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Introduction

The evolution of the multigrid method

The differential equations with partial derivatives are often used in order to de-
scribe real phenomena and processes from various fields ( fluids mechanics, ther-
modynamics, economy, meteorology, image processing,...). Solving such equations
is thus very important from both the theoretical and practical point of view. As
the analytical solution isn’t always accesible, it is important to build numerical
methods in order to approximate the solution.

Recent simulations of these problems are based on more and more complicated
models. The discretization process of differential equations leads to big systems
that become ill-conditioned (small perturbations of constant term lead to bigg vari-
ations of the solution) as the working grid step becomes smaller. The necessity of a
numerical method to solve these systems is thus obvious. Also there is a growing
need of computer memory and of reducing the processing time, as the problems
are solved on grids that have a growing number of cells. Thus there is not only a
mathematical challenge, but also one of computer programming.

The system obtained after the discretization has a very large number of un-
knowns (for example for a grid of the seventh order there are 28 equations on each
dimension, thus 216 in the bidimensional case, or 224 in the tridimensional one)
and has to be solved as accurately as possible, in a reasonabily short computing
time. Solving such a system using for example Gauss’s elimination method be-
comes unpractical as it requires a huge number of operations and uses too much
of the computer’s memory. This is the reason why numerical iterative methods
are used. But it is well known that these methods have a very poor convergence.
They reduce very well the oscillating components of the error, but the smooth ones
remain almost unchanged, being thus very slowly reduced toward zero. So, the
classical iterative methods are inefficient as they generate smooth errors that are
very slowly approaching to zero.

One of the quickest methods used for solving a big system is the multigrid
method, which has been proven to be a very good tool for increasing the conver-
gence speed through introducing a new component: the coarse grid correction.
This reduces only the smooth components of the error, being a complementary
method for the classical numerical iterative methods. The main idea of this method
is that, when passing to a coarser grid, only smooth components can be well ap-
proximated on this grid, and then, on the coarse grid, the smooth components
become oscillant, so that they can be efficiently reduced by a numerical iterative
method. Moreover, the number of unknowns from the system that has to be solved
becomes smaller so that the solving time decreases. This is one of the main proper-
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ties of the multigrid method: it is rapidly convergent. Multigrid method can be ap-
plied for solving many types of differential equations, with a cost of O(n)-arithmetic
operations for n unknowns, thus being among the most efficient numerical meth-
ods used for solving a systems of equations. Also, the the convergence of the
method does not depend on the grid step.

The idea of the multigrid method was first introduced by R. P. Fedorenko, in
1964. He presented a multigrid algorithm for a five points standard discretization
for the Poisson equation on the [0,1]×[0,1] domain. Since then, a large number
of authors (B.E. Bank, T.F. Dupont, A. Brandt, W. Hackush, P. Wesseling, S.Mc.
Cormick, ...) have shown that this is a really usefull technique, practical and
theoretical.

The implementation of the multigrid method on computers started in 1977 with
the work of A. Brandt that contains all the main processes used in the method.
He obtained the first practical results and showed the efficiency of the method.
A. Brandt and W. Hackbush introduced the multigrid method for nonliniar prob-
lems and proved the convergence of the method for some elliptical problems. Since
then the interest in the multigrid method has become even bigger, although ini-
tially there was a lot of scepticism, due to the fact that the theory was not well
developed. Another important step was the combination of the multigrid method
with the nested iteration techniques. The multigrid method was initially used only
for elliptic problems, it’s implementation requiring substantial effort. Further re-
searches allowed using the method to a larger class of problems. Numerous forms
of the multigrid method have been developed, from the geometrical ones that use
structured grids, to the pure algebraic ones in which the accent is set on the al-
gebraic aspects of the equation, not requiring any information about the grids on
which the problem is discretised.

The growing interest for this method determined even the organizing of at least
two multigrid conferences: ”European Multigrid Conference” and ”Copper Moun-
tain Conference on Multigrid Methods”.

The purpose and motivation of the work

In this work the purpose was to obtain efficient solutions for the systems of
equations generated by the discretization of partial derivatives differential equa-
tions that model physical phenomena such as the ones mentioned above. We used
the local Fourier analysis in order to build efficient multigrid methods by choosing
it’s components according to the conclusions of this analysis. We also analized
the error and the convergence of the multigrid method. The problems have been
chosen from different classes of partial derivatives equations, both stationary and
nonstationary.

The discretization methods used have been the finite differences of second and
fourth order and the finite element method, on rectangular systems of grids. For
the nonstationary equations we used backward Euler scheme for the discretization
in the time direction.

Any multigrid method strongly depends on the problem to be solved, thus there
isn’t a unique multigrid algorithm. This is why in this work we used the local
Fourier analysis for designing an efficient method for the problem that has to be
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solved.
The convergence of the multigrid method for convection-diffusion problems has

been studied in the stationary case by many researchers ([29, 53, 62, 72, 73, 86,
89, 90] and so on). The novelty in this work is the fact that the local Fourier anal-
ysis is extended for the nonstationary convection-diffusion equations, for both the
onedimensional case (paper [58]), and the bidimensional one (paper [59]). We also
have studied with this method the influence of the discretization and the numer-
ical iterative methods on the results obtained with the multigrid method, on the
convergence rate and on the error reduction.

While we made the Fourier analysis we introduced a new definition for the
smoothing factor (paper [61]), as compared with the one used for example by U.
Trottenberg, in [86], R. Wienands and W. Joppich in [90] or P. Wesseling in [89],
With this definition we made a different splitting of the frequencies spectrum from
the components of the error.

While the method is rapidly convergent for model problems like Poisson equa-
tion on a square, the rate of convergence can be drasticaly modified by the pres-
ence of large variations in the coefficients or of complicated domains. Also the
convection-diffusion equations lead to poor convergence of the multigrid method,
and this type of equations are very often the mathematical model for which a so-
lution is needed. This is the reason why in order to solve convection-diffusion
problems we introduced a new method that uses a system of grids, named ”stellar
prolongation method” (works [56], [57]). The results obtained with this method are
compared with the ones obtained with the multigrid method for several problems.
We used the stellar prolongation method for convection-diffusion equations in the
case of dominant convection, for which it is well known (for example [63], [86]) that
the multigrid method leads to unsatisfying results. The practical results showed
that this method can be succesfully applied for solving this kind of problems.

The structure of the work

In the first chapter, ”Multigrid method”, we presented a classification of the
partial derivative equations and the border condition needed by each of these for
the solution to be stable and unique. The motivation of this presentation is also
related to the fact that the multigrid method will be applied and studied in this
work for different practical problems from all these classes: elliptic, parabolic and
hyperbolic.

In the second part of the chapter some discretization methods are described:
finite differences of second and fourth order and finite element and the numerical
iterative methods that will be used for solving the systems of equations obtained
after the discretization process.

The third part of the first chapter deals with the multigrid method, starting from
the local Fourier analysis of the iterative numerical methods. The informations
obtained with this analysis can be used in designing efficient multigrid method .

The second chapter, ”The study of the convergence of the multigrid method”,
presents the local Fourier analysis of the multigrid method.

At the begining are presented a few theoretical notions about the Fourier trans-
form of a function, then the Fourier analysis for classical iterative methods is pre-
sented. The model problem used for the convergence and the error analysis of the
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multigrid method is a time dependent convection-diffusion equation, for which the
theoretical results obtained are then confirmed by the practical ones. The conclu-
sions of the analysis allow an efficient design of the multigrid method.

Chapter 3, ”Multigrid method for nonstationary convection-diffusion prob-
lems ”, presents the multigrid method and it’s analysis for a nonstationary convec-
tion-diffusion problem in two dimensions, and it is a generalization of the results
obtained in Chapter 2. As convection-diffusion problems often lead to instable
solutions, we also presented the streamline diffusion method, which has the role
of reducing these oscillations for the case when the convection is dominant. The
3-dimensions multigrid method is presented next, and the errors obtained for a
nonstationary convection-diffusion problem.

The convection-diffusion equation is also studied in the particular case when
there is no convection. The diffusion equation is solved with the multigrid method,
for the case when the physical process is nonstationary and takes place in a three
layers environement with different physical properties, where the active substance
is transported by nanoparticles. For the error to be comprised between certain val-
ues, we also determined the number of iterations needed by the multigrid method.

Chapter 4, ”The stellar prolongation method”, introduces a new numerical
method that uses a system of more grids for solving diferential equations with
partial derivatives.

At the end we presented the main ideas of this work, the original ideas, respec-
tively what novelties this work brings and some directions for future work.

The original contributions are in Theorems 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.3.1,
2.3.2, 3.2.1, 3.2.2, Properties 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.3.5, 2.3.6, 2.3.7, 2.3.8,
3.1.1, 3.1.2, 3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.5.1, 4.2.1, 4.2.2, 4.2.3, 4.2.4, 4.3.1, 4.3.2,
4.3.3, Corolary 2.2.1, Remarks 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.3.1, 2.3.2, 3.2.1, 3.2.2,
3.3.1, 3.5.1, Examples and problems 3.4.1, 3.4.2, 4.4.1-4.4.5.

Keywords:
Multigrid method, finite differences method, finite elements method, partial

derivatives differential equations, convection-diffusion equation, error reduction
factor, smoothing factor, amplification factor, asymptotic convergence factor, stel-
lar prolongation
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Very special thaks to Conf. Univ. Dr. Ioana Chiorean for allways being there
for me. I will never forget her patience and the help I received from her each time I
nedeed it.

I would also like to express my gratitude to my parents for supporting me in
everything I do.
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Chapter 1
The Multigrid Method

As the purpose of this work is to numerically solve differential equations with the
multigrid method, in Section 1.1 we presented a classification of the differential
equations with partial derivatives ([84]). Section 1.3 describes some classical meth-
ods for solving the systems of equations ([22]) obtained after the discretization pro-
cesses ([22], [85]) described in Section 1.2. Then, in Section 1.4 we presented the
multigrid method as introduced in [34], [86], [89].

1.1 Differential equations with partial derivatives - clasif-
fication and canonical form

In this section are presented the three classes of differential equations that will be
used in this work and the boundary conditions needed for the equation to have a
unique and stable solution.

1.2 Discretization methods of a differential equation

We present here the two discretization methods used further: the finite differences
method of second and fourth order and the finite elements method.

1.3 Numerical iterative methods for solving systems of
equations

For the numerical solution of a system of equations the iterative methods used in
this work, such as Jacobi, pondered Jacobi or Gauss-Seidel methods are presented
in this section.

1.4 Multigrid method

The multigrid method presentation from this section follows the main ideas from
[34]. In order to illustrate the multigrid method ([34], [89]), the model problem was
Poisson equation on a square.
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Chapter 2
The convergence of the multigrid
method

The convergence of the multigrid method has been studied for the Poisson equation
[35], [86], [89]. In more recent years, it has also been established for the convection-
diffusion equation [62], [73].

The novelty in this chapter is that we study the convergence and error prop-
erties for a time dependent convection-diffusion equation in two dimensions, on
a domain containing three layers with different physical properties (paper [58]).
Also, we defined a new frequencies spectrum and proposed a new definition for the
smoothing factor of the multigrid method, (paper [61]). We used for our work the
Fourier analysis method, which is often applied in order to design efficient multi-
grid approaches. For the begining, in Section 2.1 are presented a few theoretical
aspects about the Fourier expansion ([49]) and the local Fourier analysis ([86, 90])
in Section 2.2 for the classical numerical methods .

2.1 The Fourier transform of a function

In order to use the local Fourier analysis, we briefly present in this section the
Fourier transform and the discrete Fourier transform.

2.2 Local Fourier analysis of the convergence for the clas-
sical numerical methods

For the study of iterative numerical methods, one of the most efficient and fre-
quently used methods is the local Fourier analysis (LFA). This method is used in
order to compute the amplification factor, the smoothing factor, the error reduction
factor and the convergence factor for a numerical method. The computing of the
smoothing factor is very important because it’s analysis allows designing efficient
components of the multigrid method, being well known that this method has to be
adapted to each type of problem that has to be solved. The LFA, first introduced
by A. Brandt in [8], [9], [10], has become a widely used method [29], [86], [89] on a
large variety of problems.
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The Multigrid Method for Differential Equations

We propose here a new definition (paper [61]) for the smoothing factor- used for
both the design and analysis of the multigrid method, and the new way to split
the frequency spectrum into high and low frequencies for the one dimensional case
(paper [61]).

The model problem used here is the mathematical representation of the station-
ary convection-diffusion process:{

−εu′′(x) + au′(x) = f(x), x ∈ Ω = (0, 1),

u(x) = 0, x ∈ Γ = {0, 1},
(2.1)

where u is the concentration of the substance, f is a possible perturbation term
for the concentration, due for example to chemical reactions, ε is the diffusion
coefficient and a is the convection coefficient.

2.2.1 The amplification factor and the smoothing factor of a numeri-
cal method

Definition 2.2.1. [89] For a numerical iterative method, the amplification factor
g(tk) is the ratio between the coefficient c(m)

k after m iterates and the coefficient from
the previous iterative step, c(m−1)

k .

Property 2.2.1. [89] The convergence speed of a numerical method is better when
the module of the amplification factor smaller than 1.

Theorem 2.2.1. [61] The amplification factor of the Gauss-Seidel method for the
problem (2.1) has the module

|g(tk)| =
|2ε− ahl|√

(2ε+ ahl)2 + (4ε)2 − 8ε(2ε+ ahl) cos(tk)
, k = 0, . . . , nl. (2.2)

(a) Pondered Jacobi method for ω = 0.5 (b) Gauss-Seidel method

Figure 2.1: The module of the amplification factor for l = 6, ε = 0.1 şi a = 10 in
the one-dimensional case
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Theorem 2.2.2. [61] For the pondered Jacobi method the module of the amplification
factor for the problem (2.1) is

|g(tk)| =

√
(1− ω + ω cos tk)2 +

(
ahω

2ε
sin tk

)2

. (2.3)

Remark 2.2.1. [61] In Figure 2.1b and Figure 2.1a it can be seen that for the

frequencies k ∈
[
c
N

2
, N − cN

2

]
, c ∈ (0, 1) the amplification factor has the module

|g(tk)| ≤
1

2
. This means that for the error components that have these frequencies, the

numerical iterative method is efficient because in the worst case they are reduced by

a factor of at least
1

2
on each iteration step. On the other hand, for the components

having frequencies between
(

0, c
N

2

)
∪
(
N − cN

2
, N

)
, the amplification factor is al-

most 1, thus for these frequencies the method is not efficient as these components
remain almost unchanged after one iterative step.

Definition 2.2.2. [86], [89] The smoothing factor of a numerical iterative method
having the iteration matrix M , is the worst amplification factor module, taken for all
the high frequencies and is denoted by ρ(M) = max{|g(tk)|, tk ∈ Thigh}.

level l = 1 l = 2 l = 3 l = 4 l = 5 l = 6

ρ(MJ) 1 1 1 1 1 1
ρ(MωJ) 0 0.5 0.8536 0.9619 0.9904 0.9976
ρ(MGS) 0.3333 0.4472 0.6786 0.8756 0.9637 0.9905

Table 2.1: The smoothing factor of Jacobi (J), Jacobi pondered (ωJ ) and Gauss-
Seidel (GS) methods for problem (2.1), a = 0, ε = 1

The data from Table 2.1 show that the convergence speed of the studied meth-
ods decreases as the grid step becomes smaller due to the poor reduction of the
low frequencies. Thus, these numerical methods are slowly convergent.

2.2.2 The frequencies spectrum

One of the most efficient methods to overcome this disadvantage of a classical
iterative method is the multigrid method, which combines the property of such a
method to reduce the high frequencies with the coarse grid correction method that
has complementary properties: it reduces well the low frequencies.

Theorem 2.2.3. [61] The smoothing factor of an iterative numerical method that has
the iteration matrix M is

ρ(M) = max
k

{
|g(tk)|, tk ∈ Th

}
, (2.4)
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with: Thigh =

{
k|k = c

N

2
, ...,

N

2
− 1

}
, the high frequencies domain from the expansion

and where: g(tk) =
c

(m)
k

c
(m−1)
k

, k = 1, ...,
N

2
− 1 is the ratio of the coefficients of order k in

the Fourier-transform expansion of the error, c ∈ (0, 1) being a fixed constant.

Corolary 2.2.1. [61] The Fourier expansion in a point xs, s = 0, ..., N−1 for a function
that has N real values e0, e1, ..., eN−1, is

Es = B0 +

N/2−1∑
k=1

Bk sin

(
2πks

N
− ϕ

)
, B0, Bk ∈ R, k = 1, 2, ...,

N

2
− 1. (2.5)

Theorem 2.2.4. [61] The smoothing factor of the Gauss-Seidel method for problem
(2.1), is

ρ(MGS) =
|2ε− ahl|√

(2ε+ ahl)2 + (4ε)2 − 8ε(2ε+ ahl) cosπc
,

and for the pondered Jacobi method

ρ(MωJ) =

√
(1− ω + ω cosπc)2 +

(
ahω

2ε
sinπc

)2

.

2.2.3 The results obtained using the Fourier analysis for the numeri-
cal methods studied here

Remark 2.2.2. The Jacobi method should not be used as a smoother in the multigrid
method due to the fact that it does not have the usual property of a numerical iterative
method to efficiently reduce the high frequency error components, but it reduces only
the middle part of the frequency spectrum (k ∈ (0, N/2− 1)).

Remark 2.2.3. For the Gauss-Seidel or pondered Jacobi method, the property of
reducing the high frequencies determined using Theorem 2.2.3 is even better than
was computed untill now using Definition 2.2.2 for each iterative step and applying
these methods more times makes them even more efficient.

Remark 2.2.4. For the case of dominant convection (Table 2.3) as the number of
layers used is growing, the amplification factor becomes smaller, thus it is better to
use the numerical iterative method on a grid having more levels (at least six for the
problem studied here) in order to have a reduction of the low frequencies components
of the error, and even so the reduction is not efficient.
2.3 The convergence of the Multigrid Method using the-

Local Fourier Analysis

2.3.1 Mathematical model

In order to apply the local Fourier analysis, we used the convection-diffusion equa-
tion  c

∂u(x, t)

∂t
+ v · 5u(x, t) = d4 u(x, t) + αu(x, t) + f(x), t ≥ 0,x ∈ Ω

u(x0, t) = u0, t ≥ 0.
(2.6)
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a = 0, e = 1 l = 3 l = 4 l = 5 l = 6

c=0.5

GS 0.4472 0.4472 0.4472 0.4472
0.8756 0.9637 0.9905 0.9976

J 0.9239 0.9808 0.9952 0.9988
1.0000 1.0000 1.0000 1.0000

ωJ 0.5000 0.5000 0.5000 0.5000
(ω = 0.5 ) 0.9619 0.9904 0.9976 0.9994

Table 2.2: The smoothing factor of Gauss-Seidel (GS) and pondered Jacobi (ωJ )
methods for model problem (2.1), a = 0, ε = 1 -pure diffusion

a = 10, e = 0.1 l = 3 l = 4 l = 5 l = 6

c=0.5

GS 0.4635 0.1730 0.0817 0.2502
0.8845 0.7851 0.7632 0.9911

J 3.1250 1.5625 0.9981 0.9990
3.1250 1.5625 1.0000 1.0000

ωJ 1.6406 0.9276 0.6345 0.5368
(ω = 0.5 ) 1.6406 1.0167 0.9983 0.9994

Table 2.3: The smoothing factor of Gauss-Seidel (GS) and pondered Jacobi (ωJ )
methods for model problem (2.1) and a = 10, ε = 0.1 - dominant convection

Here, u(x, t) represents the concentration of the substance transported through the
blood stream, v is the convection coefficient and d is the diffusion coefficient.

The substance applied on the skin has a constant concentration at any moment
of time u(0, t) = u0, t ≥ 0. On the frontiers between the skin layers the law of flux
conservation gives [[

−d∂u(x, t)

∂x

]]
= 0, x = x0i , i = 1, 2, ..., nd, t ≥ 0, (2.7)

nd is the number of layers where the diffusion takes place and [[a(x, t)]] = a(x+, t) −
a(x−, t).

Property 2.3.1. [58] For finite differences method of discretization, the coefficients
from system obtained are:

q0 = −2αh

3
+

2ch

3dt
+

2d

h
,

q1 = −αh
6

+
ch

6dt
− v

2
− d

h
, (2.8)

q2 = −αh
6

+
ch

6dt
+
v

2
− d

h
,

fi = f(xi) +
ch

6dt

(
uanti−1 + 4uanti + uanti+1

)
.

Property 2.3.2. [58] For finite differences method with backward Euler discretiza-
tion scheme for the time direction, the coefficients in the system obtained after the

10
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discretization process will be:

q0 = −α+
c

dt
+

2d

h2
, q1 = − v

2h
− d

h2
, q2 =

v

2h
− d

h2
, fi = f(xi) + c

uanti h

dt
. (2.9)

2.3.2 The components of the multigrid method

Property 2.3.3. [58] The matrix of the operator Lh of the system obtained after the
discretization process is

L̂h =

(
L̃h(θ) 0

0 L̃h(θ)

)
, (2.10)

where L̃(θ) = q0 + q1e
−iθ + q2e

iθ.

Property 2.3.4. [58] The matrix of the smoothing operator corresponding to the
Gauss-Seidel method is

Ŝh = Ŝnh Ŝ
r
h =

1

4

(
(a+ 1)2 − (a− 1)(b− 1) (b− 1)(a− b)
−(a− 1)(a− b) (b+ 1)2 − (a− 1)(b− 1)

)
(2.11)

where a = 1− ω

q0
L̃(θ), b = 1− ω

q0
L̃(θ).

Property 2.3.5. [58] The restriction operator has the matrix

Î2h
h =

1

2

(
1 + cosθ 1 + cosθ

)
. (2.12)

Property 2.3.6. [58] The matrix of the coarse grid operator is

L̂−1
2h (2θ) =

1

L̃2h(2θ)
. (2.13)

Property 2.3.7. [58] The matrix of the prolongation operator is

Îh2h =
1

2

(
1 + cosθ

1 + cosθ

)
. (2.14)

Two-grid operator
The matrices (2.10)- (2.14) are used for the two-grid operator for the multigrid

method

M̂2h
h = Ŝν2h K̂

2h
h Ŝν1h , (2.15)

where

K̂2h
h = Îh − Îh2h(L̂2h)−1Î2h

h L̂h (2.16)

is the matrix of the coarse grid correction operator.

Definition 2.3.1. [86] The asymptotic convergence factor of the 2-grid method
is

ρloc(M
2h
h ) = sup

{
ρloc(M̂

2h
h (θ)), θ ∈ T l =

[
−π

2
,
π

2

]
, θ /∈ Λ

}
. (2.17)

11
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Definition 2.3.2. [86] The error reduction factor of the 2-grid method is

σloc(M
2h
h ) = sup

{
||(M̂2h

h (θ))||, θ ∈ T l =
[
−π

2
,
π

2

]
, θ /∈ Λ

}
. (2.18)

Here || · || is the Euclidian norm in C2 and

Λ =
{
θ ∈

[
−π

2
,
π

2

]
, L̃h(θ) = 0 or L̃2h(θ) = 0

}
. (2.19)

Definition 2.3.3. [86] The smoothing factor of the 2-grid method is

µloc(Sh, ν) = sup

{
ν

√
ρloc(Ŝ

ν2
h (θ)Q̂2h

h Ŝ
ν1
h (θ)), θ ∈ T l =

[
−π

2
,
π

2

]}
. (2.20)

where ρloc(Ŝ(θ)) is the spectral radius of Ŝ(θ), ν = ν1 + ν2.

Q2h
h ϕ(θ, ·) =

{
0, θ ∈ T l =

[
−π

2
,
π

2

]
ϕ(θ, ·), θ = θ ∈ T h

,

Q̂2h
h (θ) =

(
0 0
0 1

)
, θ ∈ T l.

2.3.3 Numerical results obtained with the local Fourier analisys for
the studied problem

The smoothing factor

Theorem 2.3.1. [58] If ω=1 then the matrix (2.11) of the smoothing operator of the
Gauss-Seidel method after ν = ν1 + ν2 steps is

Ŝνh(θ) =
1

4ν−1
(a− b)2(ν−1)Ŝh(θ)

and has the eigenvalues λ1 = 0 and λ2 =
(a− b)2(ν−1)

4ν
[(b+ 1)2 − (a− 1)(b− 1)], a and b

being given in Property 2.3.2.

Theorem 2.3.2. [58] The smoothing factor for the Gauss-Seidel method for model
problem (2.6) is

µloc(Sh, ν) =

(
q1 + q2

q0

)2
ν

√
q0 + q1 + q2

2(q1 + q2)
. (2.21)

For the finite differences method, q0, q1, q2 are the coefficients

q0 = −α+
c

dt
+

2d

h2
, q1 = − v

2h
− d

h2
, q2 =

v

2h
− d

h2
, fi = f(xi) + c

uanti h

ht
,

and for the finite elements method

q0 = −2αh

3
+

2ch

3ht
+

2d

h
, q1 = −αh

6
+

ch

6ht
− v

2
− d

h
, q2 = −αh

6
+

ch

6ht
+
v

2
− d

h
,

fi = f(xi) +
ch

6ht

(
uanti−1 + 4uanti + uanti+1

)
,

On the boundaries between the layers

q0 =
1

h
(d(x−i ) + d(x+

i )), q1 = −1

h
d(x−i ), q2 = −1

h
d(x+

i )), fi = 0.

12
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For a = 10−4, ct = 1, d1 = 1 · 10−12, d2 = 1 · 10−10, d3 = 3 · 10−10, v1 = 1 · 10−9, v2 =
1 · 10−6, v3 = 1 · 10−6 the smoothing factors for the Gauss-Seidel relaxation method
are presented in Table 2.4.

Finite Differences Method
ν=1 ν=2 ν=3 ν=4 ν=5

l = 3 0.0058 8.8272 · 10−4 4.7260 · 10−4 3.4581 · 10−3 2.8670 · 10−3

l = 4 0.0215 0.0066 0.0044 0.0037 0.0032
l = 5 0.0667 0.0409 0.0348 0.0321 0.0306

Finite Elements Method
ν=1 ν=2 ν=3 ν=4 ν=5

l = 3 0.3493 0.2801 0.2603 0.2509 0.2454
l = 4 0.2809 0.2125 0.1937 0.1849 0.1798
l = 5 0.0991 0.0533 0.0434 0.0391 0.0368

Table 2.4: The smoothing factor as a function of ν = ν1 + ν2 and l

Remark 2.3.1. The data from Table 2.4 show that the Gauss-Seidel red-black re-
laxation method is a very good smoother for this problem as the smoothing factors
in the cases presented here are ≤ 0.5; both the discretization methods lead to good
smoothing factors.

Asymptotic convergence factor and error reduction factor

Property 2.3.8. [58] The matrix of the two-grid operator for the problem (2.6) is

M̂2h
h = Ŝν2h (θ)

[(
1 0
0 1

)
− 1

4L̃2h(2θ)

(
(1 + cosθ)2L̃h(θ) (1− cos2θ)L̃h(θ)

(1− cos2θ)L̃h(θ) (1 + cosθ)2L̃h(θ)

)]
Ŝν1h (θ). (2.22)

Number of Finite differencesmethod Finite element method
smoothig steps ρloc(M

2h
h ) σloc(M

2h
h ) ρloc(M

2h
h ) σloc(M

2h
h )

ν1 = 0, ν2 = 1 0.1224 0.1731 0.0153 0.1989
ν1 = 1, ν2 = 0 0.1224 0.3297 0.0153 0.2420
ν1 = 2, ν2 = 2 7.5569·10−4 0.0019 5.6099·10−6 2.0141·10−5

ν1 = 3, ν2 = 2 1.3862·10−4 3.5209·10−4 4.8333·10−7 1.7152·10−6

Table 2.5: Asymptotic convergence factor and error reduction factor (l=6)

Remark 2.3.2. The data from Table 2.5 show that the multigrid method is very
rapidly convergent: if at least one smoothing step is performed before and after the
coarse grid correction, then the error is reduced by at least a 10−2 factor per multigrid
cycle.

Numerical results

The problem (2.6) has been solved on a domain containing tree layers with different
diffusion and convection coefficients ([55], [71]).
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The error was computed for the following exact solution

uex(x, t) = x2 + t,max(|ue(x, t)|) = 1.44 · 103, x ∈ Ω = [0, 1620nm], t ∈ [0, 24min].

The time step in the discretization process has been dt = 60s.
Figures 2.2 and Table 2.6 represent the error after eight multigrid cycles, with

two smoothing steps before and two after the coarse grid correction.

(a) Finite Differences Method (b) Finite Elements Method

Figure 2.2: The multigrid error at ad=100nm in the skin for
v1 = 1.0 · 10−10; v2 = 1.0 · 10−7; v3 = 1.0 · 10−7; d1 = 1 · 10−12; d2 = 1 · 10−10;
d3 = 3 · 10−10; c = 104; a = 0.

FD
maxi|u(xi)− uex(xi)| ||u− uex||

l=3 1.0000 · 10−8 4.8970 · 10−8

l=4 1.0057 · 10−8 3.1812 · 10−8

l=5 1.0617 · 10−7 1.6775 · 10−7

l=6 8.3356 · 10−7 1.9383 · 10−6

l=7 5.5076 · 10−6 1.4308 · 10−5

FEM
maxi|u(xi)− uex(xi)| ||u− uex||

l=3 9.9847 · 10−9 4.7554 · 10−8

l=4 1.6648 · 10−8 5.9871 · 10−8

l=5 0.1079 0.2457
l=6 13.3535 30.8845
l=7 104.0864 245.1033

Table 2.6: Multigrid error for Finite Differences and Finite Elements Methods
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Chapter 3
The multigrid method for
nonstationary convection-diffusion
problems

The general methodology and the local Fourier analysis described in the previous
chapters lead to various multigrid algorithms according to the way that multigrid
components are chosen and how they are used. All the components have to be
adapted to the problem to be solved, thus there is no unique multigrid algorithm
for all types of differential equations.

In Section 3.2, starting from the local Fourier analysis of the multigrid method,
we study (paper [59]) the efficient design of the method, it’s convergence and er-
ror reduction properties for a nonstationary convection-diffusion equation in two
dimensions. This study is an extension of the results presented in Chapter 2.3.

In Section 3.3 we use the streamline diffusion method in order to reduce the
oscillations that appear when the physical process the covection is dominant.

In Section 3.4 we present an example of using the multigrid method in the
tridimensional space and in Section 3.5 in a medium that is made of three layers
with different diffusion properties (paper [60]).

3.1 Mathematical model

The nonstationary convection-diffusion equation is ct
∂u(x, t)

∂t
+ V · 5u(x, t) = D4 u(x, t) + αu(x, t) + f(x, t), t ≥ 0,x ∈ Ω

u(x0, t) = u0 t ≥ 0,x0 ∈ ∂Ω.
(3.1)

Here u(x, t) represents the concentration of the substance transported through
the blood stream, V = (V1, V2) is the vector of convection coefficients and D is the
diffusion coefficient, Ω = [a, b]× [c, d] is the domain where the physical process takes
place.

The substance applied on the skin has a constant concentration at any moment
of time

u((x, c), t) = u0, t ≥ 0, a ≤ x ≤ b. (3.2)
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On the frontiers between the skin layers the law of flux conservation gives[[
−D∂u(x, t)

∂n

]]
= −D+∂u(x+, t)

∂n
+D−

∂u(x−, t)

∂n
= 0,

x = x0i, i = 1, 2, ..., nd, t ≥ 0, (3.3)

nd is the number of layers where the convection-diffusion process takes place.
The system obtained from equation (3.1) using a discretization method will be
q1ui−1,j+1 + q2ui,j+1 + q3ui+1,j+1 + q4ui−1,j + q5ui,j + q6ui+1,j+

+ q7ui−1,j−1 + q8ui,j−1 + q9ui+1,j−1 = fi,j , i = 1, 2, .., nx, j = 1, 2, .., ny,

u|∂Ω = u0,
(3.4)

Property 3.1.1. [59] If the finite differences discretization method with the explicit
backward Euler scheme is used on the time direction for the equation (3.1), the coef-
ficients from system (3.4) are

q5 = −α+
ct
ht

+ 2D

(
1

h2
x

+
1

h2
y

)
− V

(
1

hx
+

1

hy

)
, q4 = − d

h2
x

, q6 =
V

hx
− D

h2
x

,

q8 = − d

h2
y

, q2 =
V

hy
− D

h2
y

, fi,j = f(xi, yj) +
ct
ht
uanti,j , i = 1, ..., nx, j = 1, ..., ny.

Property 3.1.2. [59] If the equation (3.1) is discretized using the finite elements
method, the system obtained is

 KΩ4
24 KΩ4

23 +KΩ3
14 − ki,i+nx KΩ3

13

KΩ1
34 +KΩ4

21 − ki,i−1 KΩ1
33 +KΩ2

44 +KΩ3
11 +KΩ4

22 − ki,i KΩ2
43 +KΩ3

12 − ki,i+1

KΩ1
31 KΩ1

32 +KΩ2
41 − ki,i−nx KΩ2

42

ui=
=fΩ1

3 + fΩ2
4 + fΩ3

1 + fΩ4
2 +

N∑
j=1

cijct
uantj

ht
, i = 1, ..., N, (3.5)

where

(
KΩe
ij

)
i,j=1:4

=
D

6



2r0 +
2

r0
−2r0 +

1

r0
−r0 −

1

r0
r0 −

2

r0

−2r0 +
1

r0
2x+

2

r0
r0 −

2

r0
−r0 −

1

r0

−r0 − 1

r0
r0 − 2

r0
2r0 +

2

r0
−2r0 +

1

r0

r0 − 2

r0
−r0 − 1

r0
−2r0 +

1

r0
2r0 +

2

r0


+

+
V (b1 − a1)

12


−2 −1 1 2
−1 −2 2 1
−1 −2 2 1
−2 −1 1 2

+
V (d1 − c1)

12


−2 2 1 −1
−2 2 1 −1
−1 1 2 −2
−1 1 2 −2

+

+

(
ct

ht
− α

)
(b1 − a1)(d1 − c1)

36


4 2 1 2
2 4 2 1
1 2 4 2
2 1 2 4

 , r0 =
d1 − c1

b1 − a1
,

(3.6)
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ki,i−1 = −D
+ −D−

2
, ki,i = 0, ki,i+1 =

D+ −D−

2
, ki,i−nx = 0, ki,i+nx = 0.

3.2 Local Fourier Analysis of the nonstationary convection-
diffusion problem

3.2.1 The components of the multigrid method

The operators for each step from above and their corresponding matrices are given
in the following.

For θ = (θ1, θ2) ∈ T l,
T l =

[
−π

2
,
π

2

)
×
[
−π

2
,
π

2

)
(3.7)

being the set of low frequencies, as in [86] we consider the following frequencies:

θ(1) = (θ1, θ2) ∈ T l, θ(2) = (θ1, θ2) ∈ T h, θ(3) = (θ1, θ2) ∈ T h, θ(4) = (θ1, θ2) ∈ T h,

with

θi =

{
θi + π, if θi < 0

θi − π, if θi > 0
, i ∈ {1, 2}.

Property 3.2.1. [59] The matrix of the operator Lh of the system is

L̂h =


L̃h(θ(1)) 0 0 0

0 L̃h(θ(2)) 0 0

0 0 L̃h(θ(3)) 0

0 0 0 L̃h(θ(4))

 , (3.8)

where

L̃h(θ1, θ2) = q1e
−iθ1eiθ2+q2e

iθ2+q3e
iθ1eiθ2+q4e

−iθ1+q5+q6e
iθ1++q7e

−iθ1e−iθ2+q8e
−iθ2+q9e

iθ1e−iθ2

is an eigenvalue of the operator Lh.

Property 3.2.2. [59], The matrix of the smoothing operator obtained with the Gauss-
Seidel method is Ŝh = Ŝnh Ŝ

r
h, where

Ŝrh =
1

2


S̃(θ(1)) + 1 0 0 S̃(θ(4))− 1

0 S̃(θ(2)) + 1 S̃(θ(3))− 1 0

0 S̃(θ(2))− 1 S̃(θ(3)) + 1 0

S̃(θ(1))− 1 0 0 S̃(θ(4)) + 1

 , (3.9)

Ŝnh =
1

2


1 + S̃(θ(1)) 0 0 1̃− S(θ(4))

0 1 + S̃(θ(2)) 1− S̃(θ(3)) 0

0 1− S̃(θ(2)) 1 + S̃(θ(3)) 0

1− S̃(θ(1)) 0 0 1 + S̃(θ(4))

 (3.10)

and S̃(θ) = 1− ω

q5
L̃(θ).
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Property 3.2.3. [59] The operator that makes the fine to coarse grid transfer has the
matrix

Î2h
h =

(
Ĩ2h
h (θ(1)) Ĩ2h

h (θ(2)) Ĩ2h
h (θ(3)) Ĩ2h

h (θ(4))
)
, (3.11)

with

Ĩ2h
h (θ(1)) =

1

4
(cosθ1 + 1)(cosθ2 + 1), Ĩ2h

h (θ(2)) =
1

4
(1− cosθ1)(cosθ2 + 1),

Ĩ2h
h (θ(3)) =

1

4
(cosθ1 + 1)(1− cosθ2), Ĩ2h

h (θ(4)) =
1

4
(1− cosθ1)(1− cosθ2).

(3.12)

The operator of the system that generates the solution on the coarse grid has
the matrix

L̂−1
2h (2θ) =

1

L̃2h(2θ)
. (3.13)

Property 3.2.4. [59] The matrix of the prolongation operator is

Îh2h =
1

4


(1 + cosθ1)(1 + cosθ2)
(1− cosθ1)(1 + cosθ2)
(1 + cosθ1)(1− cosθ2)
(1− cosθ1)(1− cosθ2)

 . (3.14)

Two-grid operator
The smoothig steps (3.9), (3.10) and the coarse grid correction (3.11), (3.13) and

(3.14) are the multigrid method components [35] and the two-grid operator is

M̂2h
h = Ŝν2h K̂

2h
h Ŝν1h (3.15)

where the matrix of the coarse grid correction operator is

K̂2h
h = Îh − Îh2h(L̂2h)−1Î2h

h L̂h. (3.16)

3.2.2 The smoothing factor of the multigrid method for the convection-
diffusion problem

Definition 3.2.1. [86] The smoothing factor of a numerical method that has the
matrix of the smoothing operator Ŝh, is

µloc(Sh, ν) = sup

{
ν

√
ρloc(Q̂

2h
h Ŝ

ν
h(θ)), θ ∈ T l

}
, (3.17)

where ν represents the number of smoothing steps, T low is defined by (3.7) and the
rest of the parameters involved are defined in the following.

From Property 3.2.2, the matrix of the smoothing operator is

Ŝh =
1

4


1 + a 0 0 1− b

0 1 + c 1− d 0
0 1− c 1 + d 0

1− a 0 0 1 + b



a+ 1 0 0 b− 1

0 c+ 1 d− 1 0
0 c− 1 d+ 1 0

a− 1 0 0 b+ 1

 , (3.18)

where
a = 1− ω

q5

(
q5 + q4e

−iθ1 + q6e
iθ1 + q8e

−iθ2 + q2e
iθ2
)
, b = 1− ω

q5

(
q5 − q4e

−iθ1 − q6e
iθ1 − q8e

−iθ2 − q2e
iθ2
)
,

c = 1− ω
q5

(
q5 − q4e

−iθ1 − q6e
iθ1 + q8e

−iθ2 + q2e
iθ2
)
, d = 1− ω

q5

(
q5 + q4e

−iθ1 + q6e
iθ1 − q8e

−iθ2 − q2e
iθ2
)
.
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Theorem 3.2.1. [59] After ν smoothing steps, the smoothing operator will have the
matrix

Ŝνh =
1

2


a2ν−1(a+ 1) 0 0 −a2ν−1(a+ 1)

0 c2ν−1(c+ 1) −c2ν−1(c+ 1) 0

0 −c2ν−1(c− 1) c2ν−1(c− 1) 0

−a2ν−1(a− 1) 0 0 a2ν−1(a− 1)

 . (3.19)

The matrix Q̂2h
h Ŝ

ν
h has the eigenvalues

λ1 = λ2 = 0, λ3 =
a2ν−1(a− 1)

2
, λ4 = c2ν .

For θ1, θ2 ∈ T l these values are represented in Figures 3.1 and 3.2.

Figure 3.1: The eigenvalues λ3 for
(θ1, θ2) ∈

[
−π

2
,
π

2

)
×
[
−π

2
,
π

2

) Figure 3.2: The eigenvalues λ4 for
(θ1, θ2) ∈

[
−π

2
,
π

2

)
×
[
−π

2
,
π

2

)

Theorem 3.2.2. [59] The eigenvalues λ3 and λ4 attain their maximum absolute val-
ues

|λ3|max =

√
q2

5 + (q4 − q6 + q8 − q2)2|q4 − q6 + q8 − q2|2ν−1

2q2ν
5

, for θ1 = θ2 = ±π
2
,

|λ4|max =
|q6 − q4 + q2 − q8|2ν

q2ν
5

for θ1 = ∓π
2
, θ2 = ±π

2
.

Remark 3.2.1. The data in Table 3.1 show that:
-for the finite differences formula the smoothing factor increases as the number of

grid involved in the multigrid method increases;
-if the finite element method is used, the smoothing factor remains constant when

the number of grid increases, thus being independent of the grid size. So it is more
efficient to use the finite element method when the grid number is higher.
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Finite Differences Method
ν=1 ν=2 ν=3

l = 3 2.5507 · 10−8 8.1475 · 10−12 5.5695 · 10−13

l = 4 5.1015 · 10−8 2.3045 · 10−11 1.7682 · 10−12

l = 5 1.0203 · 10−7 6.5180 · 10−11 5.6137 · 10−12

l = 6 2.0406 · 10−7 1.8436 · 10−10 1.7822 · 10−11

l = 7 4.0812 · 10−7 5.2144 · 10−10 5.6582 · 10−11

Finite Element Method
ν=1 ν=2 ν=3

l = 3 0.2500 0.0625 0.0156
l = 4 0.2500 0.0625 0.0156
l = 5 0.2500 0.0625 0.0156

Table 3.1: The smoothing factor as a function of ν = ν1 + ν2 and l

3.2.3 Asymptotic convergence factor and error reduction factor of the
multigrid method for the convection-diffusion problem in two
dimensions

Definition 3.2.2. [86] The asymptotic convergence factor of the multigrid method
is

ρloc(M
2h
h ) = sup

{
ρloc(M̂

2h
h (θ)), θ ∈ T l =

[
−π

2
,
π

2

)
×
[
−π

2
,
π

2

)
, θ /∈ Λ

}
(3.20)

with Λ =
{
θ ∈ T l, L̃h(θ) = 0 or L̃2h(θ) = 0

}
.

Definition 3.2.3. [86] The error reduction factor of the multigrid method is

σloc(M
2h
h ) = sup

{
||(M̂2h

h (θ))||, θ ∈ T l, θ /∈ Λ
}

(3.21)

Number of Finite differences method Finite elements method
smoothing
steps

ρloc(M
2h
h ) σloc(M

2h
h ) ρloc(M

2h
h ) σloc(M

2h
h )

ν1 = 0, ν2 = 1 3.7215 · 10−5 4.7404 · 10−7 0.6249 1.2866
ν1 = 1, ν2 = 0 3.7215 · 10−5 4.7481 · 10−7 0.6249 1.2866
ν1 = 1, ν2 = 1 2.0619 · 10−13 5.6180 · 10−14 0.2499 0.6152
ν1 = 2, ν2 = 1 1.1424 · 10−21 1.2624 · 10−26 0.0859 0.2276
ν1 = 2, ν2 = 2 6.3298 · 10−30 2.8369 · 10−39 0.0273 0.0753

Table 3.2: Asymptotic convergence factor and error reduction factor for l=6

Remark 3.2.2. The data in Table 3.2 show that it is sufficient to perform a small
number of smoothing steps before and/or after the coarse grid correction for the error
to be reduced efficiently when the finite differences method is used. And for the finite
element method, the data show that at least one smoothing step should be performed
before and after the coarse grid correction in order to reduce the error by at least a
0.6 factor per multigrid cycle.
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The results presented in Table 3.1 and Table 3.2 have been determined using
the following parameters [71], [55]: Ω = [0, 1] × [0, 1620 · 10−6], ct = 104, α = 0, D =
10−12, V = 10−9, dt = 60sec.

3.3 Streamline diffusion

This method was first described by T. Hughes and A. Brooks in [38], and by C.
Johnson in [39], [40] for linear problems, then it was developed for nonstationary
problems ([41]). The method mainly consists in adding a diffusion term (streamline
upwind perturbation) in the flow direction to the weight functions∫ b

a

∫ d

c
ct
∂u

∂t
vdxdy +

∫ b

a

∫ d

c
V 5u v dxdy +

∫ b

a

∫ d

c
D5u · 5vdxdy+

+

∫ b

a

∫ d

c
µV 5u · V 5vdxdy −©

∫
∂Ω
D
∂u

∂n
vds−

∫ b

a

∫ d

c
αuvdxdy =

=

∫ b

a

∫ d

c
fvdxdy +

∫ b

a

∫ d

c
fµV 5vdxdy.

The parameter µ is defined as µ =
δh

|V |
, with

δ =

0, P e ≤ 1
1

2

(
1− 1

Pe

)
, P e > 1

This parameter determines the value of the perturbation added to the weight func-
tions.

Definition 3.3.1. Pe is the Péclet number Pe =
h|V |
2D

and it determines the ratio
between the convection and the diffusion .

In Table 3.3 are presented the results obtained for the maximum value of
the error in the grid points with the streamline diffusion method. The diffusion
coefficients in the three layers of the domain were: d1 = 10−12, d2 = 10−10, d3 =
3 · 10−10, vx,1 = vy,1 = 10−9, vx,2 = vy,2 = 10−6, vx,3 = vy,3 = 10−6.

PPPPPPPPPLevel
Time

s=1 s=2 s=3 s=4 s=5 s=6

l = 3 0.7340 2.1675 4.3383 7.2321 10.8486 15.1875
l = 4 1.1258 1.5041 2.1445 3.5727 5.3566 7.4953
l = 5 1.3536 2.1216 3.2705 4.7978 6.7008 8.9772

max
(x,y)∈Ω

|ue(x, y, s ·∆t)| 61 121 181 241 301 361

Table 3.3: The error and maximum value of the exact solution for ∆t = 60sec

Remark 3.3.1. In Figure 3.3 is illustrated the efficiency of streamline diffusion (SD):
the oscillations generated by the multigrid method on the boundaries between the
layers where the process takes place, in the case when SD is not used, dissapeared
when the SD is used.
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without SD with SD

Figure 3.3: The error obtained without the SD method and with SD method at
T=240 sec, on the grid with l = 3 for dominant convection

3.4 Multigrid method for the nonstationary convection-
diffusion problem in three dimensions

The mathematical model for the convection-diffusion process of a substance in a
liquid environement in the three-dimensional case is

ct
∂u

∂t
+ Vx

∂u

∂x
+ Vy

∂u

∂y
+ Vz

∂u

∂z
= −

(
Dx

∂2u

∂x2
+Dy

∂2u

∂y2
+Dz

∂2u

∂z2

)
+ αu+ f,

(x, y, z) ∈ Ω ⊂ R3, (3.22)

with Dirichlet conditions on the boundaries u(x, y, z) = u0(x, y, z), (x, y, z) ∈ ∂Ω. In
(3.22) V = Vxi+ Vyj + Vzk is the convection coefficients vector, D = Dxi+Dyj +Dzk
the diffusion coefficients vector, α is the reaction coefficient [32], f is a source of
possible perturbations. The system of linear equations generated with the sec-
ond order finte differences method for the space direction and backward Euler
discretization method for the time direction is[

ct
1

ht
+ 2

(
Dx

h2
x

+
Dy

h2
y

+
Dz

h2
z

)
− α

]
ui,j,k,t+

+

(
vx

2hx
− Dx

h2
x

)
ui+1,j,k,t

(
− vx

2hx
− Dx

h2
x

)
ui−1,j,k,t +

+

(
vy

2hy
− Dy

h2
y

)
ui,j+1,k,t +

(
− vy

2hy
− Dy

h2
y

)
ui,j−1,k,t + (3.23)

+

(
vz

2hz
− Dz

h2
z

)
ui,j,k+1,t +

(
− vz

2hz
− Dz

h2
z

)
ui,j,k−1,t = fi,j,k + ct

1

ht
ui,j,k,t0 .

3.4.1 Numerical results obtained with the multigrid method in the
tridimensional case

Example 3.4.1.

The domain where we used the multigrid method for problem 3.22 is a cube
with the sides of 10−6 and the coefficients of the equation are ct = 1, Dx = Dy =
Dz = 1 · 10−8, vx = vy = vz = 0, α = 0 [71], [74]. If we use as initial data u(x, y, z, t) =
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uex(x, y, z, t) = x2 +y2 +z2 + t, for any (x, y, z) ∈ ∂Ω, the error obtained is represented
in Figure 3.4.

level max ||u− uex||
l=2 0.5068 0.6194
l=3 0.2722 0.4324
l=4 0.2720 0.3494
l=5 0.2721 0.3067

max(uex(l, s · dt)) = 540,
s = 10 is the number of time steps used

Table 3.4: The error of the multigrid method for problem 3.22

In Table 3.4 we denoted with

max = max
i=1:N

|u(xi, yi, zi, ts)− uex(xi, yi, zi, ts)|,

||u− uex|| =
N∑
i=1

[
u(xi, yi, zi, ts)− uex(xi, yi, zi, ts)

]2

,

ts = s · ht being the time moment untill we used the multigrid algorithm, ht = 60s.

a. t = 5 ·∆t b. t = 10 ·∆t

Figure 3.4: The error obtained for the example 3.4.1 for t5 = 5 · ht and t10 = 10 · ht

3.5 Multigrid method for the diffusion equation in a mul-
tilayer medium

The diffusion equation is a classic example of parabolic equation. In this section is
designed a multigrid method for such an equation (paper [60]).

3.5.1 Mathematical model

The equation with boundary conditions is
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

∂ui(z, t)

∂t
= D(z)

∂ui(z, t)

∂z
,

u(0, t) = u0,

u(b, t) = 0 sau −D(z)
∂u(z, t)

∂z

∣∣∣∣
z=b

= 0,[[
−D(z)

∂u(z, t)

∂z

]] ∣∣∣∣
z=z0i

= 0,

i = 1, 2, ..., nd, t ≥ 0. (3.24)

Property 3.5.1. [60] The system of equations obtained after the discretization with
the finite differences method is

ui,t − ui,t−1

ht
= D(zi)

ui+1,t − ui−1,t

2hz
, i = 1, 2, ..., N. (3.25)

Remark 3.5.1. [60] În the nodes on the boundaries between different layers of the
skin the discretized system of equations is

D(z−i )
ui,t − ui−1,t

hz
= D(z+

i )
ui+1,t − ui,t

hz
, i = 1, 2, ..., nd− 1. (3.26)

3.5.2 Numerical results

The multigrid method has been used in three directions:
1. If the concentration of the substance is known, the amount of it that reaches

a certain level of the skin has been computed (Table 3.5 )
The concentration has been computed at 9 minutes after the substance had

been applied, using time intervals of 60 seconds, c0 is the initial value of the con-
centration maintained constant on the skin surface. D1 = 1 · 10−12, D2 = 1 · 10−10,
D3 = 3 ·10−10, c0 = 2 ·10−3 are the diffusion coefficients in the first layers of the skin.
h is the depth where the concentration (of the substance that reaches that point)
is computed. The second and third columns of the table show the values between
which the concentration is comprised at the respective depth, for the grid with 4
and 6 levels.

h(m) l=4 l=6

20 · 10−6 [1.0734; 1.0967] · 10−3 [1.0563; 1.0622] · 10−3

120 · 10−6 [0.9551; 0.9566] · 10−3 [0.9360; 0.9363] · 10−3

200 · 10−6 [0.8415; 0.9551] · 10−3 [0.7719; 0.7976] · 10−3

1000 · 10−6 [0.0541; 0.0653] · 10−3 [0.0453; 0.0475] · 10−3

1600 · 10−6 [1.3482; 2.7545] · 10−6 [0.6432; 0.9670] · 10−6

Table 3.5: The values of the concentration at the depth h

2. In order to maintain a required level of concentration of the active substance
(to be efficient), the concentration needed on the surface of the skin has been
computed. In Table 3.6: c represents the concentration needed at a depth equal to
h; c0 is the concentration to be applied on the skin surface; the diffusion coefficients
that we worked with are D1 = 1 · 10−12, D2 = 1 · 10−10, D3 = 3 · 10−10 [71], [74]. We
used 31 interior nodes in each layer of the skin and 63 nodes on the layer where
the concentration was required to be comprised between the given values.
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h(m) c(g/cm3) c0(g/cm3)

15 · 10−6 1 · 10−3 ± 10−6 1.2832 · 10−3

100 · 10−6 2 · 10−4 ± 10−7 1.0578 · 10−3

200 · 10−6 3 · 10−4 ± 10−7 5.5977 · 10−3

1000 · 10−6 4 · 10−4 ± 10−7 14.5703 · 10−3

1600 · 10−6 5 · 10−5 ± 10−7 26 · 10−3

Table 3.6: The concentration c0 that has to be kept on the surface in order to get
the concentration c at the depth h

3. The way the concentration at a given depth changes in time has been studied,
in the case when the substance had been applied for 2 minutes on the surface at a
constant concentration (Fig. 3.5)

Figure 3.5: The variation of the concentration at the depth of 1000nm, for 6 hours
(Nanoparticles have been applied on the surface for 2 minutes)

The multigrid method is rapidly convergent for many problems. The number of
iterations needed for the method to be convergent for the studied problem in this
case is presented in Table 3.7.

t(min) 1 2 3 4 5 10 20 50 100 150 200 240

nivel ε = 10−8

3 4 6 7 7 7 4 5 4 4 3 2 2
4 3 5 6 6 6 4 4 4 3 3 2 2
5 3 4 5 6 6 4 3 3 3 2 2 2

ε = 10−10

3 11 13 14 14 14 12 10 6 6 6 5 4
4 9 12 14 14 14 12 9 7 6 5 4 4
5 5 11 13 13 13 11 8 4 4 4 4 3

Table 3.7: The number of iterations needed for the multigrid method to be conver-
gent

The condition for convergence was that the module of the difference between the
values of two successive iterations, at the depth 200nm, to remain smaller than ε.
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Chapter 4
The stellar prolongation method

In this chapter we introduce a new method ”stellar prolongation” for solving differ-
ential equations that uses a system of grids with different grid steps, as it has been
described in the papers [56] and [57].

4.1 The model problem

We use as a model problem the convection-diffusion equation{
−e∆u+ aux = f, (x, y) ∈ (0, 1)× (0, 1) = Ω,

u = 0, (x, y) ∈ ∂Ω.
(4.1)

We denote by l the level on wich we want to determine the approximative values
of the exact solution and by nl = 2l+1 − 1 the number of modes from the grid on
this level. If we use one of the discretization methods described in Chapter 1.1, we
get the system of liniar equations on every level l = 0, 1, .... This system contains
n2
l equations and n2

l unknowns. First the discretized system is solved using the
Gaussian elimination with partial pivoting, on Gl0 - a coarse grid on which the
system1 has a small number of equations and unknowns. The values for l0 can
be chosen for example l0 = 2 or l0 = 3. So, the exact solution of the problem on
the level l0 is approximated by the values ui, i ∈ {1, 2, ..., n2

l0} (Figure ??), that only
contain the error from the discretization method. Then, the solution obtained on
the level l0 is used for computing the solution on a superior level l. In order to
solve the problem on the level l, the grid Gl0 has to be further divided. Thus, each
domain from the grid, Ωk, k = 1, ..., (n0 +1)2, will be splitted into (ni+1)2 subdomains
(Figure ??), where ni = 2li+1 − 1, and li = l − l0 − 1.

4.2 The values on the boundaries of the subdomains

4.2.1 Stellar prolongation

In order to determine more accurately the values of the solution on the boundaries
of Ωk, one can use the solutions of the systems obtained discretizing the initial
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Figure 4.1: The nodes ai and bi from the grid Gl

equation in the grid points corresponding to the values ai and bi, i = 1, 2, ..., n2 +
n, n = nl0 from Figure 4.1.

The values ak and bk, k = 1, 2, ..., n(n + 1) depend on the vertical or horizontal
distance ζ, by which they are translated from the old grid G0 and will be denoted
from now on by ak(ζ) and bk(ζ), ζ = jh, j = 1, ..., ni. They are the solutions of the
systems

Aa = T , (4.2)

Ba = T , (4.3)

where the matrices A and B are given in the following.

4.2.2 Discretization with finite differences

Property 4.2.1. [56] If the partial derivatives differential equation (4.1) is discretised
with the second order finite differences method, the matrix A of system 4.2 will be

A =


C D Θ ... Θ Θ
S C D ... Θ Θ
Θ S C ... Θ Θ
...

. . .

Θ Θ Θ ... S C

 ∈M(n0+1)n0,(n0+1)n0
(R), (4.4)

with

C =


qc qr 0 ... 0
ql qc qr ... 0
0 ql qc ... 0
...

. . .

0 0 0 ... qc

 , D =


qu 0 0 ... 0
0 qu 0 ... 0
0 0 qu ... 0
...

. . .

0 0 0 ... qu

 , S =


qd 0 0 ... 0
0 qd 0 ... 0
0 0 qd ... 0
...

. . .

0 0 0 ... qd

 ,
C,D, S ∈Mn0,n0(R).(4.5)
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The term T in system (4.2) is a vector with the components

tin0+j(ζ) = h2
0f (jh0, ih0 + ζ)−

 0 qu 0
ql qc qr
0 qd 0

ufr (jh0, ih0 + ζ) , (4.6)

i = 0, ..., n0, j = 1, ..., n0,

ufr is a function which is zero inside the domain Ω on which the system is solved
and equal to the boundaries values on ∂Ω, h is the grid step on the level l0 and 0 qu 0

ql qc qr
0 qd 0

 =


 0 −eαy0 0

−e− ah0

2
2[e+ α(x0 + y0)] −e+

ah0

2
0 −eαx0 0


 .

t
r

r
r

r
h0

y0

h0

x0

h0 h0

Figure 4.2: The neighbour nodes from the grid corresponding to the points ak

Property 4.2.2. [56] The values bk(ζ), k = 1, 2, ..., n0(n0 +1) depend on their horizontal
distance ζ from the old grid and are computed solving a system with the matrix B
having the form (4.4), but in which

C =


qc qu 0 ... 0
qd qc qu ... 0
0 qd qc ... 0
...

. . .

0 0 0 ... qc

 , D =


qr 0 0 ... 0
0 qr 0 ... 0
0 0 qr ... 0
...

. . .

0 0 0 ... qr

 , S =


ql 0 0 ... 0
0 ql 0 ... 0
0 0 ql ... 0
...

. . .

0 0 0 ... ql

 ,

where 0 qu 0
ql qc qr
0 qd 0

=

 0 −e 0
−eαx0 + αh0ρδ e[2 + α(x0 + y0)] + αγρ eαy0 + αh0ρβ

0 −e 0

 .

t
r

r
r r

h0

h0

h0

x0

h0

y0

Figure 4.3: The neighbour nodes from the grid corresponding to the points bk
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4.2.3 Discretization with finite element method

Property 4.2.3. [56] If the discretization of the differential equation (4.1) is made
with the finite element method, using the notation l1 l2 l3

l4 l5 l6
l7 l8 l9

 =

 kD24 kD23 + kC14 kC13

kA34 + kD21 kA33 + kB44 + kC11 + kD22 kB43 + kC12

kA31 kA32 + kB41 kB42

 ,
the matrix A in system (4.2) will have the following components

C =


l5 l6 0 ... 0
l4 l5 l6 ... 0
0 l4 l5 ... 0
...

. . .

0 0 0 ... l5

 , D =


l2 l3 0 ... 0
l1 l2 l3 ... 0
0 l1 l2 ... 0
...

. . .

0 0 0 ... l2

 , S =


l8 l9 0 ... 0
l7 l8 l9 ... 0
0 l7 l8 ... 0
...

. . .

0 0 0 ... l8

(4.7)

and the right hand side term T has the elements

tin0+j(ζ) = fA3 + fB4 + fC1 + fD2 −

 l1 l2 l3
l4 l5 l6
l7 l8 l9

ufr (jh0, ih0 + ζ) , (4.8)

i = 0, ..., n0, j = 1, ..., n0.

Property 4.2.4. [56] The matrix B of the system (4.3) has

C =


l5 l2 0 ... 0
l8 l5 l2 ... 0
0 l8 l5 ... 0
...

. . .

0 0 0 ... l5

 ∈Mn0,n0(R), D =


l6 l3 0 ... 0
l9 l6 l3 ... 0
0 l9 l6 ... 0
...

. . .

0 0 0 ... l6

 ∈Mn0,n0(R),

S =


l4 l1 0 ... 0
l7 l4 l1 ... 0
0 l7 l4 ... 0
...

. . .

0 0 0 ... l4

 ∈Mn0,n0(R)

(4.9)

and in the system (4.3), the matrix T from the right hand side, obtained with finite
element method, has

tin0+j(ζ) = fA3 + fB4 + fC1 + fD2 −

 l1 l2 l3
l4 l5 l6
l7 l8 l9

ufr (ih0 + ζ, jh0) ,

i = 0, ..., n0, j = 1, ..., n0.

4.3 The stellar prolongation method for Robin conditions
on the borders

On Γ1 and Γ2 (Figure 4.4) the boundary conditions for equation (4.1) are

e
∂u

∂n
+ ξu = g, (x, y) ∈ Γ1 ∪ Γ2 (4.10)
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Figure 4.4: The boundaries of the domain for the Robin conditions problem

e is the diffusion coefficient, ξ the permeability of the walls Γ1,Γ2 and

∂

∂n
=

∂

∂x
nx +

∂

∂y
ny

is the derivative along the direction normal to the frontier.

Property 4.3.1. If Robin conditions are used, the values of the unknown u on the
boundaries Γ1 and Γ2 are

ui,1 = pui,2 + qgi,1,

ui,nl+2 = pui,nl+1 + qgi,nl+2, i = 1, 2, ..., nl,
(4.11)

where
p =

e

e+ ξhy
, q =

hy
e+ ξhy

.

Property 4.3.2. The matrix of the system (4.2), when Robin conditions (4.10) are
used, is

A =


C1 D Θ ... Θ Θ
S C D ... Θ Θ
Θ S C ... Θ Θ
...

. . .

Θ Θ Θ ... S C2

 ∈M(n0+1)n0,(n0+1)n0
(R). (4.12)

This matrix has the components C,D, S ∈Mn0,n0(R) defined by (4.7) and

C1 =


l5 + pl8 l6 + pl9 0 ... 0
l4 + pl7 l5 + pl8 l6 + pl9 ... 0

0 l4 + pl7 l5 + pl8 ... 0
...

. . .

0 0 0 ... l5 + pl8

 ∈Mn0,n0(R),

C2 =


l5 + pl2 l6 + pl3 0 ... 0
l4 + pl1 l5 + pl2 l6 + pl3 ... 0

0 l4 + pl1 l5 + pl2 ... 0
...

. . .

0 0 0 ... l5 + pl2

 ∈Mn0,n0(R).
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The components of the right hand side term in system (4.2) are

tin0+j(ζ) = fA3 + fB4 + fC1 + fD2 −

 l1 l2 l3
l4 l5 l6
l7 l8 l9

(ufr(jh0, ih0 + ζ) + q · g(jh0, ih0 + ζ)
)
,

i = 0, ..., n0, j = 1, ..., n0.

Here, ufr is a function equal to zero inside Ω, Γ1 and Γ2, and with the boundary
values on Γin ∪ Γout, h0 is the grid step on the level l0.

Property 4.3.3. The matrix B from system (4.3) is

B =



C D Θ ... Θ Θ
S C D ... Θ Θ
Θ S C ... Θ Θ
...

. . .
...

. . .

Θ Θ Θ ... S C


∈Mn0,n0(R),

where

C =


l5 + pl8 l2 0 ... 0
l8 l5 l2 ... 0
0 l8 l5 ... 0
...

. . .

0 0 0 ... l5 + pl2

 , D =


l6 + pl9 l3 0 ... 0
l9 l6 l3 ... 0
0 l9 l6 ... 0
...

. . .

0 0 0 ... l6 + pl3

 ∈Mn0,n0(R),

(4.13)

S =


l4 + pl7 l1 0 ... 0
l7 l4 l1 ... 0
0 l7 l4 ... 0
...

. . .

0 0 0 ... l4 + pl1

 ∈Mn0,n0(R). (4.14)

The right hand side term in system (4.3) has the elements

tin0+j(ζ) = fA3 + fB4 + fC1 + fD2 −

 l1 l2 l3
l4 l5 l6
l7 l8 l9

(ufr (ih0 + ζ, jh0) + q · g (ih0 + ζ, jh0)
)
,

i = 0, ..., n0, j = 1, ..., n0.

4.4 Applying the stellar prolongation method

4.4.1 The comparison of the numerical results obtained with the multi-
grid method with those obtained with the stellar prolongation
method

For the convection-diffusion problem (4.1), in table 4.1 are given some results for
different values of the coefficients of the equation. It is well known that for this

31



The Multigrid Method for Differential Equations

type of problems (when the convection is dominant), the computing of a numeri-
cal solution is quite difficult (for example multigrid method is slowly convergent or
even divergent) as the ratio between the diffusion and the convection coefficients
is increasing. The results are obtained with: multigrid method (MG), stellar pro-
longation method (SP), with the finite elements method for discretization (SPFEM),
stellar prolongation method with second order finite differences, and arithmetic
mean prolongation (SPDF2), stellar prolongation with finite elements (SPFEM), and
multigrid method for the solutin on subdomains (SPMGM).

1 SPFEM MG SPDF2 SPMGM
l a=20 e=10

3 7.0338 · 10−5 1.1430 · 10−5 0.0013 7.0338 · 10−5

4 7.0338 · 10−5 2.8699 · 10−6 0.0013 7.0338 · 10−5

5 7.0338 · 10−5 7.1829 · 10−7 0.0013 1.8970 · 10−4

2 SPFEM MG SPDF2 SPMGM
l a=1/10 e=1

3 4.0852 · 10−4 2.1411 · 10−5 0.0023 4.0852 · 10−4

4 4.0852 · 10−4 5.3661 · 10−6 0.0023 4.0852 · 10−4

5 4.0852 · 10−4 1.3436 · 10−6 0.0023 4.8486 · 10−4

3 SPFEM MG SPDF2 SPMGM
l a=1/10 e=1/1000 ue ∼ 1.69 · 10+7

3 517.2537 4.0200 · 10+25 3.1612 · 10+4 418.5255
4 344.3122 5.6336 · 10+24 3.0705 · 10+4 465.1508
5 302.1993 1.7728 · 10+23 3.0944 · 10+4 2.2814 · 10+3

Table 4.1: The errors obtained with different methods for the problem 4.1

In the following this method is used for some convection-diffusion problems.

Problem 4.4.1.{
−∆u+α5 u = 0, (x, y) ∈ (0, 1)× (0, 1) = Ω,

u = uex, (x, y) ∈ ∂Ω,
,α = (c, d), uex =

ecx − 1

ec − 1

edy − 1

ed − 1
.

The results obtained after applying the multigrid method (MG), or the stellar
prolongation with finite element method (SPFEM) for the problem presented before
are given in table 4.2.

Remark 4.4.1. The numerical data obtained show that stellar prolongation method
can be more efficient than the multigrid method for convection-diffusion problems
when the convection is dominant (the ratio R between the diffusion and the convec-
tion coefficients is bigger than 1).
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Problem MG SPFEM MG SPFEM
4.4.1 l = 3 l = 4

R=0.001 9.7034 · 10−5 3.9636 · 10−11 1.2372 · 10−4 3.9636 · 10−11

R=1 6.1850 · 10−5 8.3193 · 10−5 8.6583 · 10−5 8.3193 · 10−5

R=10 0.0042 0.0226 0.0010 0.0226
R=100 1.9026 · 10+39 0.7337 4.4842 · 10+39 0.3725
R=200 1.0186 · 10+59 1.8342 7.7763 · 10+66 0.8146

Table 4.2: The error obtained using the multigrid and stellar prolongation methods
for the problem 4.4.1

4.5 Aplications of stellar prolongation method in practical
problems

In this section we present two examples of the stellar prollongation method used for
a convection-diffusion problem in a bidimensional domain, that models the blood
flow in a vessel, then a diffusion problem in an irregular domain.

4.5.1 The stellar prolongation method for a stationary convection-
diffusion problem

4.5.2 Model problem

For the study of the flow of a solvent in a blood vessel we use the following equation
with partial derivatives

m∆c+ n5 c+ αc = f, (x, y) ∈ Ω,
c = g1, (x, y) ∈ Γin,
c = g2, (x, y) ∈ Γout,
c = ξg3, (x, y) ∈ Γ,

n = (n1, n2). (4.15)

Here c = c(x, y) is the concentration of the solvent in the blood, the first term m∆c,
in equation (2.6) describes the diffusion, the second term, n 5 c, describes the

convection and is formed of two other terms, one along the Ox direction, n1
∂c

∂x

and one along Oy, n2
∂c

∂y
; m is the diffusion coefficient, n is a field of speeds, α is

the reaction coefficient, f is a term of possible perturbations of the concentration,
due for example to chemical reactions. The ratio between the coefficients m and n
determines if in the physical process the convection or the diffusion is dominant.

The convection is dominant if
|n|
m
� 1.

Finding the numerical solution for the convection - diffusion problem (4.15)
becomes increasingly more difficult as this ratio becomes larger than one (meaning
that the convection is dominant in the process), and this is the case studied for
model problem (4.15) (the ratio is 104).
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4.5.3 Numerical results

For the convection-diffusion problem (4.15), the value of the concentration on the
domain, determined with the stellar prolongation method, is presented in Figure
4.5.

Figure 4.5: The concentration of the solvent on the domain [0;1]×[0;0,2]

4.5.4 The model of a fluid transport through a nonregular domain

The domain from Figure 4.6 models a blood vessel that has toroidal plaque on the
walls.

Figure 4.6: The domain Ω

The equation that models the diffusion process in a domain as in Figure 4.6 is: −D1
∂2u

∂x2
−D2

∂2u

∂y2
= f, x, y ∈ Ω;

u = x2 + y2, x, y ∈ ∂Ω.

The diffusion coefficients used have been D1 = D2 = 1 and f = −4, in which case
the exact solution is uex = x2 + y2. For Ω, the center of the circle is C(x0c, y0c) with
x0c = 0.5, y0c = −0.2, R = 0.25 and a = 0, b = 1, c = 0, d = 0.2.
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For the discretization we used finite differences method of second order, in the
interior points of the domain the equation being

−D1
ui+1,j − 2ui,j + ui−1,j

h2
x

−D2
ui,j+1 − 2ui,j + ui,j−1

h2
y

= f, (4.16)

or 


0 −D2

h2
y

0

−D1

h2
x

2

(
D1

h2
x

+
D2

h2
y

)
−D1

h2
x

0 −D2

h2
y

0



ul(xi, yj) = fl(xi, yj), (xi, yj) ∈ Ωl. (4.17)

For the points (xi, yj) ∈ Ωl near the irregular borders, we used the Shortley-
Weller scheme [34], [86]:

2




0 − D2

hN (hN + hS)
0

− D1

hV (hE + hV )

D1

hEhV
+

D2

hEhV
− D1

hE(hE + hV )

0 − D2

hS(hN + hS)
0



ul(xi, yj) = fl(xi, yj). (4.18)

Working with these data, for the known exact solution, we applied stellar pro-
longation method, with the first grid on the level l0 = 2 and the finest grid cor-
responding to level l = 5, the error u − uex on the domain Ω is shown in Figure
4.7.

Figure 4.7: The error on the grid corresponding to l = 5 and l0 = 2
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Clujeană , Cluj Napoca, 2010.
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