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1.  Introduction 

1.1. Actual approaches in verifying models 

 
Testing and simulation can give us only confidence in the implementation of a software system, but 

cannot prove that all bugs have been found. However testing is neither exhaustive nor very effective for 
software, especially concurrent software, which is much more complex than sequential software. Thus, there has 
been a tremendous push for efficient algorithms and techniques that allow one to prove that a program satisfies 
certain properties. The process of stating and proving properties about programs is known as program 
verification. 

Verification of a software system involves checking whether the system in question behaves as it was 
designed to behave. Design validation involves checking whether a system design satisfies the system 
requirements. Both of these tasks, system verification and design validation can be accomplished thoroughly 
and reliably using model-based formal methods, such as model checking [Roz11].  

Model checking is particularly well-suited for the automated verification of finite-state systems, both for 
software and for hardware. 
Main concern of formal methods in general, and model checking in particular, is helping to design correct 
systems [BBCR10]. Detecting and eliminating bugs as early in the design cycle as possible is clearly an 
economic imperative. For example, the Pentium FDIV bug (a bug in the Intel P5 Pentium floating point unit 
discovered in 1994) cost Intel Corporation a half billion dollars. 

Model checking is the formal process through which a given specification representing a desired 
behavioral property is verified to hold for a given system (the model).  

A Computation Tree Logic (CTL) specification is interpreted over Kripke structures, which are 
graph-like structures, in which nodes represent states and arcs represent transitions between states.  

The set of all paths through a Kripke structure is assumed to correspond to the set of all possible 
computations of a system. CTL logic is branching-time logic, meaning that its formulas are interpreted over 
all paths beginning in a given state of the Kripke structure. 

A CTL formula encodes properties that can occur along a particular temporal path as well as to the 
set of all possible paths. A path in a CTL model is interpreted as sequences of successive states of 
computations. The CTL syntax includes several operators for describing temporal properties of systems: A 

(for all paths), E (there is a path), ○ (at the next moment),  (in future), □ (always) and U (until).  
A Kripke structure offers a natural model for the computations of a closed system, whose behaviour is 

completely determined by the state of the system. The compositional modelling and design of reactive systems 
requires each component to be viewed as an open system [SS11]. 

The branching time temporal logic CTL has a limited value when applied to open systems [HW02]. 
An open system is a system that interacts with its environment and whose behaviour depends on the state of 
the system as well as the behaviour of the environment. In order to construct models suitable for open 
systems, the Alternating-time Temporal Logic (ATL) was defined [AHK02]. ATL represents an extension 
of CTL, which is interpreted over concurrent game structures (CGS). 

ATL replaces path quantifiers A and E by cooperation modalities of the form A φ (where A is a 

group of agents). Informally, A φ means that agents A have a collective strategy to enforce φ, 

regardless of the actions of all the other agents [KP05]. 
The state explosion problem is widely agreed to be the most formidable challenge facing the application 

of model checking to large and complex real-world systems. In short, the number of states required by the 
model grows exponentially with the number of system components (or state variables), constituting the main 
practical limitation of model checking. Reducing the time required to verify models remains also a big 
challenge. This naturally raises interest in using parallelism to improve the performance of many formal model 
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checkers. Much of the extensive research on the parallelization of model checking algorithms followed the 
distributed memory programming model which appeared from the necessity to eliminate the memory constraints 
of a single computer system.  

The aim of our research was to develop a reliable, easy to maintain, scalable model checker tool to 
improve applicability of CTL/ATL model checking in design of general-purpose computer software. 

 

1.1.1. Remarkable Tools for CTL model verification 
 

Some examples of well-known explicit-state parallel model checkers are DiViNe and PSPIN. DiVinE 
[BBCR10], [BBR10] is a distributed model checker for explicit state LTL (Linear Temporal Logic) model 
checking and is able to handle large systems consisting of as many as 419 million states, as stated in 
[BBPESR10]. PSPIN has also been used for performing distributed model checking with the capability of 
handling up to around 2.8 million states [LS99]. 

The basic idea behind symbolic model checking is to use a more efficient “symbolic” representation for 
the Kripke structure being checked and for sets of states of the Kripke structure. Since the sizes of these 
representations is typically the limiting factor in applying model checking, an efficient representation can 
potentially allow much larger structures to be checked. 

Symbolic model checkers, such as CadenceSMV (Mir, 2000), NuSMV [CCGR02] analyse the state space 
symbolically using binary decision diagrams (BDDs). The binary decision diagram is a data structure for 
representing Boolean functions. With appropriate labelling of each state of the Kripke structure, any expression 
on the Boolean variables represents a set of states of the structure. In contrast with explicit-state model 
checking, states in symbolic model checking are represented implicitly, as a solution to a logical equation. This 
approach saves space in memory since syntactically small equations can represent comparatively large sets of 
states [Roz11]. A symbolic model checker represents the Kripke structure itself symbolically using BDDs to 
represent transition relations by Boolean expressions. The key to symbolic model checking is to perform all 
calculations directly using these Boolean expressions, rather than using the Kripke structure explicitly. 

 

1.1.2. Remarkable Tools for ATL model verification 
 

ATL has been implemented in several symbolic tools for the analysis of open systems. 
In [AHMQRT98] is presented a verification environment called MOCHA for the modular verification of 

heterogeneous systems. The input language of MOCHA is a machine readable variant of reactive modules. 
Reactive modules provide a semantic glue that allows the formal embedding and interaction of components with 
different characteristics [AHMQRT98].  

In [LR06] is described MCMAS, a symbolic model checker specifically tailored to agent-based 
specifications and scenarios.  MCMAS supports specifications based on CTL and ATL, implements OBDD-
based algorithms optimized for interpreted systems and supports fairness, counter-example generation, and 
interactive execution (both in explicit and symbolic mode). MCMAS has been used in a variety of scenarios 
including web-services, diagnosis, and security. 

 MCMAS takes a dedicated programming language called ISPL (Interpreted Systems Programming 
Language) as model input language. An ISPL file fully describes a multi-agent system (both the agents and the 
environment). 

 

1.1.3. Comparing Symbolic and Explicit Model Checking 
 
Two most common methods of performing model checking are explicit enumeration of states of the 

model and respectively the use of symbolic methods. 
There are two measures of the size of the model under model checking. One is the number of the states in 

reachable state space (state space size), while the other is represented by the number of bits needed to represent 
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a state size. In symbolic model checking, the space used to represent a state is limited by the internal data 
structures. However, because a symbolic approach uses a compact representation of the set of states, it can 
handle a larger state space size. In explicit model checking, the state size is not strictly limited, but is related 
with state space size in the total memory consumption. In [EP02] is presented a comparison between 
RULEBASE, a symbolic model checker developed at IBM Haifa Research Laboratory and the explicit LTL 
model checker SPIN [Hol97]. The software verified was a distributed storage subsystem software application. 
The state space size handled by SPIN was 108 in a 3-process model. Using symbolic model checking, 
RULEBASE keeps a compressed representation of the state space and thus was able to manage 10150 states. On 
the other hand, because of the limit on state size, RULEBASE could not represent a state large enough to 
include the information needed for more than 2-process configuration [EP02]. 

An important reason why software model checking is still predominantly performed using explicit-state 
model checkers such as SPIN, is that these methods gain much of their efficiency from state-reduction 
techniques such as partial-order reduction (POR). The POR methods explore a reduced state space in a property-
preserving way [MP11]. Partial-order reduction is useful only when the system has an asynchronous model of 
composition.  

Most hardware designs are based on a clocked-approach and thus are synchronous. For these systems, the 
symbolic model checking approach is more appropriate [LST03]. 

On the other hand, for nondeterministic, high-level models of hardware protocols, it has previously been 
argued that explicit model checking is better than symbolic model checking [Hu95]; this is because the 
communication mechanisms inherent in protocols tend to cause the BDDs in symbolic model checking to blow 
up [BBPESR10].  

In their basic form, symbolic approaches tend to perform poorly on asynchronous models where 
concurrent interleaving are the main source of explosion, and explicit-state model-checkers with POR have been 
the preferred approach for such models [BBPESR10]. 

A detailed experimental comparison between performance of explicit-state model checkers and symbolic 
model checkers can be found in [Tab95]. The study follows an automata-theoretic approach in program 

verification, originally proposed by Vardi and Wolper [VW86]. Given a program P and a property ϕ, the task is 

to check whether the program satisfies the property ϕ. If the program P is viewed as a finite-state generator of 

words, and the specification ϕ as a finite-state acceptor, the model-checking problem is reduced to an automata-
theoretic question: whether the automaton PA A

j
Ç  is empty. A non-deterministic automaton A defined over a 

nonempty finite alphabet S  is said to be universal if it accepts *S . The universality problem is to check if A is 
universal. If ܣ௉ is a universal automaton, the model checking problem is reduced to check whether Aj  is also 

universal. The study presented in [Tab95] uses two approaches, explicit and symbolic, for solving the 
universality problem. For evaluating the explicit approach, author has used Java tool Automaton.brics.dk 

[M∅l04] and the model-checker SPIN. To solve universality symbolically were used Cadence SMV [Mir00] 
and NuSMV [CCGPRST02] as symbolic BDD-based model checkers.  

In order to present a full comparison between the symbolic and the explicit algorithms, was performed a 
scaling comparison of Cadence SMV, NuSMV and respectively SPIN. The direct comparison of the three model 
checkers shows that the explicit one (SPIN) is much faster than the symbolic ones. In conclusion, experimental 
results show that the explicit approach scales better than the symbolic one, which was rather surprising but 
confirms similar statements from [BBPESR10], [Hu95].  

1.2.  Motivation and objectives 

 
The broad goal of our research was to develop a reliable, easy to maintain, scalable model checker tool to 

improve applicability of CTL (Computation Tree Logic) model checking in design of general-purpose computer 
software. 
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Concurrent software is asynchronous as the different components might be running on different 
processors or be interleaved by the scheduler of the operating system. Taking into account the above 
considerations, in our tool we are using an explicit-state model technique. 

The most pressing challenge in model checking today is scalability [Roz11]. A model-checking tool must 
be efficient, in terms of the size of the models it can reason about and the time and space it requires, in order to 
scaling its verification ability to handle real-world applications.  

To address the state explosion problem, our tool is based on an efficient data structure for internal 
representation of the model to be verified [GrStr12].  

An orthogonal approach to increase the capacity of an explicit-state model checker tool is to exploit the 
memory and computational resources of multiple computers in a distributed computing environment 
[BBPESR10]. Following this idea, our tool is based on Web Services technology to address the time constraints 
in verification of large models 

1.3. Structure of the thesis 

Chapter 1 presents the current state of research in using the temporal logics in verification of systems 
and an analysis of the advantages / disadvantages of explicit verification in relation to symbolic verification. 
Also, are analyzed briefly some dedicated tools for the CTL model checking, respectively ATL model checking. 
Further, is presented the motivation of the study undertaken, objectives and directions of research in the thesis. 

In chapter 2 are described the fundamental algebraic concepts used in the algebraic methodology of 
development of the algebraic compilers, in generally, and implementation of the model checkers, in particular. 

 Chapter 3 contains a comprehensive description of all aspects that must be considered in using the 
algebraic methodology to implement a software tool able to automatically verify systems modeled using 
temporal logic. This chapter begins with an overview of the concept of model checking based on temporal logic 
and the stages of the verification process of a model. In the following is described the algebraic methodology 
proposed by Rus [Rus91, CPBP08] for the design of compilers using algebraic specifications and their 
applications in the implementation of CTL model checkers. Section 3.2 includes the theory of algebraic 
compiler definition which is in fact a CTL model checker. In Section 3.3 is presented the abstract 
implementation level of a homomorphism between syntax algebra of source, respectively target languages. This 
homomorphism performs practically the checking of the CTL formulas in a given model. Section 3.4 contains 
the algebraic specification of a context-free language, which constitutes the premises of design the CTL model 
checker from context-free grammars which generate the language of the CTL formulas (process detailed in 

Section 3.4.2). Grammar specification of a −language of CTL formulas is presented in section 3.5, and the 
chapter ends with the complete specification of algebraic compiler (CTL model checker). In the case study 
presented in Section 3.5.2, a CTL model for mutual exclusion of two processes, is showed the step by step 
execution of the designed algebraic compiler in the verification process of the modeled system, where 
specifications are expressed as CTL formulas. Although follows the same principles of the algebraic 
methodology proposed by Rus, our CTL model checker presents the following structural differences from the 
one shown in [Wyk98]: supports full syntax of CTL formulas, respectively all modal operators (in [Wyk98], 
CTL model checker supports only four temporal operators); differs the set of operations dependent on model, in 
our solution we opted for a set of operations that have a similar syntax used in ATL model checker, presented in 
chapter 6; algebraic compiler is generated using ANTLR, based on attribute grammars (described in chapter 4), 
and the parser is top-down, as opposed to the one provided by TICS tool used in [Wyk98],  which is bottom-up 
and is based on macro processing in the translation process. 

In chapter 4 is shown the ANTLR parser generator, upon which is based the implementation of our 
CTL model checker and is justified the choice of this tool in the detriment of others (YACC, FLEX, BISON, 
BYACC/J, etc.). The attribute grammars are presented as an alternative for algebraic compiler development 
through macro processing (TICS system solution adopted, and applied in [Wyk98]) and are enumerated the 
arguments which recommended the ANTLR attribute grammars in implementing model checkers. Are 
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presented the ANTLR advanced concepts used in parser generation: LL(k), LL(*), PEG type analysis, flexible 
meta-language for specifying grammars, allowing placement of a semantic actions before and/or after 
specification of production rules, syntactic predicates, semantic predicates, memoization, finite automata 
decision with the role of prediction in the parsing, auto-backtracking for non-LL(*) grammars, techniques to 
eliminate nondeterminism. Also, is presented the technique of implementing the semantic actions in ANTLR, 
which is the concept of connection between attribute evaluation in the grammar that generates the language of 
CTL formulas and algebraic compiler implementation that represents the CTL model checker. Thus, the 
semantic action associated with a production rule represents the implementation of the derivate operation 
associated with the CTL operator for which it was defined that production. At the same time, the role of the 
semantic action is to compute the attribute value of the nonterminal which is rewritten by that production rule.  

In chapter 5, for making available the CTL algebraic compiler implementation as reusable component 
of the CTL model checking tool, was achieved its publication as a Web Service. The CTL algebraic compiler, 
encapsulated in an Web service and based on the Java code generated by ANTLR on the basis of our original 
CTL attribute grammar, will perform the verification of CTL formulas in a given model, providing at the same 
time the signaling of any lexical/syntactic errors in the verified formula. The algorithm for determining a 
winning strategy for X0 game was used to evaluate the performance of the new CTL model checking tool. 

In chapter 6 is presented a CTL extension, named ATL (Alternating-time Temporal Logic). ATL 
temporal logic is used in modeling of open systems, and describe in a naturally way the processing of multi-
agent systems, multi-user games, etc. Within the chapter it is shown how algebraic methodology can be used in 
the development of ATL model checking tool. In section 6.2 is formally defined the concurrent game structure. 
In section 6.3 is presented the ATL logic with its syntax and semantics. Sub-chapter 6.5 contains algebraic 
structure and description of an ATL model. Algebraic structure description of ATL language has as its starting 
point the definition of language of ATL formulas as Σ–language. The algebraic methodology to design a CTL 
model checker, presented in detail in chapter 3, has been successfully applied for the algebraic design of an ATL 
model checker. The ATL algebraic compiler specification was detailed in section 6.7, by defining the EBNF 
syntax and semantic actions corresponding to the production rules of context-free grammar which specify the Σ-
language of ATL formulas. In sections 6.9 and 6.10 is accomplished the formalization of the Pre() function, 
used in all derivate operations corresponding to ATL modal operators, using concepts of Relational Algebra. A 
concrete call of this function (which in terminology of algebraic methodology is a model-dependent operation) 
was exemplified in the verification of specifications formulated in our original ATL model for the critical 
section problem solved using a mutex. 

In chapter 7 is presented the client / server architecture of the ATL model checker, which is based on the 
Web services technology to expose the functionality of its core component, the algebraic compiler developed in 
the previous chapter. The ATL model checker tool is composed by a client application which allows building of 
interactive ATL models, a server part (the Web service) and two API libraries (available for C# and Java 
languages) that allow the programmatically specification of an ATL model in XML format and checking the 
ATL formulas by invoking the Web service. Also, was evaluated the performance of our model checker tool in 
relation to three database servers: MySql, SQL Server and H2. Have been achieved two applications of ATL 
model checker tool, for determining the optimum strategies in multi-agent systems modeled as synchronous 
structures of alternative concurrent games and respectively for validating Finite State Machine behaviors of 
JADE agents.  

Chapter 8 contains the conclusions of the thesis and presents directions for future research. 

Within the doctoral thesis, tables and figures are numbered with consecutive numbers prefixed by the 
number of section in which they appear. 
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1.4. Original contributions of the thesis  

The main original contributions of the thesis and the papers where they were published are: 

• Expanding the syntax algebra Sinctl of Lctl language presented in [Wyk98] with the set of operators {→, AG, 

AF, EG, EF}. Construction of TMC : Sinctl → SinM homomorphism was also extended by defining a derived 

operation ( )MCd op  in the word algebra SinM of target language for each new operator introduced [CS08, 

CS09, Ca09]; 

• Defining two model - dependent operations, ݁ݎ݌∀() and respectively 	݁ݎ݌∃() which are used in all derived 
operations associated to CTL modal operators; this allowed simplification of the syntax of derived 
operations from SinM algebra [SBS13, SS13]; 

• Expanding the algebraic specification of a context-free language for the case in which the production rules 
of the grammar which generates that language are specified in EBNF syntax. This extension was necessary 

because ANTLR grammar for specification of the Lctl −language uses EBNF syntax for some production 
rules associated to CTL operators in order to eliminate the left recursion; 

• Proof of obtaining denotation (the set of satisfaction) for ܩܣ	݂ CTL formula as fix point of ݃(ܺ) =	⟦݂⟧	⋂  ;function (ܺ)∀݁ݎ݌

• The analysis of the complexity of CTL model checking algorithm; 

• Implementation/generation of algebraic compiler through ANTLR attribute grammar for specification of the 

Lctl −language [CS08, CS11]; 

• Exposure of algebraic compiler functionality through a Web Service – CTL Checker [CSS11]; 

• CTL Designer – The client component of the CTL model checking tool, a GUI application developed in C# 
which allows the interactive construction and verification of CTL models [CSS11]; 

• Design an algorithm to determine the optimal strategy in an alternate synchronous game and its use for 
performance evaluation of the CTL model checker [ SBS13, SS13]; 

• Defining the language of ATL formulas as Σ–language, definition of derived operations and algebraic 
compiler structure that represents the ATL model checker [SS11, SB12, SSS12]; 

• Implementation of an ATL algebraic compiler through ANTLR attribute grammar for specification of the 

Latl −language [SSS12]; 

• Building an alternate synchronous game structure (ATL model) for controlling access to a Web site 
[SSS12]; 

• Formalization of the Pre() function − considered model dependent operation in the syntax algebra of target 

language for the algebraic compiler − through relational algebra expressions and its implementation by 
translating the respective expressions in SQL language; 

• Publication the ATL model checking tool as Web service – ATL Checker [SB12, SSS12]; 

• ATL Designer – The client component of the ATL model checking tool, a GUI application developed in C#, 
allows the construction and verification of the interactive of ATL models. For internal representation of an 
ATL model as an oriented multi-graph, our implementation is based on the data structure appropriate for 
dynamic graphs [Ebe87]. These structures have been adapted for C# and then extended for representation of 
the concurrent game structures [SB12, SSS12]; 
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• Development of an API programming interface – ATL Library – for the programmatic building of 
CTL/ATL models with large size; 

• Building and verification of ATL model for the two concurrent processes who want to enter into a critical 
section. Our solution improves the classical CTL model because supports real competition: two processes 
may require simultaneously entering in the critical section, and their access is restricted using a mutex 
managed by the operating system, represented in our model by an agent; 

• Modifying the ATL model proposed by Alur [AHK02] to be able to represent the agents movements 
through arbitrary symbols (in the original model the agents moves were represented through natural 
numbers) [SSB13, SB12]; 

• Design an algorithm to determine the optimal strategy in an alternate synchronous game and its use for 
performance evaluation of the of ATL model checker; 

• Develop a technique for validation of Finite State Machine behaviors of JADE agents. The proposed 
solution is based on Java version of ATL Library Component, and allows checking at execution time agent 
specifications expressed through ATL formulas.  The ATL model is constructed automatically, at definition 
of the finite state machine of JADE agents; 

• Current implementation of the ATL model checker supports three database servers: MySQL, SQL Server 
and H2. 

1.5. Keywords  

Software system, Formal verification, Temporal logic, Model checker, CTL logic, CTL model 
checking, Kripke structure, CTL model, ATL logic, ATL model checking, ATL model, Concurrent game 
structure, Multi-agent system, Algebraic compiler, ANTLR context-free grammar, ANTLR attribute grammar, 
Web Service, Relational Algebra, SQL. 

2. Fundamental theoretical concepts 

This chapter describes fundamental algebraic concepts used in algebraic methodology, in general for the 
algebraic compiler development, and in particular for the implementation of the model checkers.  

In the algebraic methodology the languages are represented using sigma algebras, and a compiler is 
specified as a generalized homomorphism which includes the source language in the target language. 

Exposed methodology can be used to implement model checkers as algebraic compilers in which source 
languages are the languages of temporal logics that define the syntax and semantics of temporal logic formulas, 
and the target language is the language of set of states that satisfy the logical formulas within specific models. 

 

3. A CTL model checking tool based on the algebraic methodology 

Temporal logic has emerged as a main formalism for reactive systems. A temporal logic is essentially an 
ordinary predicate or propositional logic with the addition of modal operators for describing how the 
interpretation of symbols changes over time [Hu95]. Typical temporal operators include the next-time operator 
(X), the eventuality operator (F), the always operator (G) and until (U) operator. 

A CTL model checker is a tool which can be used to verify that a given system satisfies a given CTL 
logic formula. A CTL model is a Kripke structure represented by a directed graph where the nodes are the states 
of the system and the edges represents the state transitions. The nodes are labeled with atomic propositions. In 
order to be verified by a given model, a property is written as a temporal logic formula over the labeled 
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propositions from the model. A model checker is an algorithm that determines the states of a model that satisfy 
a temporal logic formula. 

3.1. The CTL model 

A model is defined as a Kripke structure M=(S, Rel, P:S→2AP) where S is a finite sets of states also called 
nodes, Rel⊆S×S is a transition relation denoting a set of directed edges, and P is a labelling function that defines 

for each state s ∈ S the set P(s) of all atomic propositions from AP that are valid in s. The transition relation Rel 

is left-total, i.e., ∀ s ∈ S ∃ s' ∈ S such that (s,s') ∈ Rel. 

For each s∈S, the notation succ(s)={s'∈S |(s,s')∈Rel} is used to denote the set of successors of s. From 

definition of Rel, each state from S must have at least one successor, that is ∀s∈S, succ(s)≠∅. A path in M is an 

infinite sequence of states (s0,s1, s2,…) such that ∀i, i≥0, we have (si,si+1)∈Rel.  

We use s' ∈ succ(s) to denote that there is a relation (s, s') in Rel. The labelling function P maps for each 

state s ∈ S the set P(s) of all atomic propositions from AP that are valid in s [HR00]. 

3.2.  CTL syntax and semantics 

A CTL formula has the following syntax given in Backus-Naur Form (BNF): 

ϕ :: true|false|ap|(¬ ϕ1)| ϕ1∧ϕ2| ϕ1∨ϕ2| ϕ1 ϕ2| AX ϕ1| EX ϕ1| AG ϕ1| EG ϕ1| AF ϕ1| EF ϕ1|ϕ1AUϕ2| ϕ1EUϕ2, ∀ap∈AP. 
A CTL specification is interpreted over Kripke structures. The set of all paths through a Kripke 

structure is assumed to correspond to the set of all possible computations of a system. CTL logic is 
branching-time logic, meaning that its formulas are interpreted over all paths beginning in a given state (an 
initial state) of the Kripke structure. 

A CTL formula encodes properties that can occur along a particular temporal path as well as to the 
set of all possible paths. The CTL syntax include several operators for describing temporal properties of 
systems: A (for all paths), E (there is a path), X (at the next moment), F (in future), G (always) and U 
(until) 

Syntactically, CTL formulas are divided into three categories:  

• those whose outermost operator, if any, is not a temporal operator;  

• those whose outermost operator is a temporal operator (X (next), U (until), F (eventually) or G 
(always)) prefixed with the existential path quantifier E, and  

• those whose outermost operator is a temporal operator prefixed with the universal path quantifier 
A. 
 

3.3. Fixed-point characterization of CTL 

Let M=(S, Rel, P:S→2AP) be an arbitrary finite Kripke structure. Given a state s in S, is defined a 

satisfaction relation (M, s)⊨ ϕ  to specify that formula ϕ  holds in s. We denote by ⟦߮⟧ெ = ሼݏܵ	|	(ܯ, (ݏ ⊨ ߮} 

the set of all states from S which satisfy the formula ϕ (the set of states at which ϕ is true). ⟦߮⟧ெ is called the 

denotation of ϕ in model M. Because often M is implicit, we write ⟦߮⟧ rather than ⟦߮⟧ெ. Thus (M, s)⊨ ϕ  ⇔ ݏ ∈ ⟦߮⟧. 
Let 2ௌ denote the power set of the set S. A set valued function ݂ ∶ 	 2ௌ 	→ 	2ௌ is called monotone if for all 

X, Y ⊆ S, ܺ	 ⊆ ܻ		݂(ܺ) 	⊆ ݂(ܻ). 
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Fixed points definition Let ݂ ∶ 	 2ௌ 	→ 	2ௌ be a set valued function and ܼ	 ⊆ S a subset of S. 
1. Z is called a fixed point of ݂ if ݂(ܼ) = ܼ. 
2. Z is called the least fixed point (LFP) of f if ݂(ܼ) = ܼ and ∀	ܷ	 ⊆ ܵ, ݂(ܷ) = ܷ	 ⇒ ܼ	 ⊆ ܷ. 
3. Z is called the greatest fixed point (GFP) of f if ݂(ܼ) = ܼ and ∀	ܷ	 ⊆ ܵ, ݂(ܷ) = ܷ	 ⇒ ܷ ⊆ ܼ. 

The Kleene fixed-point theorem can be written in the following form: 
 

Theorem: Let ݂ ∶ 	 2ௌ 	→ 	2ௌ be a monotone function on a finite set S. 
1. There is a least and a greatest fixed point of f. 
2. ⋃ ݂௡(௡ஹଵ ߶) is the least fixed point of f. 
3. ⋂ ݂௡(ܵ)௡ஹଵ  is the greatest fixed point of f. 

The universal and existential pre-image functions ݁ݎ݌∀, ∃݁ݎ݌	 ∶ 	 2ௌ → 	2ௌ are defined by: 
(ܺ)∀݁ݎ݌  = ሼݏ ∈ (ݏ)ܿܿݑݏ	|	ܵ ⊆ (ܺ)∃݁ݎ݌ {ܺ = ሼݏ	 ∈ (ݏ)ܿܿݑݏ	|	ܵ ∩ ܺ ≠ ߶} (1)

 

For a CTL formula ϕ, the model checker will compute ⟦߮⟧ recursivelly, using the rules described in the 
following table, where LFP and GFP represent the least fixed point and respectively the greatest fixed point of 
the specified functions: 

Formula ϕ Computation of ⟦࣐⟧
ap { s ∈ S | ap ∈P(s) }

true (false) S (߶)
߮ଵ S \ ⟦߮ଵ⟧߮ଵ ∧ ߮ଶ  ߮ଵ ∧ ߮ଶ 

⟦߮ଵ⟧ ⋂ ⟦߮ଶ⟧⟦߮ଵ⟧ ⋃⟦߮ଶ⟧ܺܣ	߮ଵ pre∀(⟦φଵ⟧)ܺܧ	߮ଵ ݁ݎ݌∃(⟦߮ଵ⟧)߮ଵܷܣ	߮ଶ LFP of
  ݂(ܺ) = ⟦߮ଶ⟧ ⋃ (⟦߮ଵ⟧ ଶ LFP߮	ܷܧଵ߮ ((ܺ)∀݁ݎ݌⋂ of
   ݂(ܺ) = ⟦߮ଶ⟧ ⋃ (⟦߮ଵ⟧ ଵ GFP߮	ܩܣ ((ܺ)∃݁ݎ݌⋂ of ݂(ܺ) = ⟦߮ଵ⟧ ଵ GFP߮	ܩܧ(ܺ)∀݁ݎ݌⋂ of ݂(ܺ) = ⟦߮ଵ⟧ ଵ LFP߮	ܨܣ(ܺ)∃݁ݎ݌⋂ of ݂(ܺ) = ⟦߮ଵ⟧ ଵ LFP߮	ܨܧ(ܺ)∀݁ݎ݌⋃ of ݂(ܺ) = ⟦߮ଵ⟧ (ܺ)∃݁ݎ݌⋃

Table 3.3.1: Recursively computation of denotation ⟦߮⟧ of CTL formula ϕ. 
 

In the following we will justify the form of denotation for CTL formula ܩܣ	߮. By definition,   ⟦ܩܣ	߮⟧ = 
଴ݏ} ∈ ,଴ݏ)	∀		|	ܵ ,ଵݏ … ), ௜ݏ ∈ ⟦߮⟧	∀݅ ∈ ℕ}. Thus, we can rewrite: ⟦ܩܣ	߮⟧ = ሼݏ ∈ 	ݏ	|	ܵ ∈ 	 ᇱݏ	∀	݀݊ܽ	⟦߮⟧ ∈ ,(ݏ)ܿܿݑݏ ᇱݏ ∈ ⟦߮⟧	=	{⟦߮	ܩܣ⟧ ∩ ሼݏ ∈ (ݏ)ܿܿݑݏ	|	ܵ 	⊆ 	 = {⟦߮	ܩܣ⟧ ⟦߮⟧	∩  .(⟦߮	ܩܣ⟧)∀݁ݎ݌	

So, ⟦ܩܣ	߮⟧ is a fixed point of the function ݂(ܺ) = 	 ⟦߮⟧	⋂  It remains to see that it is the .(ܺ)∀݁ݎ݌
greatest fixed point. 

Let H be another fixed point, i.e., =	 ⟦߮⟧ 	∩ ܪ We must show that . (ܪ)∀݁ݎ݌	 ⊆  .⟦߮	ܩܣ⟧
Suppose the contrary: there is a state ℎ଴ ∈ ெߨ	∃  ⟦߮	ܩܣ⟧	∌ such that ℎ଴ ܪ = (ℎ଴, ℎଵ, … ) a path in M 

and ∃	݇	 ∈ ℕ such that ℎ௞ ∈ and ℎ௞	ெߨ	 ∉ 	 ⟦߮⟧. 
But ℎ଴ ∈  ℎ଴ ⟦߮⟧ ⊇ ܪ ∈ 	 ⟦߮⟧. Also ℎ଴ ∈  ℎଵ (ܪ)∀݁ݎ݌ 		ܪ ∈ because ℎଵ ܪ ∈   .	(ℎ଴)ܿܿݑݏ

Following the same reasoning ℎଵ ∈  ℎଵ ⟦߮⟧ ⊇ ܪ ∈ 	 ⟦߮⟧. Having as induction hupothesis ℎ௞ିଵ ∈  this imply ܪ
that: ℎ௞ିଵ ∈  ℎ௞ (ܪ)∀݁ݎ݌	 ∈  ℎ௞ ܪ ∈ 	 ⟦߮⟧, 
contradiction with the initial assumption. 
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In conclusion, we proved that  ܪ ⊆ (ܺ)݂ is the greatest fixed point of the function ⟦߮	ܩܣ⟧ and thus ⟦߮	ܩܣ⟧ = 	 ⟦߮⟧	⋂  is presented in the following ⟦߮	ܩܣ⟧ The algorithm for effective computation of .(ܺ)∀݁ݎ݌
section. 

4. CTL model checking by attribute grammars 

The CTL model checker is provided as a compiler C:Ls→Lt, where Ls is the source language and Lt  is the 

target language. The source language Ls is the language describing the CTL formulas and the target language Lt 
is a language which describes the set of nodes from the model M where the corresponding CTL formulas are 
satisfied. 

The compiler C translates a formula ϕ of the CTL model to the set of nodes ⟦߮⟧ over which formula ϕ is 

satisfied. That is, C (ϕ)=⟦߮⟧ where ⟦߮⟧={s∈S| (M,s) ⊨ ϕ}. 

The implementation of the compiler C is made in two steps. First, we need a syntactic parser to verify the 

syntactic correctness of a given formula ϕ. Then, we should deal with the semantics of the CTL language, 
respectively with the implementation of the CTL operators presented in table 3.3.1. 

Writing a translator for certain language is difficult to be achieved, requiring time and a considerable 
effort [Rus91]. Currently there are specialized tools which generate most of necessary code beginning from a 
specification grammar of the source language. 

For implementation of the algebraic compiler we choose the ANTLR (Another Tool for Language 
Recognition). ANTLR [Parr07] is a compiler generator which takes as input a grammar - an exact description of 
the source language, and generates a recognizer for the language defined by the grammar. 

ANTLR support the EBNF (Extended BNF) notation, useful for specification of operations that requires 
the use of recursion. 

In order to translate a formula ϕ  of a CTL model to the set of nodes ⟦߮⟧ over which formula ϕ is 
satisfied, is necessary to attach actions to grammatical constructions within specification grammar of CTL. 

The actions are written in target language of the generated parser (in our case, Java). These actions are 
incorporated in source code of the parser and are activated whenever the parser recognizes a valid syntactic 
construction in the translated CTL formula. In case of our compiler C, the actions define the semantics of the 

CTL model checker, i.e., the implementation of the CTL operators. 
The model checker generated by ANTLR from our specification grammar of CTL takes as input the 

model M (where are defined the sets S, Rel, and P) and a formula ϕ, and provides as output the denotation of  ϕ 

– the set of states where the formula ϕ  is satisfied, using the following general algorithm: 
 assign atomic  propositions by labelling function P; 
 handle Boolean operators by standard set operations; 
 handle temporal operators AX, EX by computing pre-images using expressions given in (1); 
 handle temporal operators AG, EG, AF, EF, AU, EU by applying rules described in table 3.3.1, until a 

fixpoint is reached. 
The algorithm for computing ⟦ܩܣ	߮⟧ is presented in figure 4.1 [CGL96]. 

For the formal specification of the AG operator given in figure 4.1, the corresponding action included in 
our ANTLR grammar of CTL language is detailed in figure 4.2. 
 

Z:=∅; Z':= ⟦߮⟧;  
while (Z≠Z') do  
   Z:=Z';  
   Z':=Z'∩ ݁ݎ݌∀(ܼᇱ);  
endwhile  ⟦ AG φ ⟧:=Z'; 
 
Figure 4.1: Formal definition of the set expression ⟦ܩܣ	߮⟧. 
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private HashSet PreAll(HashSet Z) { 
  HashSet rez = new HashSet(); 
  for (Node n1 : model) { 
    Iterator<Edge> it =   
    n1.getLeavingEdgeIterator(); 
    HashSet succ = new HashSet(); 
    while (it.hasNext()) { 
       Edge e = it.next(); 
       Node n2 = e.getTargetNode(); 
       succ.add(n2.getIndex()); 
    } 
    if (Z.containsAll(succ)) { 
       rez.add(n1.getIndex()); 
    } 
  } 
  return rez; 
} 
 
ctlFormula returns [HashSet set] 
@init { } 
: 'ag' e=implExpr { 
    HashSet rez = new HashSet(); 
    HashSet rez1 = new HashSet($e.set); 
    while (!rez.equals(rez1)) { 
       rez.clear(); 
       rez.addAll(rez1); 
   HashSet tmp = PreAll(rez1); 
       rez1.retainAll(tmp); 
    } 
    $set = rez1;   
} 

 
Figure 4.2: Implementation of the AG operator in ANTLR. 

 
Analog were implemented all CTL temporal operators. 

For efficient representation of CTL models, our tool is based on SingleGraph class from GraphStream 
package [GrStr12]. 

5. The architecture of the CTL model checker tool. Applications. 
Experimental results. 

Web services represent a standardized way for applications to communicate with other applications over a 
network, regardless of the platform or operating system upon which the service or the client is implemented. We 
choose to publish our implementation of CTL model checker as a Web service in order to utilize the combined 
resources of distributed computers and to bring advantages of distributed verification to various clients over the 
Web. As we can see from the figure 5.1, the transport protocol (HTTP) used by the Web Service enables clients 
to invoke its methods through firewalls.  
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The architecture of the Web service implementation is represented in figure 5.1. 
 

 

Figure 5.1: The architecture of the ATL model checker Web Service. 

The Web service will receive from a client the XML representation of a CTL model S and a CTL formula 

ϕ to be verified. The original form of the CTL model S is then reconstructed and passed to the algebraic 

compiler C generated by ANTLR using our CTL extended grammar. For a syntactically correct formula ϕ, the 

compiler will return as result C(ϕ)={q∈Q| q ⊨ ϕ}, the set of states in which the formula is satisfied.  If as input 

is an erroneous formula ϕ, the model checker will return to client an message describing the error. In our tool is 
enabled a compression facility for large CTL models, to reduce the network traffic between client and server. 

Our Web service is using GlassFish or Tomcat as a Web container. For testing purposes, the CTL model 
checker described in this paper is available online via two Web services hosted by use-it.ro and respectively by 
mcheck-useit.rhcloud.com. 

The system architecture of the CTL checker tool presented in this paper is depicted in the following UML 
package diagram: 
 

 

Figure 5.2: The system architecture of the CTL model checker tool. 

The CTL model checker tool contains the following packages: 

• The algebraic compiler (CTL Compiler) embedded into the Web Service (CTL Checker); 
implementation of these components was made in Java. 

• The GUI client application written in C# and used for interactive construction of the CTL models as 
directed graphs (CTL Designer). 

• In case of huge CTL models, with many states, is required the use a programmatic construction of 
these models.  The CTL non-GUI model package contains classes used for internal representation of a 
CTL model as a directed graph. There are available two libraries, for C# and respectively for Java. 
For internal representation of a CTL model in C#, our implementation is based on data structures 
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provided by (Ebert, 1987), more precisely symmetrically stored forward and backward adjacency 
lists. The Java implementation is based on GraphStream [GrStr12]. 

• The XML API for CTL models package contains classes needed to encode the CTL model into XML. 

• The CTL GUI Model package is responsible with graphical representation of the Kripke structures as 
directed graphs. 

 
The model checking tool contains a C# GUI client who allows interactive graphical design of the CTL 

models. 
 

 
 

Figure 5.3: CTL Designer - the C# client in action. 
 

The model is sent as a XML document to the Web service, together with the formula to be verified.  The 
client is also responsible for displaying the response from server. 

All facilities related to interactive design of CTL models are accessible through a right-click contextual 
menu: adding nodes, labelling nodes, deleting nodes, adding arcs, display nodes numbers, etc. 

In addition, the CTL Designer interface allows several configurations: 

 

Icon Signification 

 
Allows selection of the Web server: local or remote (Internet). Service-

location details for web-service access can be found at: http://use-it.ro 

 
Allows selection of the implicit Internet server. 

 
In case of huge models, is recommended to activate their compression before 

sending them to the Web Service. 
Table 5.1: CTL Designer configuration from its interface. 

 
5.1. Performance evaluation of our tool 

In this section we describe the usage of our model-checker to design a game strategy when playing Tic-
Tac-Toe (called TTT for short in the rest of this paper). 

First, let us describe the (classical) game of Tic-Tac-Toe. The game is played by two opponents, X and O, 
with a turn-based modality on a 3×3 board. The two players take turns to put pieces on the board. A single piece 
is put for each turn and a piece once put does not move. A player wins the game by first lining three of his or 
her pieces in a straight line, no matter horizontal, vertical or diagonal. If the entire board becomes full but no 
player has formed a line, the result is a draw. 

In our example, player X is played by the application and player O should be played by a human. 



19 
 

CTL model checking algorithm is used to return a strategy to achieve a winning strategy for the 
computer.  

The TTT is a turn-based synchronous game. In such a system, at every transition there is just one agent 
that is permitted to make a choice (and hence determine the future). 

In the following we will show how to use the CTL formalizations in finding winning strategies in case of 
TTT game. 

Modelling the Game 

We suppose that positions of the board are numbered as in figure 5.1.1: 
 

0 1 2
3 4 5
6 7 8

Figure 5.1.1: Labelling the grids on the board 
 

Values of the board locations are denoted by xi ∈ {0,1,2}, where i ∈ {0,1,...,8}. The value 0 means an 
empty position, the value 1 denotes a previous move of the player X and the value 2 represents a move of the 
player O. 

For the sequence of values l m nx x x  we define: 

min( ,1) min( ,1) min( ,1)l m n l m nx x x x x x= + +å  

 where , , {0,1,...,8}l m n Î . 
Formally, the Kripke model of TTT is defined as M = (S, Rel, P:S→2AP) with its structure explained in the 

following. 
The set of atomic propositions AP is denoted by: 

AP = {( 1 2 3 60,3,6 0,1,2
,  , l l l l l ll l

x x x x x x+ + + += = 0 4 8 2 4 6,  ,  x x x x x x T ) |  {0,1, 2} for 0,8  and kx kÎ = {1,2}T Î }. 

The number of successors of a state is given by the formula:  

1 2
0,3,6

9  l l l
l

x x x+ +
=

−  . 

A state labelled with value T  =1 signify that is turn of the player X for making the move and if T =2 then 
the player O will make the next move. 

The game stops (so no moves are possible) if the board moves locations are full, i.e.: 

1 2
0,3,6

9l l l
l

x x x+ +
=

=  

Another situation where the game is not continuing is when a player won. 

The state s is a winning state for player X if  111 ( )P s∈  and it is a winning state for player O if 222 ( )P s∈ . 

Alternation to move can be formalized as follows: for a transition ( , ')s s Rel∈ , there are the following 

cases: 

 ( ) 3 ( ')T P s T P s∈  − ∈  

where  {1,2}T ∈ . 

Algorithm to determine the optimal strategy 

Assuming that the game is in the state s0 ∈ S, we denote by k the number of empty positions of the board. 
The strategy of player X can be expressed by the following algorithm: 

 
Step 1 

 
Determines all states from the model satisfying the formula: (AX	EX)k/2(AX 111 ), to choose the 
move which favours wining of the game in the future. 
We denote this set with WIN1. 
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Step 2 Determines all states from the model satisfying the formula: EX	 222 , to prevent player 2 to win on 
the next move. 
We denote this set with WIN2. 

Step 3 If (WIN1\WIN2) ∩ succ(s0) ≠ ∅ then  
     Choose randomly a state s from the  resulting set. 

Else If succ(s0)\WIN2 ≠ ∅ then  
 Choose randomly a state s from the  resulting set. 

Else  
 Choose randomly a state s from the  set succ(s0). 

End If 
Set s as current state. 

Step 4 If 111 ( )P s∈  then STOP. The player X has won. 
If the board is full is declared equality and STOP. 

Step 5 Player O performs moving. 
If )22 2 (P s∈  then STOP. The player O has won. 
If the board is full is declared equality and STOP else go to step 1. 

 
In the following we present a game scenario implemented using the CTL model checker API. 
At first move, the computer (player X) chooses the position 0. After the player O moves, is constructed 

the CTL model of the game. This model has 2307 states and 3330 transitions. 
In figure 5.1.2 can be seen that player X has determined three winning strategies. It chooses randomly one 

from them and follows it performing the corresponding move. 
 

 

Figure 5.1.2: The move of player X (in position 2) which follows a winning strategy 

Finally, can be seen that player O could not avoid defeat, because the player X follows a winning strategy: 

 

Figure 5.1.3: The player X (computer) won 

Experimental results 

Although the game implemented is relatively simple, due to the large size of the structure representing the 
CTL model at the first moves, it represents a good opportunity to study the effectiveness of our approach in 
designing and implementing a CTL model checker. 

In the figure 5.1.4 are presented the results showing the performance of the CTL model checker when 
running on Intel Core I5, 2.5 GHz, 4Gb RAM to find a winning strategy for Tic-Tac-Toe game. 
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Figure 5.1.4: Evaluating the performance of the CTL model checker 

 

6. An ATL model checking tool based on the algebraic      methodology 

Alur et al. introduced Alternating-time Temporal Logic (ATL), a logic designed for specifying 
requirements of open systems [AHK02]. An open system interacts with its environment and its behaviour 
depends on the state of the system as well as the behaviour of the environment. ATL is also widely used to 
reason about strategies in multiplayer games. The semantics of ATL is formalized by defining games such that 
the satisfaction of an ATL formula corresponds to the existence of a winning strategy. 

The model checking problem for ATL is to determine whether a given model satisfies a given ATL 
formula. 

Alternating-time Temporal Logic is a branching-time temporal logic that naturally describes 
computations of open systems, modelled by concurrent game structures.  

6.1. The concurrent game structure 

A concurrent game structure is defined as a tuple S=Λ,Q,Γ,γ,M,d,δ with the following components: a 

nonempty finite set of all agents  Λ = {1, …, k}; a finite set of states Q; a finite set of atomic propositions Γ; the 

labeling function γ; a nonempty finite set of moves M; the alternative moves function d and the transition 

function δ.   For each state q∈Q, γ (q) ⊆ Γ is the set of propositions true in state q. For each player a∈Λ and 

each state q∈Q, the alternative moves function d: Λ×Q → 2M relates the pair (a,q) with the set of available 

moves of agent a at state q. In the following, the set d(a,q) will be denoted by da(q). For each state q∈Q, a tuple 

j1,…,jk such that ja∈da(q) for each player a∈Λ, represents a move vector at q. The move function D : Q → 2M , 

with M  the set of all move vectors, is defined such that D(q)⊆d1(q)×…×dk(q) represents the set of move vectors 
at q. We denote by 
 

( )a a
q Q

D d q
∈

=  (2)

the set of available moves of agent a within the concurrent game structure S. 
The transition function δ(q,j1,…,jk), associates to each state q∈Q and each move vector j1,…,jk ∈ D(q) 

the state q' that results from state q if each player a∈Λ choose the move ja. The state q' is a successor of state q. 

A computation of S is an infinite sequence λ =q0, q1,… such that qi+1 is a successor of  qi , ∀i ≥ 0 
[AHK02]. A q-computation is a computation starting at state q. 

For a computation λ and a position i ≥0, we denote by λ [i], λ [0,i], and λ [i,∞]  the i-th state of λ, the 

finite prefix q0, q1,…,qi of λ, and the infinite suffix qi , qi+1 … of λ, respectively [AHK02]. 
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ATL syntax 

We denote by F
S
(A) the set of all well-formed ATL formulae defined over a concurrent game structure S 

and a set of agents A  ⊆ Λ. 

Each formula from F
S
(A)  can be obtained using recursively the following rules:  

(R1) if p∈Γ then p∈ F
S
(A); 

(R2) if {φ, φ1, φ2} ⊆ F
S
(A) then {¬ φ, φ1∨φ2} ⊆ F

S
(A);  

(R3) if {φ, φ1, φ2} ⊆ F
S
(A) then {A ○ φ, A □ φ, A φ1 U φ2} ⊆ F

S
(A). 

In the ATL logic the path quantifiers are parameterized by sets of players from Λ. The operator   is a 

path quantifier, and ○ (‘next’), □ (‘always’),  (‘future’) and U (‘until’) are temporal operators. A formula A 

φ expresses that the team A has a collective strategy to enforce φ [JB11]. Boolean connectives can be defined 

from ¬ and ∨ in the usual way. The ATL formula A  φ is equivalent with A true U φ. 

ATL semantics 

Consider a game structure S=Λ,Q,Γ,γ,M,d,δ with Λ={1,…,k} the set of players.  

A strategy for player a∈Λ is a function fa: Q+→Da that maps every nonempty finite state sequence 

λ=q0q1…qn, n≥0, to a move of agent a denoted by fa(λ)∈Da ⊆ M. Thus, the strategy fa determines for every finite 

prefix λ of a computation a move fa(λ) for player a in the last state of λ.  

Given a set A⊆{1,…,k} of players, the set of all strategies of agents from A is denoted by FA={ fa | a∈ 

A }. The outcome of FA is defined as F
out

A
: Q → P(Q+), where ( )Fout q

A
 represents q-computations that the 

players from A are enforcing when they follow the strategies from FA. In the following, for ( )Fout q
A

 we will 

use the notation ( , )out q FA . A computation λ=q0,q1,q2,… is in ( , )out q FA  if q0=q and for all positions i≥0, there is 

a move vector j1,…,jk ∈ D(qi) such that [AHK02]: 

• ja=fa(λ[0,i]) for all players a∈ A, and  

• δ(qi, j1,…,jk)= qi+1.  
For a game structure S, we write q⊨ϕ to indicate that the formula ϕ is satisfied in the state q of the 

structure S.  
For each state q of S, the satisfaction relation ⊨ is defined inductively as follows:  

• for p∈Γ, q⊨ p ⇔ p∈ γ(q) 
• q⊨¬ϕ ⇔ q⊭ ϕ  
• q⊨ ϕ1∨ϕ2 ⇔ q⊨ ϕ1 or q⊨ ϕ2 
• q⊨ A ○ φ ⇔ there exists a set FA of strategies, such that for all computations λ∈out(q, FA), we 

have 
λ[1] ⊨ ϕ (the formula ϕ is satisfied in the successor of q within computation λ). 

• q⊨ A □ φ ⇔ there exists a set FA of strategies,  such that for all computations λ∈out(q, FA), and 

all positions i≥0, we have λ[i] ⊨ ϕ (the formula ϕ is satisfied in all states of computation λ). 
• q⊨ A φ1 U φ2 ⇔ there exists a set FA of strategies, such that for all computations λ∈out(q, FA), 

there exists a position i≥0 such that λ[i] ⊨ ϕ2 and for all positions 0≤j<i, we have λ[j] ⊨ ϕ1. 

6.2. Implementation of an ATL model checker in ANTLR 

In this section is presented an original approach represented by the generation of an algebraic compiler 
using ANTLR (Another Tool for Language Recognition) from our specification grammar of ATL. 



23 
 

The model checking problem for ATL is to determine whether a given system with its structure described 
by a concurrent game structure satisfies a given ATL formula. The purpose of our work is to implement a tool 
that allows to automatically checking for global system correctness. 

From a formal point of view, implementation of an ATL model checker will be accomplished through the 
implementation of an algebraic compiler C in two steps. 

• First, we need a syntactic parser to verify the syntactic correctness of an ATL formula ϕ; 
• Second, we should deal with the semantics of the ATL language, respectively with the 

implementation of the ATL operators: ¬, ∨, ∧,→, , ○, □, U. 
For implementation of the ATL compiler we choose the ANTLR (Another Tool for Language 

Recognition). ANTLR provides a framework for the generation of recognizers, compilers, and translators from 
grammatical descriptions [Parr07]. Using ANTLR as a generative tool had a major, positive impact on our 
overall productivity in development of the new ATL checker. 

ANTLR supports infinite lookahead for selecting the rule alternative that matches the portion of the input 
stream being evaluated. The technical way of accomplishing this is that ANTLR supports LL(*) [Parr07], a 
feature which significantly enhanced parsing strength. 

ANTLR takes as its input our ATL grammar - a precise description of the ATL language augmented with 
semantic actions - and generates source code files which are further extended and published through a Web 
service as server part of the ATL model checker tool. 

A semantic action of a grammatical description from ATL grammar represents an action code written in 
Java – the target language of our ATL compiler. The action code is included inside the {} brackets, embedded 
into the generated parser and executed when an appropriate match in parsed input is made. 

Also, ANTLR builds the Abstract Syntax Tree (AST), an intermediate tree representation of the parsed 
ATL input formula, which is simpler to process than the stream of tokens and can be efficiently processed 
multiple times. 

The model checker generated by ANTLR from our ATL specification grammar takes as input the 

concurrent game structure S and the formula ϕ, and provides as output Q'={q∈Q | q ⊨ ϕ} – the set of states 

where the formula ϕ  is satisfied. Translation of a formula ϕ  of an ATL model to the set of nodes Q' over which 

formula ϕ is satisfied is accomplished by code included in semantic actions attached to production rules within 
specification grammar of ATL language. When ANTLR generates code using our ATL grammar as input, these 
actions are incorporated in the source code of the parser and are activated whenever the parser recognizes a 
valid syntactic construction in the translated ATL formula. In case of the ATL compiler C, the attached actions 

define the core of the ATL model checker, i.e., the implementation of the ATL operators. 
The ATL compiler C implements the following ATL model checking algorithm [Jam09]: 

Algorithm 1.  ATL model checking algorithm 
Input: the concurrent game structure S and the formula ϕ 
Output: Q'={q∈Q| q ⊨ ϕ} – the set of states where the formula ϕ  is satisfied. 
 
function EvalA(ϕ) as set of states ⊆ Q 

case ϕ=p:  
    return [p] = {q ∈ Q | p ∈ γ(q)}; 

case ϕ= ¬θ:  
    return Q\EvalA(θ); 

 case ϕ=θ1∨θ2:  
    return EvalA(θ1) ∪ EvalA(θ2); 

 case ϕ=θ1∧θ2:  
    return EvalA(θ1) ∩ EvalA(θ2) ); 

 case ϕ=θ1→θ2:  
    return ( Q\EvalA(θ1) ) ∪ EvalA(θ2); 
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 case φ =A○θ:  

    return Pre(A,EvalA(θ)); 

  case φ =A□θ: 

      ρ:=Q; τ:= EvalA(θ); τ0:= τ; 
     while ρ ⊈ τ do 
  ρ := τ;  
  τ:=Pre(A, ρ) ∩ τ0; 
     wend 
     return  ρ; 

  case φ = A θ1 U θ2: 

     ρ:= ∅; τ:= EvalA(θ2); τ0:= EvalA(θ1); 
    while τ ⊈ ρ do 
      ρ := ρ ∪ τ; 
  τ:=Pre(A, ρ) ∩ τ0; 

    wend 

    return  ρ; 
 

The corresponding actions included in the ANTLR grammar of ATL language for implementing the ATL 

operators □, , U and respectively ○ are presented in the table 6.2.1: 
 

Implementation of the “□” operator  Implementation of the “” operator 
’<<A>> #’ f=formula 
{ 

HashSet r=new HashSet(all_SetS); 
HashSet p=$f.set; 
while (!p.containsAll(r)) 

{ 
      r=new HashSet(p); 
      p=Pre(r); 
      p.retainAll($f.set); 
} 

$set=r; 
} 
 

'<<A>>~' f=formula  
{ 

HashSet Q = new HashSet(all_setS); 
HashSet r = new HashSet(); 
HashSet p = $f.set; 
while (!r.containsAll(p)) 

{ 
      r.addAll(p); 
      p = Pre(r); 
      p.retainAll(Q); 
} 

$set = r; 
} 

Implementation of the “U” operator  Implementation of the “○” operator 
'<<A>> ' a1= formula 'U' a2= formula  
{ 

HashSet r = new HashSet(); 
HashSet p = $a2.set; 
while (!r.containsAll(p)) 

{ 
      r.addAll(p); 
      p = Pre(r); 
      p.retainAll($a1.set); 
} 

$set = r; 
} 
 
 

'<<A>>@' f=formula  
{ 

HashSet rez = Pre($f.set); 
$set = rez;  

} 
 

Table 6.2.1 Semantic actions attached to production rules of ATL language grammar 
 

For ATL operator □ we use in ANTLR the symbol #. Also, we denote the ATL operator  with the 
symbol ~ and the operator ○ is replaced by the symbol @. 
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The formula represents a term from a production rule of the ATL grammar and p, r, a1, a2 are variables 
used in the internal implementation of the ATL compiler. 

For a set A of agents, the implementation of most ATL operators implies the computation of function 

Pre(A, Θ),  where Θ ⊆ Q. The value returned by Pre(A, Θ) represents the set of states from which agents A 

can enforce the system into some state in Θ in one move. 
In section 7 we made a implementation of the function Pre() using SQL statements, ready to be executed 

on a high-speed database server. 
 

 

Figure 6.2.1:  Class diagram of the ATL Checker. 

In figure 6.2.1 is presented the class diagram of the ATL model checker implementation. Classes 
ATLParser and ATLLexer are generated by ANTLR using as input our grammar of the ATL language. The role 
of class ATXml is to decode the XML representation of the ATL model in order to send it to the parser, along 
with the ATL formula which must be evaluated. The ATLChecker class contains the Web service operations 
which are invoked by the client, having as parameters an ATL model, an ATL formula and a set A of agents. 

6.3. Using Relational Algebra in model checking algorithm 

For a concurrent game structure S presented in section 6.1, can be defined a directed multi-graph GS = 

(X,U), where X=Q, and (b,e) ∈ U ⇔ ∃ j1,…,jk ∈  D(b) such as δ(b,j1,…,jk) = e. The labelling function for the 

graph GS is defined as follows: L:U → M , ∀ u = (b,e) ∈ U, L(u) = j1,…,jk, where δ(b,j1,…,jk) = e. 

We define the relation schema (B:QB, M1:D1, …, Mk:Dk, E:QE) where QB = {b ∈ Q | ∃ e ∈ Q such as (b, 

e) ∈ U}, QE = {e ∈ Q | ∃ b ∈ Q such as (b, e) ∈ U} and Di, i ∈ {1, …, k} = Λ was defined in (1), such as if RS is 

a relation name with schema defined above, (B:b, M1:j1, …, Mk:jk, E:e) ∈ RS ⇔ j1,…,jk = L((b,e)). 

For a set A of m agents, A ⊆ Λ, A = {i1, …, im}, we define
1

, , , ,) ( )(
i im

S B M M E SR Rπ …=A  where 

, {1, , }li l m∈ ∈ …A   and 
1

, ,) ( )(( )
i im

L B LABEL M M E SR Rπ ← °…°=A A  where the operator ° can be defined as follows: i ° j = i 

|| ',' || j. 

For a set Θ ⊆ QE, b ∈ Pre(A, Θ) ⇔ ∃ , , 1( ) ,
l li i lj d i mb l∈ ∈ =A   and ∃ e ∈ Θ such as 

1
, ), (( )

mi i Sb j ,…, j e R∈ A  and ∄e'∈QE \ Θ such as 
1

( ( )')
mi i Sb, j ,…, j ,e R∈ A .	

With other words, b ∈ Pre(A, Θ) ⇔ ∃ , , 1( ) ,
l li i lj d i mb l∈ ∈ =A  such as:  

1 1
: , , : {( : )|   }( )

m mE i i i i EB b M : j ,…,M : j E Q E e eπ = ∈Θ  

In the following, the set of states QE \ Θ is denoted by Q .  
 
 
 
 

Now we can design an algorithm to compute the function Pre(A, Θ) using RA expressions: 
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Algorithm 2.  Computing ( , )Pre A Θ  function using relational algebra expressions 

Step1  

, ( ) ) ( )( ( )B LABEL E L LR Rπ σ ∈Θ
Θ=A A   

, ( ) ) ( )( ( )B LABEL L LE
R Rπ σ Θ

Θ∈ =A A   

Step2 
( )( )LRxρ Θ A  ,( ( )) ( )L LR Ryρ Θ Θ Θ=A A  

 . .  . .x B y B x LABEL y LABEL= ∧ =  
 

Step 3 
, ,  

. . , . ( )) (( ( )) null
LABEL null L LLABELy x B y R Rσ π Θ Θ

=
Θ =A A  

Step 4 
,

.( , ) ( ( ))null
x B LPre Rπ ΘΘ =A A  

 
The above algorithm can be implemented in SQL language as follows: 

Algorithm 3.  Computing ( , )Pre ΘA  function using SQL statements 
select distinct B from ( 
   select distinct x.B, y.LABEL from  ( 
       select distinct B, LABEL from model  
       where E in Θ 
   ) x   
   left join  ( 
       select distinct B, LABEL from model  
       where E not in Θ 
   ) y 
   on x.B = y.B and x.LABEL = y.LABEL  
   where y.LABEL is null 

                 ) z 

6.4. An ATL model ATL for the critical section problem solved using a mutex 

In [Rus02] is presented a CTL model for two processes competing for entrance into a critical section. 
In the following, we present an original ATL model for the critical section problem solved using a mutex. 

Our solution improves the mentioned CTL model because it supports true concurrency: the two processes can 
request simultaneously entrance into critical section, and their access is restricted using a mutex managed by the 
operating system (represented in our model by an agent). 

If we consider our model presented in figure 6.4.1 as a concurrent game structure S=Λ,Q,Γ,γ,M,d,δ, we 

will detail the semantics for the symbols from Γ - the set of propositions (labels from nodes representing states) 

and M – the set of agents moves. We have Γ = {I1, I2, W1, W2, E1, E2, L1, L2, F} with the following 
significations: 

• Ii – the process i  is in Idle state, 1,2i = ; 

• Wi – the process i  is in Waiting state (it is waiting to enter in critical section), 1,2i = ; 

• Ei – the process i  is in Executing state (it is executing the code from critical section), 1,2i = ; 

• Li – the mutex is owned (Locked) by the process i, 1,2i = ;  
• F – the mutex is not owned  by any process (it has Freed).  
The symbols from the set M = {l, e, i, f} ∪ {pd, dp, p-, -p} have the following significations: 

• l – a request to enter in critical section (lock the mutex); 
• e –  a request to execute code from the critical section; 
• i – there is no a request (idle); 
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• f – release (free) the mutex, leave the critical section; 
• pd  – permission for agent 1, deny for agent 2; 
• dp  – permission for agent 2, deny for agent 1; 
• p- – permission for agent 1, the agent 2 is idle (no request); 
• -p – permission for agent 2, the agent 1 is idle (no request). 
 
Using our model checking tool, we proved that the following ATL formulas are satisfied by the model 

presented above:  

 
Fig. 6.4.1.  ATL model for two processes competing for entrance into a critical section. 

 
ATL formula Signification 

not(<<A>>~(E1 and E2)) Safety – Processes are not running simultaneously 
statements from the critical section 

Wi => not (<<A>># (not Ei)), 1, 2i =  Warranty - each time one process tries to enter in critical 
section (owning the mutex), in the future it will succeed. 

not (<<A>>~ (not (Ii => << A>>@ Wi))), 

1, 2i =  

Nonblocking – each process can require any time to enter in 
the critical section 

<<A>>~ (E1 and (<<A>> E1 U (not E1 
and (<<A>> not E2 U E1)))) 
 
<<A>>~ (E2 and (<<A>> E2 U (not E2 
and (<<A>> not E1 U E2)))) 

Without imposed succession – the processes do not have the 
restriction to enter alternating in the critical section 

Ei => Li, 1, 2i =  Owning the mutex – One process can execute the critical 
section only if it is owning the mutex  
 

not(<<A>>~ (not ((L1 or L2) => not 
(<<A>># (not F))))) 

Releasing the mutex – If one of the  processes is owning the 
mutex, in the future it must release (free) the mutex 
 

I1 and I2 => << A>>@ (W1 and W2) Concurrency – If there is no process into critical section, 
both processes can request simultaneously to enter in the 
critical section, without blocking. 

Table 6.4.1. ATL Formulas satisfied by our model 
 

In the following we will apply the Algorithm 3 for computing function Pre() with different arguments 
passed in the process of checking of two ATL formulas from Table 6.4.1. 
 
Example 6.4.1. 

For the ATL model presented above, we check the following ATL formula: 
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W1 => not (<<A>># (not E1))                                                  (3) 
with its signification described in Table 6.4.1. The model checking algorithm will require some calls of 

function Pre() with certain arguments. In Table 6.4.2. are presented two computations of function Pre(): 
 

 
 {0, 3, 4, 5, 6, 7, 10}Q =

 A={1} A={2} 

 
 

,
. , . ( )

LABEL Lx B y Rp QQ A
  
 

B 
LABE

L 

0 NULL 

0 l 

2 NULL 

3 NULL 

4 NULL 

5 NULL 

6 NULL 

9 NULL 

10 NULL 
 

B 
LABE

L 

0 l 

2 NULL 

3 NULL 

4 NULL 

5 NULL 

6 NULL 

9 NULL 

10 NULL 
 

( , )Pre QA  {0, 2, 3, 4, 5, 6, 9, 10} {2, 3, 4, 5, 6, 9,10}  
Table 6.4.2. Computations of function  ( , )Pre QA  when Checking the ATL Formula (3) 

 
For A = {1} because i∈d1(0),

1
( : 0, : , : ) {( : 4)}
E E
B M i E Q Ep = , and 4∈Θ  0 ∈ Pre(A, Θ). 

For A = {2}, d2(0) = {l, i}. We have 
2

( : 0, : , : ) {( : 8)}
E E
B M i E Q Ep = , but 8 ∉ Θ.  

Also, 
2

( : 0, : , : ) {( : 1),( : 4),( : 10)}
E E
B M l E Q E E Ep = , but 1 ∉ Θ. We conclude that 0 ∉ Pre(A, Θ). 

 
Example 6.4.2 

For the same ATL model, described in figure 6.4.1, we consider the following formula: 

not (<<A>>~ (not (I1 => <<A>>@ W1)))                                                      (4) 

with its signification also described in Table 6.4.1. In table 6.4.3. are presented computations of function Pre() 
needed for checking the ATL formula (4): 
 

 {1, 6, 7, 8, 10}Q =

 A={1} A={2} 

 
 

,
.. , )(
LABEL Lx B y Rp QQ A   

 

B LABEL

0 NULL 

3 NULL 

4 NULL 

5 NULL 

6 NULL 

7 NULL 

10 NULL 
 

B LABEL 

0 l 

0 NULL 

3 l 

4 e 

5 NULL 

6 NULL 

7 NULL 

10 NULL 
( , )Pre QA  {0, 3, 4, 5, 6, 7, 10} {0, 5, 6, 7, 10}  

Table 6.4.3. Computations of function ( , )Pre QA when Checking the ATL Formula (4) 

For A = {2}, d2(3) = {l}. We have  
2

( : 3, : , : ) {( : 4),( : 10)}
E E
B M l E Q E Ep = , but 4∉Θ. Also, we have 

d2(4) = {e}, and  
2

( : 4, : , : ) {( : 5),( : 6)}
E E
B M e E Q E Ep = , but 5∉Θ. Thus, 3 ∉ Pre(A, Θ) and 4 ∉ Pre(A, Θ). 
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7. The architecture of the ATL model checker tool. Applications. 
Performance evaluation 

We choose to use Web Services technology in our implementation of the ATL model checker in order to 
make the core of out tool, the ATL compiler, accessible to various clients. 

A Web service represents a standardized way for an application to expose its functionality over the Web 
or communicate with other applications over a network, regardless of the platform or operating system upon 
which the clients of the service are implemented. Thus, our Java implementation of the ATL Checker can be 
invoked easily through a Web service by a C# client who provides an intuitive graphical interface for interactive 
design of ATL models. We called the client application ATL Designer.  

Other reason for the deployment of ATL Checker on server side is represented by the internal 
implementation of the Pre() function, described in section 7, which are using for its computation SQL queries. 
Our Web service is using GlassFish as a Web container, and MySQL or SQL Server as database servers. 

For a better understanding of the ATL model checking process, in figure 7.1 is represented the Use Case 
Diagram of our model checker: 
 
 

 

 

Figure 7.1: The Use Case Diagram of the ATL model checker 
 

The Web service will receive from a client the XML representation of an ATL model and an ATL 
formula. After deserialization, the original form of the ATL model is passed to the ATL compiler generated by 
ANTLR using our ATL extended grammar. For a syntactically correct formula, the compiler will return as 
result the set of states in which the formula is satisfied. If the ATL formula is not valid, the Web service will 
return a message describing the error. 

In order to notify the client about possible syntactical errors found in the verified ATL formula, we must 
override the default behaviour of the ANTLR error-handling. We install our error-handling in lexer and parser: 

 
@lexer::members { 
        @Override 
        public void reportError(RecognitionException re) { 
           throw new RuntimeException("Lexical error!\n\n" +     
                  "Position:" + re.line + ":" + re.charPositionInLine +  
                  " erroneous character: '" + (char)re.c + "'");  
        } 
} 
@members { 
        @Override 
        public void reportError(RecognitionException re) { 
           throw new RuntimeException("Syntactical error!");  
} 
 
Finally, we instruct ANTLR to throw the error, allowing the Web service to send it to the client: 
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@rulecatch { 
       catch (RecognitionException err) {  
           throw err;  
       } 
} 

 
ATL Designer, the client part of our tool, allows an interactive construction of the concurrent game 

structures as directed multi-graphs. For internal representation of an ATL model as a directed multi-graph, our 
implementation is based on data structures provided by [Ebe87]. Thus, the ATL model encoding is based on 
symmetrically stored forward and backward adjacency lists. This paradigm supports an edge-oriented way of 
handling graphs with multiple edges. 

The functionality of the client part is accessible through a right-click contextual menu which allows a 
dynamically graphical development of the ATL models as we can see from the figure 7.2: 
 

 

Figure 7.2: Building an ATL model in ATL Designer 
 

In figure 7.2, the numbered labels of edges are associated with move vectors of agents, and can be 
assigned in the “Moves” window of the ATL Designer. 

In addition, the ATL Designer interface allows several configurations: 
 

Icon Signification 

 
Allows selection of the Web server: local or remote (Internet). Service-location 
details for web-service access can be found at: http://use-it.ro 

 
The status bar button allows selection of the implicit Internet server. The toolbar 
button allows setting of the database connection string. 

 
In case of huge models, is recommended to activate their compression before sending 
them to the Web Service. 

Table 7.1: ATL Designer configuration from its interface 
 

For testing purposes, the ATL model checker described in this paper is available online via two Web 
services hosted by use-it.ro and respectively by mcheck-useit.rhcloud.com. 

7.1. System architecture of the ATL model checker tool 
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In order to provide an overview of the system architecture of the ATL checker tool presented in this 
paper, we chose a UML package diagram, presented in figure 7.1.1: 

 

 

Figure 7.1.1 System architecture of the ATL model checker tool 
 

The ATL model checker tool contains the following packages: 

• The ATL Compiler embedded into the Web Service (ATL Checker); 

• The GUI client application used for interactive construction of the ATL models as directed multi-
graphs (ATL Designer); 

• In case of huge ATL models, with many states, is required the use a programmatic construction of 
these models.  The ATL non-GUI model package contains classes used for internal representation of 
an ATL model as a directed multi-graph based on symmetrically stored forward and backward 
adjacency lists; 

• The XML API for ATL models package contains classes needed to encode the ATL model into XML. 
The main part of its code was generated using Microsoft Xml Schemas/Data Types support utility 
(xsd.exe) having as input our XSD schema for specification of the XML representation of an ATL 
model; 

• The ATL GUI Model package is responsible with graphical representation of the ATL concurrent 
game structures represented as directed multi-graphs (drawing arcs by Bézier curves, etc.). 

 

7.2. Designing a game strategy using model checking 

The model checking of computation tree logic (CTL) formulae can be used for generating plans in 
deterministic as well as non-deterministic domains. Because ATL is an extension of CTL that includes notions 
of agents, their abilities and strategies (conditional plans) explicitly in its models, ATL is better suited for 
planning, especially in multi-agent systems [HW02]. 

ATL models generalize turn-based transition trees from game theory and thus it is not difficult to encode 
a game in the formalism of concurrent game structures, by imposing that only one agent makes a move at any 
given time step. 

The algorithm proposed here looks for infallible conditional plans to achieve a winning strategy that can be 
defined via ATL formulae. 

As an example we consider the Tic-Tac-Toe (called TTT for short in the rest of this paper) game. The 
game is played by two opponents with a turn-based modality on a 3×3 board. The two players take turns to put 
pieces on the board. A single piece is put for each turn and a piece once put does not move. A player wins the 
game by first lining three of his or her pieces in a straight line, no matter horizontal, vertical or diagonal. 
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We consider a computer program playing TTT game with a user (human) and the ATL model checking 
algorithm is used to return a strategy to achieve a winning strategy for the computer. The TTT is a turn-based 
synchronous game. In such a system, at every transition there is just one agent that is permitted to make a choice 
(and hence determine the future). 

Formally, a game structure S=Λ,Q,Γ,γ,M,d,δ is turn-based synchronous if for every state q from Q, there 

exist a player a from the set of all agents Λ such that |db(q)| = 1 for all players b∈Λ\{a}. State q is the turn of 
player a. 

In the following we will show how to use the ATL formalizations in finding winning strategies in case of 
TTT game. 

Modelling the Game 

We transform the original problem into an ATL model checking problem. More specifically, we want to 

determine a strategy  fa : Q
+ → Da which leads the game into a winning state for the agent a∈Λ representing the 

computer. 
We suppose that positions of the board are numbered as in figure 7.2.1: 

 
0 1 2 
3 4 5 
6 7 8 

Fig. 7.2.1: Labelling the grids on the board 
 

Formally, the turn-based synchronous game structure of TTT is defined as follows: S=Λ,Q,Γ,γ,M,d,δ. 
The set of agents is Λ ={1,2} and we consider that computer is represented by agent 1 and the user is 

represented by the agent 2. 

Values of the board locations are denoted by xi ∈ {0,1,2}, where i ∈ {0,1,...,8}. The value 0 means an 
empty position, the value 1 denotes a previous move of the agent 1 and the value 2 represents a move of the 
player 2. 

For the sequence of values l m nx x x  we define min( ,1) min( ,1) min( ,1)l m n l m nx x x x x x= + +å   where 

, , {0,1,...,8}l m n Î . 

The set of propositions (or observables) Γ is defined as follows: 
 

Γ = {( 1 2 3 6 0 4 8 2 4 60,3,6 0,1,2
,  ,  ,  ,  l l l l l ll l

x x x x x x x x x x x x T+ + + += =
 ) |  {0,1,2} for 0,8  and {1, 2}kx k TÎ = Î }. 

 
A state labelled with value T  = 1 signify that is turn of the player 1 for making the move and if T = 2 

then the player 2 will make the next move. 
The set of possible movements of agents is M={0,1,2,3,4,5,6,7,8,9}. 

For the agent 1, the set of alternative movements in state q ∈Q, if there are possible moves, is defined as 

( )
1 2

0,3,6
1

1 2
0,3,6

 { 1, ..,   | 9  1,  1  ( )}

 { 0  | 9  1,  2  ( )}

l l l
l

l l l
l

k k x x x q

d q
k x x x q

γ

γ

+ +
=

+ +
=

 = − ≥ ∈= 
 = − ≥ ∈





 

Analogous are defined the possible moves of agent 2. 
The game stops (so no moves are possible) if the board moves locations are full, i.e.: 

1 2
0,3,6

9l l l
l

x x x+ +
=

=  

Another situation where the game is not continuing is when a player won. 

The state q is a winning state for player 1 if  111 ( )qγ∈  and it is a winning state for player 2 if 222 ( )qγ∈ . 
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Alternation to move can be formalized as follows: for a transition ( )1 2, , 'q j j qδ = , there are the following 

cases: 

  ( ) 3 ( ')T q T qγ γ∈  − ∈  

where  {1,2}T ∈ . 
 

Algorithm to determine the optimal strategy 
 

Assuming that the game is in the state q ∈ Q, we denote by succ(q) ⊆  Q the set of states immediately 
following the state q in the tree modelling the concurrent game structure. 

 
The strategy of player 1 can be expressed by the following algorithm: 

Step 1  
 

Determines all states from the model satisfying the formula: ⟪1⟫  (111), to choose the move 
which favours wining of the game in the future. 
We denote this set with WIN1. 

Step 2 Determines all states from the model satisfying the formula: ⟪2⟫ ○ (222), to prevent player 2 to 
win on the next move. 
We denote this set with WIN2. 

Step 3 If (WIN1\WIN2) ∩ succ(q) ≠ ∅ then  
Choose randomly a state q from the resulting set. 

Else If succ(q)\WIN2 ≠ ∅ then  
Choose randomly a state q from the resulting set. 

Else  
Choose randomly a state q from the set succ(q). 

End If 
Set q as current state. 

Step 4 If 1 11 (q)γ∈  then STOP. The player 1 has won. 
If the board is full is declared equality and STOP, else after the move of player 2 go to step 1 
(if player 2 has not won or the board is not full). 

 
In the following we present a game scenario implemented using the ATL model checker API. 
At first move, the computer (player 1) chooses the position 0. After the player 2 moves, is constructed the 

ATL model of the game. This model has 4791 states and 4790 transitions. 
In figure 7.2.2 can be seen that player 1 has determined the winning strategies, having three alternatives 

to win the game, from which is chosen randomly one. 
 

 
Figure 7.2.2: The move of player 1 (in position 4) which follows a winning strategy  

 
Finally, can be seen that player 2 could not avoid defeat, the player 1 choosing the only option left to win: 
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Figure 7.2.3: The player 1 (computer) won 

 

Experimental results 
 

The major impact on performance of the ATL model checker is represented by the implementation of the 
function Pre(), which was presented in detail in section 7 and is based exclusively on the database server used.  

In order to analyze their impact in the performance of the ATL model checker, were used three different 
database servers to implement the Web service, namely MySql 5.5, H2 1.3 and respectively Microsoft SQL 
Server 2008. 

ATL-Designer permits the selection of one of the three database servers mentioned above: 
 

 
Figure 7.2.4: The selection of the database server 

 
We have found important performance penalty due to the clause IN from the query presented in algorithm 

3 from section 6, especially on Microsoft SQL Server 2008. 
Thus the initial query was optimized by removing the clause IN and replacing it with JOIN operations 

performed between tables. 

First of all, with states of the set Θ was built a temporary table in database server using the query: 
 
 

Database server Query syntax for building a table with states of the set Θ 
SQL Server 2008 insert into #Θ 

select distinct X.* from (values (q1), (q2), … (qn)) as X(E) 
 

MySQL 5.5/ H2 
1.3 

insert into `Θ` (E) values (q1), (q2), … (qn) 
 

Table 7.2.1 Specific queries to populate tables with given discrete values 
 

where , 1,iq i n∈ Θ = . 
Then, to implement sub-queries were used temporary tables which have defined primary keys for fast 

access. 
 
 
Supplementary optimizations were made for SQL Server:  

• to reduce the transaction log and also to optimize insertions in tables of database atl, was used the 
directive: 
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alter database atl set RECOVERY  SIMPLE 

• to optimize data transfer between the database server and Web server, was maximized the 
dimension of packets for network data transfer with the directive: 
EXEC sp_configure 'network packet size (B)', '32767'; 

The MySQL server was configured only during the installation process. 
The H2 database supports the in-memory mode (the data is not persisted), well suited for high 

performance operations. Also, H2 database can emulate the behavior of specific databases (DB2, Oracle, 
MySQL, PostgreSQL, etc.). Using MySQL Compatibility Mode made it possible to also use MySQL specific 
code / syntax for the H2 database.  

Optimizations recommended in [H2DB] are included in the following connection string for H2:  

jdbc:h2:mem:db1;MODE=MySQL;LOG=0;LOCK_MODE=0;UNDO_LOG=0;DB_CLOSE_DELA
Y=60 

In table 7.2.2 and respectively in the figure 7.2.5 are presented the results showing the performance of our 
ATL model checker related to database server used: 

 
Total time necessary to determine the winning strategy (Tic-Tac-Toe game)  

Intel Core I5, 2.5 GHz, 4Gb RAM  
Number of 

states 
SQL Server 2008 

(seconds) 
MySQL 5.5 
(seconds) 

H2 1.3 (seconds) 

4791 ≈3.97 ≈1.86 ≈1.33 
4255 ≈3.37 ≈1.62 ≈1.17 
3732 ≈2.66 ≈1.41 ≈0.99 
3423 ≈2.32 ≈1.24 ≈0.90 
3683 ≈2.21 ≈1.21 ≈0.85 
2307 ≈1.97 ≈0.86 ≈0.58 
2236 ≈1.93 ≈0.75 ≈0.56 

Table 7.2.2 A comparative analysis of impact of database servers in performance of ATL model checker 
 

In [OM03] is presented a comparison between Lurch (a random search model checker) and two well-
known model checker tools, SMV and SPIN, showing the time and memory required, and the accuracy achieved 
by each tool when playing the tic-tac-toe game. 

SPIN is a well-known explicit-state LTL (Linear Temporal Logic) model checker tool, and SMV is a 
symbolic CTL (Computation Tree Logic) model checker. 

Although the logics LTL and CTL have their natural interpretation over the computations of closed 
systems and the logic ATL is used for the specification and verification of open systems, in theory the 
expressive power of ATL beyond CTL (in the case of closed systems ATL degenerates to CTL) comes at no 
cost - the model checking complexity of synchronous ATL is linear in the size of the system and the length of 
the formula [AHK02]. 

Results from [OM03] showed that both SMV and SPIN were able to find an optimal strategy for a player 
in less than one second, on a 3x3 board. 

As we can see from table 7.2.2, the ATL model checker tool is not as fast as the CTL/LTL tools, but we 
must take into consideration that an ATL model is more expressive (with ATL we can quantify over the 
individual powers of one player or a cooperating team of players, ATL models capture various notions of 
synchronous and asynchronous interaction between open systems, etc.).  
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Figure 7.2.5: The performance of ATL model checker related to database server used 

 
In [Rua08] the Tic-Tac-Toe was implemented in the Reactive Modules Language (RML). RML is the 

model description language of the ATL model checker MOCHA, which was developed by Alur et al. 
[AHMQRT98]. Experimental results showed that the time necessary to find a winning strategy for a player, on a 
configuration with a Dural-Core 1.8Ghz CPU, was 1 minute and 6 seconds. Running on the same configuration, 
our ATL checker tool is able to find a winning strategy in about 4 seconds using MySql as a database server and 
2 seconds when H2 was used. 

By using a database-based technology in the core of the ATL model checker, our tool provides a good 
foundation for further improvement of its performance and scalability. 

In the actual stage of the development, experimental results are encouraging, showing that our tool is able 
to handle large systems efficiently. 

7.3. Verification of JADE agents using ATL model checking  

In the end of the chapter, using components of our tool, we showed how ATL model checking technology 
can be used for automated verification of multi-agent systems, developed with JADE. 

One of the main drawbacks of employing ATL logic in the automated verification of multi-agent systems 
using previous approaches consists in necessity of translate the programs written in specific modelling 
languages to the programming language used in the real implementation. 

Our approach eliminates this problem by allowing a transparent building of the ATL model at runtime, 
using the native language of JADE agents (Java). 

We build an ATL model suited for FSM (Finite State Machine) - driven behaviour of a JADE agent. This 
model will help us to elaborate the mapping rules between ATL and JADE concepts. ATL Library will be used 
to validate the design of JADE agents having FSM-behaviours, in other words, to see that no incorrect scenarios 
arise as a consequence of a bad design. 

7.3.1. A formal model of the FSMBehaviour 

In the following we present a model for FSM-driven behaviour of a JADE agent, implemented by 
FSMBehaviour class. This model will help us to elaborate the mapping rules between ATL and JADE concepts. 

A  JADE finite state machine is a tuple FSM=(QFSM, Π, π, q0, F, t, δFSM) where: 

• QFSM is a finite, non-empty set of states; 
• denotes the finite set of state names; 
• π: QFSM → Π is called the labelling function, defined as follows: for each state q∈ QFSM, π (q) ∈ Π is 

the name of state q; 
• q0 is an element of QFSM, the initial state; 
• F ⊆ QFSM is the set of final states; 
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• t: QFSM → { }2 default∪ � is called the terminating function, where for each state q∈ QFSM, t(q)

{ }default⊆ ∪  represents the set of admissible termination codes of the state q; 

The transition function δFSM(q, j), associates to each state q∈ QFSM and each termination code j of q the 
state that results from state q if the child behaviour associated with the state q returns at finish the value j. 

The behaviour of an FSM is more easily understood when this is represented graphically in the form of a 
state transition diagram. The control states are represented by circles, and the transition rules are specified as 

directed edges. Each transition from a state q is labelled by termination code of q that triggers the transition. The 
arc without a source state denotes then initial state of the system (state q0). 

During one reaction of the FSM, one transition is triggered, chosen from the set of admissible transitions 
(outgoing transitions from the current state), so that label of transition matches the terminating code of the 
current state. The FSM goes to the destination state of the triggered transition.  

If terminating code of the current state q ∉ F is not explicit associated with an admissible transition, then: 

• if exist the admissible transition labelled with default, this transition (called implicit transition) will 
be  triggered; 

• else FSM goes in an inconsistent state. 
In case if FSM arrive in a state q ∈ F, after completeness of activities from that state, execution of finite 

state machine is stopped. 

7.3.2. ATL model of the FSMBehaviour 

For a JADE finite state machine defined in section 7.3.1, the equivalent concurrent game structure 

S=Λ,Q,Γ,γ,M,d,δ is defined as follows:  

• There is only one agent, i.e. Λ = {1};  

• The set of states is Q = QFSM;  

• The finite set of propositions is defined by Γ = Π ∪ { *FINAL*};  

• The labelling function γ: Q → 2Γ is defined as follows: 

( ) \
( )

( ) {* *}

q for q Q F
q

q FINAL for q F

π
γ

π
∈

=  ∪ ∈   
• The nonempty finite set of moves M contains all admissible termination codes, i.e.: 

( )
q Q

M t q
∈

=
 

• the alternative moves function d:Λ×Q→2M  is defined by (1, ) ( )d q t q q Q= ∀ ∈  

• the transition function δ is defines as follows: 

    
( , ) ( , ) ( )FSMq j q j q Q and j t qδ δ< > = ∀ ∈ ∀ ∈

  
7.3.3. Using ATL for verification of the FSM - driven behaviour of a JADE agent 

For a given JADE FSMBehaviour, the ATL model checking is done in two steps: 
1. For the beginning, the corresponding ATL is constructed following rules described in section 7.3.2 
2. Then, a given specification (ATL formula) representing a desired behavioural property is verified to 

hold for the model obtained at step 1. 
 
Using ATL Library [CS13] to perform ATL model checking, we can detect error states (the states of the 

model where the ATL formula does not hold) and then we can correct the given model or design. 
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8. Conclusions and future directions 

As future research we intend: 

• Creating libraries which include several models CTL / ATL that can be verified and studied by user;  

• Creating a CTL model checker extension which include the time restrictions;  

• Developing a symbolic CTL model checker; 

• Creating an ATL model checker extension which include the time restrictions; 

• Developing a symbolic ATL model checker; 

• Although the model checking tools developed so far were used for the verification of complex 
systems, a major limitation of this approach is that those tools can only verify the correctness of the 
system specifications. In other words, if errors are identified by a model checker tool within a 
specified system, the task of system correction is altogether left to the system designers. Accordingly, 
model checking is generally only used to verify whether a system properly holds but without change 
of the system if the verification fails. Automatic correction of the system was addressed in some 
papers [SW96, DNM06, CPPB08], for some specific cases. A possible research direction is the 
automatic modification of a model when its verification failed. 

• The development of theoretical models and extensions of temporal logics discussed within the thesis 
to extend the scope of the application of the model checking technology to the software systems of 
great actuality: applications/Web Services, semantic web services (Semantic Web) [Mar04], 
distributed/autonomous database management systems for web applications, etc.  

As a future direction of our research, we propose an extension of the model checking verification tools 
presented in this thesis to generate automatic (or at least assisted) the specifications to be verified (formulas 
currently expressed in the language associated with temporal logic), through a friendly and interactive graphical 
interface. 

Each of these issues requires complex challenges, both theoretically and practically, but the importance 
of the research field approached within the thesis represents a sufficient motivation to address them continuing 
results achieved by now. 

We manifest the hope that the original theoretical results obtained in this thesis, integrated and exploited 
in the implementations of our model checking tools, can contribute to a long expected desiderate: integration of 
the formal verification techniques in the current cycle of design and development of software systems. 
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