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1. Introduction of the Thesis

1.1 Context

There are very few research domains not to have been impacted or utterly re-

moulded by the computational revolution which emerged in the second half of

the last century and has ever since been gaining momentum. Economics, in gen-

eral, and finance, in particular, make no exception in this respect. The advent

of high-performance computers has allowed modern-day economists to push the

boundaries of what social scientists can do. The computer-based approach to eco-

nomics gave rise to an alternative computational paradigm [113, 166] to the rigid

neoclassical theory, which heavily relies upon complex mathematical models and

pays little regard to whether these truthfully describe the real economy.

The new computational class of models challenge and redefine almost all the

core assumptions which are sacrosanct to the neoclassic economic theory, and

which make the associated mathematical models appealing and tractable. Thus,

standard fundamental concepts such as, for instance, perfect rationality or homo-

geneity of economic agents are merely dismissed and replaced by flexible hypothe-

ses of bounded rationality [139] or, respectively, heterogeneity in attributes and

behaviour. The new types of bounded-rational computational agents no longer

attempt to perfectly optimize the utility of their choices but rather to have a more

realistic behaviour, which aims at making satisfactory choices.

The need for closer to reality financial models lead to the employment of

computational Agent-based Models (ABM) [86, 171], which set up trading en-

vironments characterised by heterogeneity, bounded-rationality and market non-

equilibrium dynamics, and where the artificial agents are abstractions of real-world

market participants, humans and computer systems alike. The agents can be en-

dowed with full artificial intelligence, learning and analyses capabilities, complex

strategies and expectations, and, more recently, adaptive evolutionary aptitudes

[81].

The encounter between economics and Agent-Based Models gave birth to a new

branch of economics which has recently received a lot of consideration in economic

and financial research under the Agent-based Computational Economics(ACE)[80]

or ,more specifically for the financial context, Agent-based Computational Fi-

nance(ACF)[32] denominations . Agent-based Computational Economics stud-

ies from a computational perspective economic processes by modelling them as

dynamic systems of interacting agents. Over the past two decades, ACF, in par-

ticular, has increasingly been seen as an effective approach to financial analysis

by both researchers and practitioners as it does not abide by the constricted and

2



1. Introduction of the Thesis

simplifying assumptions of neoclassical theoretical models.

ACF models apply numerical methods to analyse data stemming from computer-

based market simulations [96] of complex market dynamics where standard theo-

retic foundation is not easy applicable. Adopting a constructive philosophy, they

can simulate intricate financial market environments characterized by unstable

equilibria [68] where market crashes and peaks can be easily reproduced. There-

fore, ACF models does not require simplifying assumptions as, through repeated

computer simulations, the modeller can easily investigate the diversity of emerg-

ing patterns and accurately discern the dynamics of very specific financial markets

configurations which are virtually impossible to approach in the classical way. For

these reasons, we intend to use them in our thesis to reproduce and comprehend

flash crash market events.

1.2 Motivation

On May 6th 2010, the S&P 500 e-mini contract suddenly lost about 9% of its

value in a matter of seconds only to recover its losses within minutes, drawing

attention on the potential repercussions of ever-more complex and sophisticated

stock markets. After nearly five months of investigation, the Securities and Ex-

change Commission (SEC) and Commodity Futures Trading Commission (CFTC)

filed a joint report September 30, 2010 entitled ”Findings Regarding the Market

Events of May 6, 2010”1, tracing the sequence of events that led this Flash Crash.

Many possible explanations were expounded by both the official inquiry and the

academic research [46, 91] and high-frequency trading was hinted as one of the

possible causes for this market event, but without clearly identifying a single re-

sponsible class of factors.

If the official inquiry did not hold responsible the high-frequency operators

and their diverse and sophisticated new types of trading practices, it nevertheless

did identify a large automated sell execution program in the S&P 500 market as

the main accelerator of the flash crash. This large automated sell was soon after

followed by a liquidity shock at both the composite index and individual stocks

level which directly resulted in the flash crash.

While the governmental regulators vaguely correlated the flash crash occur-

rence to the growing dominance of HFT orders in the markets, the academic

community[46] offered a single viable theoretical model able to satisfactorily ex-

1http://www.sec.gov/news/studies/2010/marketevents-report.pdf

3



1. Introduction of the Thesis

plain the liquidity shock and based their argument on a cornerstone information

asymmetry assumption which[46] coined order flow toxicity : the market makers

as liquidity providers were forced out of the market by informed traders through

large high frequency orders which eventually triggered the price crash.

Figure 1.1: The flash crash of 6 May 2010

Despite the considerable amount of attention received from various think-

thanks, economists, media groups, researchers and U.S. governmental regulators,

the specific cause of the flash crash remains in dispute. Emergence of high am-

plitude flash crashes is very bad news for investors. Worse though, is the general

attitude which focused the corrective measures on mitigating the flash crash effects

rather than elucidating its cause and preventing other reappearances.

Although crashes do appear in the financial markets, experts worryingly note

that, in the current marketplaces dominated by automatic trading, crashes keep

occurring dangerously often. For instance, a smaller amplitude mini flash crash

took place just a few months ago on April 23, 2013. Nonetheless, their average

amplitude is much smaller than the amplitude of the 2010 mega Flash Crash; the

flash crash of 2013 provoked a price fell of ”only” two percent.

The worries of the investors are fuelled by increasingly frequent technical in-

cidents. Weeks ago, on August 26, 2013, trading on the Nasdaq stock exchange

halted in the middle of the trading session for an unprecedented three-hour pe-

riod following a computer related problem. The disruption pushed brokers to

apprehend what went wrong, and rose additional concerns about the pitfalls of

computer-driven stock trading. Fortunately enough, the Nasdaq freeze arose in an

orderly fashion, did not cause panic or perturb other segments of the stock mar-

ket, and, thereby, did not lead to a flash crash. Nasdaq officials announced that

the problem was situated in its price-disseminating software system. A thorough

4



1. Introduction of the Thesis

investigation is under way.

These episodes do have concrete financial repercussions. Some analysts [76]

estimate temporary market value losses going up to as much as one trillion dollars

($ 1.000.000.000.000) as a result of the temporary market price fall on May 6,

2010. Therefore, these hazardous market incidents are obviously extremely harm-

ful and damaging for the confidence of the investors in the overall reliability of the

market pricing mechanisms. They can induce a sense of concern amongst market

participants that repeated flash crash occurrences could affect their investment

strategies.

Facing the uncertainty of flash crash causes and the adverse economic con-

sequences they can induce, we must redouble our efforts to utterly unravel the

configurations which might provoke these highly poisonous market events. As

these events still remain statistically rare, agent-based artificial markets can pro-

vide a very useful framework to reproduce, analyse and comprehend the flash crash

characteristics and dynamics.

1.3 Research Objectives

Agent-based models provide very powerful simulation platforms which can ac-

curately capture all essential aspects of market dynamics, which are generally

difficult to observe and fully analyse in traditional analytical models. We use such

models as basis for our research undertaking.This approach results in new finan-

cial models, by introducing agent heterogeneity, bounded rationality and other

properties that would make analytical models hardly tractable. Within these

agent-based frameworks, we examine one of the most recent research question in

market finance: the emergence and unfolding of flash crashes. Our agent-based

model analysis of flash crash events and forecasting metrics is complemented with

traditional mathematical and statistical instruments.

First, we offer an overview of the flash crash market events and the main fore-

casting model proposed so far by the academic community Volume Synchronized

Probability of INformed Trading (VPIN) (Chapter 2).

Then, we present how agent-based models have invested the financial modelling

world through the advent of artificial agent-based financial markets, and we list

some of technical and implementation issues related with their emergence. We

also provide a succinct presentation of the the artificial market platform we use in

our experiments (Chapter 3).

In the context offered by the literature survey and the presentation of the plat-

5



1. Introduction of the Thesis

form, we develop our own market models within the presented framework in order

to investigate the the dynamics of artificially generated flash crashes (Chapter

4). While the main research stream of academic literature [46, 47, 48] is directed

towards a better assessment of the likelihood of flash crash occurrences, to our

knowledge, little or no attention is paid to fully understand the unfolding of a

such market events. Therefore, our approach aims to elucidate the dynamics and

the key features of a market flash crash, by relying upon the theoretical devel-

opments stated above, including the information asymmetry assumption, and a

complementary hypothesis of predatory/prey behaviour of the informed traders

towards the uniformed ones. This assumption states a prey/predatory nature of

financial markets [40] where any type of advantage is immediately exploited by

the market participants that possess it. These behavioural traits could set in mo-

tion the underlying forces behind the flash crash events as prey/predatory ecosys-

tems frequently have unstable dynamics where small perturbations or disruptions

prevent the convergence towards equilibria, whereby inducing cyclic movements,

which can explain to a certain extent the large swing in assets prices during flash

crash unfolding.

Given the fairly modest amount of empirical evidence which asserts VPIN as

a trustworthy flawless informed trading proxy, we also attempt to evaluate its

consistency as a flash crash predicting metric through a specific experimental set-

up placed within an artificial agent-based market (Chapter 5). Concretely, we want

to verify whether the VPIN metric detects significant levels of informed trading

within settings where all market participants are uniformed. In this context, we

also plan to observe VPINs behaviour and dynamics. Another objective we have

is to offer, based on the observations, a better theoretical basis for some specific

VPIN dynamics identified by critics [7].

Finally, as the existing literature lacks, besides the VPIN metric, high fre-

quency estimators of the probability of informed trading [55, 133], we also aspire

to develop some alternative procedures for quantifying informed trading. We aim

at developing an alternative metric using some an artificial intelligence techniques.

We would also like to find VPIN substitutes obtained through algorithmic based

strategies. Naturally, we have to evaluate the relative effectiveness of these new

crash-predicting metrics against the VPIN benchmark (Chapters 6 and 7).

6



1. Introduction of the Thesis

1.4 Organization of the thesis

The work presented in this thesis pertains to a single research area. It addresses

several aspects of the flash crash topic in financial markets by extensively using

computer science simulation tools. This is primarily a thesis of Computational

Finance [2] with all the involved complex interdisciplinary aspects ranging from

financial theory and computer science to mathematical finance, numerical methods

and econometrics [32].

Computational finance, as a research area, has expanded into virtually ev-

ery branch of finance, especially in the financial markets field [33] over the last

two decades. It represents a powerful tool-kit for analysing problems of practical

interest in finance and, thereby, support or invalidate market models and hypoth-

esis. This thesis aims to use the capabilities of this type of analyses in order to

reproduce and further understand statistically rare market crash events.

This thesis is organized into two parts, and includes eight chapters in total

which introduce and , then, investigate through computational tools several points

of the flash crash topic.

1.4.1 Part I - Introduction, Context and State of the Art

The first part of the thesis introduces the context and the related literature used

throughout this research. It presents financial markets flash crash related facts

and theories which of use for our dissertation. This part also provides a succinct

state of the art of agent-based artificial stock market systems.

Chapter 1. In this first chapter, we present the general introduction of the

thesis. Here we convey the motivation and the research objectives of our work.

Chapter 2 presents the some important points of interest of the 2010 Flash

crash unfolding. We refer to the conclusions of the official enquiry as well as

to the academic research related to this topic. We conclude our undertaking by

providing the reader with a state of the art of the VPIN model which claim to be

the best predictor flash crash events.

Chapter 3 offers a short overview of agent-based artificial stock market frame-

works, the motivation for using them in financial market simulation and research

area. This chapter also points out the advantages of this approach as compared

to the classical approaches stemming from the economic theory. We continue by

presenting some important concepts for artificial market agent-based realm. We

conclude the chapter by a short presentation of the simulation framework that we

use throughout our thesis : ArTificial Open Market (or ATOM).

7



1. Introduction of the Thesis

1.4.2 Part II - Results and Research Contributions

The second part of the thesis presents our results and contributions in the in-

vestigation of several flash crash related issues. This part contains four chapters

that address three research aspects ranging from the limitations and advantages of

the VPIN metric under specific market modes and configurations to attempts at

providing theoretical explanation to some of the VPIN dynamics observed shortly

after the flash crash unfolding. All the simulations are realized using artificial

agents implemented in ATOM. The chapters contain information and research re-

sults closely or more loosely related to personal papers which has been published

or accepted for publication [149, 150, 151, 152, 153]. A list of accepted papers and

conference presentations can be found at the beginning of the thesis.

Chapter 4 elucidates the dynamics and the features of a market flash crash

by describing the asset price processes in volume time units. Relying on the

information asymmetry assumption and considering a stochastic prey-predator

Lotka-Volterra model [167], we develop the deterministic and stochastic differen-

tial equations for the price development at flash crash time. The main novelty

of our strategy resides in modelling the price stochastic process by a volume-time

Ito process. The theoretical foundation of our approach relies primarily upon the

hypothesis that the flash crash is the immediate repercussion of growing levels

of order flow toxicity in asymmetric markets. The main ingredient of the model

is the assumption that the set of interacting agents which generate at every mo-

ment informed transactions behave in a predatory manner towards the uniformed

trading population at flash crash time [40].

In chapter 5 we gauge the reliability of the VPIN metric as an order flow-

toxicity estimator within an artificial agent-based stock market populated with

zero-intelligence traders and trend-followers. We verify whether the VPIN wrongly

detects informed trading in a very specific experimental set-up where all market

participants are uniformed. We evaluate the expected behaviour of the metric

through Monte Carlo simulation. We also put forth a brief theoretical argument

aiming to explain a particular feature of the VPIN dynamics observed during

simulation phase. The argument relies on slightly modified assumptions for the

VPIN model.

Chapter 6 outlines a Support Vector Machine based discrete volume-time ap-

proach to estimating the Probability of Informed Trading. We aim to offer an

alternative metric of the extent to which liquidity providers are prone to systemat-

ically engage into losing transactions within a high-frequency trading environment

8



1. Introduction of the Thesis

characterized by systematic overbuying or overselling conditions. Our theoretical

model supposes the existence of two homogeneous classes of markets participants:

the informed traders who attempt to take advantage of the private information

set they possess and the uninformed traders who provide liquidity on the market.

We assume that the expected price depends on the excess demand generated by

informed traders. Under this assumptions, we derive a time point formula for the

PIN and offer a matrix based method for estimating it.

Chapter 7 tests whether simple volume-time algorithmic approaches combined

with elements of optimization theory can produce effective estimators of the PIN

metric in environments which replicate much of the real-world markets price series

dynamics. The assessment of this algorithmic approach is done by using different

types of settings and informationally asymmetric classes of trading agents.

Chapter 8 concludes our dissertation and summarises all the research contribu-

tions obtained throughout the thesis. Finally, it points to several possible future

directions of research.
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2. 2010 Flash crash and VPIN

2.1 The 2010 Flash Crash

The 2010 Flash Crash was a stock market crash that took place on Thursday May

6, 2010 at 2:45 pm eastern time, on the equity indices throughout the United

States and which rapidly propagated to virtually all open equity markets around

the world. For instance, the Canadian indices sharply fell approximately two

minutes after[1]. The American stock indices lost, on average, around fife to

six percent [120] of their value, only to recover most of their losses within half an

hour. Notable hight declines appeared on the Dow Jones Industrial Average, which

suddenly dropped more than nine percent (or around 1000 points), witnessing the

biggest intra-day point decline in its history, and S&P future contracts, which lost

about eight percent of their value. But even more spectacular were the swings

that appeared in the individual composing securities like Accenture PLC stock

which, for instance, just before the crash, was trading at a greater than 95 percent

discount to the price and was quoted at around 39 dollars. Then, it had suddenly

saw its price plunging at an incredible 1.84 dollars per share level, before recovering

to close the trading session at 41.09 dollars. And this was not by any means a

singular case [1].

Figure 2.1: An example of a recent small amplitude flash crash that took place on
April 23, 2013 on Dow Jones Industrial Average

Although crashes are not uncommon in the financial markets, experts wor-

ryingly note that, in the current marketplaces dominated by automatic trading,

High-Frequency Liquidity-Shortage Crashes keep repeating dangerously often. For

instance Fig. 2.1 illustrates the mini Flash crash that took place on April 23, 2013.

Nonetheless, their average amplitude is much smaller than the amplitude of the
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2. 2010 Flash crash and VPIN

Flash Crash. For instance, the flash crash of 2013 implied a price fell of only two

percent on fake report of explosions at the White House disseminated into the

market after hacking an influential twitter account and posting market-moving

news. The 2010 flash crash is peculiar very peculiar in two respects:

• Its amplitude is antecedently high for so short a time period;

• As quickly as the market dropped, it suddenly and dramatically reversed

itself reaching within minutes the preceding price level;

• It seems to be essentially liquidity-shortage driven.

In the May 6 case, ”the market makers were buying stocks and it became very

hard for them to turn the portfolio around to sell.They accumulated losses and at

some point had to shut their portfolios down and vanish from the market. The

crash occurred because there was no liquidity”[75].

Some financial analysts [76] estimate temporary market value losses going up

to as much as one trillion dollars ($ 1.000.000.000.000) as a result of the tempo-

rary market price fall. Therefore, this type of hazardous behaviour is obviously

extremely harmful and damaging for the confidence of the investors in the overall

reliability of the market pricing mechanisms. It can induce a sense of concern

among market participants that repeated occurrences of these incidents could af-

fect their investment strategies. As a result of this concern, the U.S. Securities

and Exchange Commission and the Commodity Futures Trading Commission es-

tablished on May 7, 2010, in the wake of the crash, the Joint CFTC-SEC Advisory

Committee on Emerging Regulatory Issues (also known as The Flash crash Com-

mittee) to develop recommendations on emerging and ongoing issues relating to

both agencies. The founding chart of the joint committee states that it will serve

an essential role in addressing the challenges of identifying how events in one

market can adversely impact investors and markets elsewhere.

The first assignment of the committee was to conduct a review of the market

events of May 6, 2010 and to make recommendations related to market structure

issues that may have contributed to the volatility explosion, as well as harmonize

disparate trading conventions and regulations across various markets.

The joint CFTC-SEC official inquiry was not very conclusive while correlat-

ing the flash crash occurrence to the growing dominance of HFT orders in the

markets.It primarily identified a large automated sell execution program in the

S&P 500 market as the main accelerator of the flash crash. This large automated
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2. 2010 Flash crash and VPIN

Figure 2.2: The Board of the Flash crash committee as of 10 May 2010 on the
U.S. Securities and Exchange Commission’s (SEC) website

sell was soon after followed by a liquidity shock at both the composite index and

individual stocks level which directly resulted in the flash crash.

The Joint CFTC-SEC Advisory Committee indicated that although many fac-

tors contributed to events of May 6, and ”different observers place different weights

on the impact of each factor, the net effect of that day was a challenge to investors’

confidence in the markets.” [23].

A far more accurate analysis and better retracement can be found in the aca-

demic literature. The current literature on the subject indicates the next steps

during the crash unfolding [120]:

• A large sell order of 75,000 E-mini contracts was gradually placed on the

market [144];

• The order was placed in an already very toxic market environment which,

as a result, became even more toxic [49];

• The high-frequency traders ended up flooding the market with sell orders

causing the E-mini price to plunge [91];

• In an increasingly interrelated and interdependent market system, this in-

duced price declines, first in the index trackers (ETFs, for Exchange-traded

Funds) and soon after in the index composing securities [16];

• for lack of liquidity induced the collapse of the ETFs [22]. The loss was con-

siderably higher in markets were the relative size of high frequency trading

in the overall volume was higher [109].
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For more details, [120] offer an in-depth anatomy of the Flash crash at the mil-

liseconds level offering further insight into causal links and propagation velocity

of the crash.

In the next section, we will succinctly present the Volume Synchronized Prob-

ability of INformed Trading model, the one viable response proposed, to this date,

by the academic community to explain the occurrence of the 2010 Flash Crash.

2.2 The Volume Synchronized Probability of IN-

formed Trading (VPIN)

So far, VPIN is the most significant theory proposed by the academic community

to clarify the causes of the flash crash [46]. Using well-known capital market micro-

structure models, it presents the crash as a direct result of information asymmetry

in the market. The most prominent of its authors is professor Maureen O’Hara

from Cornell University, who is chairman of the board at Investment Technology

Group, and is also a member of the Joint CFTC-SEC Advisory Committee on

Emerging Regulatory Issues.

Easley et al. [46] highlight the effect of systematic informed trading on the

liquidity of the market and propose to capture its pernicious effect with a metric

which accurately assesses the probability of informed trading. Their work received

notable consideration in the empirical finance literature and has been pursued by

its promoters, notably [48, 51]. According to Easley at al. [46], the probability

that informed traders adversely select uninformed traders can be seen as a proxy

for what they named order flow toxicity. To this end, they developed the Volume

Synchronized Probability of Informed Trading (VPIN) metric, which is a real-time

estimate of the manner in which the liquidity is provided on the market under

informationally asymmetric conditions.

Order flow becomes toxic when it is initiated by counterparts possessing reliable

private information on the direction the prices are heading. This creates trade

imbalances that eventually produce considerable losses for market makers unless

they reduce the size of their positions. As order flow toxicity increases, the less

informed market participants have to withdraw in order to avoid further losses,

consequently drawing even more liquidity out of the market and increasing the

overall level of flow toxicity in the traded volume. This self-sustaining mechanism

eventually results in driving all the market making activity out of the market,

and causes liquidity-induced crashes; the May 2010 flash crash being one major
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example according to them. Easley et al. [46] indicate that one hour before the

flash crash VPIN reached its highest value in recent history.

Easley et al. [46] put forward a possible market-based solution to prevent the

market makers from being forced out of the market. The solution they advocate

would suppose setting up a futures contract with pay-offs based on VPIN. Thus, as

soon as the VPIN goes up, they can hedge their risks and don’t have to withdraw

from the market.

2.2.1 Succinct Description of the Theoretical Model

The VPIN model stems from the seminal work of Easley and al. [55], published

in the Journal of Finance in 1996. Using a Bayesian strategy to infer the fraction

of informed orders, the study puts forth a market micro-structure theory which

explains the degree to which market makers are willingly liquidity providers and

defines a metric known as Probability of Informed Trading (PIN) to estimate the

magnitude of informed orders.

Concretely, the PIN model assumes that arrival of private information makes

the security’s price (here denoted by S) evolve to 2 possible values SB or SG

according to the nature of the news (bad or good). The model also supposes that

information arrives in the market at a homogeneous intensity rate α. The news are

either bad, with the probability δ, or good, with the probability 1− δ. Easley and

al.[55] prove that the expected value of the security’s price can then be computed

at time t as

E[St] = (1− αt)S0 + αt [δtSB + (1− δt)SG] .

Informed and uninformed orders arrive at constant Poisson rates of µ and ε

respectively. Then, in order to avoid losses from informed traders, market makers

reach break-even at a bid level

E[Bt] = E[St]−
µαtδt

ε+ µαtδt
(E[St]− SB) .

while the break-even ask level at time t is

E[At] = E[St] +
µαt(1− δt)

ε+ µαt(1− δt)
(SG − E[St]) .

Thus, the break-even bid-ask spread has the following expression

E[At −Bt] =
µαt(1− δt)

ε+ µαt(1− δt)
(SG − E[St]) +

µαtδt
ε+ µαtδt

(E[St]− SB) .
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2. 2010 Flash crash and VPIN

Figure 2.3: The PIN trading diagram [55]

Therefore,

δt =
1

2
⇒ E[At −Bt] =

αtµ

αtµ+ 2ε
(SG − SB) ,

which tells us that the determinant of the range at which market makers provide

liquidity is

PINt =
αtµ

αtµ+ 2ε
.

The probabilities α and δ are updated at a time point t through a Bayesian

estimating strategy [27] in order for them to incorporate information after each

trade arrives to the market.

In the aftermath of the 2010 flash crash, Easley and al. [46] proposed VPIN

as a high-frequency estimate of PIN. This metric is a volume clock which realizes

a volume sampling of the market activity at regular volume buckets volume-time

intervals.

V PIN =

∑n
τ=1 |V S

τ − V B
τ |

nV
,

where τ is a bucket of traded volume, V S
τ and V B

τ are the sell and buy volumes

(traded against the Bid and Ask respectively), V is the total volume per bucket.
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Figure 2.4: VPIN evolution just before and during Flash crash computed on E-
mini S&P 250 [17]

2.2.2 VPIN as an Order Flow Toxicity Estimator

The VPIN model is used to determine in real-time the extent to which the Market

Makers are subject to systematic hostile market conditions induced by informed

trading. The systematic adverse selection of market makers by informed traders

could eventually have deleterious effects in the overall market liquidity provision

and induce liquidity crises similar to the 2010 Flash crash. If the order flow

becomes highly toxic, market makers gradually need to leave the market and,

by doing so, increase even further the relative toxicity of the order flows, which

eventually triggers a cascading effect and results into a liquidity driven crash.

Under these circumstances, the capital advantage of the VPIN metric is that

it monitors and predicts in real-time the dynamics of these poisonous market

phenomena.

The high-frequency VPIN model gained in popularity as a crash predictor

on May 6, 2010, when it reached, with as much as one hour before the crash,

unprecedented high levels in recent years prefiguring the emergence of a liquidity

driven market crash. This prompted, in the succeeding period, the academic

community and regulatory public authorities to further study its overall dynamics

and features.

For instance, the governmental Lawrence Berkeley National Laboratory, in an

independent study [17] of the May 6, 2010 events realised on behalf of the U.S. Se-

curities and Exchange Commission (SEC), stressed out the viability of the VPIN

metric as a liquidity crash-predictor in hight-frequency trading environments con-

17



2. 2010 Flash crash and VPIN

cluding that it is, by far, the most accurate early warning signal known to them at

the time. [3] realized a second independent study only to reassert VPIN’s capac-

ity to predict toxicity-induced volatility on cash stocks. This study underlines the

fact that the VPIN field of action does not restrain to the high-frequency trading

environments, although it was conceived to fit their specifications. They indicate

that empirical results indicate its ability to be a proxy for adverse selection risk

for longer periods of time. The main parameter of the VPIN calculation is the

granularity of the volume bucket. For specific granularities VPIN can be helpful

beyond the well confined high-frequency trading realm.

The interest in understanding the relationship existing between VPIN dynam-

ics and disrupted liquidity provisions becomes of paramount relevance as these

studies show that liquidity crises can become more and more frequent in a high-

frequency world dominated by algorithmic market-making strategies.

Another by-product brought about by the VPIN theory is the effect the Order

Flow Toxicity has on volatility levels as VPIN explains the spread widening be-

tween the bid and ask quotations as result of increases toxicity. A discussion on

the causal relationship between VPIN and volatility levels can be found in [49]. A

good practical illustration of applying VPIN concepts and theory is provided in

[40].

2.2.3 VPIN as a potential instrument for Financial Mar-

kets Supervision

[17] showed that VPIN would be a useful metric to monitor in real-time the prob-

ability of a liquidity crisis. Academics as well as a some U.S. officials considered a

possible solution to averting liquidity induced market crashes by using a regulatory

systems dedicated to computing time estimates of crash probabilities. If values of

the metric reach dangerously high levels, stock exchanges could decrease volume

exchange rates, giving the market time to clear and avoid a crash generated by

sudden flooding with buy or sell orders. Some SEC officials deem that a viable

VPIN based system able to monitor financial markets cannot be put into place as

long as a certain number of theoretically related aspects are not fully understood

and clarified.

[120] examined the VPIN evolution during the flash Crash and found a negative

correlation between the relative proportion of large selling programmes in the

market and the order flow toxicity. The study confirms the usefulness of the

VPIN as an Order flow toxicity estimator [3]. [120] indicate the reason of this
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negative correlation resides in the fact that informed traders sell passively during

upturns and aggressively just after while they do not trade in downturns.

As pointed out in the previous sections, VPIN can be used as an order flow

toxicity estimator beyond the high frequency world and can hint adverse selection

the same the PIN metric does. The estimation accuracy parameter would depend

the number of volume buckets used. This findings opens the perspective for VPIN

to be a regulatory instrument in longer horizon contexts [3].

More interesting, [169] show that different types of securities have different

VPIN characteristics. Furthermore, VPIN as an order flow toxicity estimator can

explain and predict future several intra-day trading factors such as :

• Price volatility;

• Quote imbalance;

• Volume bucket duration;

• Trade intensity.

They also point out that causality flows the other way around: ”similarly, it is not

surprising that these intra-day factors are also able to explain VPIN to a certain

extent and the reverse causality is also true” [169]. This findings reassert VPIN

as a powerful regulatory instrument.

2.3 Conclusions

In this chapter we briefly discuss the flash crash of 2010 and the model the aca-

demic community put forward in order to explain its emergence Volume Synchro-

nized Probability of INformed Trading. We start by exposing several important

figures which characterise the market event, and present the reaction of the market

regulatory authorities. We also list the chronology of the pivotal points of flash

crash unfolding and give some insight into the causal links amongst them and the

propagation velocity. In the second section, after a short summary of the VPIN

model, we enumerate the most important aspects which recommend the metric as

an interesting flash crash predictor.
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3. Agent-based Artificial Financial Markets

3.1 Agent-based models

Agent-based models (ABM)[86, 171] are computational models which simulate

the actions and interactions of autonomous agents in order to evaluate a set of

characteristics of the system they are operating into. Recently, their usage has

became increasingly widespread and popular in social sciences including economics

[124].

ABM reproduce the actions of numerous agents and the interdependency that

exists among them, in order to emulate and forecast the evolutions of complex sys-

tems. By agent we understand an entity part of the computationally constructed

world endowed with specific characteristics, attributes and behavioural methods

[83]. Starting from initial conditions specified by the modeller, the model evolves

as a bottom-up construction where lower level constituents, sub-systems or indi-

vidual agents, aggregate their actions in order to give rise to the top level system

dynamics. The agents may be highly dynamic as they adapt to their environment,

learn, die or reproduce [21]. [21] indicate the general composition of an ABM:

• A mix-up of various types of agents;

• The specific behaviour rules for each type of agent;

• A set of learning or adaptive rules;

• An interaction topology;

• The operating environment.

In the ABM the agents are purposeful. They act and interact in order to

simulate the functioning of a complex system. ABM are fit to describe rich envi-

ronments that include various features with greater fidelity than do mathematical

and/or statistical techniques. They represent a powerful analysis framework, in-

between unambiguous mathematics and potentially inconsequential descriptions.

One of the pivotal aspects of such architectures is K.I.S.S (”Keep it simple and

short”). This frequently encountered tenet, states in this context that complex top

level behaviour and patterns emerge as a combination of rather simple and nave

individual behaviours. Another governing characteristic of these models is that

the system as a whole is greater than the sum of its parts, since it encompasses

the whole complexity that stems from the interactions taking place among the

subcomponents.
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3.2 Agent-Based Models in Economy and Finance

Two of the main applications of Agent-based models are the economic and financial

research fields [80]. The encounter between economics and Agent-Based Models

gave birth to a new branch of economics which has received a lot of consideration

in economic and financial research recently under the Agent-based Computational

Economics denomination. Agent-based Computational Economics (ACE) stud-

ies from a computational perspective economic processes by modelling them as

dynamic systems of interacting agents.

Over the past two decades the ACEs has increasingly been seen as an effective

approach to economic and financial analysis by both researchers and practitioners

[71, 114, 150, 159] as they do not abide by the constricted and simplifying assump-

tions found in the neoclassical theoretical models characterised by homogeneous

economic agents. These are replaced by agents with heterogeneous, dynamic, and

interdependent behaviour. Through their significant flexibility and ability to inte-

grate a large variety of assumptions on the behaviour, configuration and interac-

tion topology of the market participants, they complete and, to a certain extent,

replace the existing mathematical and econometric toolboxes. They certainly fur-

ther the understanding of highly complex and seemingly unpredictable conditions

and configurations present in the economies, in general, and financial markets, in

particular. For these very reasons, we employ them in our thesis so as to gain

insight and validate the mathematical modelling of the flash crash events.

ACE models apply numerical methods to analyse data stemming from computer-

based simulations of complex dynamics where standard theoretic foundation is not

easy applicable [89]. Adopting a constructive philosophy, they can simulate, for

instance,intricate market environments characterized by unstable equilibria [68]

where market crashes and peaks are very frequent. ACE models, unlike the clas-

sic models, does not require top-down assumptions as, through repeated computer

simulations, the modeller can easily investigate the diversity of emerging patterns.

The top-down assumptions in the classical models are generally made for math-

ematical tractability tractability reasons, but these restrictions often result in an

oversimplified less interesting abstractions of the real-world phenomena.

Although the ACE models can always be formalized as systems of mathe-

matical equations [61], these are sometimes intractable. The ACE modelling is

therefore deemed superior to general equilibrium models or stochastic dynamical

systems. [65, 122] indicate that ABMs represent more accurately the markets

complex environment than classical models which do not incorporate complex in-
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formation sets about the financial sector. The Nature journal editors [122] also

indicate that ”economic modellers should consider adopting the modular archi-

tecture used in many climate models. This approach makes it easy to aggregate

smaller models into more comprehensive simulations, while still allowing steady

improvement in each piece”. Thus, modellers should be able to accurately simulate

the dynamics of very complex computational economies which are very difficult to

approach in the classical way.

In this perspective [122, 159], ACE models are primarily conceived to emulate

computational economies as complex dynamic systems [11, 136] with a plethora

of micro-agents repeatedly engaged into local interactions, and with other com-

plicated aspects encompassing micro-behaviours, interaction patterns, and global

regularities. These global regularities after being created feed back into the deter-

mination of local interactions. This back-and-forth diffusion mechanism result in

an intricate system of interdependent feedback loops connecting micro-behaviours,

interaction patterns, and global regularities.

Therefore, according to [157], the ACE main subject of study is to decipher

the phenomena that underlie the natural emergence of regularities in economic

processes unfolding. Such an example is the unplanned coordination of trading

activities in decentralized market economies that economists associate with Adam

Smith’s invisible hand [157]. ACE aim at explaining how these global regulari-

ties arise from the local interactions of autonomous agents rather than through

unrealistic oversimplified mathematical mechanisms.

There have been observed many similarities between ACE and game theory

when applied to modelling agent interactions [77, 138, 145], but also significant

differences as, within ACE, many events are solely determined by initial conditions,

whether or not equilibriums exist or are tractable. Another difference stems from

the ability of the agents to enhance their autonomy and continuous learning and

adaptation [159].

Economic processes are perceived by ACE as agent-based complex adaptive

systems [158] where the actors are human-like computational objects that attempt

to make the most credible or profitable choices at action time. The rules that map

situations to actions try to reproduce human behaviour and social interactions

based on reinforcement learning [154]. The agents must discover which actions

maximize a reward function by trying them. The rule can also be discovered

through AI techniques.

ACE replaced the classical economic market equilibrium by the notion of bounded

rational agents adapting to market conditions [141, 142]. [11] affirms that ACE
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are able to model a wider variety of situations than the neoclassical equilibrium

models (out-of-equilibrium and convergence to equilibrium configurations). In the

classical economic models regularities stem from the perfectly rational (and unre-

alistic) behaviour of all economic agents, which simultaneously seek to maximize

their utility functions in the context of scarce resources allocation to competing

ends [87, 119, 168].

Bounded rationality implies that agents are approximatively rational by mak-

ing the ”best” choice within a set of simple choices available. Their decision-

making is impaired by lack of cognitive ability and resources [163, 164](frequently,

information and/or time). The access to additional resources of any sort, when

available, generally induces supplementary costs. Therefore, the agents chose a

satisficer’s (and not a optimizer’s or a maximizer’s) behaviour: they only look

for satisfactory solutions as opposed to optimal ones [90]. Bounded rationality is,

therefore, a concept meant to provide an acceptable solution to the critic that fi-

nite computational resources prevent agents from making perfectly rational choices

and behaving fully rationally. The theory of bounded rationality was pioneered by

[146]. Generally, in these models, the market agents are not heterogeneous with

large diversity of behaviours and attributes, but rather, instances of classes where

all agents are, at best, slightly modified replications of a class representative.

In financial research, rationality, full or bounded, is an important topic as it

has non-trivial implications [9, 64, 81, 82, 102] on the overall market efficiency

[62, 63, 110] (the inability to consistently predict the evolution of asset prices at

different time horizons starting from current and past information).

[8] separate the research contributions of ACE models into two partially over-

lapping classes:

• A class composed of models where results proceed from a analytical investi-

gation that results in tractable closed-form mathematical formulas [35, 36];

• A class containing models where research contributions stem from analysis

of computer simulations, such as in [25, 66, 108]. This intuitive simulation

strategy leaded [157] to describe the process as a bottom-up approach to

the study of economic systems. The data is the output of repeated simula-

tions performed with different parameters values corresponding to different

contexts. The contributions we bring in this thesis pertain primarily to this

second class.

For the ACE models from the second class simulation is very important as it

provides the dataset to which the modellers will resort during their analysis. The
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simulation output allows researchers to track the evolution of the computational

economy, the dynamics, adaptation and successive states of agents as well as the

interactions occurring amongst them.

3.3 Agent-based artificial financial markets

The Agent-based artificial markets are computational platforms which try to con-

structively simulate the functioning of real world financial markets through agent-

based trading panels and various auction mechanisms. The cornerstone guide,

to this date, on the building and designing such complex systems is provided by

[96]. Nevertheless, additional aspects can be found throughout the literature [140].

These markets use various specific models of price creation as bid and ask order

streams proceed from the market participants. The market actors are artificial

trading agents which are most often characterized as bounded rational [139, 161]

acting to optimize some profit and risk function, using simple decision-making

rules or more sophisticated full artificial intelligence methods.

The main convergence point between real-world markets and artificial ones

is provided by the stylized facts in price and volume time series [38]. Stylized

facts are simplified characterisations of empirical findings and essentially refer to

market data statistical properties which hold true most of the time. An exhaustive

list of the stylized facts known to this date is provided by [32], and we present

it in table 3.1. They were first observed in the real-world financial markets and

can be correctly reproduced, through sometime fine tuning calibration[24, 96, 170,

173] and validation[5, 114, 170] methods, within the artificial multi-agent market

frameworks. Calibration refers to choosing the parameters which make a model

to best fit the empirical data. Validation refers to verifying the ability of a model

to fit or not the data. This ability of the artificial markets to mimic the statistical

properties of real-world data to the point of not being able to tell them apart, is

essential to the market research undertaking.

Interestingly enough, the literature indicates that many stylized facts and mar-

ket dynamics do not derive from sophisticated agents behaviours. For instance,

interesting conclusions are drown from the early work of [73]. They have demon-

strated that even highly uninformed Zero-Intelligence Traders (ZIT) can perform

well during double-auction experiments where they observed that high market ef-

ficiency was generally obtained as long as the traders acted within their budget

constraints. [73] conclude that the market efficiency they observed, derived from

the structural aspects of the auction and not from the learning capabilities of the
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agents. The basis of these early findings was later confirmed by developments of

[34, 74] which came to the conclusion that good market performance should not

automatically be attributed to trader learning and rationality. Nevertheless, they

also drew some cautions about the generality of these early findings.

A interesting development by [32] presents a econometric viewpoint on the

development of ACE in an attempt to build the econometric foundation of ACE;

they attempt to explain the emergence mechanisms for some of the stylized facts.

They reflect on providing an agent-based foundation for financial econometrics.

They focus their analysis more specifically on agent-based modelling of financial

markets.

In the artificial markets platforms, an important role is played by the simula-

tion capabilities. For the artificial financial market case, multi-agent simulations

frequently address investment and asset price dynamics problems. This approach

seeks to provide more conclusive analysis tools for investment decision making

through more realistic and flexible assumptions. The simulations can be repeated

multiple times using the Monte Carlo method [129] in order to derive the main

statistical properties of the significant variables time series.

Over the last twenty years, the simulation process has continuously enhanced

its performance and effectiveness by significant advances in the artificial intelli-

gence techniques and increased computer capabilities. The final scientific goal

of the simulation process is to ”test theoretical findings against real-world mar-

ket data in ways that permit empirically supported theories to cumulate over

time.”[159] Financial market simulations focus on a multitude of contexts and

specificities of real markets, and try to grasp their intricate dynamics and causes

[24, 89, 172].

The subject has been first applied to research in asset pricing by [73] and

continues to be deemed as a promising path forward in the domain. The fun-

damental question that goes along with simulation is the type of market micro-

structure, agents’ behaviour and intelligence needed to reproduce realistic stylized

facts. Extensive valuable discussion on the subject can be found, for instance, in

[6, 95, 103, 107, 115].

The multi-agent ecosystems of financial markets can be very rich [26]. [32]

identifies an n-type formulation of heterogeneity for ACF systems containing n

different types of trading agents (see Fig. 3.1. The majority of the most frequently

encountered models in the literature are weakly heterogeneous.

In our dissertation, we will also resort to rather weakly heterogeneous trading

environments, containing only three types of agents (3-type models). The market
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Table 3.1: Stylised facts encountered in financial markets[32]. ”The stylized facts
are separated in 6 blocks in the table. The first two refer to the stylized facts
pertaining to return and trading volume , using low-frequency data. The next
four refer to the stylized facts of return, trading duration, transaction size ,and
bid-ask spread , using high-frequency data.”[32]

No. Code Stylized Facts Reference

1 AA Absence of Autocorrelations [38]

2 AG Aggregational Gaussianity [38]

3 BC Bubbles and Crashes [137]

4 CE Calendar Effect [156]

5 CHT Conditional Heavy Tails [38]

6 EPP Equity Premium Puzzle [93]

7 EV Excess Volatility [39]

8 FT Fat Tails [38]

9 GLA Gain/Loss Asymmetry [38]

10 LE Leverage Effect [38]

11 LM Long Memory [38]

12 PLBR Power Law Behavior of Return [69]

13 PLBV Power Law Behavior of Volatility [67]

14 VC Volatility Clustering [38]

15 VVC Volatility Volume Correlations [39]

16 PLBTV Power Law Behavior of Trading Volume [69]

17 VLM Long Memory of Volume [60]

18 AA-H Absence of Autocorrelations [156]

19 FT-H Fat Tails of Return Distribution [156]

20 LM-H Long Memory [156]

21 PE Periodic Effect [156]

22 BU Bursts [156]

23 CTD Clustering of Trade Duration [130]

24 DLM Long Memory [130]

25 DO Overdispersed [130]

26 PLBT Power Law Behavior of Trades [69]

27 US U Shape [162]

28 SCPC Spread Correlated with Price Change [162]

29 TLS Thinness and Large Spread [121]

30 TD Turn-of-the-year Declining [121]
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Figure 3.1: A spectrum of ACF models: Heterogeneity [32]

micro-structure we use is quote driven. As our case studies are essentially meant to

evaluate the characteristics of the VPIN metric as a volume flow-toxicity estimator

or to compare it to other metrics, we populate the marketplace with the following

types of participants with different behaviours and functions [40]:

• Zero-intelligence[84] traders which contribute through their buying and sell-

ing activities to the price creation; they are along with the market maker

liquidity providers. In the VPIN model [46, 55] they would correspond to

the uniformed traders which generate streams of buy and sell orders at some

Poisson rate;

• One market maker[31, 125] which stands ready to buy/sell asset at its posted

bid and ask prices at any time;

• Some other homogeneous class of artificial traders which are all carrying out

a common strategy as soon as they detect the emergence of a trading signal

and which make the VPIN metric evolve through the relative magnitude of

their market activities and the correlation of their behaviour. Their corre-

lated behaviour affect the VPIN dynamics. This third class of agents can

also have predatory behaviour towards the agents of the other two classes

generally based upon an additional private information set. The study of

prey/predatory ecosystems has received a huge amount of research. A rather

complete overview of the main aspects can be found in [15]. The main point

we want to stress here is the prey/predatory nature of financial markets [40]

where any type of advantage is immediately exploited by the market partic-

ipants that possess it. More important, these behavioural aspects are the

main cause behind the flash crash events as these systems have unstable

dynamics where small perturbations or disruptions can prevent the conver-
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gence towards equilibria inducing cyclic movements, which can explain the

large swing in assets prices during flash crash unfolding, along with their

amplitude and timing.

In the next section we will offer a short presentation of the Agent-based artifi-

cial financial market that we make use of throughout our dissertation, and within

which we define and run our models.

Figure 3.2: An interface window in ATOM illustrating the simulation of a simple
market configuration (Minimum market Model)

3.3.1 ATOM

There are significant and interesting artificial market software implementations in

the literature:

• Santa Fe Artificial Stock Market. It is cited in a number of significant pub-

lications as [12, 58, 59, 98, 131]. [88, 98] present technical and architectural

features of the platform;

• Genoa Artificial Stock Market [37, 111, 112];

• NASDAQ Market Simulator [42];

• Agent-Based Simulation of Trading Roles in an Asynchronous Continuous

Trading Environment,described or cited, for instance, in [19, 20];

• Frankfurt Artificial Stock Market [79];

• Artificial Open Market [116];
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As giving a detailed description of all the platforms enumerated above would be

impractical and request a large amount of space, in this section we limit ourselves

to provide a short overview of the Artificial Open Market framework as we make

extensive usage of it as our simulation platform in this thesis.

3.3.1.1 General Overview

Throughout the thesis we make use of a specific artificial stock market, called

ATOM. We populate this framework with artificial trading agents who, through

their trading strategies and interactions, allow us to reproduce market flash crashes

and examine their dynamics as well as the validity and the accuracy of flash crash

forecasting VPIN metric proposed by the academic community in the aftermath

of the 2010 Flash Crash.

ATOM is a simulator of an order driven financial market in which buy and

sell orders are matched against each others through double auction books. In our

thesis we used a derived experimental version of the framework, which is quote

driven and makes use of a single market maker which continually posts BID and

ASK prices.

ATOM has been developed by researchers at Lille 1 University. Although,

ATOM can accurately simulate the behaviour of most order-driven markets, it

can be considerer more specifically as a NYSE-Euronext stock exchange emulator

as illustrated in Fig. 3.3.

Figure 3.3: ATOM can generate financial dynamics in line with the ones of the
Euronext-NYSE stock-exchange [116]

Since ATOM is delivered as a java-based development library, it can be ex-

ecuted on all operating systems (Windows, Linux, Unix etc.) supporting java

virtual machines.

ATOM can efficiently be used in both intra and extra-days trading sessions

where it can generate, play or replay simple and complex experimentations. The

first class allows us to create time series of prices or orders, the second allows
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Figure 3.4: An interface window in ATOM representing the price evolution of
several assets during simulation

to replay an order flow. These two classes generally suffice for a large number of

experimentations/learning activities. The trading agents can be either all artificial

or a mix of humans and artificial traders.

Figure 3.5: Stylized facts, ATOM versus Euronext-NYSE [116]

A interesting set of investigations, performed through ATOM simulations, on

different circumstances under which the econometric properties of artificial stock

markets accurately reproduce the real world price dynamics at various granular-

ities, for booth intra-day and extra-day periods, can be found in [166]. [166]

argues that generating realistic financial dynamics which reproduce quantitative

financial distribution is ”out-of-reach” within a ZIT only framework and proposes

more complex trading configurations in order to achieve that purpose.
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Figure 3.6: An configuration interface window in ATOM

3.3.1.2 Short overview of the ATOM concepts

In ATOM, the market place is represented by either a set of order books or a single

market maker. The trading agents must be listed with the market place in order

to trade. When agents, artificial or human, send orders at a given price, they try

to be executed if possible.

The framework offers the most current types of orders used in electronic mar-

kets:

• Market orders - orders to buy/sell at the current price;

• Limit orders - orders to buy at no more than a specific price, or to sell at no

less than a specific price;

• Cancel orders - to cancel an order which has not yet been executed;

• Update orders - to set new pricing to existing orders;

• Stop-loss orders - orders to sell a security when it reaches a certain price. A

stop-loss order is designed to limit an investor’s loss on a security position.

They are also known as a ”stop orders” or ”stop-market orders”;

• Stop-limit orders - they combine the features of stop order with those of

a limit order. A stop-limit order will be executed at a specified price (or

better) after a given stop price has been reached. Once the stop price is

reached, the stop-limit order becomes a limit order to buy (or sell) at the

limit price or better;

• Iceberg orders - large single orders that has been divided into smaller lots,

usually through the use of an automated program, for the purpose of hiding

the actual order quantity.
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In ATOM, an agent is an entity that sends orders to the market place or posts

bid and ask prices if it is a market maker. Agents may posses no or very sophisti-

cated behaviours, in accordance with the complexity of the experiments. Agents

with no behaviour, stand for order flow sources either systematic or exogenous

(real-world order flows). Agent with endowed with specific behaviour, are gen-

erally in full control of the size, frequency or periodicity at witch they place the

orders. The market place frequently uses a pop-order system when it comes to

interacting to them : at specific trading times they are asked to decide whether

or not they want to place a new order.

The framework offers three main types of trading agents :

• Zero Intelligence Traders (ZIT) - Their behaviour is merely stochastic as

they essentially reproduce a Bernoulli discrete process. In other words, at

every market request, an independent identically distributed Bernoulli trial

Binomial(1, 1
2
) of parameter 1

2
takes place. According to the outcome of

the trial (0 or 1), the ZIT agent sends either an ask or a bid order; the

size and the price of the order are randomly chosen. The ZITs [73] are

particularly useful in financial simulation of intra-day trading sessions, as

there is a considerable amount of empirical evidence that ZIT-only trading

panels suffice to reproduce the main stylized facts of intra-day price time-

series (the main stylized facts seem not to be the result of rational behaviour);

• Technical Traders - Technical analysis is a methodology for predicting the

direction and the future value of prices through the study of past market

data. It tries to identify patterns, primarily, in price and volume time series,

without paying any attention to the economic and/or financial fundamentals

of the traded security. The technical analysis can be applied to any type of

security and is often used as a complementary toolbox in investment decision

making. It provides the chartist traders [29, 30, 132] with different types

of buying or selling signals; these signals can be either directly used [10]

or combined and filtered in specific ways to elaborate more sophisticated

trading strategies/algorithms [150, 151]. The trading algorithms often make

use of learning strategies meant to optimize some specific profit and risk

related objective functions.

In ATOM, the agents can use such technical indicators as Simple Mov-

ing Average (SMA), Exponential Moving Average (EMA), Moving Average

Crossovers, Momentum, Relative Strength Index (RSI), etc. in order to

decide the timing, the size and the direction of their orders;
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• Sophisticated Intelligence Traders (SIT) - There are three types of SIT [116]:

– Finite-State Agents and Hollow Agents - as finite-state machine models

offer simple and natural representations for basic economic and finan-

cial features, the framework offers this useful programming modelling

possibility for the trading agents. Finite-State agents posses a small

level of sophistication in their behaviours;

– Cognitive Agents - can be endowed with full artificial intelligence, learn-

ing and analyses capabilities, complex strategies and expectations. Multi-

asset investors can be seen as a SIT examples while allocating their

wealth in assets with different risk levels in accordance with their spe-

cific utility functions. [28] [160] and [153] are other examples of cogni-

tive agents that implement order chunking or complex trading strate-

gies;

– Evolutionary Agents - these are agents based on Evolutionary Algo-

rithms(EA) . EAs [13], citeeib2003, [43] are generic population-based

stochastic optimization algorithms inspired by biological evolution pro-

cesses that allow populations of individuals to adapt to their environ-

ment. The adaptation implies the survival of the fittest individuals.

The evolution mechanisms encompass a set of stochastic operators [41],

known as reproduction, mutation, recombination, and selection, and are

iteratively applied on every individual of the population. Evolutionary

agents outperform cognitive agents in terms of complexity since they

evolve with their environment. Each and every type of evolutionary

agent can be implemented in ATOM.

ATOM offers sophisticated intelligence agents with different utility functions

[166] :

– Constant Relative Risk Aversion (CRRA)

– Constant Absolute Risk Aversion (CARA)

– Logarithmic

– Quadratic

A simulation instance encompasses a market, its associated trading panel and

the definition of a trading day. The simulation object enables us to modify fine

tuning properties such as, for instance, which of the two types of execution mono

or multi-threaded we want to use.
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The relative simplicity with which ATOM allows programmers to construct

simulation is illustrated in Fig. 3.7 where as few as a dozen lines of java code are

only necessary in order to build a fully functional simulation.

Figure 3.7: A very simple java programming example of simulation with ATOM

The authors indicate, in technical documentation of the product, the following

steps to build a simulation with ATOM:

• Chose either a mono or a multi-threaded simulation;

• Define the output formats by using specific logging modalities;

• Create order-books;

• Create the trading agent panel and add the agents to the simulation;

• Launch the simulation over a trading period encompassing one or multiple

trading days.

3.4 Conclusions

In this chapter we have given an succinct summary of the agent-based artificial

markets along with some insight into the most important related concepts such as

bounded-rationality, agent’s heterogeneity and some technical aspects as simula-

tion, calibration or validation. We have started with a section dealing with impor-

tant notions such as Agent-based Models, Agent-Based Computational Economics
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and Finance then, we offered a short presentation of the artificial agent-based fi-

nancial markets. We concluded the chapter by an overview of the Artificial Open

Market platform. This artificial market environment accurately emulates realistic

market dynamics and, thereby, enables us to use it as a basis for assessing the

market models studied in second part of the thesis.
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Contributions and Conclusions
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This chapter begins by summarizing the most important aspects of the thesis,

then, we review the contributions and drown conclusions.

In this thesis, we discuss flash crash market circumstances reproduced within

agent-based artificial frameworks [96]. In the beginning of the thesis (Chap-

ters 2 and 3), we present the context and state of the art of our research, the

Flash crash of May 2010 and computer simulation of market behaviour through

agent-based artificial financial markets. For specific prey-predator [167] in-

formationally asymmetric market environments, we propose a new model to

predict the dynamics of flash crashes and test its overall efficiency (Chapter 4).

As these market events start unfolding, we assess the effectiveness of the newly

proposed VPIN flash crash detecting metric [46, 55] and observe some of its lim-

itations(Chapter 5). In the following two chapters of the thesis (Chapters 6 and

7), we propose two alternative strategies to compute point estimates of VPIN and

compare their evolutions at flash crash time to the ones of VPIN.

We tested all our models within java-based artificial financial framework named

ATOM [116, 117]. This simulation platform provided us with a general environ-

ment for agent-based simulations of stock markets encompassing such meta-entities

as the market micro-structure, the trading agents and their behaviours and the

asymmetric information diffusion. The artificial agents in the simulation setting

do not rely on the assumptions of rationality and homogeneity as our modelling

encompass multiple types of agents with different functions, purposes and be-

haviours.

Chapter 4 elucidates the dynamics and the features of a market flash crash

by describing the asset price processes in time units. Relying on the information

asymmetry assumption and considering a stochastic prey-predator Lotka-Volterra

[167] model, we developed the deterministic and stochastic equations for the price

development at flash crash time. The theoretical foundation of our contribution

relies primarily upon the hypothesis that the flash crash is the immediate reper-

cussion of growing levels of order flow toxicity in asymmetric markets. The main

ingredient of the model is the assumption that the set of interacting agents which

generate at every moment informed transactions behave in a predatory manner

towards the uniformed trading population at flash crash time [40].

From our price modelling we determined the fraction of informed trading vol-

ume PIN. We theoretically showed that the PIN peak represents a lagging indicator

of the flash crash bottom expected price, this being a limitation for any metric

estimating PIN. More, the lag between the PIN peak value and the flash crash

bottom price realization times represents an indicator of the intelligence of the un-
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informed traders, i.e. the smaller the lag the higher is the diffusion of the private

information within the uninformed trading population. This result theoretically

proves the power of PIN in highly efficient markets.

By modelling the price as a function of volume · PIN we showed that PIN

is fast to increase but slow to decrease after the flash crash, which theoretically

explains empirical findings of Easley et al. [46] and their opponents [7].

Based on our stochastic modelling, using VPIN as a proxy for PIN, we devel-

oped an estimation methodology for inferring the model parameters during the

flash crash unfolding. This allows one to early predict the amplitude of the crash,

the expected time of the flash crash bottom price, flash crash duration and the

expected price trajectory.

We tested our model within an artificial market simulator and showed that, for

un-leveraged markets, we were able to accurately estimate flash crash dynamics

and characteristics during its unfolding.

We also approached the general case of a competition amongst the informed

traders and showed how our modelling can fit such a market, making our model

of general usage. We showed that competition reduces the lag of the PIN metric

both punctually and asymptotically for low levels of learning rates in the uniformed

population.

We provided a straightforward interpretation of the interchangeable and mul-

tiplicative effects that both increased competition and higher intelligence levels

have on the PIN effectiveness. A higher intelligence level of the uniformed trad-

ing population can substitute for a lack of competitiveness among the informed

traders and vice versa. Both of them have compounded multiplying effects that

enhance the effectiveness of the PIN as an early flash crash estimator. The sub-

stitution rates depend primarily on the ability of informed traders to over exploit

the private information.

Obviously, all the desirable properties and unsatisfactory limitations that we

related to the Probability of Informed Trading [55] variable in the context of a in-

formationally driven predatory flash crash, hold true for any of its good estimators

including VPIN.

In chapter 5 we gauge the reliability of the VPIN metric as an order flow-

toxicity estimator within an artificial agent-based stock market populated with

zero-intelligence traders and trend-followers. We verify whether the VPIN wrongly

detects informed trading in a very specific experimental set-up where all market

participants are uniformed. We evaluate the expected behaviour of the metric

through Monte Carlo simulation. We discover that it may erroneously ”disclose”
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information asymmetry in environments where all the operating traders are uni-

formed.

Furthermore, a considerable surge in percentage of trade-followers can induce

unpredictable and volatile evolutions of the VPIN. We also notice behavioural

asymmetry when prices are trending upwards and downwards as VPIN is more

likely to rise during downward trends. We conclude that, in a high frequency

trading environment, VPIN gauges not only the level of order flow-toxicity, but

more generally, the degree to which a significant minority fraction of the market

participants share a collective alternative vision of price development which makes

them function and operate as a unique aggregate and potent market actor. This

correlated behaviour ultimately results in significant imbalances between overall

supply and demand, and assimilates the VPIN metric to a by-product proxy of

systematic excess demand or supply regardless of the underpinning cause.

In chapter 5 we also put forth a brief theoretical argument aiming to explain

the VPIN lingering effect observed during simulation phase in accordance with

the findings of [7]. The argument relied on slightly modified assumptions for the

VPIN model.

We proved that the modified VPIN model can be assimilated to a standard

VPIN model as long as the ratio of informed volume yet to flow is proportionally

significant. When the ratio of informed volume yet to flow is proportionally small

the intensity of informed volume flowing is decreasing logarithmically in informed-

volume time. Therefore, this slightly modified VPIN model of chapter 5 seems to

offer a better theoretical interpretation of the VPIN lingering behaviour and can

provide the basis for future developments in the field.

The theoretical models of chapters 6 and 7 rely mainly upon binomial and

trinomial lattice approaches which accurately describe the martingale philosophy

behind the market making activity [123]: the hypothesis that, at the local level,

the evolution of publicly traded asset prices follows random motions, where the

probability, at any moment, of an uptick or downtick movement in the price are

identical and, thus, the economic viability of the market makers stems from posi-

tive gain expectations provided by the spread they perceive on each transaction.

Chapter 6 outlines a Support Vector Machine [101] based discrete volume-

time approach to estimating the Probability of Informed Trading. We aim to

offer an alternative metric of the extent to which liquidity providers are prone

to systematically engage into losing transactions within a high frequency trading

environment characterized systematic overbuying or overselling conditions. Our

theoretical model supposes the existence of two homogeneous classes of markets
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participants: the informed traders who attempt to take advantage of the private

information set they possess and the uninformed traders who provide liquidity on

the market. We assume that the expected price depends on the excess demand

generated by informed traders. Under this assumptions, we derive a time point

equation for the PIN and offer a matrix based method for estimating it. Just

as VPIN our metric is a good estimator of sheer systematic imbalances between

supply and demand. Through causality tests and correlation performed under

various market conditions we prove that our metric is roughly equivalent to VPIN.

We show that our estimator is more stable displaying a lesser amount of volatility

and a smaller percentage of outliers.

Chapter 7 confirms that simple volume-time algorithmic approaches combined

with elements of optimization theory can produce effective estimators of the PIN

metric in environments which replicate much of the real-world markets price series

dynamics. It might, therefore, be used outside of this rather simplistic and confined

simulation framework, in a solving a substantial range of financial problems which

require PIN estimations [18, 44, 45, 53, 85].

The assessment of this algorithmic approach was done by using different types

of settings and informationally asymmetric classes of trading agents. Under these

conditions the algorithmic computation of PIN was close enough of the VPIN

metric in most of the cases including situations with high VPIN values indicating

possible occurrence of a crash. Through causality tests and correlation performed

under various market conditions we empirically prove that the our metric ap-

proaches the quality of VPIN. As the accumulation of inventory and the overall

volatility of the prices have considerable impact on the market makers ability not

to desert the market, we also discussed very briefly the optimization aspects that

the algorithmic approach may take into account.

The contributions brought about by this thesis deepen the understanding of

statistically rare flash crash events and validate the usefulness of agent-based ar-

tificial market models in studying this important financial topic. We make use of

extensive simulations in order to relate the evolution of heterogeneous bounded-

rational [139] agent populations with asset price dynamics during flash crash un-

folding. Through direct application of the Monte-Carlo methods we identify ex-

pected behaviours under flexible assumptions. Repeated simulations exhibit the

direct relationships which exist between specific proportions of market participants

applying correlated trading strategies, and high values of flash crash predicting

metrics. We use agent-based research methodology along with other analytical in-

struments stemming from mathematical and econometric fields in order to provide
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rigorous explanations for the observed market dynamics.
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