

Babes-Bolyai University Cluj-Napoca, 400028 ROMANIA

Teza de Doctorat

Anca Cristina Petran

Coordonator stiintific Prof. Dr. ION GROSU

Cluj-Napoca Martie 2012

Organic Chemistry Department Babes-Bolyai University Cluj-Napoca, 400028 ROMANIA

Sinteza, Structura si Proprietatile Unor Noi Compusi Macrociclici si Noi Unitati Lipidice Functionalizate Pentru Aplicatii in Biofizica

Coordonator stiintific Prof. Dr. ION GROSU

Martie 2012

Cuvinte cheie:

Cuplare Suzuki Macrocicli Rotaxani Colesterol-nucleozide,-nucleobaze Lipide amfifilice Microtuburi lipidice Nanotransportori

Organic Chemistry Department Babes-Bolyai University Cluj-Napoca, 400028 ROMANIA

Juriu:

Conducator stiintific	Prof. Dr. Ion GROSU	Universitatea Babes Bolyai Cluj- Napoca, Romania
Presedinte	Conf. Dr. Ing. Luminita DAVID	Universitatea Babes-Bolyai Cluj- Napoca, Romania
Referent	Prof. Dr. Jürgen LIEBSCHER	Universitatea Humboldt Berlin, Germany
Referent	Prof. Dr. Cristian SILVESTRU	Universitatea Babes-Bolyai Cluj- Napoca, Romania
Referent	Prof. Dr. Ionel MANGALAGIU	Universitatea Al. I. Cuza Iasi, Romania

Martie 2012

Cuprins:

Multumiri Lista de abrevieri

1. Sinteza, Structura si Proprietatile Unor Noi Compusi Macrociclici	7
1.1. Referinte Generale Despre Chimia Supramoleculara 1.2. Noi Abordari in Sinteza Macrociclurilor Prin Reactie de Cuplare Suzuki	8 10
1.2.1. Referinte Generale Despre Derivatii de Tiofen si Fenotiazina 1.2.2. Referinte Generale Despre Reactia de Cuplare Suzuki 1.2.3. Objective	10 13 16
1.2.4. Rezultate si Discutii	18
1.2.4.1. Sinteza Precursorilor 1.2.4.2. Sinteza Macrociclurilor	18 25
1.2.5. Concluzii	34 35
 1.3. Macrociciii cu Posibile Aplicatii in Sinteza Rotaxanilor	35 35 36 38 40 42
 1.3.5.1. Sinteza axelilor 1.3.5.2. Sinteza macrociclurilor 1.3.5.3. Sinteza precursorului de "stopper" 1.3.5.4. Formarea pseudorotaxanilor si rotaxanilor 1.3.6. Concluzii 1.3.7. Parte Experimentala 	42 47 60 60 66 67
1.3.7.1. Indicatii generale 1.3.7.2. Sinteza si caracterizarea compusilor	67 67
2. Noi Unitati Lipidice Functionalizate Pentru Aplicatii in Biofizica	94
 2.1. Referinte Generale Despre Membranele Lipidice 2.2. Nucleozide Colesterol-Modificate ca Precursori Pentru Auto-Asambl Microtuburilor 	95 larea 98
 2.2.1. Referinte Generale Despre Nanotuburi 2.2.2. Obiective 2.2.3. Rezultate si Discutii 2.2.4. Concluzii 	98 102 103 118

2.3. Sinteza Unor Noi Derivati Amfifilici cu Functie de Recunoastere Biologica in	Vederea
Obtinerii Unor Sisteme Lipozomale Specifice de Transport	119
2.3.1. Referinte Generale Despre Transportul Medicamentelor	119
2.3.2. Obiective	123
2.3.3. Rezultate si Discutii	125
2.3.4. Concluzii	130
2.4.Parte Experimentala	131
2.4.1. Indicatii Generale	131
2.4.2. Sinteza si Caracterizarea Compusilor	131
3. Concluzii Generale	150
Lista Compusilor Noi	152
Lista Publicatiilor	158

Sinteza, Structura si Proprietatile Unor Noi Compusi Macrociclici

Cuvinte cheie:

Cuplare Suzuki Macrocicli Rotaxani

1.2. Noi Abordari in Sinteza Macrociclilor Prin Reactii de Cuplare Suzuki

1.2.4. Rezultate si Discutii

1.2.4.1. Sinteza precursorilor

Scopul acestui capitol a fost sinteza de noi compusi macrociclici printr-o reactie intermoleculara de cuplare Suzuki. Pentru sinteza macrociclilor tinta am folosit diverse conditii de reactie (substrat, baza sau solvent) pentru a identifica cea mai optima metoda de macrociclizare. Pentru prima data s-a folosit metoda one-pot de macrociclizare, in care reactia de litiere si cuplare au fost efectuate *in situ*.

Sinteza macrociclilor a pornit de la precursorii acestora. Acesti precursori au fost derivati de bitiofen, tertiofen si tiofen-fenotiazina. Primii precursori sintetizati au fost derivati de bi- si ter-tiofen. Bitiofenul **4** si tertiofenul **5** au fost sintetizati printr-o reactie de cuplare Kumada, iar apoi au fost bromurati in vederea obtinerii derivatilor dibromurati **6** si **8**. Derivatii dibromurati de bitiofen si tertiofen au fost utilizati mai departe intr-o reactie de litiere facand un schimb brom-litiu. Dupa acest pas a urmat aditia electrofilului trimetilborat¹. Pentru o mai buna stabilitate si pentru evitarea foto-deborilari, derivatul metil boronic a fost conertit in situ la esterul boronic corespunzator², schema 5.

Schema 5.

Un alt derivat de bitiofen pe care am dorit sa il utilizam ca si structura rigida in reactiie de macrociclizare a fost 4,4'-dibromo-2,2'-tiofen, care a fost transformat in esterul bis-pinacol boronic **14**, schema 7.

¹C. Krämer, T. J. Zimmermann, M. Sailer, T. J. J. Müller Synthesis **2002**, *9*, 1163.

² R. W. Hoffmann, S. Dresely *Synthesis* **1998**, 103.

Schema 7.

In reactiile de macrociclizare Suzuki a fost utilizat un derivat tiofen-fenotiazinic, pentru a vedea daca dimensiunea sau planaritatea unitatii centrale poate influenta inchiderea ciclului. Pentru aceasta am folosit ca si unitate centrala planara si rigida fenotiazina.

3,7-Dibromo-10-etil-10H-fenotiazina **16** si 2-bomotiofenul **1** au fost transformatii in esteri boronici corespunzatori **17** si **18**. Un precursor important pentru diferiti compusi tinta este 10-etil-3,7di(thien-2-yl)-10H-fenotiazina (derivatul **19**), care a fost sintetizat prin patru cai, reactie clasica de cuplare Suzuki, reactia dintre un ester boronic si un derivat bromurat (metodele **A** si **B**) si prin metoda one-pot in care derivatul borat a fost generat in situ, urmat de cuplarea Suzuki (metodele **C** si **D**), schema 10.

Schema 10.

Derivatul **19** a fost transformat printr-o reactie de bromurare cu NBS in 3,7-bis(5-bromotiofen-2yl)-10-etil-10H-fenotiazina **22** care a fost transformat in esterul pinacolic corespunzator **23**, schema 13.

Schema 13.

Pentru reactia de macrociclizare abordata am avut nevoie de o unitate flexibila. Aceasta unitate contine un lanx de n-etilen glicol si meta-bromofenol la capetele terminale. Aceasta reactie a fost efectuata in mai multi solventi^{3,4,5}. Reactia dintre trietilen glicolul **25** si 3-bromofenolul **24**, folosind carbonat de potasiu ca baza, a dus la formarea 1,2-bis(2-(3-bromofenoxi)etoxi)etanul **26**, schema 14. Reactia a fost investigata in patru solventi (isopropanol, DMF, acetona si acetonitril), randamentele cele mai buna au fost obtinute in acetonitril. Printr-o procedura similara folosind acetonitril ca solvent am sintetizat 3,3'-((((oxibis(etane-2,1-diyl))bis(oxi))bis(etane-2,1-diyl))bis(oxi))bis(bromobenzene), derivatul **28**.

Schema 14.

1.2.4.2. Sinteza macrociclilor

In sinteza macrociclurilor prin cuplare Suzuki am folosit unitatile rigide (6, 7, 8, 9, 13, 14, 22, 23) iar ca unitate flexibila dibromo-derivati 26 si 28. Pentru toate acetse reactii s-a folosit catalizatorul Pd(PPh₃)₄, tetrakis(trifenilfosfina)palladium(0).

Pentru macrociclul **29** au fost incercate diverse conditii de reactie (amestec de solvent sau baza). S-au folosit trei metode diferite de utilizare a solventilor sau bazei utilizand metoda clasica de macrociclizare Suzuki, reactie dintre derivat de ester boronic si derivat bromurat. Alte doua metode ca reactii one-pot in situ au fost studiate, schema 17. Bazele folosite pentru reactia de cuplare au fost Cs₂CO₃ sau K₂CO₃ iar solventii folositi au fost amestecuri de diglim : apa si DMF : apa. Pentru reactiile one-pot s-a folosit THF ca solvent si ^tBuOK sau Cs₂CO₃ ca baza, randamentele reactiilor pt metoda onepot au fost mai mici decat ne asteptam.

³ H.-Y. Kim, W.-J. Lee, H.-M. Kang C.-G. Cho Org. Lett. **2007**, *9*, 3185.

⁴ L. Sheeney-Haj-Ichia, I. Willner J. Phys. Chem. B **2002**, 106, 13094.

⁵ S. J. Rowan, J. F. Stoddart *Org. Lett.* **1999**, *1*, 1913.

Schema 17.

Rezultatele pentru reactia de macrociclizare a compusului **29** sunt prezentate in tabelul 2. Cele mai bune randamente obtinute dupa purificare au fost pentru folosirea Cs_2CO_3 ca baza si amestecului diglim: H_2O ca solvent.

Conditii de reactie pentru macrociclul	Randment %
29	
diglim:H ₂ O, K ₂ CO ₃	22%
diglim:H ₂ O, Cs ₂ CO ₃	30%
$DMF:H_2O, Cs_2CO_3$	26%
Reactie One-pot, ^t BuOK	10%
Reactie One-pot, Cs ₂ CO ₃	12%

Tabelul 2.

Structura noului macrociclu **29** a fost confirmata prin ¹H-RMN (Figura 7), ¹³C-RMN si spectroscopie MS-ESI(+). Parte din spectrul ¹H-NMR confirma simetria macrociclului **29**, protoni alchilici ai trietilen glicolului apar ca doi tripleti la 3.88 ppm (portocaliu) si la 3.63 ppm (verde), respectiv ca un singlet la 3.57 ppm (albastru). In partea aromatica se pot vedea doi dubleti caracteristici protonilor din unitatea tiofenica (inelul **B**) la 7.40 ppm (rosu) si 6.94 ppm (mov) cu o constanta de cuplaj J³= 7.3 Hz, pt inelele **A** si **C** se observa suprapunerea picurilor in regiunea dintre 7.80-7.00 ppm (gri).

Figura 7. Parte din spectrul ¹H-NMR a macrociclului 29 (CDCl₃, 300 MHz).

Pentru reactia bitiofenului de tip **6** si **8** cu lantul **26** au fost incercate metoda clasica de macrociclizare Suzuki utilizand Cs_2CO_3 ca baza in amestec de diglim : apa sau DMF : apa si reactia onepot utilizand Cs_2CO_3 ca baza. Macrociclul dorit nu a fost obtinut probabil datorita lungimii prea scurte a lantului **26**. In schimb compusul obtinut a fost derivatul monobromurat **30**.

Non ciclizarea compusului **30** ne-a sugerat schimbarea lantului flexibil **26** cu derivatul **28**. Pentru reactia de ciclizare s-a folosit esterul **8** sau bitiofenul **6** cu lantul flexibil **28**, pentru reactia de macrociclizare s-au folosit aceleasi metode descrise pentru macrociclul **29**, schema 20.

Structura macrociclului a fost confirmata prin RMN si EI-MS. Spectrul ¹H-RMN al derivatului **31** este prezentat in figure 9. Simetria macrociclului este confirmata prin semnalele alchilice ale unitatii etilen glicolice ca si patru tripleti la 3.97 ppm, 3.73 ppm, 3.37 and 3.35 ppm. In regiunea aromatica semnalele cele mai dezecranate sunt pentru protonii unitatii thiofen (rosu) si protonii *ortho* ai unitati benzenice (mov), pentru ceilalti protoni aromatici, inelele **A** si **B**, semnalele RMN se suprapun intre 7.19 si 6.82 ppm.

Este bine cunoscut ca derivatii tiofenici substituiti in pozitia 3 pot usor polimeriza. Acesta a fost unul din motivele pt care am inceca sa obtinem macrociclii cu unitati de 2,2'-bitiofen-4,4'-disubstituiti (**13** and **14**). Un alt motiv a fost compararea reactivitatii 2,2'-bitiofen-4,4'-disubstituiti cu cel 5,5'disubtituit cu cele doua tipuri de lant dibromurat. Derivatii **13** si **14** au fost reactionati cu lanturile dibromurate **26** si **28**. In sinteza acestor doi macrociclii s-au folosit metoda clasica Suzuki cu Cs₂CO₃ ca baza si amestec de diglim : apa ca solvent si o metoda one-pot tot cu Cs₂CO₃ ca baza prin, schema 21.

Pentru acesti doi macrociclii (**32** si **33**) randamentele de reactie au fost mai mici decat am asteptat. Similar cu macrociclii descrisi mai sus cele mai bune randamente au fost obtinute folosind Cs_2CO_3 ca baza si amestec de diglim:H₂O ca solvent.

Folosind aceleasi metode de macrociclizare: metoda clasica Suzuki (a) si one-pot (b) am sintetizat un nou macrociclu **34**, schema 22.

Schema 22.

Cele mai bune randamente de reactie pentru macrociclul **34** au fost obtinute pt Cs_2CO_3 ca baza si diglim: H_2O ca amestec de solvent, tabelul 6.

Conditii de reactie pentru macrociclul	Randament
34	%
diglim:H ₂ O, K ₂ CO ₃	17 %
diglim:H ₂ O, Cs ₂ CO ₃	31 %
DMF: H_2O , Cs_2CO_3	20 %
One pot reaction, ^t BuOK	< 5 %
One pot reaction, Cs ₂ CO ₃	8%

Table 6.

Structura macrociclului **34** a fost confirmata prin ¹H-RMN, APT-RMN si EI-MS. Spectrul ¹H-RMN a macrociclului tinta in C_6D_6 este prezentat in figura 11. In spectrul ¹H-NMR simetria noului macrociclu **34** a fsot confirmata prin semnalele protonilor alchilici ai unitatii trietilenoxi ca si doi tripleti la 3.85 ppm (albastru) si 3.53 (visiniu) si un singlet la 3.30 ppm (verde inchis). In regiunea aromatica cele mai dezecranate semnale sunt dubletul de la 7.71 ppm (rosu) apartinand tiofenului si doubletul de la 7.36 ppm (verde deschis) al fenotiazinei. Semnalele protonilor inelelor aromatice **A**, **B** si **C**, apar ca o suprapunere intre 7.20 si 6.80 ppm.

Figura 11. Fragmente din spectrul ¹H-NMR al macrociclului **34** (C₆D₆, 300 MHz).

Cinci noi macrociclii **29**, **31**, **32**, **33** si **34** au fost sintetizati si caracterizati. Sinteza acestor macrociclii a fost incercata prin metoda clasica de macrociclizare Suzuki (trei cai) si o noua abordare prin sinteza one-pot.

1.2.5. Concluzii

In acest capitol au fost abordate doua cai de macrociclizare folosind reactia de cuplare intermoleculara Suzuki, varianta clasica intre un ester diboronic si un derivat diromurat si o noua abordare in care reactiile de litiere si cuplare au fost realizate in situ, metoda one-pot. Pentru toate reactiile de cuplare s-a folosit catalizator de Pd(PPh₃)₄.

Pentru macrociclii tinta s-au sintetizat sase noi podanzi, derivatii: **14**, **19**, **21**, **22**, **23** si **32**, care au fost analizati si caracterizati prin RMN si MS.

Prin metoda de macrociclizare abordata am sintetizat cinci noi macrociclii cu unitati de bitiofen, tertiofen si tiofen-fenotiazina, **29**, **31**, **32**, **33** si **34**.

Cele mai bune randamente de reactie pentru acesti macrocicclii au fost obtinute folosind Cs_2CO_3 ca baza si diglim : apa ca amestec de solvent.

Pentru acesti cinci noi macrociclii o noua metoda de sinteza a fost incercata, metoda one-pot, aceasta metoda a dat randamente de reactie mai mici decat am asteptat.

1.3. Macrociclii cu Posibile Aplicatii in Sinteza Rotaxanilor

1.3.5. Rezultate si Discutii

Obiectivul nostru a fost sinteza unor noi [n]rotaxani printr-o reactie inermoleculara a inelului macrociclic dintr-un [2]rotaxan cu o alta unitate de legatura. Axeli studiati au ca unitate de baza o sare aminica iar ca inel derivati macrociclici functionalizati. Pasul final pentru sinteza [2]-rotaxanilor am vrut sa fie reactia dintre macrociclii functionalizati cu diferite unitati de legatura.

1.3.5.1. Sinteza axelilor

Primul pas a fost sinteza unitatii aminice (**37**), comuna pentru toti axeli. *p*-Bromo cianobenzilul a fost hidrolizat la amino-alcoolul corespunzator **36**⁶. Amina **37** sensibila la aer si umiditate a fost utilizata fara purificare in sinteza axelilor.

Pentru sinteza de monaxel, diaxel si triaxel amina **37** a fost folosita in reactii de condensare cu trei tipuri de aldehide⁷ obtinanduse imine, acestea au fost utilizate in formarea aminelor fara purificare. Pentru monoaxel aldehida antracenului a fost folosita ca "stopper" pe o parte si a fost reactionata cu amina **37** formandu-se imina **39**, redusa la dervatul **40**, cu un randament per total de 65%, schema 24. Sarea **41** s-a obtinut din amina **40** in mediu acid urmata de tratarea cu o solutie de 20% NaPF₆ pentru a obtine monoaxelul in randament de 75 %.

Aceleasi proceduri de reactie folosite in sinteza monoaxelului, reactie de condensare dintre aldehida si aminam pentru obtinerea iminei (43) urmata de reducerea la amina, au fost urmate si in sinteza diaxelulul (44). Izoftalaldehida a fost folosita ca unitate de legatura in sinteza diaxelului, schema 26.

⁶ (a) B. F. Glisin *Helv. Chim. Acta* **1973**, *56*, 1476; (b) J. A. Garvin, M. E. Garcia, A. J. Benesi, T. E. Mallouk *J. Org. Chem.* **1998**, *63*, 7663; (c) S. Vassilioiu, M. Xeillari, A. Yiotakis, J. Grembecka, M. Pawelczak, P. Kafarski, A. Mucha *Bioorg. Med. Chem.* **2007**, *15*, 3187.

⁷ J. D. Badjic, V. Balzani, A. Credi, J. N. Lowe, S. Silvi, J. F. Stoddart *Chem. Eur. J.* **2004**, *10*, 1926.

Schema 26.

Diaxelul **44** a fost transformat la sarea 2-hexafluorofosfata, **45**, care face molecula mai solubila in solventii organici obisnuiti, schema 27.

Schema 27.

Pentru diaxelul **45** prezenta ionului PF₆⁻ este confirmata de spectrele de ³¹P-RMN in care se vede cuplajul fosforului cu fluorul ca un heptet iar in ¹⁹F-RMN cuplajul fluorului cu fosforul ca un dublet, figura 19.

Figura 19. Spectrele diaxelului 45 de ³¹P-RMN (CD₃CN, 121 MHz) si ¹⁹F-RMN (CD₃CN, 282 MHz).

1.3.5.2. Sinteza macrociclilor

Moleculele ce contin unitati de tiofen si fenotiazina prezinta interesante proprietati optoelectronice, prezentate in capitoulu 1.2.1, acesta a fost un motiv pentru care am dorit sinteza de macrociclii cu astfel de unitati si folosirea lor in siteza rotaxanilor.

In sinteza macrociclilor doriti unitatea de baza este 3,7-dibromo-10-etil-10H-fenotiazina **16** si esterul pinacolic **17**. Un alt podand important este 10-etil-3,7-di(thien-2-yl)-10H-fenotiazina **19**, sinteza descrisa in schema 10. Derivatul **19** a fost supus unei reactii de formilare de tip Vilsmeier Haack obtinandu-se aldehidele **52** si **53**, reactie depinzand de numarul de echivalenti de agent Vilsmeier adaugati, schema 31.

Schema 31.

Suprapunerea spectrelor ¹H-RMN ale monoaldehidei **52** si dialdehidei **53**, partea aromatica, sunt prezentate in figura 20. Pentru monoaldehida RMN-ul a fost a fost efectuat in C_6D_6 iar pentru dialdehida in DMSO- d_6 . In spectrul ¹H-RMN se observa ca cele mai dezecranate semnale apartin protonilor gruparii carbonil. Pentru dialdehida **53** se observa simetria moleculei prin doua dublete pentru nucleul tiofenic **A** iar pentru fenotiazina un dublet si suprapunerea picurilor din inelele de tip **B**.

Pentu monoaldehida **52** semnalele apar mai expandate. Cele mai dezecranate semnale corespund nucleului fenotiazinic **B**. Pentru formil-tiofen, nucleul **A**, semnalele protonilor apar ca doua dublete. Cei trei protoni ai nucleului **D** apar ca un doublet si semnalele suprapuse la aproximativ 6.8 ppm.

Figure 20. Parte din spectrele ¹H-RMN al monoaldehidei **52** (C_6D_6 at 300 MHz) si dialdehidei **53** (d⁶-DMSO, 300 MHz).

Dialdehida **56** a fost sintetizata prin reactie de cuplare Suzuki dintre 10-etil-3,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10H-fenotiazina **17** si **55**, schema 33.

Schema 33.

Cele doua dialdehide **53** si **56** au fost reduse la alcooli **57** si **58** utilizand NaBH₄ in amestec de THF:apa ca solvent, schema 34.

Schema 34.

Pentru obtinerea diferitelor tipuri de macrociclii cu unitati eter-coroana pentru a forma legaturi de hidrogen cu axul, s-a sintetizat un nou macrociclu cu cavitatea interna de 28 de atomi.¹³

Derivatul ditosilat **25** a fost reactionat cu 2,3-dimetil-hidrochinona **63** in conditii de ultra dilutie pentru obtinerea podandului **64**, folosind acetonitril anhidru si K_2CO_3 ca baza, reactia a fost refluxata timp de 7 zile⁸.

Printr-o procedura asemanatoare folosind Cs_2CO_3 in loc de K_2CO_3 ca baza, in conditii de ultradilutie, si adaugarea in picaturi timp de 3 zile a derivatului ditosilat **25** peste chinona **63**, un nou macrociclu **65** a fost sintetizat. Reactia a fost refluxata inca 7 zile apoi purificata pe coloana cromatografica obtinandu-se macrociclul **65** in randament de 30%. Acest macrociclu s-a mai obtinut din reactia ditosilatului **64** cu 2,3-dimetil-hidrochiona **63** si Cs_2CO_3 , in conditii de ultradilutie cu un randament de 22%, schema 41.

Schema 41.

⁸ Ichia, L.; Willner, I. J. Phys. Chem. B 2002, 106, 13094.

Structura macrociclului **65** a fost demonstrata si investigata si prin analiza pe monocristal prin difractrometrie de raze X. Diagrama ORTEP arata un aranjament aproape planar al macrociclului; unghiul dintre cele doua plane descrise de unitatile aromatice este α =0.00°; cu d' = 6.430 Å (figura 24).

Figura 24. ORTEP diagram of macrocycle 65.

Perspective retelei dealungul axei b arata formarea de coloane, figura 25.

Figura 25. Perspectiva retelei dealungul axei cristalografice b.

Pentru sinteza de macrociclii functionalizati in vederea reactiilor intermoleculare cu diferite unitati de legatura s-au sintetizat macrociclii cu grupari OH sau COOH.

In sinteza de macrociclilor cu grupari OH sau COOH s-au sintetizat mai intai precursorii. Ca si parte asimetrica a macrociclului am folosit metil 3,4-dihidroxibenzoate⁹ **67**, care a fost sintetizat din acidul corespunzator **66**, schema 42.

⁹Y. Kita, M. Arisawa, M. Gyoten, M. Nakajima, R. Hamada, H. Tohma, T. Takada *J.Org.Chem.* **1998**, *63*, 6625.

In sinteza macrociclului **74**^{10,11} au fost urmate doua cai; prima incepand de la trietileneglicolul monotosilat **69** si pirocatecolul **68**, iar a doua cale inlocuieste metil-3,4-dihidrobenzoatul **67** cu acelasi monotosilat urmata de reactia cu catecolul, schema 43.

Dupa sinteza macrociclului **95** s-au sintetizat in mediu alcalin acidul **75**, si prin reducere cu hidrura de litiu si aluminiu alcoolul¹² **76**, pentru a forma cei doi macrociclii functionalizati, schema 44.

1.3.5.4. Formarea pseudorotaxanilor si rotaxanilor

In sinteza rotaxanilor primul pas este formarea pseudorotaxanului corespunzator. Primul pseudorotaxan obtinut de noi a fost **83**, format din monoaxelul **62** si macrociclul comercial "dibenzo-24-crown ether" (DB24).

¹⁰ K. Yamabuki, Y. Isobe, K. Onimura, T. Oishi *Chem. Lett.* **2007**, *36*, 1196.

¹¹ D.-J. Feng, X.-Q. Li, X.-Z. Wang, X.-K. Jiang, Z.-T. Li *Tetrahedron* **2004**, *60*, 6137.

¹² S. J. Cantrill, G. J. Youn, J. F. Stoddart *J. Org. Chem.* **2001**, *66*, 6857.

Axul **41** are antracen ca unitate "stopper" pe o parte, astfel am decis formarea pseudorotaxanului prin metoda *threading* in care axul se introduce in macrociclul DB24. Formarea pseudorotaxanului a fost urmarita in UV-Vis, dar nu s-a observat ncico modificare in picurile de absorbtie comparativ cu cele ale axelului **41** si DB24.

Formarea pseudorotaxanului **83** a fost urmarita si in ¹H-RMN. In spectrul ¹H-RMN se observa deplasarea semnalelor implicate in legaturile de hidrogen, figura 27. Se poate observa ca protonii inelului benzenic ai macrociclului sunt mai ecranati la 6.5 ppm (sageata mov) iar protoni alchilici ai monoaxelului implicati in legatura de hidrogen sunt mai dezecranati, la 5.3 ppm (sagetile rosu si albastru).

Figura 27. Spectrele ¹H-NMR comparabile al pseudorotaxanului **83** cu DB24 si monoaxelul **41** (CD₃CN, 300 MHz).

Primul rotaxan sintetizat de noi a fost obtinut din reactia monoaxelului **41**, macrociclul **75** si anhidrida 3,5-dimetilbenzoica ca precursor pentru « stopper », schema 49.

Schema 49.

Spectrul ¹H-RMN al rotaxanului **85**, figura 28, prezinta semnale specifice pentru protonii implicati in legaturile de hidrogen dintre ax si macrociclulu asimetric. Atomii de hidrogen ai inelului benzenic (mov), aparand ca un multiplet, sunt ecranati de la 6.87 ppm la 6.57 si 6.37 ppm, semnale specifice protonilor aromatici implicati in legaturile de hidrogen. Protonii metilenici ai axelului (sagetile albastru si rosu) sunt dezecranate de la 4.65 si 4.50 la aproximativ 5.48 si 5.34 ppm ca semnale largi. Atasarea unitatii "stopper" este confirmata de prezenta celor doi singleti ai gruparii metil la aproximativ 2.40 ppm.

Figura 28. Suprapunerea spectrelor ¹H-RMN ai monoaxelului **41** (CD₃CN, 300 MHz), macrociclului **75** si rotaxanului **85** (CDCl₃, 300 MHz).

Acest nou [2]-rotaxan, **85**, este primul precursor pentru viitoarele reactii intermoleculare cu diferite unitati de legatura pentru formarea [n+1]-rotaxanilor tinta.

1.3.6. Concluzii

Pentru sinteza noului diax **45**, ca sare hexafluorofosfat, s-au sintetizat imina **43** si amina **44**.

Ca precursori in sinteza macrociclilor tinta s-au sintetizat compusi cu unitati tiofen-fenotiazinici ca: monoaldehida **52**, dialdehidele **53**, **56** si diolii **57** si **58**, si un nou derivat ditosilat **64**, toti acesti compusi au fost analizati prin RMN si MS.

Un nou macrociclu **65** a fost sintetizat prin doua cai, acesta a fost analizat prin RMN, MS si cristalografie de raze X.

Un nou rotaxan **85** a fost sintetizat si caracterizat prin RMN si MS.

2. Noi Unitati Lipidice Functionalizate Pentru Aplicatii in Biofizica

Cuvinte Cheie:

Colesteril-nucleozide, nucleobaze Lipide amfifilice Microtuburi lipidice Nano-transportor

2.2. Nucleozide Colesterol-Modificate ca Precursori Pentru Auto-Asamblarea Microtuburilor

2.2.3. Rezultate si Discutii

Scopul acestei parti a fost sinteza de noi derivati colesteril nucleozidici,-nucleobazici cu diferite lungimi de lanturi, tip de nucleozida, nucleobaza sau atasamente, si posibilele aranjari in urma autoasamblarii ca micro tuburi amestecate cu fosfolipide.

Pentru sinteza derivatului **1**, cei mai importanti precursori sunt **6** si **9**. Reactia de cuplare a fost mediata de 1-etill 3, 3 dimetilaminopropil carbodiimida (EDC), hidroxibenzotriazol (HOBt) si N,N diisopropiletilamina (DIPEA) in diclorometan anhidru, schema 3.¹³ Ultimul pas fiind deprotejarea gruparii tritil cu acid trifluoroacetic (TFA) in DCM obtinandu-se **1** in 55%.

Autoasamblarea 2'-*N*-(2-(cholesteryl)-succinyl)-2'-deoxy-2'-aminouridinei **1** prin combinarea cu dioleoylphosphatidylcholine (DOPC) a dus la formarea unor micro tuburi (figura 8) vizualizate printr-un microscop de fluorescenta Olympus IX-81. Pe langa formarea veziculelor si agregatelor, s-au format structuri tubulare cu diametre de 2-3 μ m si sub 1 μ m la lumina microscopului (Figura 8).

Figura 8. Aranjament tubular autoasamblat al N-(2-(cholesteryl)-succinyl)-2'-deoxy-2'-aminouridine 1, in conditii dde 69 :30:1 mol% DOPC/conjugate/NBD-DPPE (all lipids from Avanti Polar Lipids Inc.) Imagini date de microscop de fluorescenta cu inversie Olympus IX-81. A) NBD imaginea fluorescenta; B) interferente de imagine diferentiate

¹³ (a) G. Hofle, W. Steglich, H. Vorbriiggen Angew. Chem. Int. Ed. **1978**, *17*, 569; (b) A. D. Abell, B. K. Nabbs Bioorg. Med. Chem. **2001**, *9*, 621.

O metoda similara ca cea descrisa pentru compusul **1** s-a folosit si pentru sinteza compusului **14**, i. e. reactia anhidridei glutarice cu colesterolul. Urmata de reactia de condensare dintre derivatii **6** si **12**, si deprotejarea de gruparea tritil a derivatului **13**, schema 4.

Pentru a observa daca cele doua unitati OH ale zaharului sunt responsabile pentru formarea microtuburilor, au fost protejate cu grupari acetil. Derivatul **1** a fost acetilat utilizand cantitate catalitica de DMAP in piridina cu anhidrida acetica¹⁴ obtinandu-se **15** in randament de 92%, schema 5.

Schema 5.

Pentru derivatul nucleozidic **15**, imaginile microscopului de fluorescenta arata formarea unor cristale alungite prin aranjamentul format cu DOPC, majoritatea fiind agregate, figura 10.

¹⁴ S. K. Mahto, C. S. Chow *Bioorg. Med. Chem.* **2008**, *16*, 8795.

Figura 10. Auto-asamblarea pentru derivatul **15** in forma de funie, in conditii dde 69 :30:1 mol% DOPC/conjugate/NBD-DPPE (all lipids from Avanti Polar Lipids Inc.) Imagini date de microscop de fluorescenta cu inversie Olympus IX-81. **A)** NBD imaginea fluorescenta; **B)** interferente de imagine diferentiate

Primul pas al sintezei deivatului **18** a fost protejarea pozitiilor 2' si 3' ai uridinei cu acetona in mediu acid.¹⁵ Pasul urmator a fost o reactie de cuplare intre derivatul **16** si colesteril succinatul **9**¹⁶ in prezenta de 4-dimetil-aminopiridina (DMAP). In final obtinandu-se compusul **18** prin reactia de deprotejare¹⁷ cu un randament cantitativ, schema 6.

Pentru investigarea proprietatilor de auto-asamblare ale uridinei di-colesterol substituita am sintetizat compousul **20**. Printr-o reactie simpla dintre 2'-deoxiuridina **19** in diclorometan cu DMAP si EDC ca agent mediator, am sintetizat dicolesteril-uridina **20** cu un randament de 72%, schema 7.

¹⁵ P. Tarasconi, S. Capacchi, G. Pelosi, M. Cornia, R. Albertini, A. Bonati, P. P. Dall'Aglio, P. Lunghi, S. Pinelli *Biooorg. Med. Chem.* **2000**, *8*, 157.

¹⁶ A. Thesis, H. Ritter *Macromolecules* **2003**, 7552.

¹⁷ D. W. Gammon, R. Hunter, S. Wilson *Tetrahedron Letters* **2002**, *43*, 3141.

Schema 7.

Pentru amestecul de derivat dicolesterilic **20** si DOPC, imaginea microscopului arata formarea de agregate extinse, figura 13. Derivatul **20** a fost mixat cu fosfolipida astfel incat acestea s-au incorporat foarte bine intre straturi. In proba analizata nu s-a observat formarea niciunei structuri angulare.

Figura 13. Autoasamblarea derivatului 20, in conditii de 69 :30:1 mol% DOPC/conjugate/NBD-DPPE (all lipids from Avanti Polar Lipids Inc.) Imagini date de microscop de fluorescenta cu inversie Olympus IX-81.
A) NBD imaginea fluorescenta; B) interferente de imagine differentiate

Un alt nou derivat al colesterolului sintetizat este colesteril uracilul **34**. Acid uracilul **33** a fost sintetizat din uracil si acid cloroacetic.¹⁸ Dupa reactia de N-alchilare acidul **33** s-a esterificat cu colesterol folosind aceleasi conditii de reactie prezentate pentru derivatii asemanatori, schema 12.

¹⁸ J. R. Jacobsen, A. G. Cochran, J. C. Stephans, D. S. King, P. G. Schultz J. Am. Chem. Soc. **1995**, *117*, 5453.

Schema 12.

In proba preparata din 69:30:1 DOPC/colesterol/NBD-DPPE auto-asamblarea derivatului **34** a avut loc aproape in totalitate in vesiculele lipidei: obsvandu-se formarea de structur plate si ascutite, figura 15.

Figura 15. Flat and needle like structured images of derivative **34**, in conditii de 69 :30:1 mol% DOPC/conjugate/NBD-DPPE (all lipids from Avanti Polar Lipids Inc.) Imagini date de microscop de fluorescenta cu inversie Olympus IX-81. **A)** NBD imaginea fluorescenta; **B)** interferente de imagine differentiate

Ca perspectiva se vor sintetiza diferiti derivati de cholesterol pentru care se vor studia aranjamentele in urma auto-asamblarii de catre bio-fizicieni

.2.4. Concluzii

Pentru obtinerea derivatilor tinta de colesterol s-au sintetizat patru noi compusi colesteroluridinci (14, 15, 18 si 20) si un derivat colesterol-uracilic 34 care au fost analizati prin spectroscopie RMN, spectrometrie MS si analiza elementala.

Compusii tinta obtinuti au fost auto-asamblati prin combinarea cu dioleoilfosfatidilcolina (DOPC) de grupul de bio-fizicieni sub indrumarea Dr. A. Abruzova. Imaginile microscopului arata diferite aranjamente alea acestor compusi.

Auto-asamblarea 2'-*N*-(2-(colesteril)-succinil)-2'-deoxi-2'-aminouridinei **1** arata formarea de microtuburi cu un diametru mediu de ~300 nm sau 2-3 μm cateodata cu un tub subtire iesind la cate un capat al microtubului. Pentru derivatul **15** imaginile microscopului arata formarea de structuri lamelare ca vezicule si bucati de funie iar cele mai multe sunt agregate.

Pentru derivatul dicolesteril **20** auto-asamblarea arata formarea de agregate extinse iar pentru derivatul **34** s-a observat formarea de structuri ascutite.

2.3. Sinteza Unor Noi Derivati Amfifilici cu Functiune de Recunoastere Biologica in Vederea Obtinerii Unor Sisteme Lipozomale Specifice de Transport

2.3.3. Rezultate si Discutii

Scopul acestei teme este sinteza si analiza unor noi sisteme lipid amfifilice cu potential de debarasare al medicamentelor din lipozomi prin ruperea gruparii de legatura sau rupere glucozenzimatica¹⁹, reprezentarea schematica a acestui tip de molecula este aratata in figura 18.

Figura 18. Lipida amfifilica cu functie de recunoastere biologica, cu punte de rupere si optional o unitate fluorescenta pentru incorporarea in lipozomi

Primul pas in sinteza compusului tinta consta in protejarea gruparilor hidroxil al amestecului racemic 2,3-*O*-isopropiliden glicerolului **35**²⁰, urmata de deprotejarea glicerolului **36**²¹ pentru obtinerea diolului **37** in randament cantitativ, schema 14.

Substitutia electrofila cu 1-bromohexadodecan duce la formarea eterului benzil protejat **38**, redus mai apoi la alcolul corespunzator **39** in prezenta hidrogenului^{139a}, schema 15.

¹⁹ N. Brodersen PhD. Thesis, Humboldt-University Berlin, Germany **2009**.

²⁰ M. Kates, T. H. Chan, N. Z. Stanacev *Biochemistry* **1963**, *2*, 394.

²¹ R. J. Howe, T. Malkin J. Chem. Soc. **1951**, 2663.

Alcolul **39** a fost reactionat cu clorura de tosil obtinandu-se derivatul **40**. Pentru derivatul ditosilat s-a incercat transformarea directa in amina **42** in metanol cu amoniac lichid la temperatura scazuta si presiune²², reactie nereusita. Formarea aminei s-a realizat printr-o reactie intermediara, obtinandu-se azida **41** convertita mai apoi in mediu de hidrogen la amina **42**^{23,139a}, schema 16.

Amina **42** s-a acilat in randamente bune cu succinatul benziloxicarbonil triglicinic comercial **43** folosind trietilamina ca baza²⁴. Pentru derivatul Cbz protejat **44** s-a incercat reducerea la amina **45** intrun reactor sub presiune de hidrogen, schema 17. Randamentul reactiei a fost mai mic decat s-a asteptat, o explicatie ar fi ancorarea derivatului deprotejat pe carbunele din catalizatorul Pd/C.

²² (a) **S. Bhattacharya, P.V. Dileep** *Tetrahedron Letters* **1999**, *40*, 8167; (b) I. A. Godunov, A. V. Abramenkov, V. A. Bataev, V. I. Pupysev *Russian Chemical Bulletin* **1999**, *48*, 1369; (c) O. Seitz, I. Heinemann, A. Mattes, H. Waldmann *Tetrahedron* **2001**, *57*, 4365.

 ²³ (a) N. Madhavan, E. C. Robert, M. S. Gin Angew. Int. Ed. 2005, 7584; (b) C. D. Pointer-Keenan, D.-K. Lee, K. Hallock, A. M. Tan, R. Zand, A. Ramamoorthy Chem. Phys. Lip. 2004, 127, 47.

²⁴ N. Kameta, G. Mizuno, M. Masuda, H. Minamikawa, M. Kogiso, T. Shimizu *Chemistry Letters* **2007**, *36*, 896.

Datorita randamentului scazut al reactiei de deprotejare am schimbat strategia de reactie a oligopeptidei-"puntii de legatura". Derivatul comercial GlyGlyGly a fost protejat la gruparea aminica cu di-*tert*-butil dicarbonat obtinandu-se **47** reactionat mai departe cu amina **42** obtinandu-se compusul de cuplare **48**. Reactia de deprotejare s-a realizat intr-un amestec de diclorometan si TFA dar ranalizele pentru produsul deprotejat **49** nu s-au efectuat inca, schema 18.

Schema 18.

Tetraetileneglicolul **52** cu biotina ca grupare de recunoastere s-a sintetizat din biotina **50** si tetraetileneglicolul monotosilat in DCM anhidru utilizand EDC si DMAP ca si reactanti tipici pentru astfel de reactii, schema 19.

Ultimii doi pasi in sinteza lipidei amfifilice finale, schema 20 ar fii reactia triglicinei **49** cu dimetilamino-glicina obtinandu-se derivatul **53** care urmeaza a fi reactionat cu derivatul biotinic **52** obtinandu-se molecula tinta **54**. Acesti ultimi doi pasi se vor realiza in viitorul apropiat.

Schema 20.

Compusul **54** cu o punte de legatura tetraglicinica s-a propus in vederea formarii de sisteme lipozomale specifice de transport incarcate cu substanta activa si utilizarea acestora in domenii ca biologie/farmacologie unde aceasta unitate tetraglicinica s-ar putea cliva.

2.3.4. Concluzii

In vederea sintezei lipidei amfifilice **54** s-au sintetizat si analizat prin spectroscopie RMN, spectrometrie de masa doi noi precursori **44** si **48**.

Pentru compusul tinta **54** cu tetraglicina ca punte de legatura se va analiza capacitatea acestuia de incapsulare a medicamentelor si eliberarea acestora prin desfacerea puntii de legatura, respectiv ruperea unitati tetraglicinice.