11];

• Design an algorithm to determine the optimal strategy in an alternate synchronous game and its use for
performance evaluation of the CTL model checker [SBS13, SS13];

• Defining the language of ATL formulas as Σ–language, definition of derived operations and algebraic
compiler structure that represents the ATL model checker [SS11, SB12, SSS12];

• Implementation of an ATL algebraic compiler through ANTLR attribute grammar for specification of the

Latl −language [SSS12];

• Building an alternate synchronous game structure (ATL model) for controlling access to a Web site
[SSS12];

• Formalization of the Pre() function − considered model dependent operation in the syntax algebra of target

language for the algebraic compiler − through relational algebra expressions and its implementation by
translating the respective expressions in SQL language;

• Publication the ATL model checking tool as Web service – ATL Checker [SB12, SSS12];

• ATL Designer – The client component of the ATL model checking tool, a GUI application developed in C#,
allows the construction and verification of the interactive of ATL models. For internal representation of an
ATL model as an oriented multi-graph, our implementation is based on the data structure appropriate for
dynamic graphs [Ebe87]. These structures have been adapted for C# and then extended for representation of
the concurrent game structures [SB12, SSS12];

12

• Development of an API programming interface – ATL Library – for the programmatic building of
CTL/ATL models with large size;

• Building and verification of ATL model for the two concurrent processes who want to enter into a critical
section. Our solution improves the classical CTL model because supports real competition: two processes
may require simultaneously entering in the critical section, and their access is restricted using a mutex
managed by the operating system, represented in our model by an agent;

• Modifying the ATL model proposed by Alur [AHK02] to be able to represent the agents movements
through arbitrary symbols (in the original model the agents moves were represented through natural
numbers) [SSB13, SB12];

• Design an algorithm to determine the optimal strategy in an alternate synchronous game and its use for
performance evaluation of the of ATL model checker;

• Develop a technique for validation of Finite State Machine behaviors of JADE agents. The proposed
solution is based on Java version of ATL Library Component, and allows checking at execution time agent
specifications expressed through ATL formulas. The ATL model is constructed automatically, at definition
of the finite state machine of JADE agents;

• Current implementation of the ATL model checker supports three database servers: MySQL, SQL Server
and H2.

1.5. Keywords

Software system, Formal verification, Temporal logic, Model checker, CTL logic, CTL model
checking, Kripke structure, CTL model, ATL logic, ATL model checking, ATL model, Concurrent game
structure, Multi-agent system, Algebraic compiler, ANTLR context-free grammar, ANTLR attribute grammar,
Web Service, Relational Algebra, SQL.

2. Fundamental theoretical concepts

This chapter describes fundamental algebraic concepts used in algebraic methodology, in general for the
algebraic compiler development, and in particular for the implementation of the model checkers.

In the algebraic methodology the languages are represented using sigma algebras, and a compiler is
specified as a generalized homomorphism which includes the source language in the target language.

Exposed methodology can be used to implement model checkers as algebraic compilers in which source
languages are the languages of temporal logics that define the syntax and semantics of temporal logic formulas,
and the target language is the language of set of states that satisfy the logical formulas within specific models.

3. A CTL model checking tool based on the algebraic methodology

Temporal logic has emerged as a main formalism for reactive systems. A temporal logic is essentially an
ordinary predicate or propositional logic with the addition of modal operators for describing how the
interpretation of symbols changes over time [Hu95]. Typical temporal operators include the next-time operator
(X), the eventuality operator (F), the always operator (G) and until (U) operator.

A CTL model checker is a tool which can be used to verify that a given system satisfies a given CTL
logic formula. A CTL model is a Kripke structure represented by a directed graph where the nodes are the states
of the system and the edges represents the state transitions. The nodes are labeled with atomic propositions. In
order to be verified by a given model, a property is written as a temporal logic formula over the labeled

13

propositions from the model. A model checker is an algorithm that determines the states of a model that satisfy
a temporal logic formula.

3.1. The CTL model

A model is defined as a Kripke structure M=(S, Rel, P:S→2AP) where S is a finite sets of states also called
nodes, Rel⊆S×S is a transition relation denoting a set of directed edges, and P is a labelling function that defines

for each state s ∈ S the set P(s) of all atomic propositions from AP that are valid in s. The transition relation Rel

is left-total, i.e., ∀ s ∈ S ∃ s' ∈ S such that (s,s') ∈ Rel.

For each s∈S, the notation succ(s)={s'∈S |(s,s')∈Rel} is used to denote the set of successors of s. From

definition of Rel, each state from S must have at least one successor, that is ∀s∈S, succ(s)≠∅. A path in M is an

infinite sequence of states (s0,s1, s2,…) such that ∀i, i≥0, we have (si,si+1)∈Rel.

We use s' ∈ succ(s) to denote that there is a relation (s, s') in Rel. The labelling function P maps for each

state s ∈ S the set P(s) of all atomic propositions from AP that are valid in s [HR00].

3.2. CTL syntax and semantics

A CTL formula has the following syntax given in Backus-Naur Form (BNF):

ϕ :: true|false|ap|(¬ ϕ1)| ϕ1∧ϕ2| ϕ1∨ϕ2| ϕ1 ϕ2| AX ϕ1| EX ϕ1| AG ϕ1| EG ϕ1| AF ϕ1| EF ϕ1|ϕ1AUϕ2| ϕ1EUϕ2, ∀ap∈AP.
A CTL specification is interpreted over Kripke structures. The set of all paths through a Kripke

structure is assumed to correspond to the set of all possible computations of a system. CTL logic is
branching-time logic, meaning that its formulas are interpreted over all paths beginning in a given state (an
initial state) of the Kripke structure.

A CTL formula encodes properties that can occur along a particular temporal path as well as to the
set of all possible paths. The CTL syntax include several operators for describing temporal properties of
systems: A (for all paths), E (there is a path), X (at the next moment), F (in future), G (always) and U
(until)

Syntactically, CTL formulas are divided into three categories:

• those whose outermost operator, if any, is not a temporal operator;

• those whose outermost operator is a temporal operator (X (next), U (until), F (eventually) or G
(always)) prefixed with the existential path quantifier E, and

• those whose outermost operator is a temporal operator prefixed with the universal path quantifier
A.

3.3. Fixed-point characterization of CTL

Let M=(S, Rel, P:S→2AP) be an arbitrary finite Kripke structure. Given a state s in S, is defined a

satisfaction relation (M, s)⊨ ϕ to specify that formula ϕ holds in s. We denote by ⟦߮⟧ெ = ሼݏܵ	|	(ܯ, (ݏ ⊨ ߮}

the set of all states from S which satisfy the formula ϕ (the set of states at which ϕ is true). ⟦߮⟧ெ is called the

denotation of ϕ in model M. Because often M is implicit, we write ⟦߮⟧ rather than ⟦߮⟧ெ. Thus (M, s)⊨ ϕ ⇔ ݏ ∈ ⟦߮⟧.
Let 2ௌ denote the power set of the set S. A set valued function ݂ ∶ 	 2ௌ 	→ 	2ௌ is called monotone if for all

X, Y ⊆ S, ܺ	 ⊆ ܻ		݂(ܺ) 	⊆ ݂(ܻ).

14

Fixed points definition Let ݂ ∶ 	 2ௌ 	→ 	2ௌ be a set valued function and ܼ	 ⊆ S a subset of S.
1. Z is called a fixed point of ݂ if ݂(ܼ) = ܼ.
2. Z is called the least fixed point (LFP) of f if ݂(ܼ) = ܼ and ∀	ܷ	 ⊆ ܵ, ݂(ܷ) = ܷ	 ⇒ ܼ	 ⊆ ܷ.
3. Z is called the greatest fixed point (GFP) of f if ݂(ܼ) = ܼ and ∀	ܷ	 ⊆ ܵ, ݂(ܷ) = ܷ	 ⇒ ܷ ⊆ ܼ.

The Kleene fixed-point theorem can be written in the following form:

Theorem: Let ݂ ∶ 	 2ௌ 	→ 	2ௌ be a monotone function on a finite set S.
1. There is a least and a greatest fixed point of f.
2. ⋃ ݂௡(௡ஹଵ ߶) is the least fixed point of f.
3. ⋂ ݂௡(ܵ)௡ஹଵ is the greatest fixed point of f.

The universal and existential pre-image functions ݁ݎ݌∀, ∃݁ݎ݌	 ∶ 	 2ௌ → 	2ௌ are defined by:
(ܺ)∀݁ݎ݌ = ሼݏ ∈ (ݏ)ܿܿݑݏ	|	ܵ ⊆ (ܺ)∃݁ݎ݌ {ܺ = ሼݏ	 ∈ (ݏ)ܿܿݑݏ	|	ܵ ∩ ܺ ≠ ߶} (1)

For a CTL formula ϕ, the model checker will compute ⟦߮⟧ recursivelly, using the rules described in the
following table, where LFP and GFP represent the least fixed point and respectively the greatest fixed point of
the specified functions:

Formula ϕ Computation of ⟦࣐⟧
ap { s ∈ S | ap ∈P(s) }

true (false) S (߶)
߮ଵ S \ ⟦߮ଵ⟧߮ଵ ∧ ߮ଶ ߮ଵ ∧ ߮ଶ

⟦߮ଵ⟧ ⋂ ⟦߮ଶ⟧⟦߮ଵ⟧ ⋃⟦߮ଶ⟧ܺܣ	߮ଵ pre∀(⟦φଵ⟧)ܺܧ	߮ଵ ݁ݎ݌∃(⟦߮ଵ⟧)߮ଵܷܣ	߮ଶ LFP of
 ݂(ܺ) = ⟦߮ଶ⟧ ⋃ (⟦߮ଵ⟧ ଶ LFP߮	ܷܧଵ߮ ((ܺ)∀݁ݎ݌⋂ of
 ݂(ܺ) = ⟦߮ଶ⟧ ⋃ (⟦߮ଵ⟧ ଵ GFP߮	ܩܣ ((ܺ)∃݁ݎ݌⋂ of ݂(ܺ) = ⟦߮ଵ⟧ ଵ GFP߮	ܩܧ(ܺ)∀݁ݎ݌⋂ of ݂(ܺ) = ⟦߮ଵ⟧ ଵ LFP߮	ܨܣ(ܺ)∃݁ݎ݌⋂ of ݂(ܺ) = ⟦߮ଵ⟧ ଵ LFP߮	ܨܧ(ܺ)∀݁ݎ݌⋃ of ݂(ܺ) = ⟦߮ଵ⟧ (ܺ)∃݁ݎ݌⋃

Table 3.3.1: Recursively computation of denotation ⟦߮⟧ of CTL formula ϕ.

In the following we will justify the form of denotation for CTL formula ܩܣ	߮. By definition, ⟦ܩܣ	߮⟧ =
଴ݏ} ∈ ,଴ݏ)	∀		|	ܵ ,ଵݏ …), ௜ݏ ∈ ⟦߮⟧	∀݅ ∈ ℕ}. Thus, we can rewrite: ⟦ܩܣ	߮⟧ = ሼݏ ∈ 	ݏ	|	ܵ ∈ 	 ᇱݏ	∀	݀݊ܽ	⟦߮⟧ ∈ ,(ݏ)ܿܿݑݏ ᇱݏ ∈ ⟦߮⟧	=	{⟦߮	ܩܣ⟧ ∩ ሼݏ ∈ (ݏ)ܿܿݑݏ	|	ܵ 	⊆ 	 = {⟦߮	ܩܣ⟧ ⟦߮⟧	∩ .(⟦߮	ܩܣ⟧)∀݁ݎ݌	

So, ⟦ܩܣ	߮⟧ is a fixed point of the function ݂(ܺ) = 	 ⟦߮⟧	⋂ It remains to see that it is the .(ܺ)∀݁ݎ݌
greatest fixed point.

Let H be another fixed point, i.e., =	 ⟦߮⟧ 	∩ ܪ We must show that . (ܪ)∀݁ݎ݌	 ⊆ .⟦߮	ܩܣ⟧
Suppose the contrary: there is a state ℎ଴ ∈ ெߨ	∃  ⟦߮	ܩܣ⟧	∌ such that ℎ଴ ܪ = (ℎ଴, ℎଵ, …) a path in M

and ∃	݇	 ∈ ℕ such that ℎ௞ ∈ and ℎ௞	ெߨ	 ∉ 	 ⟦߮⟧.
But ℎ଴ ∈  ℎ଴ ⟦߮⟧ ⊇ ܪ ∈ 	 ⟦߮⟧. Also ℎ଴ ∈  ℎଵ (ܪ)∀݁ݎ݌ 		ܪ ∈ because ℎଵ ܪ ∈ .	(ℎ଴)ܿܿݑݏ

Following the same reasoning ℎଵ ∈  ℎଵ ⟦߮⟧ ⊇ ܪ ∈ 	 ⟦߮⟧. Having as induction hupothesis ℎ௞ିଵ ∈ this imply ܪ
that: ℎ௞ିଵ ∈  ℎ௞ (ܪ)∀݁ݎ݌	 ∈  ℎ௞ ܪ ∈ 	 ⟦߮⟧,
contradiction with the initial assumption.

15

In conclusion, we proved that ܪ ⊆ (ܺ)݂ is the greatest fixed point of the function ⟦߮	ܩܣ⟧ and thus ⟦߮	ܩܣ⟧ = 	 ⟦߮⟧	⋂ is presented in the following ⟦߮	ܩܣ⟧ The algorithm for effective computation of .(ܺ)∀݁ݎ݌
section.

4. CTL model checking by attribute grammars

The CTL model checker is provided as a compiler C:Ls→Lt, where Ls is the source language and Lt is the

target language. The source language Ls is the language describing the CTL formulas and the target language Lt
is a language which describes the set of nodes from the model M where the corresponding CTL formulas are
satisfied.

The compiler C translates a formula ϕ of the CTL model to the set of nodes ⟦߮⟧ over which formula ϕ is

satisfied. That is, C (ϕ)=⟦߮⟧ where ⟦߮⟧={s∈S| (M,s) ⊨ ϕ}.

The implementation of the compiler C is made in two steps. First, we need a syntactic parser to verify the

syntactic correctness of a given formula ϕ. Then, we should deal with the semantics of the CTL language,
respectively with the implementation of the CTL operators presented in table 3.3.1.

Writing a translator for certain language is difficult to be achieved, requiring time and a considerable
effort [Rus91]. Currently there are specialized tools which generate most of necessary code beginning from a
specification grammar of the source language.

For implementation of the algebraic compiler we choose the ANTLR (Another Tool for Language
Recognition). ANTLR [Parr07] is a compiler generator which takes as input a grammar - an exact description of
the source language, and generates a recognizer for the language defined by the grammar.

ANTLR support the EBNF (Extended BNF) notation, useful for specification of operations that requires
the use of recursion.

In order to translate a formula ϕ of a CTL model to the set of nodes ⟦߮⟧ over which formula ϕ is
satisfied, is necessary to attach actions to grammatical constructions within specification grammar of CTL.

The actions are written in target language of the generated parser (in our case, Java). These actions are
incorporated in source code of the parser and are activated whenever the parser recognizes a valid syntactic
construction in the translated CTL formula. In case of our compiler C, the actions define the semantics of the

CTL model checker, i.e., the implementation of the CTL operators.
The model checker generated by ANTLR from our specification grammar of CTL takes as input the

model M (where are defined the sets S, Rel, and P) and a formula ϕ, and provides as output the denotation of ϕ

– the set of states where the formula ϕ is satisfied, using the following general algorithm:
 assign atomic propositions by labelling function P;
 handle Boolean operators by standard set operations;
 handle temporal operators AX, EX by computing pre-images using expressions given in (1);
 handle temporal operators AG, EG, AF, EF, AU, EU by applying rules described in table 3.3.1, until a

fixpoint is reached.
The algorithm for computing ⟦ܩܣ	߮⟧ is presented in figure 4.1 [CGL96].

For the formal specification of the AG operator given in figure 4.1, the corresponding action included in
our ANTLR grammar of CTL language is detailed in figure 4.2.

Z:=∅; Z':= ⟦߮⟧;
while (Z≠Z') do
 Z:=Z';
 Z':=Z'∩ ݁ݎ݌∀(ܼᇱ);
endwhile ⟦ AG φ ⟧:=Z';

Figure 4.1: Formal definition of the set expression ⟦ܩܣ	߮⟧.

16

private HashSet PreAll(HashSet Z) {
 HashSet rez = new HashSet();
 for (Node n1 : model) {
 Iterator<Edge> it =
 n1.getLeavingEdgeIterator();
 HashSet succ = new HashSet();
 while (it.hasNext()) {
 Edge e = it.next();
 Node n2 = e.getTargetNode();
 succ.add(n2.getIndex());
 }
 if (Z.containsAll(succ)) {
 rez.add(n1.getIndex());
 }
 }
 return rez;
}

ctlFormula returns [HashSet set]
@init { }
: 'ag' e=implExpr {
 HashSet rez = new HashSet();
 HashSet rez1 = new HashSet($e.set);
 while (!rez.equals(rez1)) {
 rez.clear();
 rez.addAll(rez1);
 HashSet tmp = PreAll(rez1);
 rez1.retainAll(tmp);
 }
 $set = rez1;
}

Figure 4.2: Implementation of the AG operator in ANTLR.

Analog were implemented all CTL temporal operators.

For efficient representation of CTL models, our tool is based on SingleGraph class from GraphStream
package [GrStr12].

5. The architecture of the CTL model checker tool. Applications.
Experimental results.

Web services represent a standardized way for applications to communicate with other applications over a
network, regardless of the platform or operating system upon which the service or the client is implemented. We
choose to publish our implementation of CTL model checker as a Web service in order to utilize the combined
resources of distributed computers and to bring advantages of distributed verification to various clients over the
Web. As we can see from the figure 5.1, the transport protocol (HTTP) used by the Web Service enables clients
to invoke its methods through firewalls.

17

The architecture of the Web service implementation is represented in figure 5.1.

Figure 5.1: The architecture of the ATL model checker Web Service.

The Web service will receive from a client the XML representation of a CTL model S and a CTL formula

ϕ to be verified. The original form of the CTL model S is then reconstructed and passed to the algebraic

compiler C generated by ANTLR using our CTL extended grammar. For a syntactically correct formula ϕ, the

compiler will return as result C(ϕ)={q∈Q| q ⊨ ϕ}, the set of states in which the formula is satisfied. If as input

is an erroneous formula ϕ, the model checker will return to client an message describing the error. In our tool is
enabled a compression facility for large CTL models, to reduce the network traffic between client and server.

Our Web service is using GlassFish or Tomcat as a Web container. For testing purposes, the CTL model
checker described in this paper is available online via two Web services hosted by use-it.ro and respectively by
mcheck-useit.rhcloud.com.

The system architecture of the CTL checker tool presented in this paper is depicted in the following UML
package diagram:

Figure 5.2: The system architecture of the CTL model checker tool.

The CTL model checker tool contains the following packages:

• The algebraic compiler (CTL Compiler) embedded into the Web Service (CTL Checker);
implementation of these components was made in Java.

• The GUI client application written in C# and used for interactive construction of the CTL models as
directed graphs (CTL Designer).

• In case of huge CTL models, with many states, is required the use a programmatic construction of
these models. The CTL non-GUI model package contains classes used for internal representation of a
CTL model as a directed graph. There are available two libraries, for C# and respectively for Java.
For internal representation of a CTL model in C#, our implementation is based on data structures

18

provided by (Ebert, 1987), more precisely symmetrically stored forward and backward adjacency
lists. The Java implementation is based on GraphStream [GrStr12].

• The XML API for CTL models package contains classes needed to encode the CTL model into XML.

• The CTL GUI Model package is responsible with graphical representation of the Kripke structures as
directed graphs.

The model checking tool contains a C# GUI client who allows interactive graphical design of the CTL

models.

Figure 5.3: CTL Designer - the C# client in action.

The model is sent as a XML document to the Web service, together with the formula to be verified. The
client is also responsible for displaying the response from server.

All facilities related to interactive design of CTL models are accessible through a right-click contextual
menu: adding nodes, labelling nodes, deleting nodes, adding arcs, display nodes numbers, etc.

In addition, the CTL Designer interface allows several configurations:

Icon Signification

Allows selection of the Web server: local or remote (Internet). Service-

location details for web-service access can be found at: http://use-it.ro

Allows selection of the implicit Internet server.

In case of huge models, is recommended to activate their compression before

sending them to the Web Service.
Table 5.1: CTL Designer configuration from its interface.

5.1. Performance evaluation of our tool

In this section we describe the usage of our model-checker to design a game strategy when playing Tic-
Tac-Toe (called TTT for short in the rest of this paper).

First, let us describe the (classical) game of Tic-Tac-Toe. The game is played by two opponents, X and O,
with a turn-based modality on a 3×3 board. The two players take turns to put pieces on the board. A single piece
is put for each turn and a piece once put does not move. A player wins the game by first lining three of his or
her pieces in a straight line, no matter horizontal, vertical or diagonal. If the entire board becomes full but no
player has formed a line, the result is a draw.

In our example, player X is played by the application and player O should be played by a human.

19

CTL model checking algorithm is used to return a strategy to achieve a winning strategy for the
computer.

The TTT is a turn-based synchronous game. In such a system, at every transition there is just one agent
that is permitted to make a choice (and hence determine the future).

In the following we will show how to use the CTL formalizations in finding winning strategies in case of
TTT game.

Modelling the Game

We suppose that positions of the board are numbered as in figure 5.1.1:

0 1 2
3 4 5
6 7 8

Figure 5.1.1: Labelling the grids on the board

Values of the board locations are denoted by xi ∈ {0,1,2}, where i ∈ {0,1,...,8}. The value 0 means an
empty position, the value 1 denotes a previous move of the player X and the value 2 represents a move of the
player O.

For the sequence of values l m nx x x we define:

min(,1) min(,1) min(,1)l m n l m nx x x x x x= + +å

 where , , {0,1,...,8}l m n Î .
Formally, the Kripke model of TTT is defined as M = (S, Rel, P:S→2AP) with its structure explained in the

following.
The set of atomic propositions AP is denoted by:

AP = {(1 2 3 60,3,6 0,1,2
, , l l l l l ll l

x x x x x x+ + + += = 0 4 8 2 4 6, , x x x x x x T) | {0,1, 2} for 0,8 and kx kÎ = {1,2}T Î }.

The number of successors of a state is given by the formula:

1 2
0,3,6

9 l l l
l

x x x+ +
=

−  .

A state labelled with value T =1 signify that is turn of the player X for making the move and if T =2 then
the player O will make the next move.

The game stops (so no moves are possible) if the board moves locations are full, i.e.:

1 2
0,3,6

9l l l
l

x x x+ +
=

=

Another situation where the game is not continuing is when a player won.

The state s is a winning state for player X if 111 ()P s∈ and it is a winning state for player O if 222 ()P s∈ .

Alternation to move can be formalized as follows: for a transition (, ')s s Rel∈ , there are the following

cases:

 () 3 (')T P s T P s∈  − ∈

where {1,2}T ∈ .

Algorithm to determine the optimal strategy

Assuming that the game is in the state s0 ∈ S, we denote by k the number of empty positions of the board.
The strategy of player X can be expressed by the following algorithm:

Step 1

Determines all states from the model satisfying the formula: (AX	EX)k/2(AX 111), to choose the
move which favours wining of the game in the future.
We denote this set with WIN1.

20

Step 2 Determines all states from the model satisfying the formula: EX	 222 , to prevent player 2 to win on
the next move.
We denote this set with WIN2.

Step 3 If (WIN1\WIN2) ∩ succ(s0) ≠ ∅ then
 Choose randomly a state s from the resulting set.

Else If succ(s0)\WIN2 ≠ ∅ then
 Choose randomly a state s from the resulting set.

Else
 Choose randomly a state s from the set succ(s0).

End If
Set s as current state.

Step 4 If 111 ()P s∈ then STOP. The player X has won.
If the board is full is declared equality and STOP.

Step 5 Player O performs moving.
If)22 2 (P s∈ then STOP. The player O has won.
If the board is full is declared equality and STOP else go to step 1.

In the following we present a game scenario implemented using the CTL model checker API.
At first move, the computer (player X) chooses the position 0. After the player O moves, is constructed

the CTL model of the game. This model has 2307 states and 3330 transitions.
In figure 5.1.2 can be seen that player X has determined three winning strategies. It chooses randomly one

from them and follows it performing the corresponding move.

Figure 5.1.2: The move of player X (in position 2) which follows a winning strategy

Finally, can be seen that player O could not avoid defeat, because the player X follows a winning strategy:

Figure 5.1.3: The player X (computer) won

Experimental results

Although the game implemented is relatively simple, due to the large size of the structure representing the
CTL model at the first moves, it represents a good opportunity to study the effectiveness of our approach in
designing and implementing a CTL model checker.

In the figure 5.1.4 are presented the results showing the performance of the CTL model checker when
running on Intel Core I5, 2.5 GHz, 4Gb RAM to find a winning strategy for Tic-Tac-Toe game.

21

Figure 5.1.4: Evaluating the performance of the CTL model checker

6. An ATL model checking tool based on the algebraic methodology

Alur et al. introduced Alternating-time Temporal Logic (ATL), a logic designed for specifying
requirements of open systems [AHK02]. An open system interacts with its environment and its behaviour
depends on the state of the system as well as the behaviour of the environment. ATL is also widely used to
reason about strategies in multiplayer games. The semantics of ATL is formalized by defining games such that
the satisfaction of an ATL formula corresponds to the existence of a winning strategy.

The model checking problem for ATL is to determine whether a given model satisfies a given ATL
formula.

Alternating-time Temporal Logic is a branching-time temporal logic that naturally describes
computations of open systems, modelled by concurrent game structures.

6.1. The concurrent game structure

A concurrent game structure is defined as a tuple S=Λ,Q,Γ,γ,M,d,δ with the following components: a

nonempty finite set of all agents Λ = {1, …, k}; a finite set of states Q; a finite set of atomic propositions Γ; the

labeling function γ; a nonempty finite set of moves M; the alternative moves function d and the transition

function δ. For each state q∈Q, γ (q) ⊆ Γ is the set of propositions true in state q. For each player a∈Λ and

each state q∈Q, the alternative moves function d: Λ×Q → 2M relates the pair (a,q) with the set of available

moves of agent a at state q. In the following, the set d(a,q) will be denoted by da(q). For each state q∈Q, a tuple

j1,…,jk such that ja∈da(q) for each player a∈Λ, represents a move vector at q. The move function D : Q → 2M ,

with M the set of all move vectors, is defined such that D(q)⊆d1(q)×…×dk(q) represents the set of move vectors
at q. We denote by

()a a
q Q

D d q
∈

= (2)

the set of available moves of agent a within the concurrent game structure S.
The transition function δ(q,j1,…,jk), associates to each state q∈Q and each move vector j1,…,jk ∈ D(q)

the state q' that results from state q if each player a∈Λ choose the move ja. The state q' is a successor of state q.

A computation of S is an infinite sequence λ =q0, q1,… such that qi+1 is a successor of qi , ∀i ≥ 0
[AHK02]. A q-computation is a computation starting at state q.

For a computation λ and a position i ≥0, we denote by λ [i], λ [0,i], and λ [i,∞] the i-th state of λ, the

finite prefix q0, q1,…,qi of λ, and the infinite suffix qi , qi+1 … of λ, respectively [AHK02].

22

ATL syntax

We denote by F
S
(A) the set of all well-formed ATL formulae defined over a concurrent game structure S

and a set of agents A ⊆ Λ.

Each formula from F
S
(A) can be obtained using recursively the following rules:

(R1) if p∈Γ then p∈ F
S
(A);

(R2) if {φ, φ1, φ2} ⊆ F
S
(A) then {¬ φ, φ1∨φ2} ⊆ F

S
(A);

(R3) if {φ, φ1, φ2} ⊆ F
S
(A) then {A ○ φ, A □ φ, A φ1 U φ2} ⊆ F

S
(A).

In the ATL logic the path quantifiers are parameterized by sets of players from Λ. The operator   is a

path quantifier, and ○ (‘next’), □ (‘always’),  (‘future’) and U (‘until’) are temporal operators. A formula A

φ expresses that the team A has a collective strategy to enforce φ [JB11]. Boolean connectives can be defined

from ¬ and ∨ in the usual way. The ATL formula A  φ is equivalent with A true U φ.

ATL semantics

Consider a game structure S=Λ,Q,Γ,γ,M,d,δ with Λ={1,…,k} the set of players.

A strategy for player a∈Λ is a function fa: Q+→Da that maps every nonempty finite state sequence

λ=q0q1…qn, n≥0, to a move of agent a denoted by fa(λ)∈Da ⊆ M. Thus, the strategy fa determines for every finite

prefix λ of a computation a move fa(λ) for player a in the last state of λ.

Given a set A⊆{1,…,k} of players, the set of all strategies of agents from A is denoted by FA={ fa | a∈

A }. The outcome of FA is defined as F
out

A
: Q → P(Q+), where ()Fout q

A
 represents q-computations that the

players from A are enforcing when they follow the strategies from FA. In the following, for ()Fout q
A

 we will

use the notation (,)out q FA . A computation λ=q0,q1,q2,… is in (,)out q FA if q0=q and for all positions i≥0, there is

a move vector j1,…,jk ∈ D(qi) such that [AHK02]:

• ja=fa(λ[0,i]) for all players a∈ A, and

• δ(qi, j1,…,jk)= qi+1.
For a game structure S, we write q⊨ϕ to indicate that the formula ϕ is satisfied in the state q of the

structure S.
For each state q of S, the satisfaction relation ⊨ is defined inductively as follows:

• for p∈Γ, q⊨ p ⇔ p∈ γ(q)
• q⊨¬ϕ ⇔ q⊭ ϕ
• q⊨ ϕ1∨ϕ2 ⇔ q⊨ ϕ1 or q⊨ ϕ2
• q⊨ A ○ φ ⇔ there exists a set FA of strategies, such that for all computations λ∈out(q, FA), we

have
λ[1] ⊨ ϕ (the formula ϕ is satisfied in the successor of q within computation λ).

• q⊨ A □ φ ⇔ there exists a set FA of strategies, such that for all computations λ∈out(q, FA), and

all positions i≥0, we have λ[i] ⊨ ϕ (the formula ϕ is satisfied in all states of computation λ).
• q⊨ A φ1 U φ2 ⇔ there exists a set FA of strategies, such that for all computations λ∈out(q, FA),

there exists a position i≥0 such that λ[i] ⊨ ϕ2 and for all positions 0≤j<i, we have λ[j] ⊨ ϕ1.

6.2. Implementation of an ATL model checker in ANTLR

In this section is presented an original approach represented by the generation of an algebraic compiler
using ANTLR (Another Tool for Language Recognition) from our specification grammar of ATL.

23

The model checking problem for ATL is to determine whether a given system with its structure described
by a concurrent game structure satisfies a given ATL formula. The purpose of our work is to implement a tool
that allows to automatically checking for global system correctness.

From a formal point of view, implementation of an ATL model checker will be accomplished through the
implementation of an algebraic compiler C in two steps.

• First, we need a syntactic parser to verify the syntactic correctness of an ATL formula ϕ;
• Second, we should deal with the semantics of the ATL language, respectively with the

implementation of the ATL operators: ¬, ∨, ∧,→, , ○, □, U.
For implementation of the ATL compiler we choose the ANTLR (Another Tool for Language

Recognition). ANTLR provides a framework for the generation of recognizers, compilers, and translators from
grammatical descriptions [Parr07]. Using ANTLR as a generative tool had a major, positive impact on our
overall productivity in development of the new ATL checker.

ANTLR supports infinite lookahead for selecting the rule alternative that matches the portion of the input
stream being evaluated. The technical way of accomplishing this is that ANTLR supports LL(*) [Parr07], a
feature which significantly enhanced parsing strength.

ANTLR takes as its input our ATL grammar - a precise description of the ATL language augmented with
semantic actions - and generates source code files which are further extended and published through a Web
service as server part of the ATL model checker tool.

A semantic action of a grammatical description from ATL grammar represents an action code written in
Java – the target language of our ATL compiler. The action code is included inside the {} brackets, embedded
into the generated parser and executed when an appropriate match in parsed input is made.

Also, ANTLR builds the Abstract Syntax Tree (AST), an intermediate tree representation of the parsed
ATL input formula, which is simpler to process than the stream of tokens and can be efficiently processed
multiple times.

The model checker generated by ANTLR from our ATL specification grammar takes as input the

concurrent game structure S and the formula ϕ, and provides as output Q'={q∈Q | q ⊨ ϕ} – the set of states

where the formula ϕ is satisfied. Translation of a formula ϕ of an ATL model to the set of nodes Q' over which

formula ϕ is satisfied is accomplished by code included in semantic actions attached to production rules within
specification grammar of ATL language. When ANTLR generates code using our ATL grammar as input, these
actions are incorporated in the source code of the parser and are activated whenever the parser recognizes a
valid syntactic construction in the translated ATL formula. In case of the ATL compiler C, the attached actions

define the core of the ATL model checker, i.e., the implementation of the ATL operators.
The ATL compiler C implements the following ATL model checking algorithm [Jam09]:

Algorithm 1. ATL model checking algorithm
Input: the concurrent game structure S and the formula ϕ
Output: Q'={q∈Q| q ⊨ ϕ} – the set of states where the formula ϕ is satisfied.

function EvalA(ϕ) as set of states ⊆ Q

case ϕ=p:
 return [p] = {q ∈ Q | p ∈ γ(q)};

case ϕ= ¬θ:
 return Q\EvalA(θ);

 case ϕ=θ1∨θ2:
 return EvalA(θ1) ∪ EvalA(θ2);

 case ϕ=θ1∧θ2:
 return EvalA(θ1) ∩ EvalA(θ2));

 case ϕ=θ1→θ2:
 return (Q\EvalA(θ1)) ∪ EvalA(θ2);

24

 case φ =A○θ:

 return Pre(A,EvalA(θ));

 case φ =A□θ:

 ρ:=Q; τ:= EvalA(θ); τ0:= τ;
 while ρ ⊈ τ do
 ρ := τ;
 τ:=Pre(A, ρ) ∩ τ0;
 wend
 return ρ;

 case φ = A θ1 U θ2:

 ρ:= ∅; τ:= EvalA(θ2); τ0:= EvalA(θ1);
 while τ ⊈ ρ do
 ρ := ρ ∪ τ;
 τ:=Pre(A, ρ) ∩ τ0;

 wend

 return ρ;

The corresponding actions included in the ANTLR grammar of ATL language for implementing the ATL

operators □, , U and respectively ○ are presented in the table 6.2.1:

Implementation of the “□” operator Implementation of the “” operator
’<<A>> #’ f=formula
{

HashSet r=new HashSet(all_SetS);
HashSet p=$f.set;
while (!p.containsAll(r))

{
 r=new HashSet(p);
 p=Pre(r);
 p.retainAll($f.set);
}

$set=r;
}

'<<A>>~' f=formula
{

HashSet Q = new HashSet(all_setS);
HashSet r = new HashSet();
HashSet p = $f.set;
while (!r.containsAll(p))

{
 r.addAll(p);
 p = Pre(r);
 p.retainAll(Q);
}

$set = r;
}

Implementation of the “U” operator Implementation of the “○” operator
'<<A>> ' a1= formula 'U' a2= formula
{

HashSet r = new HashSet();
HashSet p = $a2.set;
while (!r.containsAll(p))

{
 r.addAll(p);
 p = Pre(r);
 p.retainAll($a1.set);
}

$set = r;
}

'<<A>>@' f=formula
{

HashSet rez = Pre($f.set);
$set = rez;

}

Table 6.2.1 Semantic actions attached to production rules of ATL language grammar

For ATL operator □ we use in ANTLR the symbol #. Also, we denote the ATL operator  with the
symbol ~ and the operator ○ is replaced by the symbol @.

25

The formula represents a term from a production rule of the ATL grammar and p, r, a1, a2 are variables
used in the internal implementation of the ATL compiler.

For a set A of agents, the implementation of most ATL operators implies the computation of function

Pre(A, Θ), where Θ ⊆ Q. The value returned by Pre(A, Θ) represents the set of states from which agents A

can enforce the system into some state in Θ in one move.
In section 7 we made a implementation of the function Pre() using SQL statements, ready to be executed

on a high-speed database server.

Figure 6.2.1: Class diagram of the ATL Checker.

In figure 6.2.1 is presented the class diagram of the ATL model checker implementation. Classes
ATLParser and ATLLexer are generated by ANTLR using as input our grammar of the ATL language. The role
of class ATXml is to decode the XML representation of the ATL model in order to send it to the parser, along
with the ATL formula which must be evaluated. The ATLChecker class contains the Web service operations
which are invoked by the client, having as parameters an ATL model, an ATL formula and a set A of agents.

6.3. Using Relational Algebra in model checking algorithm

For a concurrent game structure S presented in section 6.1, can be defined a directed multi-graph GS =

(X,U), where X=Q, and (b,e) ∈ U ⇔ ∃ j1,…,jk ∈ D(b) such as δ(b,j1,…,jk) = e. The labelling function for the

graph GS is defined as follows: L:U → M , ∀ u = (b,e) ∈ U, L(u) = j1,…,jk, where δ(b,j1,…,jk) = e.

We define the relation schema (B:QB, M1:D1, …, Mk:Dk, E:QE) where QB = {b ∈ Q | ∃ e ∈ Q such as (b,

e) ∈ U}, QE = {e ∈ Q | ∃ b ∈ Q such as (b, e) ∈ U} and Di, i ∈ {1, …, k} = Λ was defined in (1), such as if RS is

a relation name with schema defined above, (B:b, M1:j1, …, Mk:jk, E:e) ∈ RS ⇔ j1,…,jk = L((b,e)).

For a set A of m agents, A ⊆ Λ, A = {i1, …, im}, we define
1

, , , ,) ()(
i im

S B M M E SR Rπ …=A where

, {1, , }li l m∈ ∈ …A and
1

, ,) ()(()
i im

L B LABEL M M E SR Rπ ← °…°=A A where the operator ° can be defined as follows: i ° j = i

|| ',' || j.

For a set Θ ⊆ QE, b ∈ Pre(A, Θ) ⇔ ∃ , , 1() ,
l li i lj d i mb l∈ ∈ =A and ∃ e ∈ Θ such as

1
,), (()

mi i Sb j ,…, j e R∈ A and ∄e'∈QE \ Θ such as
1

(()')
mi i Sb, j ,…, j ,e R∈ A .	

With other words, b ∈ Pre(A, Θ) ⇔ ∃ , , 1() ,
l li i lj d i mb l∈ ∈ =A such as:

1 1
: , , : {(:)| }()

m mE i i i i EB b M : j ,…,M : j E Q E e eπ = ∈Θ

In the following, the set of states QE \ Θ is denoted by Q .

Now we can design an algorithm to compute the function Pre(A, Θ) using RA expressions:

26

Algorithm 2. Computing (,)Pre A Θ function using relational algebra expressions

Step1

, ()) ()(()B LABEL E L LR Rπ σ ∈Θ
Θ=A A

, ()) ()(()B LABEL L LE
R Rπ σ Θ

Θ∈ =A A

Step2
()()LRxρ Θ A ,(()) ()L LR Ryρ Θ Θ Θ=A A

x B y B x LABEL y LABEL= ∧ =

Step 3
, ,

. . , . ()) ((()) null
LABEL null L LLABELy x B y R Rσ π Θ Θ

=
Θ =A A

Step 4
,

.(,) (())null
x B LPre Rπ ΘΘ =A A

The above algorithm can be implemented in SQL language as follows:

Algorithm 3. Computing (,)Pre ΘA function using SQL statements
select distinct B from (
 select distinct x.B, y.LABEL from (
 select distinct B, LABEL from model
 where E in Θ
) x
 left join (
 select distinct B, LABEL from model
 where E not in Θ
) y
 on x.B = y.B and x.LABEL = y.LABEL
 where y.LABEL is null

) z

6.4. An ATL model ATL for the critical section problem solved using a mutex

In [Rus02] is presented a CTL model for two processes competing for entrance into a critical section.
In the following, we present an original ATL model for the critical section problem solved using a mutex.

Our solution improves the mentioned CTL model because it supports true concurrency: the two processes can
request simultaneously entrance into critical section, and their access is restricted using a mutex managed by the
operating system (represented in our model by an agent).

If we consider our model presented in figure 6.4.1 as a concurrent game structure S=Λ,Q,Γ,γ,M,d,δ, we

will detail the semantics for the symbols from Γ - the set of propositions (labels from nodes representing states)

and M – the set of agents moves. We have Γ = {I1, I2, W1, W2, E1, E2, L1, L2, F} with the following
significations:

• Ii – the process i is in Idle state, 1,2i = ;

• Wi – the process i is in Waiting state (it is waiting to enter in critical section), 1,2i = ;

• Ei – the process i is in Executing state (it is executing the code from critical section), 1,2i = ;

• Li – the mutex is owned (Locked) by the process i, 1,2i = ;
• F – the mutex is not owned by any process (it has Freed).
The symbols from the set M = {l, e, i, f} ∪ {pd, dp, p-, -p} have the following significations:

• l – a request to enter in critical section (lock the mutex);
• e – a request to execute code from the critical section;
• i – there is no a request (idle);

27

• f – release (free) the mutex, leave the critical section;
• pd – permission for agent 1, deny for agent 2;
• dp – permission for agent 2, deny for agent 1;
• p- – permission for agent 1, the agent 2 is idle (no request);
• -p – permission for agent 2, the agent 1 is idle (no request).

Using our model checking tool, we proved that the following ATL formulas are satisfied by the model

presented above:

Fig. 6.4.1. ATL model for two processes competing for entrance into a critical section.

ATL formula Signification

not(<<A>>~(E1 and E2)) Safety – Processes are not running simultaneously
statements from the critical section

Wi => not (<<A>># (not Ei)), 1, 2i = Warranty - each time one process tries to enter in critical
section (owning the mutex), in the future it will succeed.

not (<<A>>~ (not (Ii => << A>>@ Wi))),

1, 2i =

Nonblocking – each process can require any time to enter in
the critical section

<<A>>~ (E1 and (<<A>> E1 U (not E1
and (<<A>> not E2 U E1))))

<<A>>~ (E2 and (<<A>> E2 U (not E2
and (<<A>> not E1 U E2))))

Without imposed succession – the processes do not have the
restriction to enter alternating in the critical section

Ei => Li, 1, 2i = Owning the mutex – One process can execute the critical
section only if it is owning the mutex

not(<<A>>~ (not ((L1 or L2) => not
(<<A>># (not F)))))

Releasing the mutex – If one of the processes is owning the
mutex, in the future it must release (free) the mutex

I1 and I2 => << A>>@ (W1 and W2) Concurrency – If there is no process into critical section,
both processes can request simultaneously to enter in the
critical section, without blocking.

Table 6.4.1. ATL Formulas satisfied by our model

In the following we will apply the Algorithm 3 for computing function Pre() with different arguments
passed in the process of checking of two ATL formulas from Table 6.4.1.

Example 6.4.1.

For the ATL model presented above, we check the following ATL formula:

28

W1 => not (<<A>># (not E1)) (3)
with its signification described in Table 6.4.1. The model checking algorithm will require some calls of

function Pre() with certain arguments. In Table 6.4.2. are presented two computations of function Pre():

 {0, 3, 4, 5, 6, 7, 10}Q =

 A={1} A={2}

,
. , . ()

LABEL Lx B y Rp QQ A

B
LABE

L

0 NULL

0 l

2 NULL

3 NULL

4 NULL

5 NULL

6 NULL

9 NULL

10 NULL

B
LABE

L

0 l

2 NULL

3 NULL

4 NULL

5 NULL

6 NULL

9 NULL

10 NULL

(,)Pre QA {0, 2, 3, 4, 5, 6, 9, 10} {2, 3, 4, 5, 6, 9,10}
Table 6.4.2. Computations of function (,)Pre QA when Checking the ATL Formula (3)

For A = {1} because i∈d1(0),

1
(: 0, : , :) {(: 4)}
E E
B M i E Q Ep = , and 4∈Θ  0 ∈ Pre(A, Θ).

For A = {2}, d2(0) = {l, i}. We have
2

(: 0, : , :) {(: 8)}
E E
B M i E Q Ep = , but 8 ∉ Θ.

Also,
2

(: 0, : , :) {(: 1),(: 4),(: 10)}
E E
B M l E Q E E Ep = , but 1 ∉ Θ. We conclude that 0 ∉ Pre(A, Θ).

Example 6.4.2

For the same ATL model, described in figure 6.4.1, we consider the following formula:

not (<<A>>~ (not (I1 => <<A>>@ W1))) (4)

with its signification also described in Table 6.4.1. In table 6.4.3. are presented computations of function Pre()
needed for checking the ATL formula (4):

 {1, 6, 7, 8, 10}Q =

 A={1} A={2}

,
.. ,)(
LABEL Lx B y Rp QQ A

B LABEL

0 NULL

3 NULL

4 NULL

5 NULL

6 NULL

7 NULL

10 NULL

B LABEL

0 l

0 NULL

3 l

4 e

5 NULL

6 NULL

7 NULL

10 NULL
(,)Pre QA {0, 3, 4, 5, 6, 7, 10} {0, 5, 6, 7, 10}

Table 6.4.3. Computations of function (,)Pre QA when Checking the ATL Formula (4)

For A = {2}, d2(3) = {l}. We have
2

(: 3, : , :) {(: 4),(: 10)}
E E
B M l E Q E Ep = , but 4∉Θ. Also, we have

d2(4) = {e}, and
2

(: 4, : , :) {(: 5),(: 6)}
E E
B M e E Q E Ep = , but 5∉Θ. Thus, 3 ∉ Pre(A, Θ) and 4 ∉ Pre(A, Θ).

29

7. The architecture of the ATL model checker tool. Applications.
Performance evaluation

We choose to use Web Services technology in our implementation of the ATL model checker in order to
make the core of out tool, the ATL compiler, accessible to various clients.

A Web service represents a standardized way for an application to expose its functionality over the Web
or communicate with other applications over a network, regardless of the platform or operating system upon
which the clients of the service are implemented. Thus, our Java implementation of the ATL Checker can be
invoked easily through a Web service by a C# client who provides an intuitive graphical interface for interactive
design of ATL models. We called the client application ATL Designer.

Other reason for the deployment of ATL Checker on server side is represented by the internal
implementation of the Pre() function, described in section 7, which are using for its computation SQL queries.
Our Web service is using GlassFish as a Web container, and MySQL or SQL Server as database servers.

For a better understanding of the ATL model checking process, in figure 7.1 is represented the Use Case
Diagram of our model checker:

Figure 7.1: The Use Case Diagram of the ATL model checker

The Web service will receive from a client the XML representation of an ATL model and an ATL
formula. After deserialization, the original form of the ATL model is passed to the ATL compiler generated by
ANTLR using our ATL extended grammar. For a syntactically correct formula, the compiler will return as
result the set of states in which the formula is satisfied. If the ATL formula is not valid, the Web service will
return a message describing the error.

In order to notify the client about possible syntactical errors found in the verified ATL formula, we must
override the default behaviour of the ANTLR error-handling. We install our error-handling in lexer and parser:

@lexer::members {
 @Override
 public void reportError(RecognitionException re) {
 throw new RuntimeException("Lexical error!\n\n" +
 "Position:" + re.line + ":" + re.charPositionInLine +
 " erroneous character: '" + (char)re.c + "'");
 }
}
@members {
 @Override
 public void reportError(RecognitionException re) {
 throw new RuntimeException("Syntactical error!");
}

Finally, we instruct ANTLR to throw the error, allowing the Web service to send it to the client:

30

@rulecatch {
 catch (RecognitionException err) {
 throw err;
 }
}

ATL Designer, the client part of our tool, allows an interactive construction of the concurrent game

structures as directed multi-graphs. For internal representation of an ATL model as a directed multi-graph, our
implementation is based on data structures provided by [Ebe87]. Thus, the ATL model encoding is based on
symmetrically stored forward and backward adjacency lists. This paradigm supports an edge-oriented way of
handling graphs with multiple edges.

The functionality of the client part is accessible through a right-click contextual menu which allows a
dynamically graphical development of the ATL models as we can see from the figure 7.2:

Figure 7.2: Building an ATL model in ATL Designer

In figure 7.2, the numbered labels of edges are associated with move vectors of agents, and can be
assigned in the “Moves” window of the ATL Designer.

In addition, the ATL Designer interface allows several configurations:

Icon Signification

Allows selection of the Web server: local or remote (Internet). Service-location
details for web-service access can be found at: http://use-it.ro

The status bar button allows selection of the implicit Internet server. The toolbar
button allows setting of the database connection string.

In case of huge models, is recommended to activate their compression before sending
them to the Web Service.

Table 7.1: ATL Designer configuration from its interface

For testing purposes, the ATL model checker described in this paper is available online via two Web
services hosted by use-it.ro and respectively by mcheck-useit.rhcloud.com.

7.1. System architecture of the ATL model checker tool

31

In order to provide an overview of the system architecture of the ATL checker tool presented in this
paper, we chose a UML package diagram, presented in figure 7.1.1:

Figure 7.1.1 System architecture of the ATL model checker tool

The ATL model checker tool contains the following packages:

• The ATL Compiler embedded into the Web Service (ATL Checker);

• The GUI client application used for interactive construction of the ATL models as directed multi-
graphs (ATL Designer);

• In case of huge ATL models, with many states, is required the use a programmatic construction of
these models. The ATL non-GUI model package contains classes used for internal representation of
an ATL model as a directed multi-graph based on symmetrically stored forward and backward
adjacency lists;

• The XML API for ATL models package contains classes needed to encode the ATL model into XML.
The main part of its code was generated using Microsoft Xml Schemas/Data Types support utility
(xsd.exe) having as input our XSD schema for specification of the XML representation of an ATL
model;

• The ATL GUI Model package is responsible with graphical representation of the ATL concurrent
game structures represented as directed multi-graphs (drawing arcs by Bézier curves, etc.).

7.2. Designing a game strategy using model checking

The model checking of computation tree logic (CTL) formulae can be used for generating plans in
deterministic as well as non-deterministic domains. Because ATL is an extension of CTL that includes notions
of agents, their abilities and strategies (conditional plans) explicitly in its models, ATL is better suited for
planning, especially in multi-agent systems [HW02].

ATL models generalize turn-based transition trees from game theory and thus it is not difficult to encode
a game in the formalism of concurrent game structures, by imposing that only one agent makes a move at any
given time step.

The algorithm proposed here looks for infallible conditional plans to achieve a winning strategy that can be
defined via ATL formulae.

As an example we consider the Tic-Tac-Toe (called TTT for short in the rest of this paper) game. The
game is played by two opponents with a turn-based modality on a 3×3 board. The two players take turns to put
pieces on the board. A single piece is put for each turn and a piece once put does not move. A player wins the
game by first lining three of his or her pieces in a straight line, no matter horizontal, vertical or diagonal.

32

We consider a computer program playing TTT game with a user (human) and the ATL model checking
algorithm is used to return a strategy to achieve a winning strategy for the computer. The TTT is a turn-based
synchronous game. In such a system, at every transition there is just one agent that is permitted to make a choice
(and hence determine the future).

Formally, a game structure S=Λ,Q,Γ,γ,M,d,δ is turn-based synchronous if for every state q from Q, there

exist a player a from the set of all agents Λ such that |db(q)| = 1 for all players b∈Λ\{a}. State q is the turn of
player a.

In the following we will show how to use the ATL formalizations in finding winning strategies in case of
TTT game.

Modelling the Game

We transform the original problem into an ATL model checking problem. More specifically, we want to

determine a strategy fa : Q
+ → Da which leads the game into a winning state for the agent a∈Λ representing the

computer.
We suppose that positions of the board are numbered as in figure 7.2.1:

0 1 2
3 4 5
6 7 8

Fig. 7.2.1: Labelling the grids on the board

Formally, the turn-based synchronous game structure of TTT is defined as follows: S=Λ,Q,Γ,γ,M,d,δ.
The set of agents is Λ ={1,2} and we consider that computer is represented by agent 1 and the user is

represented by the agent 2.

Values of the board locations are denoted by xi ∈ {0,1,2}, where i ∈ {0,1,...,8}. The value 0 means an
empty position, the value 1 denotes a previous move of the agent 1 and the value 2 represents a move of the
player 2.

For the sequence of values l m nx x x we define min(,1) min(,1) min(,1)l m n l m nx x x x x x= + +å where

, , {0,1,...,8}l m n Î .

The set of propositions (or observables) Γ is defined as follows:

Γ = {(1 2 3 6 0 4 8 2 4 60,3,6 0,1,2
, , , , l l l l l ll l

x x x x x x x x x x x x T+ + + += =
) | {0,1,2} for 0,8 and {1, 2}kx k TÎ = Î }.

A state labelled with value T = 1 signify that is turn of the player 1 for making the move and if T = 2

then the player 2 will make the next move.
The set of possible movements of agents is M={0,1,2,3,4,5,6,7,8,9}.

For the agent 1, the set of alternative movements in state q ∈Q, if there are possible moves, is defined as

()
1 2

0,3,6
1

1 2
0,3,6

 { 1, .., | 9 1, 1 ()}

 { 0 | 9 1, 2 ()}

l l l
l

l l l
l

k k x x x q

d q
k x x x q

γ

γ

+ +
=

+ +
=

 = − ≥ ∈= 
 = − ≥ ∈






Analogous are defined the possible moves of agent 2.
The game stops (so no moves are possible) if the board moves locations are full, i.e.:

1 2
0,3,6

9l l l
l

x x x+ +
=

=

Another situation where the game is not continuing is when a player won.

The state q is a winning state for player 1 if 111 ()qγ∈ and it is a winning state for player 2 if 222 ()qγ∈ .

33

Alternation to move can be formalized as follows: for a transition ()1 2, , 'q j j qδ = , there are the following

cases:

 () 3 (')T q T qγ γ∈  − ∈

where {1,2}T ∈ .

Algorithm to determine the optimal strategy

Assuming that the game is in the state q ∈ Q, we denote by succ(q) ⊆ Q the set of states immediately
following the state q in the tree modelling the concurrent game structure.

The strategy of player 1 can be expressed by the following algorithm:

Step 1

Determines all states from the model satisfying the formula: ⟪1⟫  (111), to choose the move
which favours wining of the game in the future.
We denote this set with WIN1.

Step 2 Determines all states from the model satisfying the formula: ⟪2⟫ ○ (222), to prevent player 2 to
win on the next move.
We denote this set with WIN2.

Step 3 If (WIN1\WIN2) ∩ succ(q) ≠ ∅ then
Choose randomly a state q from the resulting set.

Else If succ(q)\WIN2 ≠ ∅ then
Choose randomly a state q from the resulting set.

Else
Choose randomly a state q from the set succ(q).

End If
Set q as current state.

Step 4 If 1 11 (q)γ∈ then STOP. The player 1 has won.
If the board is full is declared equality and STOP, else after the move of player 2 go to step 1
(if player 2 has not won or the board is not full).

In the following we present a game scenario implemented using the ATL model checker API.
At first move, the computer (player 1) chooses the position 0. After the player 2 moves, is constructed the

ATL model of the game. This model has 4791 states and 4790 transitions.
In figure 7.2.2 can be seen that player 1 has determined the winning strategies, having three alternatives

to win the game, from which is chosen randomly one.

Figure 7.2.2: The move of player 1 (in position 4) which follows a winning strategy

Finally, can be seen that player 2 could not avoid defeat, the player 1 choosing the only option left to win:

34

Figure 7.2.3: The player 1 (computer) won

Experimental results

The major impact on performance of the ATL model checker is represented by the implementation of the
function Pre(), which was presented in detail in section 7 and is based exclusively on the database server used.

In order to analyze their impact in the performance of the ATL model checker, were used three different
database servers to implement the Web service, namely MySql 5.5, H2 1.3 and respectively Microsoft SQL
Server 2008.

ATL-Designer permits the selection of one of the three database servers mentioned above:

Figure 7.2.4: The selection of the database server

We have found important performance penalty due to the clause IN from the query presented in algorithm

3 from section 6, especially on Microsoft SQL Server 2008.
Thus the initial query was optimized by removing the clause IN and replacing it with JOIN operations

performed between tables.

First of all, with states of the set Θ was built a temporary table in database server using the query:

Database server Query syntax for building a table with states of the set Θ
SQL Server 2008 insert into #Θ

select distinct X.* from (values (q1), (q2), … (qn)) as X(E)

MySQL 5.5/ H2
1.3

insert into `Θ` (E) values (q1), (q2), … (qn)

Table 7.2.1 Specific queries to populate tables with given discrete values

where , 1,iq i n∈ Θ = .
Then, to implement sub-queries were used temporary tables which have defined primary keys for fast

access.

Supplementary optimizations were made for SQL Server:

• to reduce the transaction log and also to optimize insertions in tables of database atl, was used the
directive:

35

alter database atl set RECOVERY SIMPLE

• to optimize data transfer between the database server and Web server, was maximized the
dimension of packets for network data transfer with the directive:
EXEC sp_configure 'network packet size (B)', '32767';

The MySQL server was configured only during the installation process.
The H2 database supports the in-memory mode (the data is not persisted), well suited for high

performance operations. Also, H2 database can emulate the behavior of specific databases (DB2, Oracle,
MySQL, PostgreSQL, etc.). Using MySQL Compatibility Mode made it possible to also use MySQL specific
code / syntax for the H2 database.

Optimizations recommended in [H2DB] are included in the following connection string for H2:

jdbc:h2:mem:db1;MODE=MySQL;LOG=0;LOCK_MODE=0;UNDO_LOG=0;DB_CLOSE_DELA
Y=60

In table 7.2.2 and respectively in the figure 7.2.5 are presented the results showing the performance of our
ATL model checker related to database server used:

Total time necessary to determine the winning strategy (Tic-Tac-Toe game)

Intel Core I5, 2.5 GHz, 4Gb RAM
Number of

states
SQL Server 2008

(seconds)
MySQL 5.5
(seconds)

H2 1.3 (seconds)

4791 ≈3.97 ≈1.86 ≈1.33
4255 ≈3.37 ≈1.62 ≈1.17
3732 ≈2.66 ≈1.41 ≈0.99
3423 ≈2.32 ≈1.24 ≈0.90
3683 ≈2.21 ≈1.21 ≈0.85
2307 ≈1.97 ≈0.86 ≈0.58
2236 ≈1.93 ≈0.75 ≈0.56

Table 7.2.2 A comparative analysis of impact of database servers in performance of ATL model checker

In [OM03] is presented a comparison between Lurch (a random search model checker) and two well-
known model checker tools, SMV and SPIN, showing the time and memory required, and the accuracy achieved
by each tool when playing the tic-tac-toe game.

SPIN is a well-known explicit-state LTL (Linear Temporal Logic) model checker tool, and SMV is a
symbolic CTL (Computation Tree Logic) model checker.

Although the logics LTL and CTL have their natural interpretation over the computations of closed
systems and the logic ATL is used for the specification and verification of open systems, in theory the
expressive power of ATL beyond CTL (in the case of closed systems ATL degenerates to CTL) comes at no
cost - the model checking complexity of synchronous ATL is linear in the size of the system and the length of
the formula [AHK02].

Results from [OM03] showed that both SMV and SPIN were able to find an optimal strategy for a player
in less than one second, on a 3x3 board.

As we can see from table 7.2.2, the ATL model checker tool is not as fast as the CTL/LTL tools, but we
must take into consideration that an ATL model is more expressive (with ATL we can quantify over the
individual powers of one player or a cooperating team of players, ATL models capture various notions of
synchronous and asynchronous interaction between open systems, etc.).

36

Figure 7.2.5: The performance of ATL model checker related to database server used

In [Rua08] the Tic-Tac-Toe was implemented in the Reactive Modules Language (RML). RML is the

model description language of the ATL model checker MOCHA, which was developed by Alur et al.
[AHMQRT98]. Experimental results showed that the time necessary to find a winning strategy for a player, on a
configuration with a Dural-Core 1.8Ghz CPU, was 1 minute and 6 seconds. Running on the same configuration,
our ATL checker tool is able to find a winning strategy in about 4 seconds using MySql as a database server and
2 seconds when H2 was used.

By using a database-based technology in the core of the ATL model checker, our tool provides a good
foundation for further improvement of its performance and scalability.

In the actual stage of the development, experimental results are encouraging, showing that our tool is able
to handle large systems efficiently.

7.3. Verification of JADE agents using ATL model checking

In the end of the chapter, using components of our tool, we showed how ATL model checking technology
can be used for automated verification of multi-agent systems, developed with JADE.

One of the main drawbacks of employing ATL logic in the automated verification of multi-agent systems
using previous approaches consists in necessity of translate the programs written in specific modelling
languages to the programming language used in the real implementation.

Our approach eliminates this problem by allowing a transparent building of the ATL model at runtime,
using the native language of JADE agents (Java).

We build an ATL model suited for FSM (Finite State Machine) - driven behaviour of a JADE agent. This
model will help us to elaborate the mapping rules between ATL and JADE concepts. ATL Library will be used
to validate the design of JADE agents having FSM-behaviours, in other words, to see that no incorrect scenarios
arise as a consequence of a bad design.

7.3.1. A formal model of the FSMBehaviour

In the following we present a model for FSM-driven behaviour of a JADE agent, implemented by
FSMBehaviour class. This model will help us to elaborate the mapping rules between ATL and JADE concepts.

A JADE finite state machine is a tuple FSM=(QFSM, Π, π, q0, F, t, δFSM) where:

• QFSM is a finite, non-empty set of states;
• denotes the finite set of state names;
• π: QFSM → Π is called the labelling function, defined as follows: for each state q∈ QFSM, π (q) ∈ Π is

the name of state q;
• q0 is an element of QFSM, the initial state;
• F ⊆ QFSM is the set of final states;

37

• t: QFSM → { }2 default∪ � is called the terminating function, where for each state q∈ QFSM, t(q)

{ }default⊆ ∪ represents the set of admissible termination codes of the state q;

The transition function δFSM(q, j), associates to each state q∈ QFSM and each termination code j of q the
state that results from state q if the child behaviour associated with the state q returns at finish the value j.

The behaviour of an FSM is more easily understood when this is represented graphically in the form of a
state transition diagram. The control states are represented by circles, and the transition rules are specified as

directed edges. Each transition from a state q is labelled by termination code of q that triggers the transition. The
arc without a source state denotes then initial state of the system (state q0).

During one reaction of the FSM, one transition is triggered, chosen from the set of admissible transitions
(outgoing transitions from the current state), so that label of transition matches the terminating code of the
current state. The FSM goes to the destination state of the triggered transition.

If terminating code of the current state q ∉ F is not explicit associated with an admissible transition, then:

• if exist the admissible transition labelled with default, this transition (called implicit transition) will
be triggered;

• else FSM goes in an inconsistent state.
In case if FSM arrive in a state q ∈ F, after completeness of activities from that state, execution of finite

state machine is stopped.

7.3.2. ATL model of the FSMBehaviour

For a JADE finite state machine defined in section 7.3.1, the equivalent concurrent game structure

S=Λ,Q,Γ,γ,M,d,δ is defined as follows:

• There is only one agent, i.e. Λ = {1};

• The set of states is Q = QFSM;

• The finite set of propositions is defined by Γ = Π ∪ { *FINAL*};

• The labelling function γ: Q → 2Γ is defined as follows:

() \
()

() {* *}

q for q Q F
q

q FINAL for q F

π
γ

π
∈

=  ∪ ∈
• The nonempty finite set of moves M contains all admissible termination codes, i.e.:

()
q Q

M t q
∈

=

• the alternative moves function d:Λ×Q→2M is defined by (1,) ()d q t q q Q= ∀ ∈

• the transition function δ is defines as follows:

(,) (,) ()FSMq j q j q Q and j t qδ δ< > = ∀ ∈ ∀ ∈

7.3.3. Using ATL for verification of the FSM - driven behaviour of a JADE agent

For a given JADE FSMBehaviour, the ATL model checking is done in two steps:
1. For the beginning, the corresponding ATL is constructed following rules described in section 7.3.2
2. Then, a given specification (ATL formula) representing a desired behavioural property is verified to

hold for the model obtained at step 1.

Using ATL Library [CS13] to perform ATL model checking, we can detect error states (the states of the

model where the ATL formula does not hold) and then we can correct the given model or design.

38

8. Conclusions and future directions

As future research we intend:

• Creating libraries which include several models CTL / ATL that can be verified and studied by user;

• Creating a CTL model checker extension which include the time restrictions;

• Developing a symbolic CTL model checker;

• Creating an ATL model checker extension which include the time restrictions;

• Developing a symbolic ATL model checker;

• Although the model checking tools developed so far were used for the verification of complex
systems, a major limitation of this approach is that those tools can only verify the correctness of the
system specifications. In other words, if errors are identified by a model checker tool within a
specified system, the task of system correction is altogether left to the system designers. Accordingly,
model checking is generally only used to verify whether a system properly holds but without change
of the system if the verification fails. Automatic correction of the system was addressed in some
papers [SW96, DNM06, CPPB08], for some specific cases. A possible research direction is the
automatic modification of a model when its verification failed.

• The development of theoretical models and extensions of temporal logics discussed within the thesis
to extend the scope of the application of the model checking technology to the software systems of
great actuality: applications/Web Services, semantic web services (Semantic Web) [Mar04],
distributed/autonomous database management systems for web applications, etc.

As a future direction of our research, we propose an extension of the model checking verification tools
presented in this thesis to generate automatic (or at least assisted) the specifications to be verified (formulas
currently expressed in the language associated with temporal logic), through a friendly and interactive graphical
interface.

Each of these issues requires complex challenges, both theoretically and practically, but the importance
of the research field approached within the thesis represents a sufficient motivation to address them continuing
results achieved by now.

We manifest the hope that the original theoretical results obtained in this thesis, integrated and exploited
in the implementations of our model checking tools, can contribute to a long expected desiderate: integration of
the formal verification techniques in the current cycle of design and development of software systems.

39

REFERENCES

[ADKKM05] N. Amla, X. Du, A. Kuehlmann, R.P. Kurshan and K.L. McMillan. An Analysis of

SAT-based Model Checking Techniques in an Industrial Environment. In Charme.
pages 254–268, 2005. http://www.kenmcmil.com/pubs/CHARME05.pdf

[AH06] J.A. Anderson and T. J. Head. Automata theory with modern applications.
Cambridge University Press, pages 105–108, 2006. ISBN 9780521848879.

[AH96] R. Alur and T.A. Henzinger. Reactive modules. In Proceedings of the 11th IEEE
Symposium on Logic in Computer Science, pages 207–218, 1996.

[AHK02] R. Alur, T.A. Henzinger and O. Kupferman. Alternating -Time Temporal Logic.
Journal of the ACM. Vol. 49, No. 5, pages 672–713, 2002.

[AHMQRT98] R. Alur, T.A. Henzinger, F.Y.C Mang, S. Qadeer, S.K. Rajamani and S. Tasiran.
Mocha: Modularity in Model Checking. Proceedings of the Tenth International
Conference on Computer-Aided Verification (CAV), Lecture Notes in Computer
Science 1427, Springer, pages 521-525, 1998.

[ANTLR] http://www.antlr.org/testimonials.html

[BBFLPPS01] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci and Ph.
Schnoebelen. Systems And Software Verification Model-Checking Techniques And
Tools. Springer-Verlag And Heidelberg Gmbh & Co. Kg, Berlin, 2001. ISBN 3-
540-41523-8.

[BBCR10]

J. Barnat, L. Brim, M. Češka and P. Ročkai. DiVinE: Parallel Distributed Model
Checker (Tool paper). In Parallel and Distributed Methods in Verification and High
Performance Computational Systems Biology (HiBi/PDMC), pages 4–7, IEEE,
2010.

[BBR10]

J. Barnat, L. Brim and P. Ročkai. Scalable Shared Memory LTL Model Checking.
International Journal on Software Tools for Technology Transfer (STTT), 12(2):
pages 139–153, 2010.

[BBPESR10]

Brad Bingham, Jesse Bingham, Flavio M. de Paula, John Erickson, Gaurav Singh
and Mark Reitblatt. Industrial Strength Distributed Explicit State Model Checking.
In Proceedings of the 2010 Ninth International Workshop on Parallel and
Distributed Methods in Verification, and Second International Workshop on High
Performance Computational Systems Biology (PDMC-HIBI '10). IEEE Computer
Society, Washington, DC, USA, pages 28–36, 2010.

[BCCFZ99] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita and Y. Zhu. Symbolic model checking
using SAT procedures instead of BDDs. Proceedings of the 36th annual ACM/IEEE
Design Automation Conference, DAC '99, pages 317–320, 1999.

[BCM92] J.R. Burch, E.M. Clarke and K.L. McMillan. Symbolic Model Checking 1020 States
and Beyond. Information and Computation, Academic Press Inc., New York and
London, Vol. 98, pages 142–170, 1992.

[BCTR13] F. Bellifemine, G. Caire, T. Trucco, G. Rimassa, JADE programmer’s guide,
http://jade.tilab.com, 2013

[BFBD02] F. M. Boian, C. M. Ferdean, R. F. Boian, R. C. Dragos. Programare concurenta pe
platforme Unix, Windows, Java. Editura Albastra - grupul Microinformatica, ISBN
973-650-072-1, pages 420, Cluj, 2002.

[Bison] http://dinosaur.compilertools.net/bison/

[BK08] Christel Baier, Joost-Pieter Katoen, Principles of Model Checking, The MIT Press,
Cambridge, Massachusetts, London, England, 2008

[BMP90] C.J. Bergman, R.D. Maddux and D.L. Pigozzi. Algebraic Logic and Universal

40

Algebra in Computer Science. Lecture Notes in Computer Science, Springer, LNCS,
Vol. 425, pages 209–225, 1990.

[Boi11] F.M. Boian. Servicii Web; Modele; Platforme;Aplicaţii. Seria 245 PC. Editura
Albastră, Cluj-Napoca, pages 1–382, 2011.

[Bov] Jean Bovet. ANTLRWorks: The ANTLR GUI Development Environment,
http://www.antlr.org/works/index.html

[BP07] Jean Bovet and Terence Parr. An ANTLR Grammar Development Environment,
http://www.antlr.org/papers/antlrworks-draft.pdf

[BP08] M. P. Bhave and S. A. Patekar. Programming With Java. Pearson Education India,
pages 1–748, 2008. ISBN 8131720802, 9788131720806.

[BS03] M. Boyer and M. Sighireanu. Synthesis and verification of constraints in the PGM
protocol. FME 2003: Formal Methods. Proceedings of International Symposiumof
Formal Methods Europe. Springer-Verlag, Pisa (Italy), September, pages 264–281,
2003.

[BS84] R.A. Bull and K. Segerberg. Basic Modal Logic. Handbook of Philosophical Logic.
Vol. 2. Kluwer, pages 1–88, 1984.

[BZ02] C. Baral, and Y. Zhang. The complexity of Model Checking for Knowledge Update,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.2843, 2002.

[BZ05] C. Baral and Y. Zhang. Knowledge updates: semantics and complexity issues.
Artificial Intelligence. Vol. 164, Issues 1–2 May 2005, pages 209–243, 2005.

[CPPB08] Laura F. Cacovean, Iulian Pah, Emil M. Popa and Cristina I. Brumar. Algorithm and
an elevator control system example for the CTL model checker. ICE-B 2008,
International Conference on E-Business, Porto, Portugal, July 26-29, pages 77–80,
2008, ISBN: 978-989-8111-58-6

[Ca09] Laura Florentina Cacovean. An Algebraic Specification for CTL with Time
Constraints. First International Conference on "Modelling and Development of
Intelligent Systems", MDIS’09, Sibiu, Romania, pages 46–55, 2009. ISSN 2067 -
3965.

[CC94] S.V. Campos and E.M. Clarke. Real-time symbolic model checking for discrete
time. Models. Theories and Experiences for Real-Time System Development. World
Scientific, pages 129–145, 1994.

[CCGPRST02] A. Cimatti, E.M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Rovere, R.
Sebastiani and A. Tacchella. NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. Computer Science Department. Technical Report Paper 430, pages 1–5,
2002. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.107.8023

[CCGR02] A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri. NuSMV: a new symbolic
model checker. STTT International Journal on Software Tools for Technology
Transfer. Springer Verlag, pages 410–425, 2002.

[CCGR99] A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri. NuSMV: A new symbolic
model verifier. Proceedings of the 11th International Conference on Computer
Aided Verification. CAV ’99, pages 495–499, 1999.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.2411

[CCKSVW02] P. Chauhan, E. Clarke, J. Kukula S. Sapra, H. Veith and D. Wang. Automated
Abstraction Refinement for Model Checking Large State Spaces using SAT based
Conflict Analysis. Proceeding FMCAD '02 Proceedings of the 4th International
Conference on Formal Methods in Computer-Aided Design. Springer-
Verlag London, pages 33–51, 2002. ISBN:3-540-00116-6.

[CDEG03] Marsha Chechik, Benet Devereux, Steve Easterbrook and Arie Gurfinkel. Multi-
Valued Symbolic Model-Checking. Journal of ACM Transactions on Software
Engineering and Methodology, Vol. 12, Issue 4, pages 371 – 408, 2003.

41

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.7144

[CE82] E.M. Clarke and E.A. Emerson. Design and Synthesis of synchronization skeletons
for branching time temporal logic. In Logic of Programs, 1981. Lecture Notes in
Computer Science, No. 131, Springer-Verlag, 1982.

[CES86] E.M. Clarke, E.A. Emerson and A.P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on
Programming Languages and Systems. Vol. 8 (2), pages 244–263, 1986.

[CGL96] E. Clarke, O. Grumberg and D. Long. Model checking. Proceedings of the
International Summer School on Deductive Program Design Marktobedorf,
Germany, 1994. In M. Broy, "Deductive Program Design", NATO ASI, Series F,
vol. 152, Springer Verlag, 1996.

[CGP00] E. Clarke, O. Grumberg and D.A. Peled. Model Checking. MIT Press. Cambridge,
2000, pages 1–325.

[CL07] E. Clarke, F. Lerda. Model Checking: Software and Beyond, Journal of Universal
Computer Science, vol. 13, no. 5, pp. 639-649, 2007

[CPBP08] L.F. Cacovean, E.M. Popa, C.I. Brumar and I. Pah. An application CTL formula
based on Problem Solving Methodology. New Aspects of Computers from
Proceedings of the 12th WSEAS International Conference of Computers. Heraklion,
Greece, pages 218–223, 2008. ISSN: 1790-5109, ISBN: 978-960-6766-85-5.

[CS08] Laura F. Cacovean and Florin Stoica. Algebraic Specification Implementation for
CTL Model Checker Using ANTLR Tools. WSEAS International Conferences,
Computers and Simulation in Modern Science - Volume II, Bucharest, Romania,
pages 45–50, 2008. ISSN: 1790-5117, ISBN: 978-960-474-032-1

[CS09] Laura F. Cacovean and Florin Stoica. CTL Model Update Implementation Using
ANTLR Tools. Proceedings of the 13th WSEAS International Conference on
COMPUTERS, Rhodos, Greece, pages 169–174, 2009. ISSN: 1790-5109, ISBN:
978-960-474-099-4

[CS10] Laura Florentina Cacovean and Florin Stoica. Modeling the Broker Behavior Using
a BDI Agent. Proceedings of the 14th WSEAS International Conference on
Computers (CSCC). Corfu, Grecia, pages 699–703, 2010.

[CS13] L. F. Cacovean, F. Stoica, WebCheck – ATL/CTL model checker tool, http://use-
it.ro

[CSS11] L.F. Cacovean, F. Stoica and D. Simian. A New Model Checking Tool. Proceedings
of the European Computing Conference (ECC ’11). Paris, France, April 28-30,
2011, pages 358–364, 2011

[DEW04] K. Denecke, M. Erne and S.L. Wismath. Galois Connections and Applications.
Kluwer Academic Publishers, Dordrecht, pages 1–501, 2004.

[DNM06] A.L. Dennis, P. Nogueira and R. Monroy. Proof-directed Debugging and Repair.
Local Proceedings of the 7th Symposium on Trends in Functional Programming
(TFP'06), Nottingham, UK, pages 131–140, 2006.

[Drools] http://blog.athico.com/2007/06/interview-with-antlr-30-author-terrence.html

[Ebe87] J. Ebert. A Versatile Data Structure for Edge-Oriented Graph Algorithms.
Communications of the ACM, Vol. 30 No. 6, pages 513-519, 1987.

[EMSS91] E.A. Emerson, A.K. Mok, A.P. Sistla and J. Srinivasan. Quantitative temporal
reasoning. CAV '90 Proceedings of the 2nd International Workshop on Computer
Aided Verification. Springer-Verlag, London, pages 136–145, 1991.

[Eme90] E. A. Emerson. Temporal and Modal Logic. In Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics. Elsevier and MIT Press, pages

42

995–1072 , 1990.

[EP02] Cindy Eisner and Doron Peled. Comparing Symbolic and Explicit Model Checking
of a Software System. Lecture Notes in Computer Science 2318, pages 230–239,
2002.

[FFST11] Dieter Fensel, Federico Michele Facca, Elena Simperl and Ioan Toma. Semantic
Web Services. Springer-Verlag Berlin HeidelBerg, pages 1–357, 2011.

[For02] Bryan Ford. Packrat parsing: simple, powerful, lazy, linear time. In ICFP’02, pages
36–47. ACM Press, 2002

[For04] Bryan Ford. Parsing expression grammars: a recognition-based syntactic foundation.
In POPL’04, pages 111–122. ACM Press, 2004.

[Geo] G. Georgescu. Algebra Logicii - Logica Algebrică (I).
http://egovbus.net/rdl/articole/No1Art34.pdf

[GrStr12] GraphStream. A Dynamic Graph Library, http://graphstream-project.org, 2012.

[GV04] P. Gammie and R. Van Der Meyden. MCK - Model Checking the Logic of
Knowledge. Computer Aided Verification. Springer, Berlin, pages 479–483, 2004.

[H2DB] H2 Database Engine, http://www.h2database.com/html/performance.html.

[Hau99] R.R. Hausser. Foundations of Computational Linguistics. Springer–Verlag, Berlin,
pages 1–534, 1999.

[Her10] M. Herschel. Database Systems I. Database Systems Group, University of
Tübingen, http://db.inf.uni-
tuebingen.de/teaching/ss10/db1/05_relational_algebra.pdf, 2010.

[HG98] Paul Halmos and Steven Givant. Logic as Algebra. The Mathematical Association
of America. Vol. 21, pages 1-152, 1998.

[HH85] H. Herrlich and M. Husek. Galois connections. Mathematical Foundation of
Programming Semantics. LNCS 239, Springer-Verlag, pages 122–134, 1958.

[Hol04] G.J. Holzmann. The SPIN Model Checker. Primer and Reference Manual. Addison-
Wesley, pages I-XII, 1–596, 2004.

[Hol97] G. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering 23,
pages 279–295, 1997.

[HR00] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about
Systems, Cambridge University Press, pages 1–405, 2000.

[HR04a] Gerard J. Holzmann and Joshi Rajeev. Model-Driven Software Verification. SPIN
2004, pages 76–91, 2004.

[HR04b] M. Huth and Mark Ryan. Logic in Computer Science (Second Edition), Cambridge
University Press, pages 1–440, 2004.

[Hu95] A.J. Hu. Techniques for Efficient Formal Verification Using Binary Decision
Diagrams, PhD thesis, Stanford University, 1995.

[HW02] W. van der Hoek, M. Wooldridge, Tractable multiagent planning for epistemic
goals, in Proceedings of AAMAS-02, pp. 1167-1174, ACM Press, 2002.

[JADE] Java Agent Development Framework (JADE), http://jade.tilab.com/

[Jam09] W. Jamroga. Easy Yet Hard: Model Checking Strategies of Agents. Computational
Logic in Multi-Agent Systems. Lecture Notes in Computer Science, Vol. 5405,
Springer Berlin Heidelberg, pages 1–12, 2009.

[JB11] W. Jamroga and N. Bulling. Comparing variants of strategic ability. Proceedings of
the Twenty-Second international joint conference on Artificial Intelligence - Volume

43

One, pages 252–257, 2011.

[KM08] Fred Kröger and Stephan Merz. Temporal Logic and State Systems. Springer
Verlag Berlin, First Edition, pages 1–433, 2008.

[KP05] M. Kacprzak and W. Penczek. Fully symbolic Unbounded Model Checking for
Alternating-time Temporal Logic. Journal Autonomous Agents and Multi-Agent
Systems archive, Vol. 11, Issue 1, pages 69 – 89, 2005.

[Kri63] Saul Kripke. Semantical Considerations on Modal Logic. Acta Philosophica
Fennica, 16, pages 83–94, 1963.

[Kri93] Saul Kripke. Semantical analysis of modal logic I: Normal modal propositional
calculi. Zeitschrift f. Math. Logik und Grundlagen d. Math., 9, pages 67–97, 1993.

[KW02] Marcus Kracht and Frank Wolter. Advances in Modal Logic, Vol 3. CSLI lecture
notes Volumul 3 din Advances in Modal Logic, Advances in Modal Logic. World
Scientific, pages 1–424, 2002.

[Kle06] Kevin C Klement. Propositional Logic. In James Fieser and Bradley Dowden
(eds.), Internet Encyclopedia of Philosophy, http://www.iep.utm.edu/prop-log, 2006.

[LR06] A. Lomuscio and F. Raimondi. Mcmas: A model checker for multi-agent systems.
In Proceedings of TACAS 06, volume 3920 of Lecture Notes in Computer Sciences,
pages 450–454. Springer-Verlag, 2006.

[LS99] F. Lerda and R. Sisto. Distributed-memory model checking with SPIN. In Proc. of
SPIN 1999, volume 1680 of LNCS. Springer-Verlag, pages 22–39, 1999.

[LSDLS12] Yi Li, Jing Sun, Jin Song Dong, Yang Liu and Jun Sun. Translating PDDL into
CSP# - The PAT Approach, ICECCS '12 Proceedings of the 2012 IEEE 17th
International Conference on Engineering of Complex Computer Systems, pages
240-249, IEEE Computer Society Washington DC, 2012

[LST03] Flavio Lerda, Nishant Sinha and Michael Theobald. Symbolic Model Checking of
Software, Electronic Notes in Theoretical Computer Science, Volume 89, Issue 3,
pages 480–498, 2003.

[Lyo06] John Lyons. Natural Language and Universal Grammar: Volume 1: Essays in
Linguistic Theory. Cambridge University Press, pages 1–308, 2006

[MA03] K. McMillan and N. Amla. Automatic abstraction without counter-examples.
Proceeding of TACAS'03 Proceedings of the 9th international conference on Tools
and algorithms for the construction and analysis of systems. Springer-Verlag Berlin,
Heidelberg, pages 2–17, 2003.

[Mar04] Martin, D., et al. OWL-S: Semantic markup for web services. W3C Member
Submission, November, 2004, http://www.w3.org/Submission/OWL-S/

[Mas03] Franceschet Massimo.
staff.science.uva.nl/~schlobac/Teaching/AR2003/massimo_1.pdf, 2003

[MB79] S. Mac Lane and G. Birkhoff. Algebra. MacMillan Publishing Co., Inc., second
edition, pages 1–586, 1979.

[MBT00] Ali Abbas Mir, Subhashini Balakrishnan and Sofine Tahar. Modeling and
Verification of Embedded Systems using Cadence SMV. Conference on Electrical
and Computer Engineering, 2000 Canadian, Vol. 1, pages 179–183, 2000.

[McG03]

James McGovern. Java Web Services Architecture. Elsevier Science, SUA, pages 1-
 833 pagini, 2003

[McM93] K. L. McMillan. Symbolc Model Checking. Kluwer Academic Publishers, Boston,
Dordrecht, Londra, pages 1–194, 1993.

44

[Mir00] Ali Abbas Mir. Subhashini Balakrishnan and Sofine Tahar. Modeling and
Verification of Embedded Systems using Cadence SMV. Conference on Electrical
and Computer Engineering, 2000 Canadian, Vol. 1, pages 179–183, 2000.

[M∅l04] A. M∅ller. dk.brics.automaton. http://www.brics.dk/automaton, 2004

[MP11] José Vander Meulen and Charles Pecheur. Milestones: A Model Checker
Combining Symbolic Model Checking and Partial Order Reduction. NASA Formal
Methods, Lecture Notes in Computer Science, Volume 6617, pages 525–531, 2011.

[Nau64] P. Naur. Revised report on the algorithmic language algol 60. Communications of
the ACM, Vol. 6(1), 1963. A/S Regnecentralen, Copenhagen, pages 1–43, 1964.

[NSLD11] Truong Khanh Nguyen, Jun Sun, Yang Liu, Jin Song Dong. A model checking
framework for hierarchical systems, 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 633 - 636, 2011

[NuSMV] NuSMV: A new symbolic model checker. http://nusmv.fbk.eu. NuSMV User
Manual. http://nusmv.irst.itc.it/NuSMV/userman/index-v2.html

[OM03] D. Owen, T. Menzies, Lurch: a Lightweight Alternative to Model Checking, In
Software Engineering and Knowledge Engineering (SEKE), pp. 158-165, 2003

[OracJav] JavaTM 2 Platform Standard Edition 5.0
API Specification. http://docs.oracle.com/javase/1.5.0/docs/api

[Ora13] http://www.infoworld.com/d/data-management/oracles-ellison-promises-ungodly-
database-speed-new-in-memory-option-227290

[Parr07] Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific
Languages. Version: 2007-3-20.

[PRISM] http://www.prismmodelchecker.org/, 2013

[RB03] RuleBase: Formal Verification Tool, Version 1.4.3. Verification Technologies
Group, IBM Haifa Research Laboratories, January 2003.
https://www.research.ibm.com/haifa/projects/verification/RB_Homepage/

[RKSMH00] T. Rus, R. Kooima, R. Soricut, S. Munteanu and J. Hunsaker. TICS: A Component-
Based Language Processing Environment. CiteSeerX, pages 1–10, 2000.
ftp://ftp.cs.uiowa.edu/pub/rus/components2.ps

[RKW99] T. Rus, R. Kooima and E. Van Wyk. Semantics specification in an algebraic
compiler. CiteSeerX, pages 1–37, 1999. ftp://ftp.cs.uiowa.edu/pub/rus/semspec.ps

[Roz11] K.Y. Rozier. Survey: Linear Temporal Logic Symbolic Model Checking, Computer
Science Review, Volume 5 Issue 2, pages 163–203, 2011.

[RP97] T. Rus and S.V. Pemmaraju. Using Graph Coloring in an Algebraic Compiler. Acta
Informatica. Vol. 34, No. 3, pages 191–209, 1997.

[Rua08] J. Ruan, Reasoning about Time, Action and Knowledge in Multi-Agent Systems,
Ph.D. Thesis, University of Liverpool, http://ac.jiruan.net/thesis/, 2008

[Rus02] T. Rus. A Unified Language Processing Methodology. Theoretical Computer
Science 281, pages 499–536, 2002.

[Rus83] Teodor Rus. Mecanisme formale pentru specificaţia limbajelor. Editura Academiei,
Bucureşti, pages 1–475, 1983.

[Rus88] T. Rus. Parsing languages by pattern matching. IEEE Transactions on Software
Engineering, Vol. 14(4), pages 498–510, 1988.

45

[Rus91] T. Rus. Algebraic construction of compilers. Theoretical computer Science, Vol. 90,
pages 271–308, 1991.

[Rus98] T. Rus. Algebraic processing of programming languages. Theoretical Computer
Science, Vol. 199(1), pages 105–143, 1998.

[RW96] T. Rus and E.V. Wyk. Algebraic Implementation of model checking. In third
AMAST Workshop on Real-Time Systems, pages 267–279, 1996.

[RWH02] T. Rus, E. Van Wyk and T. Halverson. Generating model checkers from algebraic
specifications. Springer, Formal Methods în System Design. Vol. 20, Issue 3, pages
249–284, 2002.

[SB12] Laura Florentina Stoica and Florian Mircea Boian. Algebraic approach to
implementing an ATL model checker. STUDIA UNIV. BABEŞ BOLYAI,
INFORMATICA, Cluj-Napoca, Romania. Volume LVII, Number 2, pages 73–82,
2012.

[SBS13] Laura Florentina Stoica, Florian Mircea Boian and Florin Stoica. A Distributed CTL
Model Checker. Proceeding of 10th International Conference on e-Business,
Reykjavik Iceland, paper 33, pages: 379-386, 29-31 July, 2013.

[SC10] F. Stoica and L. F. Cacovean. Interoperability Issues in Accessing Databases
through Web Services. Proceedings of the 11th WSEAS International Conference on
Evolutionary Computing (EC '10). Iaşi, Romania, pages 279–284, 2010.

[Sch03] Klaus Schneider. Verification of Reactive Systems: Formal Methods and
Algorithms. Springer Verlag Berlin Heidelberg, First Edition, pages 1-600, 2003

[Sch04] Klaus Schneider. Verification of reactive systems: formal methods and algorithms.
Springer, page 45, 2004. ISBN 9783540002963.
http://www.amazon.com/Verification-Reactive-Systems-Algorithms-
Theoretical/dp/3642055559

[Sha06] Anand Sharma. Theory of Automata and Formal Languages. LAXMI Publication
(P) LTD. Second Edition, pages 1-522, 2006.

[Som12] F. Somenzi. CUDD: CU decision diagram package - release 2.5.0.,
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html, 2012

[SS11] Laura Florentina Stoica and Florin Stoica. Considerations about the implementation
of an ATL model checker. Second International Conference on Modelling and
Development of Intelligent Systems, MDIS. Sibiu, Romania, pages 170–179, 2011.

[SS13] Florin Stoica and Laura Stoica. Building a new CTL model checker using Web
Services. Proceeding The 21th International Conference on Software,
Telecommunications and Computer Networks (SoftCOM 2013), At Split-Primosten,
Croatia, 18-20 September, 2013.

[SSB13] Laura Florentina Stoica, Florin Stoica and Florian Mircea Boian. Using ATL model
checking in agent-based applications. Proceeding of Third International Conference
on Modelling and Development of Intelligent Systems, Sibiu, Romania, 10 –12
October, pages 127-135, 2013.

[SSS12] L.F. Stoica, F. Stoica and D. Simian. Client/Server Implementation of an ATL
Model Checker Using Web Services. Proceedings of the 16th WSEAS International
Conference on Computers, Kos Island, Greece, pages 359–364, July 14-17, 2012.
ISBN: 978-1-61804-109-8.

[SW96] Markus Stumptner and Franz Wotawa. Model-Based Program Debugging and
Repair. CiteSeerX, pages 155–160, 1996.

[Tab95] Deian Tabakov. Experimental Evaluation of Explicit and Symbolic Automata-
Theoretic Algorithms, Master of Science thesis, Rice University, Texas, 2005.

46

[VW86]

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. 1st Symp. on Logic in Computer Science, pages 332–344,
Cambridge, 1986.

[Wag05] F. Wagner. Moore or Mealy model?. Pages 1–7, April 2005.
http://www.stateworks.com/active/download/TN10-Moore-Or-Mealy-Model.pdf

[Wir90] M. Wirsing. Algebraic specification. In Handbook of theoretical Computer Science,
The Mit Press/Elsevie, Volume B, pages 677–788, 1990.

[Win84] WING, J.M. Helping specifiers evaluate their specifications. In Proceedings of the
2nd Software Engineering Conference. AFCET, pages 179–191, 1984.

[Win93] G. Winskel. The Formal Semantics of Programming Languages, an introduction.
Foundations of Computing. The MIT Press, 1993.

[WV97] J. Wing and M. Vaziri-Farahani. A case study in Model checking software systems.
Science of ComputerProgramming, Vol 28, pages 273–299, 1997.

[WWQ05] Andy Ju An Wang, Kai Qian Andy Ju An Wang and Kai Qian. Component-
oriented programming, John Wiley and Sons. Pages 1–333, 2005. ISBN:
0471644463, 9780471644460.

[Wyk00] E.V. Wyk. Specificaion Languages in Algebraic Compiler. CitiSeerX, pages 1–38,
2000.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.5593&rep=rep1&type
=pdf

[Wyk98] E. Van Wyk. Semantic Processing by Macro Processors. PhD Thesis, The
University of Iowa, Iowa City, Iowa, CiteSeerX, pages 1–167, 1998.

[ZD08] Yan Zhang and Yulin Ding. CTL Model Update for System Modifications. Journal
of Artificial Intelligence Research 31, pages 113–155, 2008.

