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Introduction 
 

 The physiology of the cardiovascular system was studied and clarified step by 

step through many centuries. The role of the blood vessels have already been 

identified in the antiquity, when it was realized that the arteries and veins have 

different roles. 

 In the 17th century, Sir William Harvey made some “modern” cardiovascular 

researches, and noticed that the blood flow in the vessels has a circulatory character. 

In the following century Euler and D. Bernoulli brought important contributions to the 

fluid dynamics with applications in hemodynamics too. 

 The French physician  Poiseuille was the first, in 1844, who tried to understand 

the dynamics of the blood circulation. His results were completed by those of 

Reynolds (1883). 

 Later T. Young made some fundamental researches concerning the elasticity 

of the arterial tissues and the propagation of blood pressure. At the beginning of the 

20th century, O. Frank set up an idea based on the analogy between the circulatory 

system and electric network [74]. 

 In the past decade, the application of mathematical models, seconded by the 

use of efficient and accurate numerical algorithms, has made impressive progress in 

the interpretation of the circulatory system functionality, in both normal physiological 

and pathological situations, as well as in the perspective of providing patient 

appropriate design indications to specific surgical planning. 

This new perspective has called for the development of a new field of fluid 

biomechanics and of applied mathematics. Although many substantial achievements 

have been made in the field of modeling, mathematical and numerical analysis, and 

scientific computation, where a variety of new concepts and mathematical techniques 

have been introduced, most of the difficulties are still on the ground and represent 

major challenges for the upcoming years. 

The fact that blood exhibits non – Newtonian behavior was actually first 

recognized around the turn of the century (Enderle et al. 2000 [25]). Blood is a non-

homogeneous, anisotropic, composite fluid, composed of a suspension of many 

asymmetric, relatively large, viscoelastic particles carried in a liquid. 
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 Ronald L. Fournier (1998) [31] analyzed the blood from rheological point of 

view. He expected that the rheological behavior of blood to be some what more 

complex than a simple fluid (such as water for instance) 

Ishikawa et al. (1998) [43] found that the non-Newtonian, pulsatile flow 

through a stenosed tube is different from Newtonian flow. The non-Newtonian 

property strengthens the peaks of wall shear stress and wall pressure, while it weakens 

the strength of the vortex. 

Chakravarty and Mandal (1994) [13] studied analytically the unsteady flow 

behavior of blood in an artery under stenotic condition, by considering the blood to be 

a non-Newtonian fluid taking into account also the viscoelasticity of the blood. 

Mandal (2005) [50] pointed out that in some disease conditions, for example, patients 

with severe myocardial infarction, cerebrovascular diseases and hypertension, blood 

exhibits non-Newtonian properties. 

Gijsen et al. (1999) [34] studied the impact of non-Newtonian properties of 

blood on the velocity distribution. They made a comparison between the non-

Newtonian fluid model and a Newtonian fluid at different Reynolds numbers. 

Comparison reveals that the character of flow of the non-Newtonian fluid is simulated 

quite well by using the appropriate Reynolds number. 

As an initial study, Formaggia et al. (2003) [29] and Lee and Xu (2002) [49] 

analyzed the blood flow behaviour in non-stenotic vessels or a normal arteries. A 

great number of theoretical studies related to blood flow through stenosed arteries 

have been carried out recently. In most of the studies carried out so far, the presence 

of “mild” (or single stenosis) was considered. Chakravarty and Mandal (1996) [14], 

noted that the problem becomes more acute in the presence of an “overlapping” 

stenosis (two or more stenoses one after the other) in the artery instead of having a 

“mild” stenosis. 

There are different methods of solution in approaching the problem of blood 

flow in normal and stenosed artery. Some researchers tried to solve analytically but 

majority of them used numerical methods. Gerrald and Taylor (1977) [84] used the 

finite difference method (FDM) to solve the problem of blood flow in a normal artery. 

The finite difference method based on the central difference approximation has been 

also employed by Chakravarty and Mandal (1994) [13] and Mandal (2005) [50]. 

Misra and Pal (1999) [53] observed the blood motion using Crank-Nicolson implicit 
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finite difference method. Runge-Kutta formula has been used by Chakravarty and 

Mandal (1996, 2000) [15]. 

Beside the finite difference schemes, the finite element method has also been 

employed. Sud and Sekhon (1986) [82] used the finite element method (FEM) to 

model the blood flow in the case of a stenosed artery. Formaggia et al. (2003) [29] 

presented a finite element Taylor-Galerkin scheme to carry out several test cases. 

 The aim of the present PhD thesis is to simulate de blood flow in large blood 

vessels (arteries), taking into consideration the non-Newtonian character of the blood 

together with the viscoelastic behavior of the vessels wall where the flow takes place. 

The accent is put on the simulations in different pathological cases, when the blood 

vessel has a stenosis (a weakening of the vessel diameter) or when it has an aneurysm 

(a dilatation of the vessel). The numerical simulations were made using the COMSOL 

Multiphysics 3.3 package, which is based on the finite element method (FEM). 

To validate the obtained results, these were compared to the results obtained 

already by other researchers [54], [58], [52], [28], [94]. 

Some of the results were exported in video extension; these results are 

attached to the present thesis on a CD, according to Appendix 2. 

Original results and contributions: 

The elaboration of a Cross type non-Newtonian mathematical model for the 

blood flow in large vessels, attached by a generalized Maxwell model describing the 

viscoelastic behavior of the blood vessel. These mathematical models are presented in 

Chapter 5 and Chapter 6, and were published in the paper Albert, B., Vacaras, V., 

Trif, D., Petrila, T., Non-Newtonian approach of the blood flow in large viscoelastic 

vessels with stenosis or aneurysm, Jokull Journal, vol. 63, No. 7, pp. 160-173, 2013 

[3]. 

The realization of a number of numerical simulations for the blood flow in 

arteries with different stenoses (published in the papers Petrila T., Albert B., 

Calculation of the Wall Shear Stress in the Case of a Stenosed Internal Carotid Artery, 

Indian Journal of Applied Research, Vol. 3, No. 9, pp. 396-398, 2013 [67] and Petrila 

T., Albert B., Calculation of the Wall Shear Stress in the case of an Internal Carotid 

Artery with stenoses of different sizes, INCAS Buletin, Vol. 5, Special Issue, 15-22, 

2014 [66]) or in arteries with different aneurysms (published in Albert B., Vacaras 

V., Petrila T., Calculation of the Wall Shear Stress in the Case of an Abdominal 



 7 

Aortic Aneurysm, Wulfenia, vol. 20, No.12, pp. 159-168, 2013 [4]). The results of 

these simulations are presented in Chapter 8, sections 8.4, 8.5, 8.5.1. 

The deduction of a global condition for the rupture risk of the vessel wall in 

the case of an artery with aneurysm, and the application of this condition in the case 

of an abdominal aortic aneurysm with a double aneurysm (see Chapter 8, sections 8.6, 

8.6.1). These results are presented in the paper Albert B., Vacaras V., Deac D., Petrila 

T., A global condition for the rupture risk of an Abdominal Aortic Aneurysm (AAA) 

obtained within a mathematical and numerical model for blood flow in large vessels, 

accepted to be published in Jokull Journal [5]. 

 The PhD thesis is structured as follows: 

 Chapter 1 contains an introductory part about the evolution of the researches 

made in the field of the blood flow in the cardiovascular system. In this chapter are 

presented some characteristics of the blood and the blood vessels as well.  

 In the Second chapter one introduced the notions of stenosis and aneurysm 

from a medical point of view. The formation and the effects of them are described 

correspondingly. 

 More mathematical functions, modeling different stenoses shapes are 

presented in Chapter 3. The “mild” stenosis, “cosine-shaped” stenosis, “bell-shaped” 

stenosis, irregular stenosis, multiple stenoses are mentioned. 

 In Chapter 4 the basic concepts for the description of the fluid flow are 

presented, successively the continuity equation, the Navier-Stokes equations, the use 

of the Fourier series to describe pulsatile flow conditions, the Womersley analytic 

solution for the pulsatile flow in a rigid tube are presented. 

 In the first section of Chapter 5 the Newtonian model for the blood flow in 

large arteries is described, then, in Section 5.2, the deduction of a non-Newtonian 

model is presented. This last model is used for the upcoming numerical simulations. 

 In Chapter 6 some mathematical models considered for describing the 

viscoelastic behavior of the vessel wall are presented. The generalized Maxwell 

model is pointed out, which would be used by us later on for the vessel wall behavior. 

 The steps to be followed, how such a model should be built in COMSOL 3.3, 

are described in Chapter7. Starting from the selection of the corresponding modules 

for the fluid (blood) and the structure (vessel wall), through the building of the 

geometry, through the setting of the used coefficients, through the definition of the 

initial and boundary conditions, through the generation of the domain mesh, until the 



 8 

setting of the solver parameters, they are the steps which are correspondingly 

presented. 

 Chapter 8 contains the results of the numerical simulations. The first results 

are obtained for the blood flow (using both the Newtonian and non-Newtonian model) 

in an artery with a stenosis and then in an artery with an aneurysm, in both cases the 

vessel wall being considered to be elastic. Continuing with the case when, beside the 

non-Newtonian (Cross type) model for the blood, the viscoelastic behavior of the wall 

is also considered. Section 8.4 presents the obtained results for an Internal Carotid 

Artery with a stenosis (a real medical case). The accent is put on the calculation of the 

wall shear stress (WSS), which could be responsible for the possible rupture of the 

vessel wall. In Sections 8.5 and 8.6 some results obtained for arteries with aneurysms 

are presented. In the case of the aneurysms the real medical case of an abdominal 

aortic aneurysm was examined in detail. 
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1. Blood and blood vessels 

1.1. Blood 

 Blood is a bodily fluid that delivers necessary substances such as nutrients and 

oxygen to the cells and transports metabolic waste products away from those same 

cells. It is composed of blood cells suspended in blood plasma. Plasma, which 

constitutes 55% of blood fluid, is mostly water (92% by volume), and contains 

dissipated proteins, glucose, mineral ions, hormones and blood cells themselves. The 

blood cells are mainly red blood cells (also called RBCs or erythrocytes) and white 

blood cells, including leukocytes and platelets. 

 The principal quantities which describe blood flow are the velocity u and 

pressure P. In the fluid-structure interaction problems, the displacement of the vessel 

wall due to the action of the flow field is another relevant quantity. Pressure, velocity 

and vessel wall displacement will be functions of time and the spatial position. 

1.2. Blood vessels 

 There are three major types of blood vessels: the arteries, which carry the 

blood away from the heart; the capillaries, which enable the actual exchange of water 

and chemicals between the blood and the tissues; and the veins, which carry blood 

from the capillaries back toward the heart. 

 The wall of large blood vessels has a circumferentially layered structure. The 

most important layers are: the internal, thin intima, which is composed of the inner 

endothelium, the internal elastic lamina, the middle muscular media, the external 

elastic lamina and the outer adventitia. 
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2. Stenosis and Aneurysm 
 

 Atherosclerosis occurs when the nature of blood flow changes from its usual 

state to a disturbed flow condition due to the presence of a stenosis in an artery. 

Stenosis is defined as a partial occlusion of the vessels caused by abnormal growth of 

tissues or the deposition of cholesterol as other substances on the arterial wall. 

 Signs and symptoms usually come out when the severe blockage impedes 

blood flow to different organs. Most of the time, patients realize that they have the 

disease only when they experience other cardio vascular disorders such as stroke or 

heart attack. 

 Risk factors:  

• obesity; 

• unequilibred diet; 

• sedentary life stile; 

• smoking; 

• diabetes; 

• alcoholism; 

• hyperlipoproteinemia and arterial hypertension. 

  

 An aortic aneurysm is a general term for an enlargement (dilatation) of the 

aorta. While the cause of an aneurysm may be multifactorial, the end result is an 

underlying weakness in the wall of the aorta at that location. When rupture occurs, 

massive internal hemorrhage results, and, unless treated immediately, shock and death 

can occur within minutes to hours. 

 There are two types of aortic aneurysms: the abdominal aortic aneurysm and 

the thoracic aortic aneurysm. In figure 2.1 an abdominal aortic aneurysm is presented 

(AAA), the image has been got by abdominal ecography at the Neurology Clinic, Cluj-

Napoca. 

 Causes of abdominal and thoracic aortic aneurysms 

• atherosclerosis; 

• genetic factors – up to 28% of the persons who present aortic aneurysm have a 

member in their family with the same affection; 

• age, the aorta loses its elasticity throughout the years and becomes more rigid;  
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• infections, such as Syphilitic aortitis [59]; 

• traumatisms, violent shots in the chest or in the abdomen. 

 
Figure 2.1 Image of a real abdominal aortic aneurysm 
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3. The geometry of the stenosis 
 

 For the stenosis a number of types of “geometries” can be defined from 

mathematical point of view (Zuhaila, 2006 [102]). 

 In this chapter we are mentioning the vessel with constant radius (without 

stenosis), “mild” stenosis, “cosine-shaped” stenosis, “bell-shaped” stenosis, irregular 

stenosis, multiple stenosis. 
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4. Mathematical description of the fluid flow 
 

 To express the velocity in terms of three Cartesian coordinates means that 

velocity becomes a function of x, y, and z spatial coordinates, as well as a function of 

time. By using u, v, and w for the velocity components in the x, y, and z directions, 

respectively, in a concise form it can be written 

ktzyxwjtzyxvitzyxukwjviutzyx
������

),,,(),,,(),,,(),,,( ++=++=u , 

where i
�

, j
�

and k
�

 are the unit vectors in the directions of x, y and z respectively. 

 For the acceleration we may also write  
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where xa , ya  and za  are the Cartesian components of the acceleration. 

 It is possible to express the acceleration more concisely 
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a
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, 

where the operator 
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 is the material derivative. 

 Defining the gradient operator, ()∇
�

, k
z
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Let us introduce the Laplace operator, which is the scalar product of the gradient 

operator with itself, namely 
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4.1. The Continuity Equation 

 The continuity equation, or the mass conservation, can be written in our case 

as constant222111 == VAVA ρρ , where ρ  is the fluid density, A is the transversal 

sectional area of the blood vessel, V is the average velocity of the blood through the 

cross section. 

 The more general form of the continuity equation is 

0
)()()( =

∂
∂+

∂
∂+

∂
∂+

∂
∂

z
w

y
v

x
u

t
ρρρρ

. 

 In the case of the incompressible fluids, as blood is, the density being constant, 

the continuity equation can be simplified to  

0=
∂
∂+

∂
∂+

∂
∂

z
w

y
v

x
u

. 

This equation can be also written as 0=udiv . 

4.2. Representation with Fourier series of the attached 
conditions 

 For the case of pulsatile flow in a tube with axial symmetry, where u is 

velocity and P is pressure, the partial derivative of velocity u with respect to time is 

not zero. In addition the partial derivative of pressure P with respect to z (the distance 

along the tube) is also nonzero, namely  

0≠
∂
∂

t
u

 and 0≠
∂
∂

z
P

. 

Since the pressure wave form is periodic, it is convenient to write the partial 

derivative of pressure zP ∂∂ /  by using a Fourier series.  

 This periodic function depends on the fundamental frequency of the signal ω  

(heart rate in rad/s) and the time t. We can write such a function as a sum of sine and 

cosine terms, with appropriate coefficients, known as Fourier coefficients. 

�

�
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+++++=
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∂

)3sin()2sin()sin(
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321

3210
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tAtAtAA
z
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This is a Fourier series representation of the pressure gradient. To obtain the Fourier 

coefficients 0A , 1A , 2A , ..., 1B , 2B , ... the most known method consists in the 

evaluation of a series of integrals. For a periodic function f with period 0T , we have 
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�=
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 To get effectively the values of such integrals can be very difficult if f is other 

than a fairly simple function. That is why it may be convenient to evaluate these 

integrals numerically. 

4.3. Navier-Stokes equations 

 These equations are, second-order, partial differential equations and they are 

considered to be the governing differential equations of motion for incompressible, 

Newtonian fluids. 

 The Navier-Stokes equations, in gravitational field, can be written rather 

efficiently in the following form 

uu 2∇+∇−= µρρ Pg
Dt
D ��

, 

where, ρ  is the fluid density, 
Dt
Du

 is the material derivative of the fluid velocity, g
�

 is 

the gravitational acceleration, P∇
�

represents the pressure gradient, while µ  represents 

the viscosity of the fluid. 

4.4. Pulsatile flow in rigid tube. The Womersley solution 

 Let us assume a Newtonian fluid, uniform, laminar, axially symmetric, pipe 

flow. This is similar to the Poiseuille flow problem, but now we are considering 

pulsatile flow rather than steady. 

 For the pressure gradient we use the Fourier series representation 
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�
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Re
n

tin
nea

z
P ω . 

Therefore, for each harmonic n, we can write each component of the driving pressure 

as a complex exponential. 
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 We use now the scalar form of the Navier-Stokes equation 
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 Since the flow is axially symmetric, there is no swirling flow and no velocity 

in the radial or transverse directions and therefore no change in velocity in either the 

radial or transverse direction, so 0=
∂
∂
θ
u

, 0=rv  and 0=θv . Since the flow is 

uniform, there is no change for velocity u in the z (axial) direction, so that 0=
∂
∂

z
u

. 

The flow is also horizontal; therefore the Navier-Stokes equation simplifies 
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 Dividing this equation by ρ , introducing the kinetic viscosity 
ρ
µν =  and 

replacing tin
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, we arrive to the following equation 
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This is a linear, second-order, partial differential equation (PDE). 

 The corresponding velocity, which satisfies the above PDE is  
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where 0J  is a zero-order Bessel function of the first kind, 
ν

ωλ ni3
2 = , ν  is the kinetic 

viscosity, whileω is the frequency. 

 Now to find the velocity as a function of radius r and time t for the entire 

driving pressure, we put together the steady flow result u0 with the results from all 

harmonics, i.e., (Womersely, 1955 [Error! Reference source not found.]) 
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 A quantity that is a bit more important than the velocity. It is the flow rate 

passing through a given cross section of the blood vessel. To find this flow rate one 

needs only to integrate the just found velocity function multiplied by the differential 

area, over the entire cross section. The differential area, a simple annulus, may be 

written as a function of r, that is, rdrπ2 , so the flow rate becomes 

� ⋅=
R

rdrtrutQ
0

2),()( π . 

 Using the integral identity )()( 10 xxJdxxxJ =�  for the Bessel functions, where 

1J  denotes a Bessel function of the first kind and of the first order, we reach a 

solution for the flow rate produced by harmonic n of the pressure gradient 
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These must be summed and added to 

400
8
R

aQ
π
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which is the average flow rate produced by the constant term. Finally we have 
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n
n tQQtQ . 

 Measuring the flow rate of the blood in a given section (which can be made in 

medical laboratories), using the Womersley solution, one can calculate the values of 

the velocity and pressure in that given section. 

 When I tried to implement the Womersley model in COMSOL 3.3, I met some 

difficulties. That is because, the Womersley solution can be used only in ideal 

conditions, namely; when the flow is laminar, the fluid is Newtonian, and the tube is 

straight (cylindrical) and rigid. 
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5. Mathematical models for the blood flow in large 
vessels 

5.1. Newtonian model 

 Firstly we are proposing a mathematical model, in which we have used for the 

blood flow in large vessels the Stokes system for incompressible fluid. At the same 

time we admit the incompressibility and homogeneity of the blood while its flow is 

laminar and the exterior body forces are neglected. Then the vessel wall is considered 

to be elastic. 

5.2. Non-Newtonian model 

We accept a non-Newtonian rheological representation for blood, with a 

variable coefficient of viscosity under the conditions of an unsteady (pulsatile) flow 

regime connected with the rhythmic pumping of the blood by the heart. We admit 

again the incompressibility and homogeneity of the blood while its flow is laminar 

and the exterior body forces are neglected. 

In the case of the non-Newtonian model the viscosity coefficient is a function 

of the shear rate (γ� ), )(γµµ �= . We mention some of the rheological models 

elaborated and proposed for the blood flow: 

• Power law model 
1)( −= nkγγµ ��  

• Powell-Eyring Model 

γλ
γλγµ

�

�
�

)(sinh
)(

1−

= , s383,5=λ  

• Cross Model 
1))(1()( −+= mγλγµ �� , s007,1=λ , 028,1=m  

• Modified Cross Model 1 
am −+= ))(1()( γλγµ �� , s736,3=λ , 406,2=m , 254.0=a  

• Modified Cross Model 2 (Ohta et al., 2005 [54]) 
1

0 ))/(1)(()( −
∞∞ +−+= mCγµµµγµ �� , sPa.0035,0=∞µ , 

sPa.0364,00 =µ , 45,1=m , C = 2,63 s-1 

• Carreau Model 
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2/)1(2 ))(1()( −+= nγλγµ �� , s313,3=λ , 3568,0=n  

• Carreau-Yasuda Model 
ana /)1())(1()( −+= γλγµ �� , s902,1=λ , 22,0=n , 25,1=a  

where λ is the so called „relaxation” time, k is a time constant for the shear thinning 

behavior, n is the index for a shear thinning behavior, m is the so called Cross 

constant (Galdi et al., 2008 [37]). 

We use the Navier-Stokes equation in the following form  

))(( 2uuuu ∇+−∇=	



�
�


� ∇⋅+
∂
∂ γµρ �p

t
, 

where u is the blood velocity vector, p is the blood pressure, ρ  is the blood density, 

the viscosity of the blood is given by the Cross model 
ns k −+

+=
1

*
0

)(1
)(

γ
µµγµ
�

� . sµ and 

*
0µ  being some viscosity coefficients of the blood. 

5.3. Initial and boundary conditions 

 The above evolution equations are joined to some boundary conditions which 

express the existence of a pressure gradient along Oz axis according to the heart beats 

and implicitly to the rhythmic blood pushing into the vessel (feature which is 

important in large vessel). 

 At r = R, due to the viscoelastic behavior of the vessel's wall, the velocity of 

the blood must be equal to the displacement velocity of the wall. The boundary 

conditions at "edges" z = 0 and z = L of the vessel agree with a physiological pulse 

velocity given by a periodic time-varying function. 
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5.4. Improved model 

 In order to mimic the heart beats, on the input boundary z = 0 we have 
accepted an oscillatory physiological velocity profile (1second periodic function) 

0=u , 
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tFv . 

Here ))2sin()2cos((
2

)(
7

1

0 mtbmta
a

tF m
m

m ππ ++= �
=

, with the coefficients 

5
0 105962,2 −⋅=a , 

5
1 103577,0 −⋅−=a , 5

1 105384,0 −⋅−=b , 
5

2 102380,0 −⋅−=a , 5
2 105379,0 −⋅=b , 

5
3 105564,0 −⋅=a , 5

3 101866,0 −⋅−=b , 
5

4 102718,0 −⋅−=a , 5
4 100748,0 −⋅−=b , 

5
5 100619,0 −⋅−=a , 5

5 101086,0 −⋅=b , 
5

6 101386,0 −⋅=a , 5
6 100634,0 −⋅=b  

5
7 100618,0 −⋅−=a , 5

7 101194,0 −⋅−=b . 
giving a velocity profile similar to that used by Finol and Amon, 2003 [27], see figure 
5.1. From this flow rate profile we established the velocity profile considered for the 
blood flow. 

 
Figure 5.1 Pulsatile volumetric flow rate 
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6. Mechanics of the viscoelastic wall 
 

 Pulsatile flows in a flexible tube can significantly deform its wall. 

Deformations are determined by the material's properties and depend on the amplitude 

of the pressure pulse. 

 Unlike purely elastic materials, a viscoelastic substance has an elastic 

component and a viscous component. The viscosity of a viscoelastic substance gives 

to the material a strain rate dependence on time. 

 Experimental data demonstrates that the wall of the blood vessel has a 

viscoelastic behavior, as can be found in the works of Gineau [35] and Saito [79]. 

 

Linear viscoelastic models 
 

The Kelvin-Voigt model 

 

 The simplest model of viscoelastic materials is linear and consist in adding 

elastic and viscous stresses 

t
Eve ∂

∂+=+= εµεσσσ , 

where E is the elastic modulus, µ  is the viscosity of the wall, while ε  is the 

deformation of the wall. 

 

The Maxwell model 

 

 Another widely used model for viscoelastic materials is the Maxwell model. 

The mathematical low for this model is 

ttt
ve

∂
∂

+
∂

∂
=

∂
∂ εεε

, 

where 
Ee

σε =  elastic component of the deformation while 
µ
σε

=
∂

∂
t
v  is the time 

derivative of the viscous component of the deformation. Thus we obtain the following 

law 
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µ
σσε +

∂
∂=

∂
∂

tEt
1

. 

 

The generalized Maxwell model 

 

The generalized Maxwell model (or Maxwell-Wiechart model) is the more general 

form for the linear viscoelastic behavior. It takes into account that the relaxation of the 

wall does not occur at a single moment, but at a distribution of moments. Due to 

molecular segments of different lengths, with shorter ones contributing less than the 

longer ones, there is a varying time distribution. 

 More precisely, the linear viscoelastic material models can be expressed by 

integral-equation 

dt
t

tG
t

∂
∂= �
εσ

0
)(

 

where σ  is the stress, ε  is the strain and G(t) is the relaxation modulus function and 

it can be considered as the stress when the material is held at a constant strain. 
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7. Implementation of the model in COMSOL 3.3 
 

We start with the selection of the corresponding modules for the fluid (non-Newtonian 

module) and for the vessel wall (axial symmetry stress-strain module). After the 

creation of the domain geometry, the steps for the setting of the used coefficients are 

presented. Further the initial and the boundary conditions for the fluid (blood) and for 

the solid (vessel wall) are set up. Finally the domain mesh is generated and the 

settings for the solver parameters are made.  
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8. Numerical results 
 

 In this Chapter all our original results are presented, results obtained through 

numerical simulations, based on the Cross type non-Newtonian model for the blood 

flow together with the generalized Maxwell model for the viscoelastic vessel wall. 

 The used Cross type rheological model has the following form 

ns k −+
+=

1

*
0

1
)(

γ
µµγµ
�

� , 

where the values for the involved coefficients are: 00345,0=sµ Pa.s, 

0465,0*
0 =µ Pa.s, 036,1=k , 2,0=n  respectively. 

 For the beginning we accept an elastic behavior for the vessel wall, setting the 

Young modulus to PaE 6100,1 ⋅=  and the Poisson ratio to 33,0=ϑ  (Gineau, 2010 

[35]). 

 Let us consider an artery "segment" of radius R = 0.005m, length L = 0.1m, the 

thickness of the limiting wall being 0.001m. The mass density of the blood has been 

fixed at ρ =1060kg/m³. 

Concerning the boundary conditions, in order to mimic the heart beats, on the input 

boundary z = 0 we have accepted an oscillatory physiological velocity profile (1 

second periodic function) 
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0 mtbmta
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tF m
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m ππ ++= �
=

 is a periodic function with the 

following coefficients 
5

0 105962,2 −⋅=a , 
5

1 103577,0 −⋅−=a , 5
1 105384,0 −⋅−=b , 

5
2 102380,0 −⋅−=a , 5

2 105379,0 −⋅=b , 
5

3 105564,0 −⋅=a , 5
3 101866,0 −⋅−=b , 

5
4 102718,0 −⋅−=a , 5

4 100748,0 −⋅−=b , 
5

5 100619,0 −⋅−=a , 5
5 101086,0 −⋅=b , 

5
6 101386,0 −⋅=a , 5

6 100634,0 −⋅=b  
5

7 100618,0 −⋅−=a , 5
7 101194,0 −⋅−=b  
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 At the points of the vessel axis of symmetry r=0 we have imposed the axially 

symmetry requirements while on the vessel walls the velocity of the blood is equal to 

the displacement velocity of the vessel wall. In order to avoid the transient effect of 

the initial conditions, although the time integration interval is t∈[0,20s], the results 

are presented only for the last 10 periods, t∈[10,20s]. 

 When the value of the shear rate (γ� ) is between 10-² 1/s and 10² 1/s, the 

dependence on the viscosity is linear. In this interval the difference between the 

Newtonian and the non-Newtonian model is insignificant, but outside this interval the 

non-Newtonian model is more accurate for describing the blood flow in large vessels. 

 We have calculated the value of wall shear stress 	



�
�


�

∂
∂+

∂
∂=

r
v

z
u

WSS µ in 

several particular points on the wall of a stenosed artery, this quantity being 

responsible for possible ruptures of the vessel wall (Ohta et al., 2005 [54] and Gasser 

et al., 2010 [32]). 

8.1. Comparison of the Newtonian model with the non-
Newtonian model 

In this section we compared the results obtained using the Newtonian model with 

those got by the non-Newtonian model. 

8.2. Viscoelastic model 

Beginning with this chapter we take into consideration the viscoelasticity of the 

limiting walls. To describe the viscoelastic behavior of the vessel's wall we have used 

the generalized Maxwell model. The values of the material constants are 04,01 =µ , 

08,02 =µ , 09,03 =µ , 25,04 =µ , )(1 43210 µµµµµ +++−= , s02,01 =λ , 

s3,02 =λ , s33 =λ , s124 =λ , after Craiem et al., 2008 [22]. 

 The numerical simulations are made for an artery with stenosis and for an 

artery with aneurysm. The results are presented in the figures 8.1 and 8.2. 
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Figure 8.1 Artery with stenosis. Stream lines and the displacement of the wall at a given time 

(non-Newtonian, viscoelastic model) 
 

 
Figure 8.2 Artery with aneurysm. Stream lines and the displacement of the wall at a given time 

(non-Newtonian, viscoelastic model) 
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8.3. Improved initial conditions 

To obtain more realistic initial conditions - which are compatible with the used non-

Newtonian model - at the inlet boundary of the arterial segment with stenosis or 

aneurysm we will make the following approach. 

 We have lengthened "theoretically" the envisaged arterial segments. At the 

inlet boundary (z = 0) of the whole arterial segment we have first imposed a parabolic 

profile for the velocity, as in the Newtonian case. Due to the evolution of the blood 

flow this artificial initial condition has been modified at the beginning of the arterial 

segment with stenonsis or aneurysm. The inlet velocity has not a parabolic profile 

anymore, it has now a realistic profile and the further simulations in the vicinity of the 

stenosis and the aneurysm are then made using these modified new initial conditions. 

 The modified velocity profiles are presented in figures 8.3 (stenosed artery) 

and 8.4 (artery with aneurysm) 

 
Figure 8.3 Velocity profile at the cross sections z = 0 and z = 0.1 in the case of stenosed artery 
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Figure 8.4 Velocity profile at the cross sections z = 0 and z = 0.1 in the case of artery with aneurysm 

8.4. A real medical case 

In this section we are presenting a real case of a stenosed artery. In figure 8.5 the 

velocity field of a human internal carotid artery (ICA), which has a stenosis of 69%, 

can be seen. To validate our numerical model presented above, we use the geometry 

of this ICA to get the corresponding numerical results by using our technique. 

 
Figure 8.5 Velocity field of the blood in a stenosed ICA. Medical measuremet 
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 The length of the stenosed arterial segment is 3cm, the internal diameter of the 

blood vessel is 7mm, the thickness of the vessel wall is 0.8mm. We are using the same 

Cross type non-Newtonian rheological model, with the same improved initial 

condition and with the same boundary conditions as in the previous section. The time 

integration interval is t∈[0,10s] and the results are presented only for the last 5 

periods, i.e., t∈[5,10s].  

 The velocity field, at a certain time (t=8s) resulting from the numerical 

simulation is presented in figure 8.6. Comparing the figures 8.5 and 8.6 it shows up 

that the result obtained numerically coincides well with those got by laboratory 

measurement. We remark, that in figure 8.6 (got by COMSOL 3.3) the red color 

represents high velocities and blue color represents low velocities of the blood, while 

in figure 8.5 the meaning of the colors are inverted (due to the medical instruments), 

i.e., the results are in total agreement. 

 
Figure 8.6 Velocity field of a stenosed ICA. Numerical result 
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 We have chosen 4 particular points on the vessel wall of the stenosed ICA (see 

figure 8.7) in which the values of the WSS are evaluated. 

 In figure 8.8 the variation of the wall shear stress (through 5 seconds) – 

evaluated in those four particular points, is presented. It can be clearly seen, that the 

WSS reaches very high values in the middle of the stenosis (the red point on figure 

8.7). 

 

Figure 8.7 The 4 particular points on wall of the stenosed ICA  

(coordinates on axes are expressed in m) 
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Figure 8.8. Values of the WSS (through 5 seconds) in the 4 particular points 

 Trying to make a connection between the values of the wall shear stress (WSS) 

– which is believed to have a special importance in the possible ruptures of vascular 

vessels – and the degree of the stenosis we examine numerically the same ICA in four 

cases: with a stenosis of 30%, 50%, 70% and 90% respectively. The results got for the 

values of the WSS in these four cases are compared. 

 In the case of the artery with a stenosis of 30 % the highest value of the WSS is 

around 1N/m2, a value which does not differ significantly from the value of the WSS 

in a normal artery (without stenosis), according to Papaioannou & Stefanos, 2005 

[58]. Nevertheless as the degree of the stenosis increases, the maximum value of the 

wall shear stress increases very much. 

 More precisely, in the case of the stenosis of 70% the highest value of the WSS 

is around 20N/m2, meanwhile the highest value of the WSS, in the case of the stenosis 

of 90%, overpasses the value of 350N/m2. The higher the value of the WSS, the higher 

the possibility of rupture of the stenosed artery. 

8.5. Artery with aneurysm 

 In this section we deal with artery segments with aneurysms, using the same 

Cross type non-Newtonian model for the blood flow together with the generalized 

Maxwell model for the viscoelastic vessel wall. The initial and boundary conditions 

are the same as in the previous sections. 
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Abdominal Aortic Aneurysm (AAA) 
 To validate the model, the authors have retaken the simulations using a real 

case, as it can be found in the paper elaborated by Finol et al., 2002 [28], i.e., the 

axial-symmetric model of the abdominal aorta with a double-aneurysm as presented in 

figure 8.9. The length of the arterial segment is 9cm, the internal diameter of the 

normal artery is 8mm, the maximal internal diameter of the smaller aneurysm is 16mm 

and the maximal internal diameter of the larger aneurysm is 20mm. The wall thickness 

is 1mm. 

 The initial and boundary conditions, the values for the constants are the same 

as in section 2, the time integration interval being also t∈[0,10s]. 

 The mesh generated for both the fluid (blood) and solid (arterial wall) domain 

consists of 915 triangular elements and 39568 degrees of freedom. 

 
Figure 8.9 Axial-symmetric model for the Abdominal Aorta with a double aneurysm 
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 On figure 8.10 the surface distribution of the WSS at t = 7.7s is presented. It 

can be clearly seen that the WSS reaches its highest absolute value at the exit point of 

the first (“smaller”) aneurysm and at the exit point of the second (“larger”) aneurysm. 

 
Figure 8.10 Surface distribution of the WSS in the case of AAA 

 

8.6. A global condition for the rupture risk of an AAA 

 We intend to set up a mechanical condition whose fulfillment would lead with 

a high probability to the rupture of the aneurysm and consequently to the damage of 

the vessel wall of an AAA. 

 The above mentioned rupture takes place when the WSS evaluated on the 

boundary of aneurysm overpasses the internal cohesion forces assessed on the same 

boundary of the aneurysm. But these internal cohesion forces are connected with the 

projection of the stress vector T
�

(Maxwell model) on the unit tangent to the boundary 

vector t
�

. 

 We accept, in a plane const=ϕ , that the equation of the vessel wall (with 

aneurysm) could be expressed in a Cartesian coordinate system formed by the radial 

axis r and the axis of symmetry z by the equation )(rzz = . 

 As it can be found in the paper of Albert et al. [5], using the generalized 

Maxwell model for viscoelastic behavior, the components of the stress vector are 
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 Then, in the points of the aneurysm boundary )(rzz = , the projection of the 

Maxwell stress vector T
�

 on the direction of the unit tangent vector to the vessel wall 

t
�

will be 
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This product would estimate the internal cohesion forces in the points of the vessel 

wall with aneurysm. 

 Concerning the wall shear stress, observing the conditions of the considered 

Cross law for blood, we could write 
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 The “rupture” of the vessel wall would take place if the WSS overpasses 

tT
��

⋅ (both considered in absolute value), i.e., 
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Construction of an analytical approximation of WSS 

 In what follows, we intend to build up an analytical expression for 

approximating the WSS considered, at a certain moment, as a function of the axial 

coordinate z. To achieve that, we will use the numerical data of the joined table 8.1 

and we interpolate the WSS along the whole boundary of the aneurysm. 

Points z (cm) WSS (N/m2) 
1 1 -1.25 
2 2 0.175 
3 3 -2.55 
4 5 0.16 
5 7 -2.45 

Table 8.1 Values of WSS (at a certain time t = 7.7s) 
at the 5 considered points as shown on figure 8.9 

 Our final goal is to assess the absolute minimum and maximum of WSS for 

anticipating a possible “rupture” of the vessel with aneurysm. 

 Denoting by )('' ii zSM = , 6,5,4,3,2,1,0=i  (where the point 0 and 6 

correspond to the “farfield” of the aneurysm – where the deviation of the WSS is 

practically absent1 and consequently 0'' 6060 ==== WSSWSSWSSWSS ), if 

1−−= iii zzh , the spline function joined to the “i” subinterval, is given by (Iacob et al., 

1983 [42]) 

                                                
1 Instead of the genuine complete WSS we will work with its “deviation” versus the normal artery 
(without aneurysm) and consequently the fulfillment of the required conditions is assured. 
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 Concerning the constants iM  they can be obtained by solving the following 

algebraic linear system  
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 Concerning the error of the approximation it is of the same order as of the 

certain powers of )(max 1−−= ii
i

zzh , the degree of accuracy increasing together with 

the regularity of WSS. 

 If we want to calculate the critical points of the spline approximation for WSS, 

from 
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The critical points, for each subinterval ),( 1 ii zz − , are given by 
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 The relative extremum values of this approximation (and implicitly of WSS) 

should be found among the values of 
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)( 2,1
i

i zS , 6,5,4,3,2,1=i , 

where we must consider only those ),( 12,1 ii
i zzz −∈ (at least approximately). 

 Then by considering )(min 2,1
i

ii
zS this should be the limit value of WSS which 

once overpassing the internal cohesion forces evaluated on the aneurysm boundary 

( tT
��

⋅ ) the rupture takes place. Of course this represents a global condition not a local 

one. 

 Concerning the projection of the stress vector (T
�

) on the boundary tangent 

( t
�

) using the Maxwell viscoelastic behavior for the blood walls (aneurysm included) 

it can be obtained also via COMSOL 3.3 [21]. 

In our real clinical study, the linear algebraic system was solved by 

QuickMath and the solutions are 447.120 −=M , 395.111 =M , 085.112 −=M , 

045.83 =M , 352.64 −=M , 383.95 =M , 067.156 −=M . 

Immediately we get for the critical points the coordinates (keeping those 

whose values are close to the inside of the considered subinterval ),( 1 ii zz − ) 

402.11 =z , 29.1)( 11 −=zS ; 305.22 =z , 55.1)( 22 −=zS ; 732.33 =z , 

59.1)( 33 −=zS ; 25.85 =z , 984.9)( 55 =zS ; 244.86 =z , 503.0)( 66 −=zS . 

Concerning )(min 2,1
i

ii
zS  it is equal to 0.503. 

This should be compared (after adding also 1 due to the fact that we worked 

with the “deviation” of WSS2) to the maximum value of tT
��

⋅  evaluated on the 

boundary. As this maximum value of the internal cohesion forces (got via COMSOL 

Multiphysics) is 6.175, we may state that at the considered moment t = 7.7s there is 

no global rupture risk. 

 Of course these steps must be repeated at all the moments, but an appropriate 

soft could solve this feature without any special shortcomings. 

 We remark that this approach leads to a global rupture risk prediction. In our 

particular clinical case, in spite of the fact that WSS overpasses the internal cohesion 

forces at the point 5 (see table 8.2, where a rupture risk really exists) we may state 

that, globally speaking, there is no rupture risk for the considered artery. 
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t (s) WSS (N/m2) tT
��

⋅  (N/m2) 

7.0 –0.53 –1.12 

7.1 –0.58 –0.65 

7.2 –0.53 –3.37 

7.3 –0.77 –3.37 

7.4 –0.52 +5.41 

7.5 –0.66 –9.36 

7.6 –2.07 –14.90 

7.7 –2.94 +2.72 

7.8 –0.48 –1.19 

7.9 –0.39 –0.68 

8.0 –0.51 –0.77 

Table 8.2 WSS evolution in time 
 versus the corresponding internal cohesion forces at point 5 

We also remark that at point 4, where the diameter of the aneurysm is the 

greatest there is no risk of rupture, what implies the conclusion that the diameter of 

the aneurysm is not the essential parameter for the evaluation of the rupture-risk. 
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