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Part I 

THEORETICAL ASPECTS 

 

The continuous development of modern society characterized by the intensification of 

industrial activities has resulted in the pollution of the atmosphere. Carbon dioxide (CO2) is 

considered to be the major cause of climate change because of its greenhouse effect and its 

further accumulation in the atmosphere. The atmospheric concentration of CO2 has increased 

from 278 ppm during the pre-industrial period to a current level of more than 395 ppm 

(397.23 ppm July 2013) [1, 2]. 

Efforts to capture the CO2 and to convert it into valuable chemical compounds are of 

great importance [4,5]. Therefore it is necessary to develop technologies for storage and / or 

recycling of the gas. 

The electrochemical reduction of CO2 is attractive both in theory and practice. The 

interest for the electrochemical reduction of CO2 is shown by the number of papers published 

recently [5, 6, 11-15]. This method is a promising and efficient one, minimizing and 

converting CO2 to valuable products. 

The electrochemical reduction of carbon dioxide (ERCD) has several important 

advantages:  

- Compatibility with the environment;  

- Versatility; 

- Energetic efficiency;  

- Monitoring and management facilitated by automatic electric control of the process; 

- Reasonable costs;  

- ERCD is selective in relation to the products of reaction and depends on the cathode 

material used;  

- The equipment required is relatively simple and the process can be done at moderate 

temperature and pressure; 

-  Renewable sources (solar, wind) of electricity can be used to achieve ERCD;  

- In general, electrochemical systems have a compact design.  

The selectivity and yield of the products depends very much on the electrode material and 

on the electrolyte solution. 

Depending on the electrode material used, electrodes in aqueous solutions can be 

classified according to the products of reduction, as follows [11, 16, 30]:  
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- Group metals Pb, Hg, In, Sn, Cd, TI and Bi (Group I) are characterized by a high 

overpotential for HER and CO negligible adsorption properties, and the main final 

product of CO2 electroreduction is formic acid / formate ion (HCOO
-
). 

- Group metals Au, Ag and Zn, etc. (Group II) which are characterized by a moderate 

overpotential for HER and low CO adsorption properties. Therefore these metals can 

catalyze CO bond breaking in CO2 and allow CO desorption off the electrode. As a result 

of this, carbon monoxide CO is the main product.  

- Group metals Ni, Fe, Pt, Ti (Group III) known for their electrocatalytic character 

towards HER and which manifest adsorption properties towards CO.  

A peculiar behavior plays CO2 electroreduction on copper because this metal yields CH4 

and C2H4 hydrocarbons in significant quantities. 

In non-aqueous solutions there are three classes of metal electrodes which favor the 

formation of different products [11, 16, 30]: 

- The electrodes of Pb, Tl, Hg lead to the formation of oxalic acid as a main product; 

- The electrodes of Cu, Ag, Au, In, Zn and Sn on which are formed the carbon 

monoxide and carbon ions;  

- The electrodes of the group VIII metals (Ni, Pd and Pt) which allow the formation of 

both CO and oxalic acid. 

 The electrochemical reduction of CO2 in ionic liquids (IL) is an extension of CO2 

reduction in non-aqueous solvents and is a relatively new field. The advantages of using ionic 

liquids are the high solubility of CO2 and a wide range of cathode potential due to the lack of 

species capable of generating hydrogen. 

Most of the experiments for the reduction of CO2 were carried out in IL with 

imidazolium as the cation. Amongst the reduction products, methanol and formic acid have 

the most important applicability. Methanol and formic acid are used as fuel in fuel cells [84-

89]. 

The fuel cell (FC) unlike a battery, which is a closed system, consumes fuels 

(reactants) that are fed continuously - during cell operation. Advantages of FC-based energy 

generators include: the absence of pollution, operation without vibration or noise, having no 

moving parts and simple design and operation [86-93]. 

Methanol-air fuel cell (MAFC) and formic acid-air fuel cell (FAAFC). 
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This type of cells has several features that will be briefly described below. The diluted 

methanol is applied directly to the anode, where it is decomposed into protons, electrons and 

carbon dioxide according to the reaction: 

CH3OH + H2O → CO2 + 6H
+
 + 6e

-
       (2.14) 

Recent studies have shown that FAAFC perform much better than MAFC [94-97], this is due 

to the rapid kinetics of oxidation of formic acid [98-100]. Reactions underlying FAAFC are: 

At the anode HCOOH → CO2 + 2H
+
 + 2e

-
   E

0
 ~ -0.25V (vs NHE) (2.15) 

At the cathode 1/2O2 + 2H
+
 + 2e

-
 → H2O  E

0
 =  1.23V (vs NHE) (2.16) 

Global reaction  HCOOH + 1/2O2→ CO2 + H2O     (2.17) 

Another feature of FAAFC is that they have a higher electromotive force, (open circuit 

voltage (OCV) ~ 1.48 V) than MAFC [101, 102].  

The objective of this thesis is to study the electrochemical reduction of CO2 in aqueous and 

ionic liquids and to obtain valuable reduction products that can be used as fuel. 

To achieve the objective proposed in this thesis was developed fundamental and applied 

research aimed at the electrochemical reduction of CO2.  

The first part of the study focuses on the fundamental study of the electrochemical reduction 

of the copper electrode in alkaline carbonate and sodium bicarbonate using cyclic 

voltammetry coupled with experiments of electrode mass measuring (quartz crystal 

microbalance). 

In continuation of the fundamental study on CO2 reduction, were performed cyclic 

voltammetry experiments in ionic liquids on single crystals of Pt analyzing the catalytic 

activity of the electrodes. 

In the applied study was examined the electrochemical reduction of CO2 into the 

aqueous solution of Pb electrode by electrolysis in a filter press reactor. The experimental 

results obtained in the electrochemical reactor allowed the development of material balance 

model in ER and comparing its performance with the literature. 
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3. METHODS USED 

 

Cyclic voltammetry (CV) is the most used technique to obtain qualitative information 

about electrochemical reactions. Cyclic voltammetry is useful for the study of electroactive 

species on the electrode surface. This technique allows observation in a short time of a large 

range of potential redox properties of these species (information on the kinetics of 

heterogeneous electron transfer reactions and processes information about adsorption or 

coupled chemical reactions)[1-5] 

Electrochemical cells used in cyclic voltammetry have three electrodes: a working 

electrode, a reference electrode and an auxiliary electrode. Electroactive species react to the 

working electrode surface. The most commonly used reference electrodes are standard 

calomel electrode (SCE) and electrode Ag / AgCl / KClsat. A platinum wire is often used as 

auxiliary electrode. 

Quartz crystal microbalance (QCM) is a very sensitive device capable of recording in 

situ adsorption on electrodes of very small amounts of species in solution [6]. Due to the high 

sensitivity of the QCM it can be used to study processes occurring at the interface [6-10]. The 

principle of the technique is to measure changes in frequency of the quartz crystal. 

Electrolysis can be used not only for the purpose of decomposition of substances but 

also for the production of new substances in an electrochemical cell or electrochemical 

reactor. The formation of new substances to the electrode depends on the current which 

crosses the interface, and may be described quantitatively by Faraday's law [1, 2]. 

. 
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4. CATHODIC REDUCTION OF CO2 ON COPPER ELECTRODE-CYCLIC 

VOLTAMMETRY [1] 

 

Cyclic voltammetry experiments were carried out on the copper electrode in carbonate 

/ hydrogen carbonate solutions, in the potential domain between 0.0 and -0.7 V to several 

scanning speeds. The results obtained in Na2CO3/NaHCO3, pH = 9.3, are shown in Fig. 4.2. 
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Fig. 4.2 The cyclic voltammograms on copper electrode in Na2CO3/NaHCO3, (pH=9.3) 

 

 

Voltammograms (Fig. 4.2) describe an irreversible process (the charge transfer is the 

rate limiting step), since the form seen in a reduction peak potential of -0.6V ̴ is different form 

the oxidation peak appeared at ̴ -0.2V. In the irreversible processes, the peak potential Ep (V) 

depends on the scanning speed. According to the literature [14], the difference between the 

peak potential (Epc) and the potential for semi-peak (Ep/2) has a value of 47.7/αza. We have 

calculated the values of α (the coefficient of charge transport) and were 0.9. 

Peak currents help to identify the type of process that takes place at the electrode 

surface. For this we studied the effect of scan rate on the current cathodic peak Ipc.  
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Fig. 4.3 The dependence of the logarithm of the peak current (log Ip) with logarithm 

of scan rate (log ν) 

 

The dependence of the logarithm of the peak current (log Ip) with scan rate (log ν) is 

linear and increases with increasing scan rate in the range 25-150 mV/s. This can be seen in 

Fig. 4.3. for the solution with pH=9.3. The slope obtained is 0.77 (R2 = 0.995), this 

corresponds to a mixed diffusion-adsorption control [15].  

The influence of HCO3
-
and CO3

2-
anions changes the pH and thus the nature and 

amount of product formed. Hori et al. [8] showed that the distribution of the products of the 

reduction of CO2 depends on the type of electrolyte and pH. 

A graphical representation of the potential of peak Epc vs pH shows a shift of Ep to 

more negative potential values with increasing pH Fig. 4.4. This behavior indicates that the 

hydrogen ions have a strong effect on the redox behavior of the studied system, and at least 

one of the reactants of the process is influenced by pH. 



Part II PERSONALCONTRIBUTIONS 

 
 

22 
 

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1
-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

E/ V vs Ag/AgCl/KCl
sat

I/
 m

A

 

 

 

 

 Solutie Nr. 1 pH=8.8

 Solutie Nr. 2 pH=9.3

 Solutie Nr. 3 pH=9.9

 Solutie Nr. 4 pH=10.5

 

Fig.4.4 The influence of pH on the potential of the electrode at scan rate of 25 mV/s 

 

If the Ip and scan rate linear correlation provides information about the type of 

process, the slope obtained by plotting the dependence Ep by scan rate ν (Fig. 4.5), gives 

information about "α" and „za”. 
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Fig. 4.5 Epc dependence on the logarithm of the scan rate (log ν) at different pH values. 
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Table 4.3 Slopes and ordinates of the lines corresponding to the 4 electrolyte solutions 

pH Slope, d Ep/d log v 

(V) 

Ordinate, Ep|v=1 

(V) 

R
2
  αza 

8.8 - 0.102 - 0.551 0.983/7 0.290 

9.3 - 0.091 - 0.576 0.891/7 0.325 

9.8 - 0.090 - 0.622 0.895/7 0.331 

10.5 - 0.095 - 0.677 0.908/7 0.313 

 

 

The dependence of the ordonate with pH is linear (Fig. 4.6) and the slope was -0.076. 
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Fig. 4.6 The dependence Ep|v=1 vs. pH 

 

According with these results we suggested the transfer of an electron and a proton for the rate 

determining step.
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5. MASS MEASUREMENT OF COPPER ELECTRODE USING QUARTZ 

CRYSTAL MICROBALANCE [1] 

 

The experiments with quartz crystal microbalance were coupled with cyclic voltammetry 

measurements. The scans use a four potential scheme, when an initial reduction scan, from -

0.1 to -0.65V, is followed by an oxidation scan, to 0V, and the cycle is completed by a 

reduction scan to the initial -0.1V value.  
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Fig. 5.2. Influence of scan rate on current intensity (a) and resonance frequency shift (b) for 

pH=10.51. 

 

As can be seen in Fig. 5.2, for pH=10.51, the voltammograms present a single cathodic peak, 

at potentials between -0.5 and -0.55V, and two consecutive anodic peaks at approx. -0.15 and 
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-0.025V. Only the last anodic peak exhibits an approx. proportionality between the peak 

current and square root of the scan rate, which is an indication of the involvement of diffusion 

of reactants. On the contrary, for the other two peaks the slopes of Ip vs v plots in logarithmic 

coordinates are bigger that 1/2 as expected for processes involving diffusion of electroactive 

species, but less than one as expected for processes involving adsorbed electroactive species; 

this suggest that the formation of the first two peaks is the result of some complex charge 

transfer processes involving both soluble and adsorbed (or at least immobilized on the 

electrode) reactants. 

Conversely, the frequency shift of quartz crystal resonator has a more complicated 

behavior. During the initial reduction scan there is a frequency decrease even in the potential 

range when a noticeable current peak is not present. As indicated by the Sauerbrey equation 

(5.1), the decrease of the frequency denotes an increase of the mass of the electrode. Further, 

on the potential range where the first voltammetric cathodic peak is present, there is an 

important mass loss. During the initial stages of oxidation scan a small mass increase is 

noticeable in a potential domain in which any voltammetric peak is absent, but the first 

anodic peak takes place with a more important mass increase, while the second anodic peak 

takes place with a very important mass loss, process that continues during the initial stages of 

the final reductive scan. 

In order to attempt a quantitative evaluation, the scanned potential range was divided 

in six potential windows in which a possible individual process takes place. 
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Fig. 5.4 The electrode behavior in different areas of potential 
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Table 5.1 Electrogravimetric parametres for pH=8.89 and v=2mV s
-1

 scan rate. 

Zone 
Q m M/z

 

(C) (g) (g/ mol) 

 I -340 9.73 2.7 

 II -438 -3.72 -0.8 

 III -767 14.9 1.9 

 IV 81.9 -4.09 -4.8 

 V 34.4 -22.70 -62.8 

 VI -28.7 15.09 50.7 

 

 

Zone I, in which the charge is transferred without formation of a voltammetric peak, 

could easily be confused with a capacitive zone. But the important mass increase is a strong 

indication that a faradaic process occurs. More likely is the underpotential hydrogen 

formation, a process in which the hydrogen obtained remains adsorbed as a monolayer on the 

interface. 

Zone II includes the cathodic peak and takes place with a very modest mass decrease. 

Due to the difficult kinetics, it is unlikely that hydrogen evolution would take place at 

potentials larger than -0.5V. More reasonable is to assume the oxygen reduction 

or oxygen reduction with some involvement of adsorbed hydrogen obtained in zone I take 

place. Only these two possibilities predict correctly the influence of pH on the cathodic peak 

parameters. 

Zone III does not contain a voltammetric peak but the mass increase is yet important. 

The charge involved in III is more than twice that of I. More likely another reduction process 

with higher M/z is also involved, but the obtained experimental data make difficult a 

complete identification. 

Zone IV includes the first anodic peak and takes place with significant mass decrease. 

Even more important mass decrease takes place in zone V, zone that includes the second 

anodic peak. 

Such important anodic mass decreases can be only asserted taking into consideration copper 

oxidation or oxidation with formation of a soluble copper complex. 
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Finally, the last cathodic zone, VI, takes place with important mass increase. 

Combination of following reductions could be assigned: 

CueCu   22    164/  molgzM    (5.9) 

   
 2

3

2

23 22 COCueCOCu  164/  molgzM    (5.10) 

  2

3)(3 2 COCueCuCO s  160/  molgzM    (5.11) 

  2

3)(32)(3 22 COCOCueCuCO ss

130/  molgzM    (5.12) 

in which reactions (5.9) or (5.10) have the most important contribution. 
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6. ELECTROCHEMICAL REDUCTION OF CO2 IN AN APROTIC SOLVENT 

(IONIC LIQUID) ON SINGLE-CRYSTAL PLATINUM ELECTRODES [1, 2] 

 

The experiments were carried out in an electrochemical cell (Fig. 6.2) with three 

electrodes. The working electrode was Pt single crystal [Pt (100) Pt (110) and Pt (111)] (Fig. 

6.3), the counter electrode and the reference electrode were 2 Pt wires. The measurements 

were carried out using a computer controlled potentiostat. The potential of the working 

electrode was measured against a Pt wire. Experiments were performed at room temperature 

and atmospheric pressure. In these experiments we used the following gases: Ar and CO2 ≥ 

99,998 and a strong acid bis (trifluoromethane) sulfonimide - H [NTf2]. 

 

 

 

 

 

 

The ionic liquid 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide 

[C2mim][NTf2] Aldrich 98% was chosen because CO2 has the best solubility [11, 12, 13].  

Before each experiment the electrochemical cell (Fig. 6.2) has been cleaned and the working 

electrode, Pt single crystal [Pt (100) Pt (110) and Pt (111)] was made by the method 

developed by Clavilier [14-16]. Preparation of working electrodes for the identification of 

surface defects and the degree of cleaning was carried out by 20-30s flame-heating and 

chilling in a flask with ultrapure water, in which the H2 and Ar was bubbled in 1:3 ratio [14]. 

 

 

 

Fig. 6.2  The electrochemical cell used in the 

experiments. 

 

Fig. 6.3  Pt single crystal 
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6.3.1 Cyclic voltammograms obtained on single crystals of Pt (hkl) in [C2mim] 

[NTf2] 

To identify the electrochemical stability of IL were performed cyclic voltammetry 

experiments under Ar atmosphere between 0.0V and 3.1V Fig. 6.6. 
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Fig. 6.6 Cyclic voltammograms for Pt single crystal in [C2mim] [NTf2] under Ar atmosphere, 

scan rate 50 mV/s 

 

Starting with a potential of -1.8V a cathodic current was observed and may be 

associated with reduced imidazolium cation [C2mim]
+ 

to carbene [32]. In the area of the 

anode is also observed the appearance of a peak (-0.5V) corresponding to the oxidation of the 

new chemical species formed in the cathode region. The presence of the oxidation peaks 

shows the formation of the carbenes in the cathode region. According to the literature carbene 

may be precursor to obtain the products of C1 and C2 [34]. 
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6.3.2 Cyclic voltammograms obtained on single crystals of Pt (hkl) in [C2mim] 

[NTf2] and CO2 

 

Cyclic voltammograms performed in [C2mim] [NTf2] saturated with CO2 showed the 

presence of a shoulder in the potential range -2.75V -3V corresponding to CO2 reduction 

(Fig. 6.8). The potential of CO2 reduction corresponds with the values in literature [9, 10], 

where the reduction of CO2 in the ionic liquid requires very negative potentials. 
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Fig. 6.8. Cyclic voltammograms on Pt single crystals [C2mim] [NTf2] saturated with CO2, 

scan rate 50 mV/s. 

 

In the anode (see insert Fig. 6.8) two oxidation peaks have been identified. The first 

peak of oxidation observed at-0.5V was associated with the oxidation of the new chemical 

species formed in the cathodic region. The second anodic peak (1.25V) is not well defined 

and may be associated with the CO electrooxidation. This peak is better shown for Pt (111) 

electrode where the electrochemical reduction of CO2 (shoulder observed) is clearer. 
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6.3.3 Cyclic voltammograms obtained on single crystals of Pt (hkl) in [C2mim] 

[NTf2],  H[NTf2]  and CO2 

In non-aqueous solutions on Pt electrodes, CO2 is electrochemical reduced to CO 

according to reaction [35]: 

CO2 + e
- 
→ CO2

●-
       (6.2a) 

CO2
●-

 + CO2 + e
-
→ CO + CO3

2-
     (6.2b) 

Carbon monoxide obtained by the reduction is not the only product on electrode in non-

aqueous solvents. Recent studies show that CO2 can be reduced electrochemically to formic 

acid in ionic liquid. The presence of proton is needed to obtain formic acid. Reactions 

underlying the formation of formic acid are the following [9]: 

CO2 + e
-
 →CO2

●-
       (6.3) 

CO2
●-

 +H
●
 → HCO2

-
       (6.4) 

HCO2
-
 +H

+
 ↔ HCOOH      (6.5) 

From the above observations that the formation of formic acid in ionic liquids is 

conditioned by the presence of species capable of providing hydrogen (atomic and proton). 

The use of aqueous solutions as a source of protons is disadvantageous as it leads to 

contamination of ionic liquid. In the experiments conducted was used as the source of protons 

a strong acid bis (trifluoromethane) sulfonimide (H [NTf2]). Cyclic voltammograms obtained 

for the three electrodes of Pt (hkl) in the presence of H [NTf2] are shown in Fig. 6.9. 
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Fig. 6.9 Cyclic voltammograms for Pt single crystal in the presence of H[NTf2], scan rate 

50 mV/s. 
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In the system consisting of ionic liquid- acid, carbon dioxide was bubbled for 10 

minutes; cyclic voltammograms obtained are shown in Fig. 6.10. 
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Fig. 6.10. Cyclic voltammograms for Pt single crystal in [C2mim][NTf2] + H[NTf2] + 

CO2, scan rate = 50 mV/s between-3.5V and 1.8V. 

 

At more negative potentials voltammograms (see inset Fig. 6.10) showed a little 

oxidation peak (̴ 0.3V) assigned to HCOOH oxidation [9]. The formic acid oxidation peak 

increases with the extension to more negative values of the potential. This confirms the 

formation of formic acid in the cathodic area and the catalytic activity of formic acid in the 

oxidation follows the same trend as in the case of CO electrooxidation as will be explained in 

chapter 7 [2]. The activity of Pt single crystals follows the order: 

   Pt(110) > Pt(111) > Pt(100) 

The reason why the catalytic activity of the formic acid oxidation is the same as in the 

case of CO oxidation, can be explained by the fact that the formation of CO is an intermediate 

step in the oxidation of HCOOH. The oxidation of formic acid may be done in 2 ways. 

The first route involves direct oxidation of formic acid to CO2 [35] 

HCOOH + Me →CO2 + 2H
+
 + Me + 2e

-
      (6.9) 

(Me=Pt, Pd etc)  

A  second way "indirect path" occurs when the carbon monoxide is adsorbed on the metal 

surface, followed by two steps: 

HCOOH + Me → Me-CO + H2O      (6.10) 
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Me + H2O → Me-OH + H
+
 + e

-
      (6.11) 

Me-CO + Me-OH → 2Me + CO2 + H
+
 + e

- 
    (6.12) 
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7. ELECTROOXIDATION OF CARBON CARBON IN IONIC LIQUIDS [1] 

 

Cyclic voltammetry experiments were carried out in the potential range of 1.0V -1.8V 

in the absence and presence of COads. Fig. 7.3 corresponding to the electrochemical oxidation 

of CO adsorbed layer (COads) on the Pt electrode (hkl). 
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Fig. 7.3 Oxidation of CO on Pt single crystal electrodes in A) [C2mim][BF4] and B) 

[C2mim][NTf2]. Scan rate = 50 mV/s 
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Fig. 7.3 shows clear evidence of the surface-sensitive nature of the electrooxidation of 

CO in [C2mim][BF4] and [C2mim][NTf2] because of the different peak potential for the 

reaction displayed by each Pt(hkl) electrode studied here.  

In all cases, a more positive potential for the electrooxidation of COads in 

[C2mim][NTf2] is necessary. This is probably due to its higher hydrophobicity in comparison 

with [C2mim][BF4], which inhibits the hydroxyl radicals(OH•‾) adsorption on the platinum 

surface, postulated in aqueous media as the keystone step for completing the CO oxidation 

reaction, according to reaction 7.1: 

COads + OHads → CO2 + H
+
 + e

-
     (7.1) 

The presence of hydroxyl groups is due to contaminated water in ionic liquid. The 

oxidation in ionic liquids studied takes place at a more positive potential than in aqueous 

media [6], on the one hand due to the absence of competing oxidation reaction of the water 

and on the other hand due to the oxidative stability of the anion forming IL [7 8]. 

The reactivity trend Pt(100) < Pt(111) < Pt(110) reported here for the studied ILs is 

consistent with some results previously reported in the literature using highly acidic aqueous 

solutions (the case is most comparable to the use of ILs, since there is a shortage of OH 

radicals in both media) in which the catalytic activity toward the CO oxidation was reported 

to increase in the same way Pt(100) < Pt(111) < Pt(110). In contrast, when a much larger 

amount of OH radicals was available in aqueous solution (pH > 3), there was a change in the 

catalytic activity toward CO oxidation, with Pt(111) as the least active crystallographic plane 

of platinum. 

The current recorded in [C2mim][NTf2] for all 3 electrodes is much greater than [C2mim] 

[BF4] (Fig. 7.3) this is due to the [C2mim] [NTf2] viscosity (half viscosity value [C2mim] 

[BF4] [10]) that promote the production of higher currents. The potential of the peak and the 

amount of charge (measured by integration) are shown in Table 7.1. 

 

 

Table 7.1. Peak Potential and Integration Charge Enclosed within the CO Oxidation Peak at 

the Corresponding Pt(hkl) Electrodes 

Ionic liquid Electrode Epeak Q 

(V vs Pt) (μC/cm
2
) 

[C2mim][NTf2] Pt (110) 0.75 1856 
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Pt (111) 0.98 1968 

Pt (100) 1.26 2142 

[C2mim][BF4] Pt (110) 1.35 4432 

Pt (111) 1.53 4590 

Pt (100) 1.55 5129 

 

There is a clear shift in peak potentials for COad oxidation when comparing 

[C2mim][BF4] and [C2mim][NTf2] (0.6 V for Pt(110), 0.55 V for Pt(111), and 0.29 V for 

Pt(100) electrodes) as a result of the presence of a different anion. 

The charge values associated with CO electrooxidation on both ILs included in Table 

7.1 present much larger values than a conventionally associated oxidation charge for the COad 

in aqueous media (̴ 300 μC/cm
2
) [11] for the same Pt(hkl) electrodes. This fact points out that 

stripping voltammetries presented here also include the concomitant oxidation of the 

corresponding IL anion, which we believe is promoted by the presence of COad on the 

electrode. 

Thus, the nature of the RTIL anion strongly affects the Pt(hkl) reactivity in these 

media. The Pt(110) electrode oxidizes COad at 0.75 V (Fig. 7.3.A), but at this potential in Fig. 

7.3.B an adsorption phenomenon appears that is associated with the NTf2
−
 anion presence 

that blocks this active site for COad oxidation. In contrast, this is available when BF4
−
 is the 

RTIL anion. 

The (100) plane seems to have the lowest activity on the Pt surface in both ILs, since 

the peak potential is the highest compared for all three basal planes. 

In conclusion, we present here relevant results for energy storage and heterogeneous 

catalysis fields because CO adsorption represents the common poisoning step in many 

oxidative reactions employed in synthesis and different energy sources, such as fuel cells. We 

demonstrated that electrooxidation of CO at the Pt(hkl)-IL interface represents a surface-

sensitive process that exhibits different catalytic activity following the reactivity order Pt(110) 

> Pt(111) > Pt(100) in both RTILs. Thus, increasing the number of (110) sites on the surface 

of the platinum catalyst, by using proper capping agents during the synthesis, represents the 

next goal to achieving highly active catalysts for the CO electrooxidation reaction in ILs. 

Furthermore, we proved the important effect of the nature of the IL anion, since it competes 
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for the active site at the catalyst surface, controlling the overpotential required to complete the 

electrooxidation of COad. 
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8. CATHODIC REDUCTION OF CO2 ON LEAD ELECTRODE-CYCLIC 

VOLTAMMETRY [1] 

 

To highlight the cathodic reduction of CO2, cyclic voltammetry (CV) studies were 

carried out at lead electrode. The reactions that occurred on lead electrode in alkaline media at 

25°C and their electrochemical potential vs standard hydrogen electrode (SHE) are shown 

below [8]: 

 

CO2(aq) + H2O + 2e
-
 →HCOO

- 
+ OH

- 
 E

o
= -1.02 V/ENH (8.1) 

 

2H2O + 2e
-
 →H2 + 2OH

-
    E

o
= -0.83 V/ENH (8.2) 

 

In order to study the carbon dioxide electrochemical reduction first experiments were 

performed using Na2CO3 0.5M (deaerated by bubbling Ar) and saturated with CO2 (Fig. 8.1). 

In the presence of carbonate ions a wave is observed at a potential of ca. -1.45 V/ 

Ag/AgCl/KClsat due to reduction of the ions. When CO2 is bubbled a well-defined reduction 

peak is observed at -1.6V due to CO2 reduction. 
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Fig. 8.1. Cyclic voltammograms on Pb electrode at 50 mV/s in 0.5 M Na2CO3 with 

and without CO2. 

 

The current density peak (-5.6 mA/cm2) for CO2 reduction to formate is close to the 

data from literature [9, 10]. 
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Based on cyclic voltammetry data the current efficiency (CE) can be estimated for 

each type of electrolyte by dividing the amount of charge consumed for ERCD (QERCD) to 

total amount of charge consumed (Qtot) as described in Table 8.1 

 

Table 8.1. Current efficiency evaluated by CV measurements for different types of 

electrolytes 

Type of electrolyte pH 
Q tot Q ERCD RC 

(mAs) (%) 

Na2CO3(0.5M) + CO2 10.6 10.4 4.0 38 

Na2SO4 (0.6M)+ CO2 6.3 12.8 7.9 62 

Na2SO4(0.6M)+Na2CO3(0.1M) + CO2 7.5 8.7 5.0 58 

 

From the values presented in Table 8.1 it can be seen the electrolyte solution saturated 

with CO2 is beneficial to the process regardless of the type of electrolyte. 
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9. ELECTROSYNTHESIS IN A FILTER PRESS REACTOR USING A LEAD 

CATHODE [1] 

 

In the cathodic compartment of the reactor, CO2(aq) is reduced to formate according 

to equation (8.1) in parallel with equation (7.2), while the reaction at anode is (9.1): 

 

O2 + 4H
+
 + 4 e

-
 →4 OH

-
 E

o
=+0.41 V/SHE   (9.1) 

 

Current efficiency (CE) obtained during the electrolysis are shown in Fig.9.2 A 
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Fig. 9.2 A) current efficiency (CE) obtained during the electrolysis formate in different 

saturated CO2 electrolyte current density of 5 mA/cm
2
, B) 0.5 mol L

-1
 Na2CO3 saturated with 

CO2 at different current densities, C) in 0.6 mol L
-1

 Na2SO4 saturated with CO2 at different 

current densities. 
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Changing sulphate anion with carbonate anion or adding carbonate to sulphate 

solution leads to a decrease in current efficiency Fig. 9.2 A. The modification in CE appears 

to be influenced by changes in pH (what was observed in cyclic voltammetry experiments). 

The Na2CO3 and Na2SO4 0.6M + Na2CO3 0.1M solutions have a pH value greater 

than 10 which makes the reaction (7.1) to be less favourable. In this case adsorbed CO2 in 

solution will react with carbonate to bicarbonate according to the reaction (8.3). 

The poor current efficiencies obtained in the carbonate presence is due to CO3
-
 species 

whose reaction with CO2 reaction (8.3) competing reaction (8.1) and leading to an inhibition 

of the formation of formate. 

 

Measurements were also performed at different current densities (Fig. 9.2 B și C). As 

can be observed in Fig. 9.2 B și C, increasing the current density typically lowers the formate 

current efficiency. This was observed by Udupa et al. [7] and can be attributed mainly to CO2 

concentration polarization [8]. The experiments undertaken by Koleli et al. [9] on Pb 

electrode showed a dependence of the formate current efficiency on current density, while 

results obtained on Sn [10] show an increasing of current efficiency with decreasing current. 

We observed a similar trend (decreasing in current efficiency with increasing current) for 

carbonate/sulphate solutions. 

Due to the H2-evolution, the current efficiencies for the HCOO- formation decreases 

with the rising of the electrolysis time. 

After 30-45 minutes of electrolysis, a cathode deactivation was observed (the 

corresponding current efficiencies decreased with 15% in the case of Na2SO4 electrolyte- 

Fig. 9.2 A). 

"Poisoning" of the cathode over time has been observed for CO2 electroreduction on copper 

electrodes [11-15], and some effects of this deactivation have been indicated on sp group (In, 

Pb, Sn) electrodes. Koleli and al. [16] show that the current efficiency decreased in time 

during electrolysis thus the highest current efficiency for formic acid production obtained in 

carbonate solution on Pb after 30 min. was 39% and after 120 min. CE was 10%. Kapusta and 

al. [17] showed that low efficiency was due to the formation of organometallic complexes on 

the tin electrode, this situation favouring hydrogen evolution reaction as a competitive 

reaction. 
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10. MASS BALANCE OF THE ELECTROCHEMICAL REACTOR 

 

The experimental research in aqueous solutions has demonstrated that the ERCD is a 

viable alternative and environmentally compatible recycling methode. 

The electrochemical conversion of CO2 to formate (with concomitant generation of 

hydrogen) is the solution we propose. Thus the two reduction products - formate and 

hydrogen - can be used as fuel cell anodic reaction. 

The mass balance of the electrochemical reactor was calculated. In the cathodic 

compartment was Na2SO4 1M solution and in the anodic compartment was chosen an 

aqueous solution of NaOH 3M and 1M Output. 

The compartments were separated by a Nafion 324 cation-exchange membrane allowing Na
+
 

ions crossing the cathode. 

For the calculation of the mass balance we consider a production of 68 kg/h NaCOOH pure 

substance. 

The reduction of CO2 to formate with a current efficiency of 25%, concomitant with the HER 

with a current efficiency of 75%. In the anodic reaction we obtain oxygen with a current 

efficiency of 100 %. The voltage across the electrochemical reactor is 2 V. 

By solving the equations of balance (which took into account the flow of input and 

output components be they liquid, gaseous), it could present a mass balance for the anode and 

cathode compartment. 

Table 10.1 Mass balance in the cathodic compartment 

Input Output  

Ingredients kg/h Ingredients kg/h 

CO2 132 CO2 88 

H2O 177 NaCOOH 68 

Na2SO4 29 NaOH 280 

Na+ 184 H2 6 

H2O with Na
+
 576 H2O out 623 

  H2O with cathodic gases 5 

  Na2SO4 29 

TOTAL 1099 TOTAL 1099 
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Table 10.2 Mass balance in the anodic compartment 

Input Output 

Ingredients kg/h Ingredients kg/h 

NaOH 345 O2 64 

H2O 806 NaOH 25 

  H2O genated 72 

  H2O with oxygen 2 

  H2O output 228 

  Na
+
 184 

  H2O with Na
+
 576 

 Total 1151 Total 1151 

 

The global mass balance on the 2 compartments 

Table 10.3 Mass balance on the electrochemical reactor 

Input  Output  

Ingredients kg/h Ingredients kg/h 

CO2 132 CO2 88 

H2O 983 NaCOOH 68 

Na2SO4 29 NaOH 305 

NaOH 345 H2 6 

  H2O  output 929 

  Na2SO4 29 

  O2 64 

Total 1490 Total 1490 

 

Based on mass balance it was calculated electricity consumption.  

Such consumption is: 

Eb * I * t = 429 kWh  

The specific energy consumption for NaHCOO = 1.6 kWh / kg  

Literature data shows that the values are of approx. 3.8 kWh / kg [1].  

The specific energy consumption for H2 = 53.6 kWh / kg respectively 4.8 kWh / Nm3 H2  



S 

 
 

58 
 

The specific energy consumption for O2 = 6.7 kWh / kg. Course of interest are hydrogen and 

sodium formate which can be used as fuel in fuel cells.  
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11. GENERAL CONCLUSIONS  

 

Electrochemical reduction of CO2 is attractive both in terms of theory and practice 

allowing CO2 reduction and conversion to valuable products.  

For electrochemical reduction of CO2 to be a competitive alternative to overcome the 

following problems: low solubility of CO2, HER , the reaction rate decreased . 

In the study of literature were analyzed aspects of electrode material (especially 

electrodes of copper and lead) and how it affects the selectivity of the reduction products. 

Distribution and yield of the product depends on the potential, temperature, pressure and the 

electrolyte solution. 

Copper electrode material was chosen because it is the only one that can achieve 

significant yield hydrocarbons and alcohols. On Pb electrodes HCOOH can be obtained 

which is used in fuel cells. 

The study of electrochemical reduction of CO2 electrode of alkaline copper carbonate 

and sodium bicarbonate (pH 8.8-10.5 ) (Chapter 4) was carried out by cyclic voltammetry. 

Following measurements evidenced an irreversible process. Electrochemical reduction 

of CO2 is a mixed diffusion - adsorption process demonstrated by corelation of log Ip vs. log 

v. 

Cyclic voltammetry investigations allowed the identification of kinetic parameters 

such as the transfer of an electron and a proton in the rate determining step and a charge 

transfer coefficient of 0.9. 

Using quartz crystal microbalance (Chapter 5) allowed us to identify possible 

processes occurring at the electrode. The electrochemical reduction of CO2 on the Cu 

electrode is a complex process of adsorption desorption and with formation of insoluble 

species resulting from the blocking of the electrode surface. 

Experiments were conducted between -0.1 ÷ - 0.65V and there was no clear evidence 

of the direct reduction of CO2. By operating at more negative potential electrochemical 

reduction of CO2 can occur and this is encouraged by the presence of a copper electrode 

surface monolayer of hydrogen, which due to its reactivity may participate in its reduction. 

The electrolyte solution can influence the reduction product obtained, as shown in the 

literature to analyze CO2 conversion in ionic liquids Pt single crystals (Chapter 6). 
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Cyclic voltammetry tests showed that [C2mim][NTf2] has a great stability. The 

presence of CO2 in the system changes dash voltammograms, which depends on the type of 

crystal. The product of the reduction of CO2 in liquid is carbon monoxide. 

Experiments conducted in the presence of CO2 and a strong acid lead to changes in LI 

voltamograms allure with a small peak observed in anodic oxidation. This peak corresponds 

to the oxidation of HCOOH (formed in cathodic region). The electrocatalytic activity of the 

process depends on the type of the crystal orientation in the order: 

Pt ( 110 ) > Pt ( 111 ) > Pt ( 100 ) 

The presence of formic acid could be detected in most negative potential of - 2.5V , 

and the formation of CO seems to be an intermediate stage in the production of HCOOH. 

Product selectivity depends on the species involved in the reduction of CO2 in ionic 

liquids. The presence of single ionic liquid CO2 yields of CO, whereas the presence of 

protons ( acid H[NTf2]) allows production of HCOOH. 

Electrooxidation of CO (Chapter 7) has been made for two reasons: one of them is the 

fact that CO is a reduction product / or intermediate  in CO2 reduction, while the second 

refers to the fact that the adsorption of CO is the critical stage ( surface active poisoning) in 

many oxidation reactions encountered in the synthesis and fuel cells. 

It has been shown that CO electrooxidation is a sensitive process to the electrode 

surface and the electrocatalytic activity of the electrodes follows the order below: 

Pt ( 110 ) > Pt ( 111 ) > Pt ( 100 ) 

The nature of the anion of the ionic liquid has a significant effect on the process as it 

competes electrooxidation reaction of CO at the active surface of the catalyst, controlling 

overpotential necessary to complete the process of COad electrooxidation. 

For electrochemical reduction of CO2 into the reactor media filters were first carried 

out cyclic voltammetry experiments analyzing the behavior of the Pb electrode in the alkaline 

carbonate and sodium sulphate (Chapter 8) . 

Experiments conducted in solutions of Na2CO3  in the presence of dissolved CO2 have 

a peak at - 1.6V potential which is attributed to CO2 reduction. Using a less reactive 

electrolyte as Na2SO4 allowed evaluation of the influence of CO2 on the process. In Na2SO4 

solution deaerated with Ar only HER has been identified.  

The influence of pH is particularly important for CDER on Pb electrode. The use of 

sodium carbonate as an electrolyte solution increased the pH. The current`s best yields were 
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obtained for the electrolyte solutions having a pH that is close to 7, for instance Na2SO4 ( 62 

% ),  Na2SO4 +Na2CO3 ( 58 % ) . 

Following lengthy electrolysis in electrochemical reactor (Chapter 9) electrochemical 

reduction of CO2 on Pb electrode was carried out at different current densities and different 

electrolyte solutions. Reduction product obtained was HCOO
-
 . 

Measurements have shown that the useful product of CDER depends on the type of 

electrolyte and pH . The higher current efficiency HCOO
-
 was 39% and was obtained in 

sodium sulfate solution. Lengthy electrosynthesis revealed that a higher current efficiency is 

favored by operating at low current density in this case 5mA/cm
2
. The current efficiency 

decreased with time in the course of the electrolysis so that the highest current efficiency for 

HCOOH  was 39 % for 30 minutes of electrolysis, and after 120 minutes it decreased to 10 

%." Desactivation" of the cathode in time may be due to the formation of organometallic 

complex electrode.  

Based on the data presented in Chapter 9 and in the literature it was assessed the CE 

mass balance (see chapter 10). Calculations based on mass balance equations have been 

carried out for hourly output of 68 kg of sodium formate. 

Relatively to specific consumptions obtained it can be said that they are comparable to 

those reported in the literature. Superior value to literature data on the specific energy 

consumption for sodium formate can be explained by the superior performance achieved by 

RE used , that is a short distance interpolation ( low ohmic drop ) but also by good electrical 

conductivity of the sodium sulfate solution relative to the carbonate solution used in other 

studies. 

In the future, additional measurements will be carried out in pilot plant scale in order to 

verify:  ( i ) the practical possibility to obtain  solution of concentrated sodium formate , ( ii ) 

the ability to operate the current density per unit volume of larger reactor, using porous or 

volume electrode. Developing a protocol for tracking sodium formate concentration is also 

very necessary. 
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