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PÁLI Gábor János Horia F. POP (BBU)
Doctoral Student KOZSIK Tamás (ELTE)

Supervisors

Cluj-Napoca, March 2012



Contents

Contents of the Thesis 1

Keywords 3

Introduction 3

1 Fundamental Problems 5

2 Employed Techniques 6

3 Composing Little Languages into Applications 8

4 Real World Execution of Flows 11

5 Flow Programs as Operating Systems 15

6 Related Work 19

7 Conclusion and Future Work 22

References 25

Contents of the Thesis

Introduction

1 Fundamental Problems
1.1 Synopsis
1.2 Abstraction Versus Performance
1.3 Advantages of Higher Level Approaches
1.4 Related Work

1.4.1 Abstractions in Operating Systems

2 Employed Techniques
2.1 Synopsis
2.2 Language Embedding
2.3 Building a Language Core
2.4 Generic Optimizations in the Frontend
2.5 Target-Specific Optimizations in the Backend
2.6 Summary

3 Composing Little Languages into Applications
3.1 Synopsis
3.2 The Flow Language
3.3 Global Configuration and Events
3.4 The Flow Types
3.5 The Flow Kernels
3.6 The Flow Constructors

1



3.6.1 Examples
3.7 Abstract Programs

3.7.1 Graph Decomposition
3.7.2 Channels
3.7.3 Tasks
3.7.4 Mapping Flows to Programs

3.8 Semantics
3.8.1 State Transformers

3.9 Summary

4 Real World Execution of Flows
4.1 Synopsis
4.2 Executing Tasks
4.3 The Pool of Tasks
4.4 Memory Management
4.5 Scheduling

4.5.1 Marking Boundaries for Kernels
4.5.2 Selectors
4.5.3 Creating Task Pools
4.5.4 Example
4.5.5 Parallelizing Abstract Programs

4.6 Code Generation
4.6.1 Eliminating Redundancy
4.6.2 Wrapping Nodes
4.6.3 Interacting with the Embedding Environment
4.6.4 Run-Time Support

4.7 Summary

5 Flow Programs as Operating Systems
5.1 Synopsis
5.2 Overview
5.3 Sketching Up a Dataflow

5.3.1 Attaching Feldspar to the Flow

5.3.2 Anatomy of the High-Level Description
5.3.3 Introducing Dynamism
5.3.4 Marking Kernels
5.3.5 Scheduling

5.4 Simulating the Dataflow
5.5 Compiling the Dataflow to C

5.5.1 Added User Code
5.5.2 Run-Time Support
5.5.3 The main() Function

5.6 Performance
5.7 Summary

6 Related Work

7 Conlusion and Future Work
7.1 Future Work

2



Acknowledgments

References

Keywords

Keywords: Functional Programming, Embedded Systems, Operating Systems, Dataflow
Networks, Scheduling, Declarative Programming, Language Embedding, Haskell, Domain-
Specific Language, Systems Programming, Reactive Programming, Executable Seman-
tics, Pure Semantics, Code Generation, Compiler, Thread Pooling, Task Parallelism,
Tacit Programming

Introduction

Computers are part of our current lives and every one of them is made of two main
components: hardware and software. Separation of these components is the result of
an evolution where engineers have determined that it is more rewarding to manufacture
hardware devices with a relatively low-level interface and then put additional virtual
layers on the top of it formed by the programs run on it. As a result of the standardized
structure of today’s computers, it is hard to find a machine without at least one layer
of software associated to it, usually referred to as an “operating system”. We are being
surrounded by a plethora of embedded devices in the form of smartphones, routers,
portable personal computers, multimedia sets, etc., that are still running some of software
themselves.

Nowadays a serious obstacle in the spread of an operating system is lack of support
for it. Without proper hardware support an operating system is virtually doomed to
failure. However, there are certain segments of the market, where companies and software
engineers are fed up with C and its derivatives, and they are seeking something that
promises more automation in the development of low-level systems. Quick evolution of
hardware also forces the programmers to think on a higher level, where the associated
compiler becomes their partner. Such a typical field of application of that methodology
is tied to various domains, where more semantical information can be extracted from
the specification, therefore better target-language programs can be generated with less
human intervention.

This thesis features the following main contributions of ours as potential answers to
the challenges experienced in today’s industrial efforts.

– The Flow, a minimalistic glue language for combining programs written in different
domain-specific programming languages. The purpose of the Flow is to turn Haskell
into a specification language that is compact yet expressive enough to describe
complex applications as a composition of domain-specific-language programs.

– A high-level computation model based on dataflow networks that implements a
platform-independent way of representing complex applications. As a consequence
of the model, it is possible to specify a simple pure semantics for the application
(given that the contained components are themselves are also pure), and it offers an
elegant way to control the execution of the application in a higher-level, declarative
manner.
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– The design and implementation of a minimalistic run-time system for supporting
applications constructed with the Flow language. The structure of the run-time
system is strongly related to the computation model defined above, as its purpose
is to provide the same abstractions on every platform. Hence our goal was to
decrease the abstractions in the computation model to the minimum. It has several
advantages: it is easier to be ported to different hardware platforms and it is also
easier to give formal semantics for the elements of the run-time system.

In Chapter 1, we provide an overview of the fundamental problems in this area of
research, a brief description of the probleam together with an analysis of the related
work. Our proposed solution is then gradually revealed through the chapters that follow.

In Chapter 2, we introduce the employed techniques that very specific to the field and
approach of our work. There Haskell as a tool is being used to define another programming
language by the method called language embedding. The sophisticated type system and
the flexibility offered by programming with functions makes Haskell quite suitable for
working with language prototypes. As a working of that, Feldspar, a domain-specific
language for digital signal processing and parallelism is discussed briefly to illustrate the
concepts of embedding.

In Chapter 3, a glue language for little languages called Flow is described as our
contribution. The goal is to maintain the same degree of composability is provided by
Feldspar as described in the previous chapter, but on a higher level where programs are
represented in various domain-specific languages. The purpose of Flow is also to show
how typical components in such a system may be captured in an abstract manner. Apart
from that, semantics for an abstract machine is given to explain how to run the resulting
programs.

In Chapter 4, we proceed with the analysis of programs in relation to efficiently
running applications written in the Flow language. The problems discussed include the
way in which the components are scheduled for execution by distributing the available
resources among them. During the investigation, a code generation strategy together with
a small run-time system is elaborated that contributes to minimizing the complexity cost
resulting from the use of a functional programming language. In addition to this, a
user-controllable way of scheduling is defined that helps to parallelize the aforementioned
abstract machine.

In Chapter 5, the discussion continues on Flow by taking an advanced example appli-
cation and demonstrate the design. However, our further intention with this application
is to explicitly characterize and thus model a given class of operating systems. Such sys-
tems are commonly deployed on embedded hardware, where the purpose of the operating
system is to operate a hardware board dedicated to certain tasks – and it is limited to a
specific application domain, e.g. digital signal processing. Hence we take Feldspar from
Chapter 2 and create an extension for it to continue with programming such hardware
on a higher level.

In Chapter 6, we compare our results with the current achievements of the field, discuss
what the main differences are in our approach: what advantages and disadvantages it
has in reflection to others’ results and answers to the related questions.

In Chapter 7, our conclusions on the topic are summarized in closing.
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1 Fundamental Problems

Modelling operating systems and various aspects of systems programming requires one to
be familiar with the standard design and implementation of those ideas, and on the other
hand, it also assumes advanced knowledge and experience in contemporary functional
programming. The goal of the thesis is to discove and address performance and imple-
mentation problems experienced in the field, and contribute to the future development of
operating systems written in functional, or other high-level programming languages. This
is still an open question since high-levle, especially functional programming languages are
not yet wide-spread and are not currently adapted to everyday industrial use.

A potential barrier to the use of high-level languages in low-level and industrial ap-
plication is the higher level of abstraction set they provide: that approach fundamentally
excludes the support for low-level and platform-dependent parts since such support would
risk both platform independence of the language primitives and consistency of abstrac-
tions offered by the given implementation. Unlike C++ for example, where one can work
with elements defined in terms of higher levels while still employing the traditional C so-
lutions for the parts requiring explicit knowledge of the actual implementation scenario.
However, static type systems are usually stronger and more strict than the one created
for C++ therefore they simply do not allow the programmer to mix and match differ-
ent weights of abstractions at her easer. This approach would be fruitful in the sense
that strong typing facilitates and enforces writing correct programs or programs with
reasonable semantics. It must also be noted that even C++ implementations work with
a run-time machinery complex enough to not to be preferred as vehicles for operating
systems development. Many popular modern and high-performance systems, like the
Linux-based ones, or FreeBSD are still developed in C.

Apart from performance, the security and reliability of operating systems are fre-
quently considered. It is easy to write high-performance but unsecure, unreliable pro-
grams in low-level languages as many of the common programming tricks for achieving
better performance stem from applying side-effects, and ignoring or breaking rules of
typing. Consequently, introducing strongly typed high-level programming languages in
systems programming is a great challenge indeed. However, in our opinion, performance
costs of the most complex run-time support requirements may be compensated by the
program correctness guarantees of static typing and the power of high-level abstractions.
Both of these enhance both security and reliability at the same time. Programs written
in high-level languages typically have fewer mistakes in their implementations. This is
because most of the error-prone details of the source code is derived, generated, or man-
aged automatically, and because the syntactical constructs are usually closer to the exact
program specification.

To summarize our current understanding of the application of functional programming
concepts to operating systems in advance, it is very likely that operating systems may be
developed using functional programming languages. The emphasis of discussion should
be rather on the efficiency of finding a balance between performance and maintainability.
Finding this balance is considered hard for embedded, i.e. resource-constrained systems
as most of the high-level programming languages, including functional ones, employ some
form of automatic resource management, i.e. garbage collection.

In addition to the problems that emerge from the implementation techniques offered
by high-level languages, it is important to note that there are many operating systems
that have been developed in high-level programming languages already and their source
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code is mostly open for study. That is, our attempt is not the first in the field, the
development of operating systems in high-level languages has been a topic of research for
decades.

2 Employed Techniques

In this chapter we present the techniques which we employed to achieve our goal: as
we show in this chapter, we are trying to use Haskell as a tool for describing other
programming languages. It is not uncommon for Haskell at all as it greatly supports and
encourages formulation of smaller, restriceted languages on top of its basic constructs.
Haskell itself is built up in a similar fashion – that is not accidental too: in the chapter,
there are examples given of why such a structure is favorable in the definition of languages
or even any complex application programming interface.

First we introduce the concept of language embedding that presents the reader with
how Haskell may be bent, restricted, or extended according to the current needs which
then may be considered a different language. The resulting programming, or even specifi-
cation, language inherits many of the properties of the embedding, i.e. the host language.
In case of Haskell, this is the function-oriented nature or purity, for example. Maintain-
ing purity is especially important from the side of reasoning and doing so will give us an
elegant way to describe the connected semantics in the later chapters. It is followed by
the complementary technique of building up a language by stacking layers of syntactic
sugar which may make the process extremely flexible both for the developers and the
users.

Besides syntax, semantics also has to be defined for the language in question. As it will
be shown through a working but simple example, semantics may be given as an interpreter
that maps the basic language constructs to regular Haskell functions or as a compiler
that translates them to another language. The compiler solution discussed here follows
the standard “frontend versus backend” separation wher the frontend is to implement
generic optimizations, and the backend is to do target-specific optimizations. As we will
see, the frontend communicate to the backend through an intermediate representation
that facilitates the use of different backends with the same frontend therefore making it
modular.

To demonstrate the concepts and introduce a contemporary embedded language in
Haskell for later use, we are going to mention Feldspar [2, 8, 9] as an example here.
Feldspar is a high-level language that allows description of signal processing algorithms,
and it is the result of a joint research project of Ericsson, Chalmers University of Tech-
nology (Göteborg, Sweden), Eötvös Loránd University (Budapest, Hungary).

sumSquares :: Data Int -> Data Int

sumSquares n = (sum . map square) (1 ... n)

where square x = x * x

Figure 1: Feldspar program sumSquares
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Feldspar
Source

Graph
Representation

High-Level
Optimizations

(frontend) Abstract
Imperative Code

Graph
Transformation

(backend 1)

Optimization via Plugins
(backend 2)

ISO
C99

Pretty Printing
(backend 3)

Figure 2: Internal structure of the Feldspar compiler.

#include "feldspar_c99.h"

#include <stdint.h>

#include <math.h>

void sumSquares( int32_t n, int32_t * out ) {

int32_t var11_0;

var11_0 = 0;

(* out) = 0;

{

while ((var11_0 <= (((n - 1) + 1) - 1))) {

int32_t var6_0;

int32_t var8;

var6_0 = var11_0;

var11_0 = (var6_0 + 1);

var8 = (var6_0 + 1);

(* out) = ((* out) + (var8 * var8));

}

}

}

Figure 3: Final, optimized C version of sumSquares.

These programming techniques are introduced to prepare the presentation of the main
contributions of the thesis where we use Haskell as a specification language. Note that
the method of expressing an object language in terms of a meta language is a difficult
subject to present and elaborate formally, and that is not part of our research efforts.
Thus the chapter is rather to give insight into the main ideas that we have employed in
our research work.

In our opinion based on preliminary experience with embedded languages, it is an
extremely flexible tool that helps to abstract away from the actual code generation since
many different target languages may be supported by implementing the respective back-
ends. Haskell has an extensive and rich ecosystem that freed us from reimplementing
many of the tools required for the research. The approach also has the advantage that
executable semantics may be described for each of the constructs to be used as a reference
when implementing code generators. As we will see in the succeeding chapters, the meta
language also provides a formal framework to express relations between the elements of
the object language. Thus making it possible to model them and formalize their logical
connections while there remains the possibility of generating code for the constructed
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model optionally which may even compete with its hand-written counterpart in terms of
performance.

3 Composing Little Languages into Applications

In order to build functional models for operating systems, we start with the definition
of a modelling language on top of a functional programming language. Because of this
relationship, the modelling language inherits many of the features of the host that make it
similarly functional. That inherited functional nature comes with several added benefits
that we can exploit to approach problems in different areas in development of operating
systems.

For example, composability is considered globally important for the entire discussion.
Our proposal is to express operating systems as programs represented by dataflow net-
works, where the complete systems is a single function that maps input values to output
values. The dataflow network is used to give the definition of that function as a compo-
sition of smaller, sometimes primitive functions. It enables frequently used components
(as functions, of course) to be re-used during the composition that can also build up a
standard set of primitives suited for constructing such systems. Another special property
of functional programming is that functions are first-class values, i.e. functions may both
take functions as parameters and return functions as results. This property leads to the
concept of programming with higher-order functions that is a commonly applied solution
to capture function templates, adding another (rather powerful) type of patterns to be
recorded.

In this chapter, there are three different layers of languages used: the meta language,
Haskell, which implements a glue language Flow, which coordinates domain-specific-
language programs with a specified interface. The Flow language is defined to capture
schemes referred above and to provide a way to connect domain-specific-language pro-
grams into a dataflow network. We give the basic types, elements and constructors of
that combinator language, followed by their semantics as abstract programs, while touch-
ing the generic interface for fitting domain-specific languages to it. As we will see in the
chapter, dataflow networks are first represented by an algebraic data type with little
programs in its nodes which then mapped to a mathematical graph.

Config

Programc

Program

c

output
b0

output
b1

input a0

input
a1

Figure 4: Nodes in a Flow network: domain-specific programs with associated global
parameters.

The following graph:
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a

b

c

d e

can be described by this program:

example1 = a --< (b,c) >-- d --> e

where (a,b,c,d,e) = ...

Through the decomposition of the graph by its edges, we reorganize the relevant parts
to channels and tasks that are going to be the key concepts in explaining the semantics
for the Flow programs.

Task 1
Task 2

Task 3

Task 4

Task 5 Task 6

in a
Chn.1

out

b
Chn. 2

c

Chn. 3
d

Chn. 4

Chn. 5 Chn. 6

Figure 5: Decomposing a Flow into tasks and channels, called an abstract program.

In parallel with that, we have to discuss how much dynamism is allowed by the
language. It is a valid claim that we shall be able to describe changes in the behavior
of the system over time. While the general structure of the Flow programs is static as
nodes cannot be moved, created, or destroyed in run time, it is possible to control them
by variable parameters. We may attach certain parameters to the nodes that may help in
changing the behavior of the individual nodes (e.g. enabling or disabling them, routing
data between nodes, etc.) dynamically.

The goal of the framework introduced here is to identify and collect the basic oper-
ations needed for constructing dataflow networks. Hence its name, Flow. It is imple-
mented as a hierarchy of modules in Haskell. The constructor operations help to describe
a data dependency graph of nodes for the programmer. There can be various computa-
tions placed in the nodes. These computations can be described by programs written a
domain-specific language. Such computations may have parameters. Thus we call those
graphs flows.
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Node 1

Node 3

Node 2

Node 4

Node 5

Node 6 Node 7

Figure 6: Example of a flow. Dark grey nodes (1 and 2) are source nodes, and the grey
node (7) is a sink node.

An example for a flow is shown in Figure 6. The flow itself always stands for a loop in
an event-driven system, where there are source nodes to receive input and sink nodes to
produce output. Source nodes are the nodes that do not have any preceding node (parent)
in the graph. Sink nodes are the nodes that do not have any suceeding node (child) in the
graph. As it can be seen, both of them represent side nodes. Contents of the graph are
executed continuously (and possibly in parallel, see later): source nodes incrementally
read values to input and the sink nodes incrementally write values to output, and that
is repeated forever.

The usual way in which such flow networks work is as follows. There is a set of
programs implemented in a domain-specific language. Then the programmer takes these
programs and connects them into a graph by specifying their order of dependency. It is
her responsibility to correctly compile such a graph for solving the problem in question.
But connections between nodes – the edges – are typed, so only nodes with matching
types can be connected.

The so-constructed graph can be both run directly in an interpreter of a Haskell
implementation (e.g. GHCi for the Glasgow Haskell Compiler) or compiled to a program
of a target language (e.g. C). In order to work with the flow, we shall provide input and
a set of parameters to the programs in the graph in some format.

– When interpreted, the input and program parameters must be specified as infinite
lists that the flow can consume during execution.

– When compiled, the real source of input depends on the client implementation. The
client is part of the target-language sources that is not generated from the flow but
manually added to make it compile. It is typically the implementation of the source
and sink nodes. In addition to that, the client must contain a function that may
set the program parameters.

We introduced the Flow language as tool for building models of operating systems.
The Flow is technically a glue language that is embedded into Haskell, and it supports
composition of small programs written in other embedded languages into larger ones. The
little languages to be used to express those small programs are considered domain-specific,
which means they usually implement some model for a set of operations that specific to a
given application or problem domain. This approach helps to describe certain algorithms
in a language that is better suited to the problem to be solved and eventually supports
efficient code generation. Furthermore, given that there is a pure semantics implemented
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for the language, it can be seamlessly extended with the constructs of the Flow language
to build or model larger systems, e.g. operating systems that way.

As we have learnt here, each such small program has to be “lifted” (wrapped) to a
primitive Flow node and then it may be further combined with other similar nodes with
the presented combinators. The result of the combination is a directed graph that records
data dependency relations between the programs, hereby building a dataflow network.
Those networks were considered special, because they are repeatedly run with incoming
data through their source nodes to produce data through their sink nodes. This may be
interpreted as a simple model of a main loop which is to receive and answer requests from
an environment.

4 Real World Execution of Flows

Besides the näıve abstract interpretation of Programs, data dependency graphs may be
prepared for execution on multiple processing units, i.e. on top of real hardware. A trivial
solution would be to launch an execution thread for each of the tasks (then no further
processing would be needed). Although it is not considered a good practice to spawn
an arbitrary number of threads in general. Doing so may unnecessarily waste resources.
And, if context switching is even possible, it may lead to more time being spent context
switching. For better performance it is instead recommended that one not to keep more
threads running at a time than the number of the processing units in the hardware.

Restrictions such as the fixed number of threads or running tasks to completion con-
tribute to a characterization of the run-time system support. Thus there is a mechanism
by which to escape from the concept of preemptive multitasking and replace it with
concurrent cooperative multitasking. It is worthwhile avoiding preemption as it has a
number of disadvantages. Context switching required for preemption takes time, since
run time of task is split into small scheduling intervals (quantums), interrupted by a call
to the scheduler to decided what to continue with next. And if indeed a switch occurs
between tasks, possibly a new set of data has to be placed into the cache, extending
the time required for completing the operation. This also displaces from the cache the
working set of the preempted task. Asynchronous interruption of tasks also requires the
programmer to protect all shared resources with locks which in turn increases the costs
due to the implied synchronization.

In addition, the scheduling solutions usually employed in operating and run-time
systems are too general for our purposes. Since the programs to be run are split into
runnable sections dynamically and without any knowledge of the current program, they
can only rely on generic heuristics, e.g. interactivity. When the units of scheduling are
adapted better to the domain of the application, the opportunity arises to make better
scheduling decisions based on how the programs to be run are split or what their actual
states are.
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Worker

Tasks

take

ConfigMem.

drop

Figure 7: Graphical view of a worker with tasks replaceable in run time.

The focus of the chapter is to investigate how to construct an execution scheme for
tasks whose performance may be sufficiently efficient in a real-world setting. First we
discuss how to implement execution of each individual task and how to organize input
and output data for tasks. That tasks can be put into pools that is one of the main
concepts of the chapter.

task pool

t1

Worker

take

t4t3t2 t1

drop

Figure 8: Operation of a single worker over a task pool.

It is then followed by a detailed description of how a task pool might be handled in
the presence of multiple execution units, as well as example of the problems it can cause.
Memory management is also be taken under consideration.
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Task

Kernel

input
buffers

output
buffers

heap

Figure 9: Task memory layout in general.

As we show as the study progresses, the discussion of possible task execution scenarios
leads to introducing explicit hinting on how to schedule tasks, together with the definition
of task pools. The results help us to define a parallel version of the previously introduced
abstract programs and the associated machines. We thereby extend the semantics and
the simulation of Flow programs for parallel execution.

task pool 1

task pool 2

t1 t4t4

Worker#1

take

t2 t3t3

Worker#2

take

drop

drop

Figure 10: Operation of multiple workers over multiple task pools.

For the remainder of the chapter, the code generation for Flow programs is discussed.
By explaining the details of the proposed code generation procedure, the previously omit-
ted components of the PrimKern type class is presented through the introduction of a
three-stage compilation process, together with a simple algorithm to reduce the poten-
tial for code bloat. Note that in relation to the PrimKern type class, another previously
hidden class, Backend is explained. The Backend class has already appeared in the defi-
nition of the Flow combinators, as well as a constraint on the languages to be used for the
nodes. As it turns out it prescribes a crucial property: the Flow can be only compiled to
the target language if there is a compiler for all the languages to that language. Besides
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that, compilation of both the regular and nodes without little programs is explained. In
connection with the nodes without a program we also touch on the question of how to
deploy a Flow system.

        Flow         

Services Libraries

     Microkernel     

(a) Microkernel-based

        Flow         

   Runtime (kernel)  

(b) Bare metal

Figure 11: Scenarios for deploying a Flow system.

We present a possible implementation of how to run Flow programs in parallel, achiev-
ing and maintaining a certain level of efficiency. We abandoned the idea of the regu-
lar preemption-based multitasking, instead we described a specialized task management
methodology to implement a task-level parallelism for Flows. In this scheme, each of the
small programs that we have previously taken as node of a data dependency graph are
wrapped further into tasks. Tasks are technically nodes packed with information on their
input and output parameters so they are ready to be executed by a worker.

Workers were considered the representation of an execution unit that does not do any
preemption but waits for the currently selected task to complete its operation then it looks
for another task to be run. That helps to avoid the (sometimes high) costs of context
switching and cache thrashing by respecting the lines drawn by the application developer.
Certainly, a weakness of the approach may be that it is depending on the programmer,
as if one of the tasks stuck for a long or even infinite time then the application stucks
together with that as well. However, given that the goal of the constructed system is to
map all incoming input data to an output data (like a function), a preemptive scheduling
would also stuck due to the data dependencies introduced between the components of
the system.

Moreover, managing execution of the Flow graph nodes with atomically-run tasks may
be enhanced further by organizing the tasks into pools that are assigned the workers. That
way a queue of tasks is constructed, but with two beneficial properties. Task pools may
be given explicitly by the user through a set of combinators, that is, the user is capable to
hint which sections of the graph may be run efficiently in parallel when executed besides
that she has already partitioned the program by data dependencies of the components.
Furthermore, it has been also revealed that task pools may not be necessarily real queues
but represented with functions.

14



Pool 0

Pool 1 Pool 1

in f1 out
f2

f4

f3

Figure 12: Programmer-defined partitioning of tasks into pools.

The functions assigned to task pools were called selectors that modeled simple heuris-
tics to decide which task to pick from the pool in question. We have distinguished two
main types of the possible scheduling schemes, where one of them followed the regu-
lar round-robin algorithm (that has been also featured in the earlier chapters), meaning
that always the first available task is selected, while the another one operates based on
a property of the tasks. This promises a good dynamic partitioning of the problem as
it evaluates the corresponding property at each scheduling step, adapting to the current
state of the processing dynamically. As task pools are assigned to each of the workers and
scheduling is expressed through selector functions as properties of the pools, scheduling
can be taken as it was distributed and each worker can decide for itself. Albeit it has not
been worked out in the chapter, it is worth to add that the defined combinators can be
also used by an algorithm to generate scheduling for the given application automatically.

Finally, all these concepts are supported by code generation, where only some guide-
lines are given. The reason is that we aimed to keep the description of the code generation
abstract considering that the semantics of the code to be generated has been already spec-
ified by the serial and parallel abstract programs. We believe that it is possible generate
programs for several target languages, potentially including today’s popular choice, the
LLVM intermediate format – as the role of the Backend type class shows the actual bot-
tleneck here is the compilation support of the languages employed in the description of
the dataflow network. The design choices discussed above also contributed to a simpler
run-time interface that may be implemented with only a few abstractions in mind. Sim-
plicity in case of run-time systems is virtually a requirement because inside the kernels of
traditional operating systems, everything has to be self-hosting. That is, there is usually
only a restricted version of standard routines are available.

5 Flow Programs as Operating Systems

In order to validate the Flow terminology and methodology introduced in the previous
chapters, we model a simple operating system. The constructed model to be demonstrated
here is specific to the domain of digital signal processing where our goal is to provide a
combined run-time and operating system for orchestration of DSP algorithms. We assume
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that such algorithms are already formulated in a dedicated domain-specific language,
Feldspar. The purpose of Feldspar is to capture the essence of digital signal processing
computations at a higher level. In an industrial setting, the algorithms are implemented
in C or assembly code, and thus their development involves pain-staking manual hand-
crafting of code. In addition, the resulting program is typically difficult to maintain,
and, in particular, difficult to port to new platforms. Feldspar addresses the problem by
expressing the algorithms in a clean, abstract, and hardware-independent way. Initial
experiments have shown that it is easier to design and implement algorithms at this level
of abstraction compared to that of C or assembly. Feldspar was designed specifically
for digital signal processing algorithms, taking into account the specific constructs of
the field. It expresses algorithms in a declarative manner instead of using hardware-
dependent low-level constructs. A compiler was developed for Feldspar to bridge the gap
between an abstract, easy-to-understand source program and the highly optimized target
code which makes use of the special features of the digital signal processing hardware.
All of those features make Feldspar an ideal choice for our demonstration purposes.

pipeline(1)

pipeline(i)

pipeline(M)

segment(1,1) .. segment(1,N)

reducesegment(i,1) .. segment(i,N)

segment(M,1) .. segment(M,N)

split/map
output

routecontrol

input

Figure 13: Abstract model of a digital signal processing system.

Here we present a possible extension to Feldspar using the Flow language, which can be
used to establish additional language constructs and computation primitives that can be
used as a high-level description of how to operate Feldspar programs on top of embedded
hardware, e.g. Tilera processors. That is to say, in a broader sense, we are describing a
way to model operating systems in the Flow language while simultaneously making the
implementation details more concrete in the context of the featured example. Domain-
specific languages are worked out for a particular problem domain, together with the
corresponding program representation and computation model. The same could also be
employed in construction of operating systems, thus now we demonstrate how to engineer
them towards a well-characterized domain. Domain-specific languages are already used
to describe parts of operating systems, or express operating systems as a collection of
carefully designed domain-specific languages (c.f. Barrelfish [67]). However, it is not
common to consider an operating system itself as a matter of specialization (c.f. Mirage
[47]). Although there are certain situations where traditional operating systems (e.g.
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Audio Processing Application
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audioproc = split --< (processing, processing) >-- merge

where processing = fft --> effect --> ifft

Figure 14: A sample audio processing application in Flow and Feldspar.

Linux or BSD) are employed in environments that are very specific to certain domains,
they cannot be considered fully optimized systems in general.

Our model represents an alternative and more specialized design that instead tries
to exploit the knowledge of the application domain. In the systems we model, several
discrete steps of digital signal processing transforms are composed into applications to
perform a complete functions. Thereby simulatenously handling multiple flows of data
with similar chains of processing configured dynamically and individually. Specifications
of such systems are often written in a manner that emphasizes a compositional style,
and algorithms are described by themselves and their different configuration-dependent
compositions. The majority of such problems consist of designing the interaction of
the parts in the processing chain. Properties of the interaction include method of data
transfer, data format, and spatial locality.

In this chapter, we first start with a general characterization of systems employed in
the field of digital signal processing. It is followed by a concrete example called audioproc

that is slowly extended to cover the use cases from the field. In parallel with that, we
describe how to fit Feldspar to the Flow language and thus how for tailor a modelling
language for our needs. Up to this point we have not provided much detail on a Flow

can be simulated or compiled to a specific target language – now, with the help of the
featured audioproc example, we take the opportunity to walk through those details as
well.

Note that, for the sake of clarity and simplicity, we do not reach the level of hardware-
dependent specifics during the discussion of the example run-time system and the user-
specified extensions. As we noted in the schematic description of the run-time support

17



in the previous chapter, there can be many different deployment scenarios where, for
example, a microkernel with some support for the Flow primitives (i.e. workers, tasks,
task pools, message queues) is sufficient. In this example Flow program, there are known
open edges (represented as open nodes whose implementation have to be given in the
target language). In other words, we rely on the user to feed the dataflow network with
and consume its generated output. We believe that such parts can be addressed easily
by the practitioners as even operating systems written in C have to contain sections
implemented in platform-specific assembly to some degree. Fortunately, such sections
are usually small and simple, and their only purpose is to fill in the gaps between the
hardware-specific details and platform-independent body of the system. Given that there
are experiments to describe hardware interfaces [64] or application binary interfaces [10],
it seems likely that such areas will be covered in the future.

We provided a characterization of a type of systems employed in the field of digital
signal processing in the chapter. During the investigation into how such a system might
look in practice, we noted the following features: the task processes data from multiples
sources with similar lines of processing, called pipelines. Pipelines are made from seg-
ments that may contain many different kernels that may be replaced dynamically at run
time. Events are also supported because they are used in such systems to instruct the
processing pipelines to change. As our summarized experience on the subject presented
in Figure 13 shows: the input is first split into pieces to be routed to one of the pipelines
then assembled after other end of the processing has finished.

To model such a system, we created a toy example of a simple audio processing appli-
cation, called audioproc. audioproc is programmed as a combination of the combinators
from the Flow language and Feldspar, where the latter is used as a domain-specific lan-
guage to express the small programs inside the nodes or in the Flow terminology, kernels.
The open nodes in this program were programmed as simple C programs that used the
functions of the PulseAudio API. We could have given an example where no such user-
level libraries were used, but we opted for them to illustrate the purpose of the functions
to be provided by the user. Independently of this, we believe that similar functions can
be written when lower level communication with the hardware devices is desired. As
the associated performance measurements supported, the implementation can be indeed
done in an efficient way, doubling the throughput of the constructed dataflow network on
two processors.

Note that the Flow language here aimed to implement only the parts missing from
Feldspar, everything else can be expressed on the level of the domain-specific language.
That makes the Flow flexible as it simply assists to the partner language in the process of
extension. Problems like serialization/deserialization (any other related protocol) of data
communicated between nodes is left to the implementors of the domain-specific languages
as part of the development of the binding. That makes it still lightweight enough to be
used without interfering with the other languages.

On the other hand, delegating that degree of freedom to the domain-specific language
has shown the advantage of extending the deforestation properties of Feldspar to the
larger program. Depending on how the kernels are marked within the program, it becomes
possible to remove the intermediate data structures (e.g. messages queues) between
nodes. That does not require the Flow to know anything about the specifics of the
language used. Thus, if the user connects two Feldspar programs sequentially then they
may be “fused” together [24], while if the same is implemented in the Flow language,
the channel is inserted and their execution may get overlapped and not fused. Since the
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complete program is written up by only a few expression, it is easy to reorganize the
parts. Everything else may be then generated (derived) automatically.

As another backend for the Flow program, we have shown how to simulate the be-
havior through the semantics of the abstract program. Because each input data (i.e. the
information coming through the source node, and the global parameter set for the kernels)
was represented as an infinite list, they can be viewed as a series of values. The Cartesian
product of the sets characterized by the infinite lists results in a series of discrete states
that enables a discrete simulation for the constructed model.

6 Related Work

Madhavapeddy et al. [47] targets a similar goal to ours, their work, Mirage is designed
and implemented with functional programming in mind. The problem of how to deal
with the platform-dependent details of running a system written in a functional language
on top of hardware is elegantly delegated to hypervisors and only a port of the OCaml
run-time system has to be provided for them. In contrast, Haskell is only used as a
flexible and powerful specification and meta-language in our solution. The result would
always be some target-language, e.g. C or even LLVM code. We are confident that it has
the advantage over the approach of Mirage that no run-time system has to be ported.
It is sufficient only to provide the set of abstractions for the given platform that we are
depending on, that may already be present already there. However, porting a run-time
system of an existing and well-established programming language gives more freedom to
the programmer as he is technically able to use any pre-existing construct in the language.
The question of which method will provide more benefits in the long run cannot yet be
judged in our opinion. Apart from that, we agree with the concept of Mirage, that is
typically a domain-specific system where a functional language can compete with the
standard (and sometimes bloated) approach. But we note that OCaml is not pure a
language that may complicate the question of correctness for Mirage.

A similar attempt for Haskell can be also experienced from the side of HaLVM [22]
where they essentially chose the same approach and ported a Haskell run-time system
to the top of a Xen abstraction layer. Running and working with Haskell in the field
of systems programming is otherwise a constant topic of the joint project of Galois,
Inc. and the Portland State University, titled “High-Assurance Systems Programming”
(HASP) [31]. They have three major research goals: they want to implement a brand-new
functional programming language, called Habit [30], that is directly engineered towards
systems programming; a high-assurance run-time system [50]; development of tools and
techniques for formal reasoning about each of these and their interconnection. Based on
the available results of the project their work is heavy-weight compared to our approach
as they are trying to solve the aforementioned problems in general with mathematical
precision. The PhD thesis of Leslie [42] illustrates how they answer the question of
implementing a memory-safe operating system in a purely functional language on the top
of the L4 microkernel [45, 46]. In comparison, we have only barely touched the question
of memory management as we do not assume dynamic but static memory management
in the context of a well-defined (and restricted) computation model. It is a trade-off in
favor of making our model simple and manageable. The audioproc example also shows
that our advantage is in gearing the constructed model towards a certain application
domain, and we are not trying to solve all the problems in general. The home page [31]

19



currently shows a minor decline in the progress that lead us to believe that it is hard
topic. Perhaps our approach may be tackled better for those specific cases.

In the past, the researchers from the same group worked with the House operat-
ing system [28], which is implemented in Haskell. In Granuke’s master’s thesis [26] a
branch of House is introduced, titled Lighthouse which integrates the Lightweight Con-
currency framework [43] for experimentation. As a result, the thesis features an extensible
operating-system scheduler programmed in Haskell. It is similar to our thoughts as it tries
to raise the process of development of schedulers to an abstract level. However, it still
closely adheres to the traditional foundations. The implemented scheduler is basically
passive, that is, it may be considered rather as a collection of routines written in Haskell.
There is a simple interface defined but not for hints as we presented in our thesis. One of
the main reasons is that we have chosen a cooperative concurrent multitasking without
supporting preemption. Nonetheless it is interesting to learn that House originally lacked
the notion of thread priority. To address the problem, Lighthouse utilizes that feature of
the incorporated concurrency framework and extends the handling of priorities in many
different ways. That also spawns the extensible scheduler framework referred to above
which facilitates straightforward implementation of various scheduling policies. In our
case, no concept of priority is introduced as competing program codes are wrapped into
tasks and the user himself is offered the opportunity to organize the optimal execution
scheme for the Flow program.

The recent works of Simon Marlow et al. [48, 49] show that expressing workflow
systems in functional languages is still very much a hot research topic indeed. The
Par monad is an extensive and generic tool to support parallel programming in a very
efficient way. It does not do any I/O hence it is considered pure and therefore it can
be used at many different places to describe similar (even dynamic) dataflow networks,
where a scheduler can be also specified, but there the scheduler interface of the Par

monad is not for general consumption, rather only provided as an “escape hatch” for
relaxing certain cases. However, it uses many tricks (like IORefs) to make it work inside
Haskell and is not concerned with code generation. Flow, on the other hand, tries to
avoid most monadic features and concentrates instead on how to build automatically
generated programs supported by a minimalist run-time system. It then can be used for
describing and compiling event-driven system programs for embedded hardware.

Hernyák et al. [32] work with a coordination language, called D-Box (together with
D-Clean), for Clean programs which is similar to our proposed framework (if we ab-
stract away from the differences between Haskell and Clean). However, their focus is on
supporting distributed applications. We believe that similar skeletons may be easily con-
structed in the Flow language, simply written as higher-order functions (or meta-language
templates). As we have decided to employ language embedding as an implementation
technique and they implemented a standalone compiler for translating their high-level
programs, they had to cope with the connected typing and implementation problems.
Their work also puts emphasis on supporting and enforcing channel protocols while in
our work these are simply delegated to the little languages used in the network. As an
additional note, the Flow language turns out to be general as depending on the attached
run-time system, it is easy to provide support for implementing network communication
between the nodes, therefore it may be used for describing distributed computations.
Although we have to pay the price that source and sink nodes cannot be described by the
Flow programs. Whereas in D-Box an explicit support for that is implemented. Another
important difference is that D-Box has better support for dynamic behavior in the form
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of dynamic channels.
It is typical for embedded systems that the operating system is prepared to be deployed

on the given hardware. Solutions based on microkernels provide some support for this. A
prominent representative of this approach is Enea OSE [15] which is one of the most widely
used real-time operating system in the industry. The primitives featured in Enea OSE
architecture are very similar to the one we capture in our model (processes with message
passing), and the implementation is highly sophisticated: modular, layered, fault-tolerant,
distributed, event-driven, deterministic architecture with task monitoring and optimized
memory usage. A promising attempt is ArchiDeS (Architecture, Deployment, Scheduling)
[6], which is a research framework written in C++ for building a large stream-processing
system on multi-core processors. It supports run-time configuration of the constructed
application. The key concepts for ArchiDeS are the interface ports and interface port
types, containing a dedicated message handler to specify the run-time behavior for the
given port. Interfaces can be assigned to single or shared component modules that are
first-class entities in the system. There is also a replaceable scheduler and a run-time
system paired up with the components that supports different, large-scale multi-core chips
and application-specific scheduling. It features both data and pipeline parallelism, similar
to the solution presented here. However, a drawback of those tools from our approach is
that they still have to be programmed in C or C++. The modular design provides nice
abstractions as building blocks, but due to the nature of such programming languages it is
hard for the compiler to figure out how to optimize the constructed applications further,
like removing intermediate data structures when they are not needed for performing
similar simplifications in the application. Besides that, the application code still has to
be written in C or C++ which tends to be more error-prone and verbose compared to
high-level and domain-specific languages.

The use of domain-specific languages for generating code for operating systems is a
well-known technique. The Barrelfish operating system is the result of a research project
in to the possibilities in structuring operating systems for today’s and future’s hardware.
Barrelfish features a development framework, named Filet-of-Fish where the researchers
have chosen a similar approach to ours: essentially, they embedded C into the functional
language Haskell. Filet-of-Fish gives strong static guarantees that the code generated
code is valid by construction and it can be always compiled. In contrast to our approach,
both Barrelfish and Filet-of-Fish solve the problem for generic operating systems, while
we are focusing only on concepts that are specific to a domain.

From the side of digital signal processing, it is still an open research problem to find
an elegant way to describe a digital signal processing system in a common high-level
language to achieve productivity, efficiency, and portability at the same time [55]. A
distinct characteristic of digital signal processing algorithms is that they usually do not
require run-time decisions, they can be expressed as so-called signal-flow graphs. In signal-
flow graphs, computations are represented by graph nodes and dependencies between
the computations by branches, and they can be used for analysis and code generation,
making this formulation popular for modeling such systems. That also supports our way
of representation since we are technically building such graphs in the Flow language.

As a related project, Ptolemy [41] studies modeling, simulation, and design of concur-
rent, real-time, embedded systems, focusing on assembly of concurrent components, and
using well-defined models of computation that govern the interaction between the com-
ponents. Ptolemy is based on the principles of object-oriented programming and it has a
decent implementation in Java. Although it solves many problems (e.g. scheduling) re-
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lated to the development of operating systems for digital signal processing applications, it
still can be only considered a generic research effort into finding an appropriate modeling
language for such systems, and not a way in which to provide reliable and clever com-
pilation of components, which is our focus. Nevertheless, results of the Ptolemy project
can be re-used here to handle some of the computation-related aspects of the elements
to be modeled resolved.

7 Conclusion and Future Work

This thesis summarizes our attempt to use a contemporary functional language, Haskell,
as a specification language and develop a compiler for it. We used the technique of
language embeddeding to create a glue language, called Flow to implement a method for
composing programs written in arbitrary embedded domain-specific languages. During
the discussion, we defined certain conventions and conditions that assist in construction
of applications to be run directly as part of embedded systems. We used Feldspar,
an embedded domain-specific language as an example to demonstrate how to construct
an application in the domain of digital signal processing. Digital signal processing is an
important domain in the industry and with the advent of many- and multi-core processors,
it constantly searches for new technologies for developing systems in a rapid, yet reliable
and suspendable way.

The Flow language was designed with requirements of such systems in mind. Cer-
tainly, we believe that the Flow language cannot be used just for building digital signal
processing systems, but it offers enough flexibility to be used in other domains, or even
with algorithms of multiple domains at the same time. Regarding this, Flow gives free-
dom to the authors of those little languages as it has only minimal requirements on the
implementation, and it makes possible to extend it further inside the given language to
reach our goals.

Based on the experiences during our research in the area, we can draw the following
conclusions.

– Domain-specific nature of the description provides better visibility to the compiler
that can be exploited during optimization and code generation. If the constructs for
a program are too low-level, then the compiler must be very intelligent to identify
abstractions in the source program. Another danger of being low-level is that it is
easy to write programs that are hard to reason about, hard to determine whether
they conform to the specification. Domain-specific languages, on the other hand,
usually offer more high-level constructs that help to guide the thoughts of the
programmer around a given abstract model that captures the main concepts of the
domain. By using the domain-specific constructs, the programmer is able to reveal
more of his intentions, and thus the compiler is able to learn more about the problem
to be solved. In a fortunate case, the definition of the language itself coincides with
a formal specification, i.e. that programs themselves become specifications. In case
of Feldspar, they are the mathematical formulas that the corresponding programs
shall implement supported by [8, 9].

– Declarative nature of the description helps the programmer to avoid the error-prone
and uncreative work of writing boilerplate code. Restructuring the application re-
quires less effort. From the point of view of compilation, the declarative approach
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technically contributes to the specification being viewed as input to a knowledge
base, wherein the compiler has some freedom in the translation as it knows more
about the system, and it knows this on a higher level. The declarative view also
motivates the programmer to not to be too loose in the details of the solution.
Such way of extracting the essentials makes the resulting programs compact – sim-
ilar to the expression representing the audioproc application –, and therefore easy
to understand and change. That is described in [54].

– Compositionality pays off in development of operating systems as well. Choosing
to express an operating-system-like program as a composition of multiple layers
implies a powerful software engineering methodology. Mixed with the declarative
approach, composition – or merging – of the layers may profit from the removal
of intermediate data structures, and that way they may be fused to a specialized
program whilst it was being written as a composition of generic components. We
believe that the Flow language presented in [53] is a good example of how to design
and implement an abstract vehicle that may be used as an additional layer to re-use
existing components in a different setting.

– The domain-specific semantics demands only a specialized minimal run-time envi-
ronment that can be ported to several architectures without major difficulties. In
the thesis, we present the semantics of the foundations for representing and run-
ning programs as dataflow networks that operate only with a few abstractions: task
pools, tasks, message queues, and workers. As part of the thesis, we have given a
concrete example on the API required to be implemented for the C programming
language on top of a POSIX-compliant system. We are confident that it may be
lowered down to the bare metal, though there are embedded system manufacturers
(e.g. Tilera) that already provide a POSIX-compatible run-time environment on
top of their boards. The results were published in [54].

In summary, the observations above enable us to conclude that the potential of func-
tional languages in compiler technology come with certain advantages in the development
of operating systems, where models may be taken as specifications for reliable code gen-
eration.

However, there are some evident points in our current research that may be concluded
even further as part of a potential future work.

In our opinion, it is possible to continue with finding and characterizing additional
higher-order combinators for selector functions to cover a wider class of schedulers. In
the thesis, only the concept and a few examples were presented, but we believe that area
still has some research potential. We left it for future work as our goal was rather to
show a proof of concept.

Nor we did discuss the algorithm for finding automatic partitioning and selecting the
optimal selector function for task pools. In the current model, the user (i.e. the pro-
grammer) is responsible for manually drawing the lines between the pools and assigning
selectors to them. It may be misleading, but we have noted that if there is no annotation
present in the high-level description about these settings, only a default scheme will be
applied, which actually means employing some trivial heuristics. In our opinion, our
current results presented in this thesis may serve as a good starting point to experiment
with and implement such an algorithm as it technically establishes some basic combina-
tors that the user can use, but the program still cannot. It is a deep and interesting topic
thas has also been left for further research.
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It would be worthwhile exploring how to extend the Flow language with support for
more dynamic behavior, e.g. introduce the optionality property of channels. However, at
the moment it may be expressed with a Maybe-like FlowType type, where a data equal
to Nothing is sent over the channel to signal that in the current computation step there
is no data coming from that direction so the program within the connected node may
skip its processing. But that may not be optimal in terms of performance, therefore it is
desirable to investigate how to get rid of the imposed overhead in the generated code.
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[9] G. Dévai, M. Tejfel, Z. Gera, G. Páli et al. Efficient Code Generation from
the High-Level Domain-Specific Language Feldspar for DSPs, Proc. ODES-8:
8th Workshop on Optimizations for DSP and Embedded Systems, assoc. with
IEEE/ACM International Symposium on Code Generation on Optimization
(CGO), 2010.

[10] I.S. Diatchki, M.P. Jones, R. Leslie. High-Level Views on Low-Level Represen-
tations, Proceedings of the 10th ACM SIGPLAN International Conference on
Functional Programming, 2005

[11] I.S. Diatchki, M.P. Jones. Strongly Typed Memory Areas Programming
Systems-Level Data Structures in a Functional Language, Proceedings of the
2006 ACM SIGPLAN Workshop on Haskell, 2006

[12] I.S. Diatchki. High-Level Abstractions for Low-Level Programming, PhD thesis,
OGI School & Engineering, Oregon Health & Science University, 2007

[13] I.S. Diatchki, T. Hallgren, M.P. Jones, R. Leslie, A. Tolmach. Writing Systems
Software in a Functional Language: An Experience Report, Proceedings of the
4th Workshop on Programming Languages and Operating Systems, 2007

25



[14] C. Elliott, S. Finne, O. de Moor. Compiling Embedded Languages, Proc. Se-
mantics, Applications and Implementation of Program Generation (SAIG
2000), 2000.

[15] Enea AB. Enea OSE: Multicore Real-Time Operating System, http://www.
enea.com/, 2011.

[16] Feldspar Group. Feldspar Home Page, http://feldspar.inf.elte.hu/

Date: 05-26-2011.

[17] The feldspar-language package. http://hackage.haskell.org/package/
feldspar-language-0.4.0.2, Date: 04-27-2011.

[18] The feldspar-compiler package. http://hackage.haskell.org/package/
feldspar-compiler-0.4.0.2, Date: 04-27-2010.

[19] M. Felleisen, B. Findler, M. Flatt et al. Building Little Languages With Macros,
Dr. Dobb’s Journal, April 2004.

[20] G. Fu. Design and Implementation of an Operating System in Standard ML,
Master’s thesis, University of Hawaii at Marona, 1999

[21] W. Fu, C. Hauser. A Real-Time Garbage Collection Framework for Embedded
Systems, ACM SCOPES, 2005

[22] Galois, Inc. HaLVM Home Page, http://www.halvm.org/, Date: 01-15-2012.
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[54] G. Páli. Declarative Scheduling of Dataflow Networks, Annales Universitatis
Scientarium Budapestinensis de Rolando Eötvös Nominatae, Sectio Compu-
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