Babes-Bolyai University Faculty of Chemistry and Chemical Engineering Chemistry Department

PhD Thesis

Ligands containing group 15 and/or 16 donor atoms and their *d* metal complexes

Raluca Mitea

Scientific advisor: Prof. Dr. Anca Silvestru

Cluj-Napoca 2013 JuryPresident:Prof. Dr. Ion Grosu, Babeş-Bolyai University, Cluj-NapocaReviewers:Prof. Dr. Hans Joachim Breunig, Universität Bremen, Germany
CSI Dr. Otilia Costişor, Institute of Chemistry of the Romanian
Academy, Timisoara
Assoc. Prof. Dr. Monica Venter, Babeş-Bolyai University, Cluj-Napoca

Date of public defense: December 13th, 2013

Table of contents

I. Introduction	1
II. Chelating P _x N _y triorganophosphanes and their transition	
metal complexes	5
II.1. Literature Data	6
II.1.1. Chelating P _x N _y triarylphosphanes	6
II.1.2. Group 11 metal complexes with P _x N _y ligands	10
II.1.3. Group 9 metal complexes with P _x N _y ligands	25
II.1.4. Catalytical applications	37
II.2. Results and discussion	43
II.2.A. Hypervalent triarylphosphanes	43
Crystal and molecular structure of $PPh(C_6H_4CH_2NMe_2-2)_2$ (2)	44
II.2.B. Copper complexes with triarylphosphanes	46
Crystal and molecular structure of [CuCl{PPh ₂ (C ₆ H ₄ CH ₂ NMe ₂ -2)}] (4)	51
Crystal and molecular structure of	
$[CuCl{PPh(C_6H_4CH_2NMe_2-2)_2}]\cdot C_6H_6 (5)$	52
II.2.C. Cobalt(II) complexes with triarylphosphanes	56
II.3. Conclusions	60
II.4. Experimental	62
Synthesis of PPh ₂ (C ₆ H ₄ CH ₂ NMe ₂ -2) (1)	64
Synthesis of PPh($C_6H_4CH_2NMe_2-2$) ₂ (2)	65
Synthesis of $P(C_6H_4CH_2NMe_2-2)_3$ (3)	66
Synthesis of [CuCl{PPh ₂ (C ₆ H ₄ CH ₂ NMe ₂ -2)}] (4)	67
Synthesis of [CuCl{PPh(C ₆ H ₄ CH ₂ NMe ₂ -2) ₂ }] (5)	68
Synthesis of [CuCl ₂ {PPh ₂ (C ₆ H ₄ CH ₂ NMe ₂ -2)}] (6)	69
Synthesis of [CuCl ₂ {PPh(C ₆ H ₄ CH ₂ NMe ₂ -2) ₂ }] (7)	70
Synthesis of $[CoCl_2{PPh_2(C_6H_4CH_2NMe_2-2)}]$ (8)	71
Synthesis of [CoCl ₂ {PPh(C ₆ H ₄ CH ₂ NMe ₂ -2) ₂ }] (9) and	
[CoCl ₂ {OPPh(C ₆ H ₄ CH ₂ NMe ₂ -2) ₂ }] (9a)	72
Synthesis of $[CoCl_2{P(C_6H_4CH_2NMe_2-2)_3}]$ (10) and	
$[CoCl_{2}{OP(C_{6}H_{4}CH_{2}NMe_{2}-2)_{3}}]$ (10a)	73
References	74
III. Diorganochalcogen(II) ligands with alkoxo or aryloxo functionalities	
and their behavior towards late <i>d</i> metals	79
III.1. Literature data	80
III.1.1. Diorganodichalcogenides and diorganochalcogen(II) compounds	
with OH functionalities	81
III.1.2. Transition metal complexes	89
III.2. Results and discussion	103
III.2.A. Diorganochalcogen(II) dihydroxide ligands	103
Crystal and molecular structure of [Ph ₂ C(OH)CH ₂] ₂ Se (5)	
and $[Ph_2C(OSiMe_3)CH_2]_2S$ (8)	107
III.2.B. Diorganochalcogen(II) monohydroxide ligands	110

Crystal and molecular structure of	
[Ph ₂ C(OH)CH ₂](2-Me ₂ NCH ₂ C ₆ H ₄)Se (13)	113
III.2.C. Coordination behavior of diorganochalcogen(II) ligands	
with alkoxo functionalities towards d metals	114
III.2.C.1. Group 12 metal complexes	114
III.2.C.2. Silver(I) complexes	120
Crystal and molecular structure of	
[AgOTf{S[CH ₂ C(OH)Me ₂](C ₆ H ₄ CH ₂ NMe ₂ -2)}] (19)	123
III.2.C.3. Palladium(II) complexes	125
Crystal and molecular structure of	
[PdCl(SeC ₆ H ₄ CH ₂ NMe ₂ -2)] ₂ ·0.5CH ₂ Cl ₂ ·0.5THF, 20 ·0.5CH ₂ Cl ₂ ·0.5THF	126
III.3. Conclusions	131
III.4. Experimental	133
Synthesis of $[Me_2C(OH)CH_2]_2S(1)$	135
Synthesis of [Me ₂ C(OH)CH ₂] ₂ Se (2)	136
Synthesis of $[Me_2C(OH)CH_2]_2Te(3)$	137
Synthesis of [Ph ₂ C(OH)CH ₂] ₂ S (4)	138
Synthesis of [Ph ₂ C(OH)CH ₂] ₂ Se (5)	139
Synthesis of $[Me_2C(OSiMe_3)CH_2]_2S$ (6)	140
Synthesis of $[Me_2C(OSiMe_3)CH_2]_2Se(7)$	141
Synthesis of [Ph ₂ C(OSiMe ₃)CH ₂] ₂ S (8)	142
Synthesis of [Me ₂ C(OH)CH ₂](2-Me ₂ NCH ₂ C ₆ H ₄)S (9)	143
Synthesis of [Me ₂ C(OH)CH ₂](2-Me ₂ NCH ₂ C ₆ H ₄)Se (10)	144
Synthesis of [Me ₂ C(OH)CH ₂](2-Me ₂ NCH ₂ C ₆ H ₄)Te (11)	145
Synthesis of [Ph ₂ C(OH)CH ₂](2-Me ₂ NCH ₂ C ₆ H ₄)S (12)	146
Synthesis of [Ph ₂ C(OH)CH ₂](2-Me ₂ NCH ₂ C ₆ H ₄)Se (13)	147
Synthesis of [Cd{S[CH ₂ C(O)Me ₂] ₂ }] (14)	148
Synthesis of [Cd{Se[CH ₂ C(O)Me ₂] ₂ }] (15)	149
Synthesis of [Cd{Se(CH ₂ C(O)Me ₂) ₂ }{PPh(C ₆ H ₄ CH ₂ NMe ₂ -2) ₂ }] (16)	150
Synthesis of [Cd{Se(CH ₂ C(O)Me ₂) ₂ }{PPh ₂ (C ₆ H ₄ CH ₂ NMe ₂ -2) }] (17)	151
Synthesis of [Zn{Se(CH ₂ C(O)Me ₂) ₂ }{PPh ₂ (C ₆ H ₄ CH ₂ NMe ₂ -2)}] (18)	153
Synthesis of [AgOTf{S[CH ₂ C(OH)Me ₂ (C ₆ H ₄ CH ₂ NMe ₂ -2)}] (19)	155
Reaction between $[Me_2C(OH)CH_2](2-Me_2NCH_2C_6H_4)$ Se and PdCl ₂	156
References	157
APPENDIX	163

Keywords: chelating triarylphosphanes / diorganochalcogen (II) compounds / alkoxo functionalities / intramolecular coordination / chirality / *d* metal complexes

Objectives of the present study

The studies developed during the present PhD Thesis were focused on:

- The synthesis and structural chgaracterization of late *d* metal complexes (Cu, Co) with hypervalent triarylphosphanes of type $PPh_{3-x}(C_6H_4CH_2NMe_2-2)_x$ (x = 1-3)
- The synthesis and structural chgaracterization of new diorganochalcogen(II) ligands bearing dihydroxo or monohydroxo functionalities.
- The synthesis and structural chgaracterization of late *d* metal (Cd, Zn, Ag, Pd) complexes with diorganochalcogen(II) ligands bearing dihydroxo or monohydroxo functionalities.

II. Chelating P_xN_y triorganophosphanes and their transition metal complexes

II.2. Results and discussion II.2.A. Hypervalent triarylphosphanes

Triorganophosphanes of type PPh_{3-x}(C₆H₄CH₂NMe₂-2)_x (x = 1-3) were prepared according to literature procedures, by reacting the lithiated amine with PPh_xCl_{3-x} in the appropriate molar ratio, as depicted in Scheme II.2.1.^{9,10}

Scheme II.2.1. Synthesis of the hypervalent triarylphosphanes

Several analytical data for these ligands are given in Table II.2.1.

	Compound	³¹ P, CDCl ₃ (ppm)	M.p. (°C)
1	PPh ₂ (C ₆ H ₄ CH ₂ NMe ₂ -2)	-15,3 (¹ J _{PC} = 18.8 Hz)	54
2	$PPh(C_6H_4CH_2NMe_2-2)_2$	-25,1 (¹ J _{PC} = 20.3 Hz)	48
3	$P(C_6H_4CH_2NMe_2-2)_3$	-35.3s (¹ J _{PC} = 19.1 Hz)	87

Table II.2.1. Analitical data for phosphanes 1 – 3

The identity and purity of the triarylphosphanes 1 - 3 were proved by comparing their ¹H and ³¹P NMR spectra with the values reported in literature. For these species there is no clear evidence for the N \rightarrow P intramolecular coordination in solution. In all three cases the N(CH₃)₂ protons give singlet resonances, while the protons in the methylene groups attached to nitrogen (NCH₂) show doublet resonances in case of phosphanes **1** and **3**, due to ¹H - ³¹P coupling (⁴J_{PH} = 1.6 Hz in **1** and 1.5 Hz in **3**, respectively), and an ABX spin system in case of phosphane **2**. The latter pattern is determined both by the diastereotopicity of the CH₂ protons and the ¹H - ³¹P coupling (A: 3.57dd, ²J_{HH} = 13.5 Hz, ⁴J_{PH} = 2.1 Hz and B: 3.63dd, ²J_{HH} = 13.5 Hz, ⁴J_{PH} = 2.3 Hz) (see Figure II.2.1).

4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 f1(com)

Figure II.2.1. Aliphatic region in the ¹H NMR spectra of phosphanes 1 (a) and 2 (b)

Crystal and molecular structure of PPh(C₆H₄CH₂NMe₂-2)₂ (2)

Single crystals of PPh($C_6H_4CH_2NMe_2-2$)₂ (2) were obtained by slow diffusion of nhexane in a solution of this compound in CH_2Cl_2 and the molecular structure was determined by single-crystal X-ray diffraction. The compound crystallizes in the *P-1* space group. The crystal contains two independent molecules (2' and 2'') in the unit cell. The ORTEP-like diagram with the numbering scheme for this ligand is depicted in Figure II.2.2.

In both molecules **2'** and **2"** there is only one nitrogen atom coordinated to phosphorus: $N(1)\cdots P(1) 2.912(3)$ Å in molecule **2'** and $N(3)\cdots P(2) 2.971(3)$ Å in molecule **2"**.

Figure II.2.2. ORTEP-like representation at 50% probability and atom numbering scheme of $S_{N1}C_{P1}$ -2' isomer.

The other nitrogen atom is displayed far away from the coordination sphere of phosphorus, at a distance of 4.35 Å in molecule **2'** and respectively 4.30 Å in molecule **2''**. These distances are much larger than the sum of the van der Waals radii of the corresponding atoms [$\Sigma r_{vdW}(N,P) = 3.44 \text{ Å}^{27}$].

As a result of the N \rightarrow P intramolecular coordination a five membered PC₃N ring is formed. The ring is not planar, but folded along the P···C_{methylene} axis, with the nitrogen atom lying out of the best plane defined by the residual PC₃ system. As a consequence, planar chirality is induced, with the aromatic ring as chiral plane and the nitrogen atom as pilot atom.²⁶ The phosphane ligand **2** crystallizes as a mixture of R_N and S_N isomers. The coordination geometry around the phosphorus atom might be described as distorted *pseudo*-trigonal bipyramidal, if the phosphorus lone pair of electrons is also considered. The atoms N(1), C(19) in molecule **2'** and N(3), C(43) in molecule **2''** lie in apices, with bond angles N(1)-P(1)-C(19) of 173.15(13)° and N(3)-P(2)-C(43) of 172.45(13)°, respectively. The other two carbon atoms attached to phosphorus and the lone pair are situated in the trigonal plane. In this way, a second type of chirality is induced to the phosphorus centre in the trigonal-bipyramidal environment. As a cosequence, the crystal of ligand **2** contains a mixture of $S_{N1}C_{P1}$, $R_{N1}A_{P1}$, $R_{N3}C_{P2}$ and $S_{N3}A_{P2}$ isomers.

II.2.B. Copper complexes with triarylphosphanes

The phosphane ligands **1** and **2** were used in the synthesis of complexes that contain copper(I) and copper(II) atoms, respectively. The copper complexes were obtained by reacting the respective triarylphosphanes with CuCl or $CuCl_2$ in dichloromethane, benzene or THF (Scheme II.2.2), and some analytical data for them are given in Table II.2.3.

No.	Compound	³¹ P NMR	μ [BM]	ESR spectra
		δ(ppm)		
4	$[CuCl{PPh_2(C_6H_4CH_2NMe_2-2)}]$	-11.3,br.;	-	-
		-10.3, br		
5	$[CuCl{PPh(C_6H_4CH_2NMe_2-2)_2}]$	-23.9, br.	-	-
6	$[CuCl_{2}{PPh_{2}(C_{6}H_{4}CH_{2}NMe_{2}-2)}]$	-	1.94	g _∥ 1.98
				g₂ 2.27
7	$[CuCl_{2}{PPh(C_{6}H_{4}CH_{2}NMe_{2}-2)_{2}}]$	-24.4,br.,	2.18	g∥ 2.04
		38.5		g _₂ 1.92

Table II.2.3. Analytical data for the copper complexes 4 – 7

Scheme II.2.2. Synthesis of copper(I) and copper(II) complexes

The NMR spectra bring evidences for the solution behaviour of the discussed compounds. In the aliphatic region the ¹H NMR spectrum of compound **4** presents singlet resonances both for the methyl and the methylene protons, while in case of compound **5** the resonance corresponding to the CH_2 protons appears as an AB spin system centred at δ 3.45 ppm, with δ_A 3.40 and δ_B 3.51 ppm (Figure II.2.4).

In case of complex **7** the ¹H NMR spectrum suggests a mixture of two species, in a molar ratio of approx. 1: 0.75. The broad aspect of the resonances might be the result of the presence of the paramagnetic Cu(II) in solution.

4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2 fl.(ppm)

Figure II.2.4. Aliphatic region in ¹H NMR spectra of compounds 2, 5 and 7 (CDCl₃, RT)

The ³¹P NMR spectra consist in all cases of broad resonances, slightly shifted in comparison with the free phosphane.

Crystal and molecular structure of [CuCl{PPh₂(C₆H₄CH₂NMe₂-2)}] (4)

The compound crystallizes in the monoclinic P2(1)/n space group. The Ortep-like diagram with the atom numbering scheme is given in Figure II.2.9. The nitrogen atom in the pendant arm is intramolecularly coordinated to copper [N(1)…Cu(1) 2.172(4) Å]. In this way a six-membered metallacycle is formed.

Figure II.2.9. Dimeric association of R_{N1} and $S_{N1'}$ isomers in compound 4

The ring has a boat conformation, with P(1) and C(7) in apices [dihedral angles Cu(1)P(1)C(1)/Cu(1)C(1)C(2)N(1) 22.63° and N(1)C(2)C(7)/Cu(1)C(1)C(2)N(1) 63.77°]. The intramolecular N \rightarrow Cu coordination induces planar chirality. As a consequence the compound crystallizes as a mixture of *R* and *S* isomers which are associated in dimeric units by bridging chlorine atoms [Cl(1)…Cu(1') 2.3406(13) Å vs. Σr_{vdW} (Cu,Cl) 3.20 Å^{27,58}]. As a consequence a tricyclic system is formed, with a planar Cu₂Cl₂ core. The ligands are oriented *trans* each other, with respect to the relative positions of the nitrogen and phosphorus atoms to the planar Cu₂Cl₂ core. The coordination geometry about copper is distorted tetrahedral.

Crystal and molecular structure of $[CuCl{PPh(C_6H_4CH_2NMe_2-2)_2}]\cdot C_6H_6$ (5·C₆H₆)

Single-crystals of $[CuCl{PPh(C_6H_4CH_2NMe_2-2)_2}]$ were grown from a benzene/ n-hexane mixture of solvents and the compound crystallized as $5 \cdot C_6H_6$, in the monoclinic P2(1)/c space group. The Ortep-like diagram of $5 \cdot C_6H_6$ is depicted in Figure II.2.10.

Figure II.2.10. Ortep-like diagram of $R_{NL}R_{N2}$ -**5**·C₆H₆ with 50% probability ellipsoids. Hydrogen atoms and benzene were removed for clarity.

The ligand acts as a *N*,*P*,*N*-tridentate moiety towards copper, thus determining a distorted tetrahedral coordination geometry. The high distortion [P(1)-Cu(1)-Cl(1) 134.73°] is probably determined by the constraints imposed by the six-membered rings. Due to the strong intramolecular N→Cu interactions [N(1)…Cu(1) 2.319(1) Å, N(2)…Cu(1) 2.191(1) Å, vs. Σr_{vdw} (Cu,N) = 3.10 Å²⁷], two six membered chelate rings are formed. These interactions are of similar strength with those found in the related copper complexes with ligand **3**.^{34,37} Both rings have boat conformations, with C(7) and P(1) and C(16) and P(1) respectively, in apices. The coordination geometry at the phosphorus atom is distorted tetrahedral.

The intramolecular N \rightarrow Cu coordination induces planar chirality, thus resulting in a mixture of isomers, namely $R_{NL}R_{N2}$ and $S_{NL}S_{N2}$.

The $R_{N_{L}}R_{N_2}$ and $S_{N_L}S_{N_2}$ isomers are associated in a polymeric chain by hydrogen bonding between chlorine and a hydrogen atom belonging to a phenyl ring [Cl(1)…H(13') 2.765(4) Å vs. Σr_{vdW} (Cl,H) 3.01 Å] (Figure II.2.11).

Figure II.2.11. Polymeric chain in 5.C₆H₆. Solvent molecules were omitted.

X-ray diffraction studies upon single-crystals grown from the solid isolated in the reaction between CuCl₂ and ligand **2** (from a CH₂Cl₂/n-hexane, 1/4 v/v, mixture of solvents) evidenced also the formation of the Cu(I) compound [CuCl{PPh(C₆H₄CH₂NMe₂-2)₂]], crystallized in the monoclinic P2(1) space group. Such reduction processes were observed also before in case of other reaction mixtures containing phosphanes, which are known as reducing reagents.³⁴ By contrast with the above described species, in this case the crystal contains two independent molecules, **5a** and **5b**, in the unit cell, one of them (**5a**) with a similar structure as that one described above, namely with both nitrogens coordinated to phosphorus [N(1)…Cu(1) 2.464(8) and N(2)…Cu(1) 2.169(8) Å]. In the other one (**5b**) only one nitrogen atom is coordinated to copper [N(3)…Cu(2) 2.175(8) Å, while the other nitrogen is coordinated to phosphorus [N(4)…P(2) 3.032(9) Å, vs. $\Sigma r_{vdw}(P,N) = 3.40 Å^{27}$]. The Ortep-like diagram for this species is depicted in Figure II.2.12.

Figure II.2.12. Ortep-like diagrams of molecules **5a** and **5b** with atom numbering scheme. The atoms are drawn with 30% probability ellipsoids. The hydrogen atoms were removed for clarity.

The intramolecular N→Cu and N→P intramolecular coordination induces planar chirality and therefore the compound crystalizes as a mixture of isomers, R_{N1} , R_{N2} and S_{N1} , S_{N2} for molecule **5a** and S_{N3} , R_{N4} and R_{N3} , S_{N4} , for molecule **5b**, respectively. Moreover, due to the N→P intramolecular coordination the P(2) atom becomes also chiral, and therefore the chirality to this atom determines the formation of C_{P2} and A_{P2} isomers. Finally, the isomers corresponding to the molecule **5b** can be described as S_{N3} , R_{N4} , C_{P2} and R_{N3} , S_{N4} , A_{P2} . The coordination geometry about copper and phosphorus in molecule **5a** can be described as distorted tetrahedral, while in case of molecule **5b**, the coordination geometry about copper is distorted T-shaped and about P(2) it is a trigonal bipyramid, with C(25) and N(4) in apices and the trigonal plane formed by Cu(2), C(34) and C(44). P(2) is displayed at 0.44 Å above the trigonal plane. The six-membered metallacycles have boat conformations in both molecules.

For the Cu(II) compounds **6** and **7**, the magnetic moments suggest a tetrahedral environment about Cu(II) (1.94 and 2.18 B.M. *vs*. the theoretical value of 1.73 B.M.). The ESR spectra confirmed also the presence of the paramagnetic Cu(II) species.

II.2.C. Cobalt(II) complexes with triarylphosphanes

The synthesis of these complexes was achieved by reacting the corresponding triarylphosphanes with $CoCl_2 \cdot 6H_2O$ in ethanol, in a 1:1 molar ratio (Scheme II.2.4.).

When phosphane **1** was used, only complex **8**, soluble in ethanol, was formed. In case of phosphanes **2** and **3**, besides the desired complexes **9** and **10**, the oxidation products **9a** and **10a** were also isolated, probably due to initial oxidation of the starting organophosphorus ligands in solution.

 $\begin{array}{rcl} {\sf PPh}_{3-x}({\sf C}_{6}{\sf H}_{4}{\sf CH}_{2}{\sf NMe}_{2}{\text{-}}2)_{x} + {\sf CoCl}_{2}{\scriptstyle \cdot}{\scriptstyle 6}{\sf H}_{2}{\sf O} & \xrightarrow{{\sf Ethanol} \\ \hline & -{\scriptstyle 6}{\sf H}_{2}{\sf O}} & [{\sf CoCl}_{2}\{{\sf PPh}_{3-x}({\sf C}_{6}{\sf H}_{4}{\sf CH}_{2}{\sf NMe}_{2}{\text{-}}2)_{x}\}] \\ & x = 1 & 8 \\ & x = 2 & 9 \\ & x = 3 & 10 \end{array}$ $\begin{array}{r} {\sf PPh}_{3-x}({\sf C}_{6}{\sf H}_{4}{\sf CH}_{2}{\sf NMe}_{2}{\text{-}}2)_{x} & \xrightarrow{{\sf Ethanol} \\ \hline & 1/2 & O_{2}} & O {=} {\sf PPh}_{3-x}({\sf C}_{6}{\sf H}_{4}{\sf CH}_{2}{\sf NMe}_{2}{\text{-}}2)_{x} \end{array}$ $O {=} {\sf PPh}_{3-x}({\sf C}_{6}{\sf H}_{4}{\sf CH}_{2}{\sf NMe}_{2}{\text{-}}2)_{x} + {\sf CoCl}_{2}{\scriptstyle \cdot}{\scriptstyle 6}{\sf H}_{2}{\sf O} & \xrightarrow{{\sf Ethanol} \\ \hline & -{\scriptstyle 6}{\sf H}_{2}{\sf O}} & [{\sf CoCl}_{2}\{{\sf OPPh}_{3-x}({\sf C}_{6}{\sf H}_{4}{\sf CH}_{2}{\sf NMe}_{2}{\text{-}}2)_{x}\}] \\ & x = 2 & {\sf 9a} \\ & x = 3 & {\sf 10a} \end{array}$

Scheme II.2.4. Synthesis of the Co(II) complexes with triarylphosphanes 1 - 3

All species were obtained as blue solids, soluble only in alcohols (methanol or ethanol, species **8**, **9a** and **10a**) and both in alcohols, acetonitrile and chlorinated solvents (**9** and **10**).

NMR and mass spectrometry measurements in methanol indicated the oxidation of the phosphane ligands to the phosphane oxides $OPPh_{3-x}(C_6H_4CH_2NMe_2-2)_x$. A mixture of compounds $[CoCl_2{PPh_{3-x}(C_6H_4CH_2NMe_2-2)_x}]$ and $[CoCl_2{OPPh_{3-x}(C_6H_4CH_2NMe_2-2)_x}]$ (x = 2, 3) was finally formed.

Complexes **9** and **10** could be separated from the oxidized species **9a** and **10a**, based on their different solubilities. The phosphane oxide complexes are insoluble in chlorinated solvents, while complexes **9** and **10** are soluble in methylene chloride.

The resonances observed in the NMR spectra are broad, due to the paramagnetic nature of the Co(II) complexes.

The ³¹P NMR spectra for the complexes **8** – **10** contain resonances which prove the presence of P(III) species in solution and have the δ values slightly shifted compared to the resonances of the free ligands. The ³¹P NMR spectra for the oxidized compounds present chemical shifts characteristic for P(V) species (Table II.2.6).

No.	Compound	31 P NMR δ	μ	Electronic
		(ppm)(solvent)	[B.M.]	spectra (vis.)
				$\lambda_{max}[nm]$
8	[CoCl ₂ {PPh ₂ (C ₆ H ₄ CH ₂ NMe ₂ -2)}]	-16.4 (CD ₃ OD)	4.49	624; 671 ^ª
9	$[CoCl_{2}{PPh(C_{6}H_{4}CH_{2}NMe_{2}-2)_{2}}]$	-22.8 (CDCl ₃)	4.02	628; 644 ^ª
10	$[CoCl_2{P(C_6H_4CH_2NMe_2-2)_3}]$	-34.9 (CD ₃ OD)	3.74	654; 693 ^ª
9a	$[CoCl_2{OPPh(C_6H_4CH_2NMe_2-2)_2}]$	42.5 (CD ₃ OD)	3.92	651 ^ª
				589,688 ^b
10a	$[CoCl_{2}{OP(C_{6}H_{4}CH_{2}NMe_{2}-2)_{3}}]$	47.2 (CD ₃ OD)	3.84	662

Table II.2.6. Analy	tical data	for the Co	o(II) complexes
---------------------	------------	------------	-----------------

^a in ethanol, ^b in CH₃CN

All compounds form blue solutions in ethanol or acetonitrile and the electronic spectra show absorption bands in the range 589 - 693 nm, characteristic for tetrahedral Co(II) complexes.⁹⁵

II.3. Conclusions

• Hypervalent triarylphosphanes of type $PPh_{3-x}(C_6H_4CH_2NMe_2-2)_x$ (x = 1 – 3) were used as ligands towards Cu(I), Cu(II) and Co(II) ions.

• The molecular structure of the triarylphosphane PPh($C_6H_4CH_2NMe_2-2$)₂ (2) was determined by single-crystal X-ray diffraction. There are two similar independent molecules in the unit cell, and in each of them only one N \rightarrow P intramolecular coordination was observed.

• Two new copper(I) complexes, $[CuCl{PPh_2(C_6H_4CH_2NMe_2-2)}]$ (4) and $[CuCl{PPh(C_6H_4CH_2NMe_2-2)_2}]$ (5) were obtained and structurally characterized by ¹H and ³¹P NMR, mass spectrometry and single-crystal X-ray diffraction.

• The molecular structure of compound **4** revealed the intramolecular $N \rightarrow Cu$ interaction. The molecules are further associated in dimeric units by bridging chlorine atoms.

• The single-crystals of **5** grown from a benzene solution consist of $[CuCl{PPh(C_6H_4CH_2NMe_2-2)_2}]\cdot C_6H_6$ molecules, in which both nitrogen atoms of the pendant arms are coordinated to copper. The monomeric units are further associated in polymeric chains by hydrogen bonding.

• The attempts to grow single-crystals of the product isolated from the reaction between PPh(C₆H₄CH₂NMe₂-2)₂ and CuCl₂ from a CH₂Cl₂ solution lead to the copper(I) complex **5** instead of the adduct [CuCl₂{PPh(C₆H₄CH₂NMe₂-2)₂}] (**7**). The isolated single-crystals contain two independent molecules in the unit cell with different behaviour of the triorganophosphane.

• Three new cobalt(II) complexes of type $[CoCl_2{PPh_{3-x}(C_6H_4CH_2NMe_2-2)_x}]$ (x = 1-3) were prepared and characterized by ¹H and ³¹P NMR, mass spectrometry, electronic spectroscopy and magnetic susceptibility.

• When the synthesis of the complexes $[CoCl_2{PPh_{3-x}(C_6H_4CH_2NMe_2-2)_x}]$ (x = 2, 3) was performed in air, the corresponding oxidised species $[CoCl_2{OPPh_{3-x}(C_6H_4CH_2NMe_2-2)_x}]$ (x = 2, 3) were also obtained. Mass spectra and IR spectra suggested also the formation of the oxidized species.

References

- 1. S. Maggini, Coord. Chem. Rev., 2009, 253, 1793, and references therein.
- 2. J. D. Woollins, *Phosphorus, Sulfur, and Silicon and the Related Elements*, **2001**, 168, 1.
- 3. L. M. Clarke, A. M. Z. Slawin, J. D. Woollins, *Phosphorus, Sulfur, and Silicon and the Related Elements*, **2001**, *169*,5.
- 4. P. R. Elowe, C. McCann, P. G. Pringle, S. K. Spitzmesser, J. E. Bercaw, Organometallics, 2006, 25, 5255.
- 5. L.-C. Liang, Coord. Chem. Rev., 2006, 250, 1152, and references therein.
- 6. T. Q. Ly, J. D. Woollins, Coord. Chem. Rev., 1998, 176, 451.
- 7. G. G. Briand, T. Chivers, M. Krahn, Coord. Chem. Rev., 2002, 233-234, 237.
- 8. Z. Fei, P. J. Dyson, Coord. Chem. Rev., 2005, 249, 2056.

- 9. C. Chuit, R. J. P. Corriu, P. Monforte, C. Reye, J. P. Declercq, A. Dubourg, Angew. Chem. Int. Ed. Engl., 1993, 32, 1430.
- 10. A. Chandrasekaran, N. V. Timosheva, R. O. Day, R. R. Holmes, *Inorg. Chem.*, **2002**, 41, 5235.
- 11. M. A. Alonso, J. A. Casares, P. Espinet, K. Soulantica, Inorg. Chem., 2003, 42, 3856.
- 12. I. Yamada, M. Ohkouchi, M. Yamaguchi, T. Yamagishi, J. Chem. Soc., Perkin Trans., **1997**, 1, 1869.
- 13. L. Horner, G. Simons, Phosphorus Sulfur Relat. Elem., 1983, 15, 171.
- 14. F. Tisato, G. Pilloni, F. Refosco, G. Bandoli, C. Corvaja, B. Corain, *Inorg. Chim. Acta*, **1998**, *275-276*, 401.
- 15. L. Crociani, R. Anacardio, P. Traldi, B. Corain, Inorg. Chim. Acta, 1998, 282, 119.
- 16. L. Chen, P. Ai, J. Gu, S. Jie, B. G. Li, J. Organomet. Chem., 2012, 716, 55.
- 17. L. Sacconi and R. Morassi, J. Chem. Soc. A, 1969, 2904.
- 18. E. Tomas-Mendivil, R. Garcia-Alvarez, S. E. Garcia-Garrido, J. Diez, P. Crochet, V. Cadierno, J. Organomet. Chem., **2013**, 727, 1.
- 19. S. Y. de Boer, Y. Gloaguen, M. Lutz, J. I. van der Vlugt, *Inorg. Chim. Acta*, **2012**, *380*, 336.
- 20. V. Pawlowski, H. Kunkely, A. Vogler, Inorg. Chim. Acta, 2009, 362, 226.
- 21. R. Kreiter, J. J. Firet, M. J. J. Ruts, M. Lutz, A. L. Spek, R. J. M. Klein Gebbink, G. Van Koten, *J. Organomet. Chem.*, **2006**, *691*, 422.
- 22. M. T. Whited, E. Rivard, J. C. Peters, Chem. Commun., 2006, 1613.
- 23. C.-S. Chen, W.-Y. Yeh, Inorg. Chim. Acta, 2011, 370, 456.
- M. Milenkovic, A. Bacchi, G. Cantoni, S. Radulovic, N. Gligorijevic, S. Arandelovic, D. Sladic, M. Vujcic, D. Mitic, K. Andelkovic, *Inorg. Chim. Acta*, **2013**, 395, 33.
- 25. A. Chandrasekaran, N. V. Timosheva, R. O. Day, R. R. Holmes, *Inorg. Chem.*, **2000**, *39*, 1338.
- 26. IUPAC Nomenclature of Organic chemistry, Pergamon Press, Oxford, 1979.
- 27. J. Emsley, Die Elemente, Walter de Gruyter, Berlin, 1994.
- 28. R. E. Evans, P. Douglas, C. J. Winscom, Coord. Chem. Rev., 2006, 250, 2093.
- 29. A. Vogler, H. Kunkely, Coord. Chem. Rev., 2002, 230, 243.
- C. W. Lim, O. Tissot, A. Mattison, M. W. Hooper, J. M. Brown, A. R. Cowley, D. I. Hulmes, A. J. Blacker, Org. Process Res . Dev., 2003, 7, 379.
- G.Müller, M.Klinga, M.Leskela, B.Rieger, Z. Anorg. Allg. Chem., 2002, 628, 2839.
- H. Lang, M. Leschke, H. A. Mayer, M. Melter, C. Weber, G. Rheinwald, O. Walter, G. Huttner, *Inorg. Chim. Acta*, 2001, 324, 266.
- 33. H. Lang, M. Leschke, G. Rheinwald, M. Melter, *Inorg. Chem. Commun.*, **1998**, *1*, 254.
- 34. M. Leschke, M. Melter, B. Walfort, A. Driess, G. Huttner, H. Lang, Z. Anorg. *Allg.Chem.*, **2004**, *630*, 2022.
- 35. H. Lang, M. Leschke, M. Melter, B. Walfort, K. Kohler, S. E. Schulz, T. Gessner, Z. Anorg. Allg. Chem., 2003, 629, 2371.
- 36. M. Leschke, M. Melter, C. Weber, G. Rheinwald, H. Lang, Z. Anorg. Allg. Chem., 2001, 627, 1199.
- 37. M. Leschke, H. Lang, M. Melter, G. Rheinwald, C. Weber, H. A. Mayer, H.

Pritzkow, L. Zsolnai, A. Driess, G. Huttner, Z. Anorg. Allg. Chem., 2002, 628, 349.

- 38. H. Lang, Y. Shen, T. Ruffer, B. Walfort, Inorg. Chim. Acta, 2008, 361, 95.
- 39. M. Leschke, G. Rheinwald, H. Lang, Z. Anorg. Allg. Chem., 2002, 628, 2470.
- 40. Y. Shen, H. Pritzkow, B. Walfort, T. Ruffer, H. Lang, Acta Cryst., 2004, E60, m91.
- 41. R. Kreiter, J. J. Firet, M. J. J. Ruts, M. Lutz, A. L. Spek, R. J. M. Klein Gebbink, G. Van Koten, *J. Organomet. Chem.*, **2006**, *691*, 422.
- 42. K. Nakamoto, *Infrared and Raman Spectra of Inorganic and Coordination Compounds*, Wiley Interscience, New York, **1977**.
- 43. G. Pilloni, F. Tisato, G. Bandoli, B. Corain, J. Chem. Soc. Chem. Commun., **1996**, 433.
- 44. S. B. Harkins, J. C. Peters, J. Am. Chem. Soc., 2005, 127, 2030.
- 45. Z. Zhang, H. Sun, W. Xu, X. Li, Polyhedron, 2013, 50, 571.
- 46. F. Mohr, S. H. Priver, S. K. Bhargava, M. A. Bennett, *Coord. Chem. Rev.*, **2006**, *250*, 1851.
- 47. T. Zheng, H. Sun, J. Ding, Y. Zhang, X. Li, J. Organomet. Chem., 2010, 695, 1873.
- 48. L. Brammer, J. C. M. Rivas, C. D. Spilling, J. Organomet. Chem., 2000, 609, 36.
- 49. T. B. Rauchfuss, F. T. Patino, D. M. Roundhill, Inorg. Chem., 1975, 14, 652.
- 50. D. M. Roundhill, R. A. Bechtold, S. G. N. Roundhill, Inorg. Chem., 1980, 19, 284.
- 51. T. B. Rauchfuss, J. L. Clements, S. F. Agnew, D. M. Roundhill, *Inorg. Chem.*, **1977**, *16*, 775.
- 52. L. Brammer, J. M. Charnock, P. L. Goggin, R. J. Goodfellow, A. G. Orpen, T. F. Koetzle, *J. Chem. Soc. Dalton Trans.*, **1991**, 1789.
- 53. L. Brammer, D. Zhao, F. T. Ladipo, J. Braddock-Wilking, *Acta Crystallogr. Sect. B*, **1995**, *51*, 632.
- 54. G. M. Kapteijn, M. P. R. Spee, D. M. Grove, H. Kooijman, A. L. Spek, G.van Koten, *Organometallics*, **1996**, *15*, 1405.
- 55. J. Pfeiffer, G. Kickelbick, U. Schubert, Organometallics, 2000, 19, 62.
- 56. A.-F. Ma, H.-J. Seo, S.-H. Jin, U. C. Yoon, M. H. Hyun, S. K. Kang, Y.-I. Kim, Bull. Korean Chem. Soc., 2009, 30, 2754.
- 57. H. Brunner, A. Kollnberger, T. Tsuno, M. Zabel, Private communication, 2009.
- 58. J. E. Huheey, *Inorganic Chemistry, Principles of Structure and Reactivity*, 3rd Ed., Harper Collins Publishers, New York, **1983**.
- 59. P. Braunstein, B. T. Heaton, C. Jacob, L. Manzi, X. Moise, *Dalton Trans.*, 2003, 1396.
- 60. R. J. McNair, L. H. Pignolet, Inorg. Chem., 1986, 25, 4717.
- 61. A. Romerosa, C. S. Bello, M. Serrano-Ruiz, A. Caneschi, V. McKee, M. Peruzzini, L. Sorace, F. Zanobini, *Dalton Trans*, **2003**, 3233.
- 62. G. Vasapollo, P. Giannoccaro, C. F. Nobile, A. Sacco, *Inorg. Chim. Acta.*, **1981**, *48*, 125.
- 63. C. Hahn, J. Steler, R. Taube, Polyhedron, 1998, 17,1183.
- 64. M. P. Anderson, B. M.Mattson, L. H. Pignolet, Inorg. Chem., 1983, 22, 2644.
- 65. M. P. Anderson, C. C. Tso, B. M. Mattson, L. H. Pignolet, *Inorg. Chem.*, **1983**, *22*, 3267.
- 66. M. P. Anderson, L. H. Pignolet, Organometallics, 1983, 2, 1246.
- 67. R. J. McNair, P. V. Nilsson, L. H. Pignolet, Inorg. Chem., 1985, 24, 1935.
- 68. H. Yang, N. Lugan, R. Mathieu, Organometallics, 1997, 16, 2089.

- 69. A. Togni, U. Burckhardt, V. Gramlich, P. S. Pregosin, R. Salzmann, J. Am. Chem. Soc., **1996**, 118, 1031.
- 70. J. M. Valk, G. A. Whitlock, T. P. Layzell, J. M. Brown, *Tetrahedron: Asymmetry*, **1995**, *6*, 2593.
- 71. T. Hayashi, C. Hayashi, Y. Uozumi, Tetrahedron: Asymmetry, 1995, 6, 2503.
- 72. Y. Nishibayashi, K. Segawa, K. Ohe, S. Uemura, Organometallics, 1995, 14, 5486.
- 73. Q. Jiang, D. Van Plew, S. Murtuza, X. Zhang, Tetrahedron Lett., 1996, 37, 797.
- 74. T. Langer, G. Helmchen, *Tetrahedron Lett.*, **1996**, *37*, 1381.
- 75. J. X. Gao, T. Ikariya, R. Noyori, Organometallics, **1996**, *15*, 1087.
- 76. M. Alvarez, N. Lugan, R. Mathieu, J. Chem. Soc., Dalton Trans., 1994, 2755.
- 77. H.Yang, M. Alvarez, N. Lugan, R. Mathieu, J. Chem. Soc., Chem. Commun., 1995, 1721.
- 78. G. Helmchen, A. Pfaltz, Acc. Chem. Res., 2000, 33, 336.
- 79. P. Schnider, G. Koch, R. Pretot, G.Wang, F. M. Bohnen, C. Krüger, A. Pfaltz, *Chem. Eur. J.*, **1997**, *3*, 887.
- 80. A. Lightfoot, P. Schnider, A. Pfaltz, Angew. Chem., Int. Ed., 1998, 37, 2897.
- 81. F. Menges, M. Neuburger, A. Pfaltz, Org. Lett., 2002, 4, 4713.
- H. Brunner, A. K. Ilnberger, A. Mehmood, T. Tsuno, M. Zabel, J.Organomet.Chem., 2004, 689, 4244.
- 83. H. Brunner, A. K. IInberger, M. Zabel, Polyhedron, 2003, 22, 2639.
- H. Brunner, T. Zwack, M. Zabel, W. Beck, A. Böhm, Organometallics, 2003, 22, 1741.
- 85. C. Dubs, T. Yamamoto, A. Inagaki, M. Akita, Chem. Commun., 2006, 1962.
- 86. C. Hahn, M. Spiegler, E. Herdtweck, R. Taube, Eur. J. Inorg. Chem., 1998, 1425.
- 87. C. Hahn, J. Sielerb, R. Taube, Chem. Ber., 1997, 130, 939.
- 88. C. Hahn, M. Spiegler, E. Herdtweck, R. Taube, Eur. J. Inorg. Chem., 1999, 435.
- J. P. Cahill, A. P. Lightfoot, R. Goddard, J. Rust, P. Guiry, *Tetrahedron Asymmetry*, 1998, 9, 4307.
- 90. M. Stradiotto, J. Cipot, R. McDonald, J. Am. Chem. Soc., 2003, 125, 5618.
- 91. C. M. Thomas, R. Mafua, B. Therrien, E. Rusanov, H. Stoeckli-Evans, G. Suss-Fink, *Chem. Eur. J.*, **2002**, *8*, 3343.
- 92. M. Iwaoka, S. Tomoda, J. Am. Chem. Soc., 1996, 118, 8077.
- 93. C. I. Lepadatu, M. Andruh, *Forma moleculelor anorganice. O introducere in stereochimia anorganica.*, Ed. Academiei Romane, Bucuresti, **1998**.
- 94. R. Mitea, A. Covaci, C. Silvestru, A. Silvestru, Rev.Roum. Chim., 2013, in press.
- R. Bou-Moreno, S. A. Cotton, V. Hunter, K. Leonard, A. W. G. Platt, P. R. Raithby, S. Schiffers, *Polyhedron*, **2011**, *30*, 2832.
- 96. MestReC and MestReNova, Mestrelab Research S.L., A Coruña 15706, Santiago de Compostela.
- 97. G.M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112.
- K. Brandenburg, DIAMOND Visual Crystal Structure Information System, Release 3.1d, Crystal Impact GbR, Bonn, Germany, 2006.
- PLATON: (a) A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7e13; (b) A. L. Spek, Acta Crystallogr. D, 2009, 65, 148e155.

III. Diorganochalcogen(II) ligands with alkoxo or aryloxo functionalities and their behavior towards late *d* metals

III.2. Results and disscusion III.2.A. Diorganochalcogen(II) dihydroxide ligands

The sulfur bridged dialkoxo ligand bis(2-hydroxy-2-methylpropyl)sulfide $[Me_2C(OH)CH_2]_2S$ was obtained according to the published method involving the reaction between $Na_2S \cdot 9H_2O$ with 1-chloro-2-methyl-2-propanol.²⁶ The similar diols bridged by the heavier chalcogens Se and Te, $[Me_2C(OH)CH_2]_2E$ (E = Se, Te), as well as the phenyl substituted compounds $[Ph_2C(OH)CH_2]_2E$ (E = S, Se) were obtained by a slightly modified method (Scheme III.2.1).

	Compound	M.p.	δ ⁷⁷ Se / ¹²⁵ Te
1	[Me ₂ C(OH)CH ₂] ₂ S	46	-
2	[Me ₂ C(OH)CH ₂] ₂ Se	50	37.22
3	[Me ₂ C(OH)CH ₂] ₂ Te	45	-0.93
4	[Ph ₂ C(OH)CH ₂] ₂ S	114	-
5	[Ph ₂ C(OH)CH ₂] ₂ Se	123	51.66
6	[Me ₂ C(OSiMe ₃)CH ₂] ₂ S	liquid	-
7	[Me ₂ C(OSiMe ₃)CH ₂] ₂ Se	liquid	95.66
8	[Ph ₂ C(OSiMe ₃)CH ₂] ₂ S	77-8	-

Table III.2.1. Chalcogen bridged diols and their trimethylsilyl derivatives

Scheme III.2.1. Synthesis of the chalcogen bridged diols

The reduction of elemental chalcogens (selenium and tellurium) with natrium borohydride in aqueous NaOH 10% afforded natrium chalcogenides which were subsequently treated with 2-chloro-1,1-diphenyl-ethanol in a 1 : 2 molar ratio. The desired diols were isolated as colorless solids. The obtained diols and their SiMe₃ substituted derivatives along with some analytical data are given in Table III.2.1.

The NMR spectra revealed the expected resonances. In the case of the methyl substituted diols, the ¹H NMR spectra present one singlet resonance for the equivalent methyl protons and another singlet resonance for the equivalent methylene protons. The resonance corresponding to the Se-CH₂ (δ 2.81 ppm in **2**) and Te-CH₂ protons (δ 2.96 ppm in **3**) are accompanied by satelites due to the corresponding proton – chalcogen couplings (Figure III.2.1). In case of the phenyl substituted compounds, the expected multiplet resonances in the aromatic region were observed. The OH protons give broad, singlet resonances in all cases.

Crystal and molecular structure of [Ph₂C(OH)CH₂]₂Se (5) and [Ph₂C(OSiMe₃)CH₂]₂S (8)

Single-crystals of compounds **5** and **8** were grown by slow diffusion of n-hexane in a CH_2Cl_2 solution and their solid state structures were determined by single-crystal X-ray diffraction. The two compounds crystallize in the monoclinic P2(1)/c (**5**) and the triclinic P-1 (**7**) space groups, respectively. The Ortep-like diagram with the atom numbering scheme of compound **5** is depicted in Figure III.2.6. The selenium atom is sp^3 hybridized, with the C(1)-Se(1)-C(15) angle of 98.61°. The molecules are further associated in dimeric units by hydrogen bonding [O(2)···H(10') 2.15 Å vs. $\Sigma r_{vdW}(O,H) = 2.72 Å^{47}$] (Figure III.2.7). The other

hydrogen atom is involved in an intramolecular interaction with the selenium atom H(20)…Se(1) 2.73 Å vs. $\Sigma r_{vdW}(Se,H) = 3.10 Å^{47}$]. The interatomic distances O(1)…Se(1) and O(2)…Se(1) are of 2.945(2) Å and 3.227(2) Å, respectively. Both these values are lower than the sum of the van der Waals radii of the oxygen and selenium atoms [$\Sigma r_{vdW}(O,Se) = 3.42$ Å], thus suggesting weak O \rightarrow Se intramolecular interactions.

Figure III.2.6. Molecular structure of [Ph₂C(OH)CH₂]₂Se; other hydrogen atoms than OH were removed for clarity. The atoms are drawn with 50% probability ellipsoids

Figure III.2.7. Dimeric association in [Ph₂C(OH)CH₂]₂Se (5)

The ortep-like diagram for compound **8** is given in Figure III.2.8. The sulfur atom is sp^3 hybridized, with the angle C(2)-S(1)-C(2a) of 106°. The C(2) and C(2a) atoms have distorted tetrahedral environments [C(1)-C(2)-S(1) 116.7°], with a slightly higher distortion than in compound **5** [C(2)-C(1)-Se(1) 109.41(14)° and C(16)-C(15)-Se(1) 111.68(15)°]. The silicon atoms are also tetrahedral.

Figure III.2.8. Molecular structure of $[Ph_2C(OSiMe_3)CH_2]_2S$ (8); hydrogen atoms were removed for clarity. The atoms are drawn with 50% probability ellipsoids.

III.2.B. Diorganochalcogen(II) monohydroxide ligands

Compounds of type $[Me_2C(OH)CH_2](2-Me_2NCH_2C_6H_4)E$ (E = S, Se, Te) were obtained by reacting 1-chloro-2-methyl-2-propanol with $(2-Me_2NCH_2C_6H_4)ELi$ in a 1:1 molar ratio. The lithiated reagents were freshly prepared by treating N,N-dimethylbenzylamine with nbuthyllithium, followed by insertion of chalcogen. The chemical reactions are indicated in Scheme III.2.3.

Scheme III.2.3. Preparation of diorganochalcogen(II) monohydroxide ligands

The monohydroxide ligands were isolated as colorless (9) or yellow (10) oils, after purification by vacuum distillation of the crude products, or as an orange solid (11).

The ¹H and ¹³C NMR spectra of the monohydroxide ligands **9** - **11** exhibit the expected resonances. In the aliphatic region, the ¹H NMR spectra contain four sharp, singlet resonances, corresponding to the two types of methyl (*i.e.* at δ 1.26 and 2.24 ppm for the

 NMe_2 and CMe_2 , respectively, in **10**) and the two types of methylene (*i.e.* at δ 3.05 and 3.53 ppm for the SeCH₂ and NCH₂, respectively, in **10**) protons.

Figure III.2.9. ¹H NMR spectra (CDCl₃, 300 MHz) of compounds 9 and 10

No evidence for any intramolecular interaction in solution could be outlined from the ¹H NMR spectra. In the aromatic region, the expected multiplet resonances for the four non-equivalent protons in the phenyl ring are present. The ¹H NMR spectra of compounds **9** and **10** are depicted in Figure III.2.9.

The ⁷⁷Se NMR spectrum of compound **10** presents a singlet resonance at 192.47 ppm. In the case of $[Me_2C(OH)CH_2](2-Me_2NCH_2C_6H_4)$ Te (**11**) the ¹H and ¹²⁵Te NMR spectra revealed a mixture of two compounds. Further separation was required and vacuum distillation was used. The NMR investigations proved that the final residue which remained after distillation is the desired compound. The ¹²⁵Te (proton coupled) NMR indicated a triplet resonance at 277.87 ppm.

The ligands $[Ph_2C(OH)CH_2](2-Me_2NCH_2C_6H_4)E$ [E = S (**12**), Se (**13**)] were similarly prepared, by reacting 1-chloro-2,2-diphenylethanol with $(2-Me_2NCH_2C_6H_4)ELi$ in a 1:1 molar ratio (Scheme III.2.4).

Scheme III.2.4. Synthesis of [Ph₂C(OH)CH₂](2-Me₂NCH₂C₆H₄)Se

Crystal and molecular structure of [Ph₂C(OH)CH₂](2-Me₂NCH₂C₆H₄)Se (13)

The molecular structure of compound **13** was determined by single-crystal X-ray diffraction. The Ortep-like diagram with the atom numbering scheme is given in Figure III.2.12.

Figure III.2.12. Ortep-like diagram of [Ph₂C(OH)CH₂](2-Me₂NCH₂C₆H₄)Se (**13**) with 30% probability ellipsoids; hydrogen atoms, excepting OH, were removed for clarity.

The crystal of compound **13** consists of discrete molecules separated by normal van der Waals radii. Se(1) has a sp^3 hybridization, with the angle C(1)-Se(1)-C(10) of 98.72°. The nitrogen atom in the pendant arm does not interact with selenium [Se(1)-N(1) 3.52 Å vs. Σr_{vdW} (Se,N) 3.44 Å⁴⁷], but it is involved in intramolecular hydrogen bonding with H(1) [H(1)…N(1) 2.03 Å vs. Σr_{vdW} (H,N) 2.74 Å]. In this way the oxygen atom arrives close to selenium, at a distance lower than the sum of the respective van der Waals radii [O(1)…Se(1) 3.261(2) Å vs. Σr_{vdW} (O,Se) 3.42 Å⁴⁷].

III.2.C. Coordination behavior of diorganochalcogen(II) ligands with alkoxo functionalities towards *d* metals

III.2.C.1. Group 12 metal complexes

The cadmium(II) complexes **14** and **15** were prepared by reacting the trimethylsilyl derivatives **6** and **7**, respectively, with cadmium(II) chloride in a 1:1 molar ratio. (Scheme III.2.5). The two complexes were isolated as slightly orange (**14**) and colorless (**15**) solids, respectively. The isolated species could not be dissolved in CDCl₃, so that the NMR spectra were recorded in methanol- d_4 .

Scheme III.2.5. Synthesis of Cd((II) complexes with dialkoxo ligands

The ¹H NMR spectrum of [CdS{CH₂C(O)Me₂}₂] (**14**) revealed the existence of two species in solution: one of them (species I) give rise to two singlet resonances for the methyl protons (δ 1.39 and 1.43 ppm) and an AB spin system centred at 3.06 ppm (δ_A 2.96 and δ_B 3.17 ppm) for the CH₂ protons. This behavior might be consistent with the intramolecular S→Cd coordination, which rigidised the molecule in such a configuration, that the methyl groups and the methylene protons, respectively, are no more equivalent. The other species (II) is characterized by two singlet resonances for the equivalent CH₃ and CH₂ protons, respectively. In [CdSe{CH₂C(O)Me₂}₂] (**15**) only the species characterized by equivalent CH₃ and CH₂ protons was observed (δ 1.28 ppm for CH₃ and 2.73 ppm for CH₂, practically identical with the values found in the ¹H NMR spectrum of **14**).

When the monohydroxo ligand ${\bf 10}$ was reacted with $CdCl_2$ in a 2:1 molar ratio a mixture of products was obtained, and the attempts to separate it in individual components failed.

Having these results, we tried to change the synthesis strategy in order to obtain more soluble species, presumably with monomeric structure in solution. In this respect we increased the coordination number to the metal by using bulky hypervalent phosphanes of type $PPh_{3-x}(C_6H_4CH_2NMe_2-2)_x$ (x = 1, 2) (Scheme III.2.6). [CdCl₂PPh_x(C₆H₄CH₂NMe₂-2)_{3-x}] (x = 1, 2) were obtained *in situ* by reacting CdCl₂ with the corresponding triarylphosphane¹²⁹ and then it was reacted with a 1:2 stoichiometric mixture of ligand **2** and triethylamine.

Scheme III.2.6. Synthesis of the group 12 metal complexes 16 - 18

Similarly was obtained the zinc(II) complex **18**.

Complexes **16** and **17** were investigated by ¹H, ¹³C and ⁷⁷Se NMR. The ¹H and ¹³C NMR resonances were assigned by 2D NMR spectroscopy (HMBC and HSQC). Figure III.2.14. presents the ¹H NMR spectra of the two complexes in comparison with the free ligand. In the aliphatic region, the resonances assigned to the CMe_2 , NMe_2 , CH_2 Se and CH_2 N protons, respectively, appear in the expected ratio, 1:1 in case of compound **16** and 2:1 in case of compound **17**, respectively. The CH_3 resonances appear as singlets. The CH_2 Se resonances appear as singlets as well in both compounds (2.83 ppm in **16** and 2.81 ppm in **17**), while the CH_2 N resonances appear as a singlet in compound **17** (3.82 ppm) and as an AB spin system in compound **16** (δ 3.66 ppm, with δ_A 3.52 and δ_B 3.80 ppm, ²J_{HH} 12.95 Hz).

Figure III.2.14. ¹H NMR spectra (CDCl₃, 300 MHz, r.t.) of $[Me_2C(OH)CH_2]_2Se$ (a), $[Cd{Se(CH_2C(O)Me_2)_2}{PPh(C_6H_4CH_2NMe_2-2)_2}]$ (16) (b) and $[Cd{Se(CH_2C(O)Me_2)_2}{PPh_2(C_6H_4CH_2NMe_2-2)}]$ (17) (c)

The aromatic protons in both compounds show multiplet resonances, as expected.

The ³¹P and ⁷⁷Se NMR data for the cadmium complexes are summarized in Table III.2.4, along with the data for the corresponding free ligands or their deprotonated forms.

Cpd.	Compound formula	δ ³¹ P NMR	δ ⁷⁷ Se NMR
No.		(ppm)	(ppm)
	$PPh(C_6H_4CH_2NMe_2-2)_2$	-25.1	-
	$PPh_2(C_6H_4CH_2NMe_2-2)$	-15.3	-
2	[Me ₂ C(OH)CH ₂] ₂ Se	-	37.37
7	$[Me_2C(OSiMe_3)CH_2]_2Se$	-	95.66
15	$[Cd{Se(CH_2C(O)Me_2)_2}]$		Not
			observed
16	$[Cd{Se(CH_2C(O)Me_2)_2}{PPh(C_6H_4CH_2NMe_2-2)_2}]$	-22.93	35.22
17	$[Cd{Se(CH2C(O)Me2)2}{PPh2(C6H4CH2NMe2-2)}]$	-14.97	43.23
18	$[Zn{Se(CH2C(O)Me2)2}{PPh2(C6H4CH2NMe2-2)}]$	- 23.60	Not
			observed

Table III.2.4. ³¹P and ⁷⁷Se NMR data for the Cd(II) complexes and the starting ligands

In the absence of stabilizing triarylphosphanes, the attempts to obtain similar complexes with zinc, using the same procedures as in case of the described cadmium complexes, failed. The resulting products were either complex mixtures or only starting materials. Only compound **18** could be isolated and spectroscopically characterized.

III.2.C.2. Silver(I) complexes

The coordination behavior of the monoalkoxide ligands towards silver was tested in the reaction of $[Me_2C(OH)CH_2](2-Me_2NCH_2C_6H_4)S$ with AgOTf (Scheme III.2.8). Because silver compounds are light sensitive, the reaction was performed in the absence of light. The direct reaction between the ligand and AgOTf was performed both in acetone and in dichloromethane at room temperature.

Scheme III.2.8. Synthesis of the Ag complex 19.

The ¹H NMR spectrum of this compound revealed the resonances corresponding to the different methyl and methylene groups, respectively, in the molecule, in the expected molar ratio, shifted in comparison with the starting ligand (Figure III.2.19).

Figure III.2.19. Stacked ¹H NMR spectra of [Me₂C(OH)CH₂](2-Me₂NCH₂C₆H₄)S (down) and compound **19** (up).

The infrared spectrum shows several very strong bands at 1258, 1168, 1048/1032, and 639/654 cm⁻¹, which were assigned to the $v(SO_3)$ (1258 and 1048/1032 cm⁻¹) and $v(CF_3)$ (1258, 1168 and 639/654 cm⁻¹) stretching vibrations, respectively. The splitted pattern of the bands at 1048/1032 and 639/654 cm⁻¹ suggests a covalent behavior of the OTf ligand.¹³⁰

Crystal and molecular structure of [AgOTf{S[CH₂C(OH)Me₂](C₆H₄CH₂NMe₂-2)}] (19)

Single-crystals suitable for X-ray diffraction studies were grown from an acetone/n-hexane mixture of solvents (1/5, v/v). The Ortep like diagram is depicted in Figure III.2.22.

Figure III.2.22. Dimeric association of $R_{N'}$ and S_N isomers in [AgOTf{S[CH₂C(OH)Me₂](C₆H₄CH₂NMe₂-2)}] **(19)**. Ellipsoids are drawn with 50% probability. Hydrogen atoms, excepting OH, were omitted for clarity

The compound crystallizes in the monoclinic P2(1)/n space group. The molecules are associated in dimeric units by bridging ligands. The ligand units act as *S*,*O*,*N* tridentate, bimetallic tetraconective moieties. Each silver atom is chelated by sulfur and oxygen, while the nitrogen atom is involved in an intermolecular interaction with the other molecule [S(1)···Ag(1) 2.5092(8), O(1)···Ag(1) 2.503(3) and N(1)···Ag(1)' 2.251(3) Å, vs. $\Sigma r_{vdW}(S,Ag)$ 3.55, $\Sigma r_{vdW}(O,Ag)$ 3.10, $\Sigma r_{vdW}(N,Ag)$ 3.24 Å⁴⁷]. Moreover, each sulfur atom of a ligand unit interacts with the silver atom of the neighboring molecule [S(1)···Ag(1)' 3.16 Å]. The triflate is covalently bonded to silver by oxygen. A consequence of this coordination behavior is the formation of two condensed tricyclic systems, sharing a central, planar Ag₂S₂ core. In this way results a distorted trigonal bipyramidal environment around the silver atom, with S(1) and N(1') in apices [S(1)···Ag(1)···N(1') 151.13(7)°].

The intermolecular $N \rightarrow Ag$ coordination determine planar chirality, with nitrogen as pilot atom and the phenyl ring as chiral plane. In this way each dimmer in the crystal is formed by *R* and *S* isomers.

III.2.C.3. Palladium(II) complexes

From the reaction between $[Me_2C(OH)CH_2](2-Me_2NCH_2C_6H_4)$ Se and PdCl₂ in a 1:1 molar ratio, in presence of triethylamine, instead of the expected complex $[PdCl{Se(CH_2C(O)Me_2)(C_6H_4CH_2NMe_2-2)}]$, was isolated the dinuclear species $[PdCl(SeC_6H_4CH_2NMe_2-2)]_2$ (Scheme III.2.9).

Scheme III.2.9. The reaction between PdCl₂ and ligand 10.

The same palladium containing product could be isolated, as an orange powder, even if the deprotonation of the ligand was achieved by lithiation, or if a 1:1 or a 2:1 molar ratio between **10** and $PdCl_2$ was used.

The presence of an intramolecular N \rightarrow Se coordination in the free ligand in solution might facilitate the cleavage of the C–Se bond. The isolated Pd(II) complex has a very low solubility both in chlorinated solvents and in DMSO. These observations are in agreement with the data reported previously about diorganoselenium(II) species of type RR'Se, for which a similar cleavage of the C–Se bond in the presence of either Pd(II) or Pt(II) salts was observed.¹³¹⁻¹³³

The ¹H NMR spectrum of the orange crystalline product has the expected resonances for compound **20** (Figure III.2.24). As a consequence of the intramolecular coordination of nitrogen in solution, either to selenium or to palladium, in the aliphatic region the NMe₂ groups, as well as the CH₂ protons **in** the pendant arm are no more equivalent and give rise to two different resonances for the nonequivalent CH₃ (δ 2.37 and 2.95 ppm) groups and an AB spin system (δ 3.64 ppm, with δ_A 3.42 and δ_B 3.83 ppm, ²J_{HH} = 12.2 Hz) for the CH₂ protons. In the aromatic region were observed the expected multiplet resonances.

Crystal and molecular structure of [PdCl(SeC₆H₄CH₂NMe₂-2)]₂·0.5CH₂Cl₂·0.5THF (20·0.5CH₂Cl₂·0.5THF)

Single crystals of the palladium complex were obtained by slow diffusion of n-hexane in a CH_2Cl_2/THF solution. As a result, the isolated crystals contain both CH_2Cl_2 and THF in the lattice. During our studies, the single-crystal X-ray structure of the related species **20**·0.5CH_2Cl_2 was reported by other authors.¹³⁴ The Ortep-like diagram with the numbering scheme is given in Figure III.2.25. The compound crystallizes in the chiral orthorhombic P2(1)2(1)2 space group. The crystal contains two independent centrosymmetric dimers in the unit cell, **20**_{1/1} and **20**_{2/2"} – subscript indices refer to the numbering of the palladium atoms in the dimeric moiety). The N \rightarrow Pd coordination resulted in six-membered SePdNC₃ rings folded about the Se…CH₂ axis and induces planar chirality. The compound crystallize as a mixture of *S*,*S*'-**20**_{1/1'} [Se(1)Pd(1)Se(1')Pd(1') core] and *R*,*R*''-**20**_{2/2''} [Se(2)Pd(2)Se(2'')Pd(2'') core] isomers (with respect to the two SePdNC₃ rings of the dimeric unit). The selenium atoms are bridging the metal centres [Pd(1)–Se(1) / Pd(1)–Se(1') 2.3865(11) / 2.4017(10) Å, and Pd(2)–Se(2) / Pd(2)–Se(2'') 2.4028(10) / 2.3848(11) Å, respectively, *vs.* Σr_{cov} (Pd,Se 2.45 Å) and Σr_{vdW} (Pd,Se 3.60 Å)⁴⁷]. Further selenium–palladium secondary interactions [Pd…Se 3.4315(12) and 3.4308(12) Å] generate [*S*,*S*'-**20**_{1/1'}]-[*R*,*R*''-**20**_{2/2''}] tetramers with a cubane-like structure.

Figure III.2.25. Ortep-like digram of [PdCl(SeC₆H₄CH₂NMe₂-2)]₂·0.5CH₂Cl₂·0.5THF. (both S, S'-20_{1/1'} [Se(1)Pd(1)Se(1')Pd(1') core] and R, R''-20_{2/2''}[Se(2)Pd(2)Se(2'')Pd(2'') core] are shown).

The coordination geometry around the palladium atoms is square planar, while each selenium atom is in a T-shaped environment. The CH₂Cl₂ molecules are involved in Cl···H hydrogen bonding with the *S*,*S*'-**20**_{1/1'} dimer [Cl(3)_{solvent}···H(7A)_{methylene} 2.78 Å; *c.f.* $\sum r_{vdW}$ (Cl,H) 3.01 Å⁴⁷], thus resulting in a chain of cubanes. Additional weak intermolecular chlorine–hydrogen contacts between the parallel polymeric chains leads to a 3D network which accomodates THF molecules in the channels formed inside it.

III.3. Conclusions

• Diorganochalcogen(II) dihydroxide ligands of type $[R_2C(OH)CH_2]_2E$ [R = Me, E = S (1), Se (2), Te (3), R = Ph, E = S (4), Se (5)] were obtained and they were structurally characterized by multinuclear NMR (¹H, ¹³C, ⁷⁷Se and ¹²⁵Te, as appropriate). Among them, compounds 2, 3 and 5 were for the first time reported in this work.

The molecular structure of compound **5** was determined by single-crystal X-ray diffraction. The molecules are associated in dimeric units through hydrogen bonding.

• Compounds **1**, **2** and **4** were deprotonated with Me₃SiCl, leading to the trimethylsilyl derivatives of type $[R_2C(OSiMe_3)CH_2]_2E$ [R = Me, E = S (**6**), Se (**7**), R = Ph, E = S (**8**)]. The

molecular structure of $[Ph_2C(OSiMe_3)CH_2]_2S$ was determined by single-crystal X-ray diffraction.

• Five new chalcogen monohydroxide ligands of type $[R_2C(OH)CH_2](2-Me_2NCH_2C_6H_4)E$ [R = Me, E = S (9), Se (10), Te (11); R = Ph, E = S (12), Se (13)] were prepared and characterized by multinuclear NMR (¹H, ¹³C, ⁷⁷Se and ¹²⁵Te, as appropriate). A monomeric structure was found by single-crystal X-ray diffraction in case of compound 13. The OH proton is involved in intramolecular OH…N bonding.

• The cadmium(II) complexes of type $[Cd{E[CH_2C(O)Me_2]_2}]$ [E = S (14), Se (15)] were obtained as slight orange (14) or colorless (15) powders with low solubility in common organic solvents and their solution behavior was investigated in CD₃OD solutions by ¹H NMR. In case of compound 14 a mixture of two species was observed in solution. The low solubility of these species suggests a polymeric structure for these species.

• Two new cadmium complexes containing both the dialkoxo ligand $[Me_2C(O)CH_2]_2Se^{2-}$ and a stabilizing triarylphosphane of type PPh_{3-x}(C₆H₄CH₂NMe₂-2)_x (x = 1 - 3), namely $[Cd\{Se(CH_2C(O)Me_2)_2\}\{PPh(C_6H_4CH_2NMe_2-2)_2\}]$ (16) and $[Cd\{Se(CH_2C(O)Me_2)_2\}\{PPh_2(C_6H_4CH_2NMe_2-2)\}]$ (17) were obtained and structurally characterized by multinuclear NMR (¹H, ¹³C, ³¹P, ⁷⁷Se) and mass spectrometry. The similar zinc complex $[Zn\{Se(CH_2C(O)Me_2)_2\}\{PPh_2(C_6H_4CH_2NMe_2-2)\}]$ (18) was also prepared and characterized by multinuclear NMR (¹H, ¹³C, ³¹P) and mass spectrometry. Compounds 16 – 18 are soluble in CDCl₃, this fact suggesting a monomeric structure of the investigated species.

• The silver complex $[Ag(OTf){S[CH_2C(OH)Me_2}(C_6H_4CH_2NMe_2-2)]$ (19) was obtained as a microcrystalline solid by reacting AgOTf with the ligand in protonated form. The NMR and MS spectra were in accordance with the desired compound. The single-crystal X-ray diffraction studies revealed a dimeric structure with *O,S,N*- tridentate biconective ligands.

• The palladium complex [(PdCl(SeC₆H₄CH₂NMe₂-2)]₂ (**20**) resulted in the reaction between PdCl₂ and ligand **10** in deprotonated form, as a consequence of splitting a Se–C bond in the ligand. The single-crystal X-ray diffraction studies revealed for **20**·0.5CH₂Cl₂·0.5THF a cubane-like structure formed by two pairs of dimers. The cubanes are associated in polymeric chains, which further form supramolecular assemblies by hydrogen bonding involving chlorine atoms of the CH₂Cl₂ molecules, while the THF molecules are included in the channels formed inside the 3D network.

References

- 1. H. C. Aspinal, Chem. Rev., 2002, 102, 1807.
- 2. G. J. P. Britovsek, V. C. Gibson, D. F. Wass, Angew. Chem., Int. Ed., 1999, 38, 428.
- 3. G. W. J. Coates, Chem. Soc., Dalton Trans., 2002, 467.
- 4. V. C. Gibson, S. K. Spitzmesser, Chem. Rev., 2003, 103, 283.

- 5. Y. Suzuki, H. Terao, T. Fujita, Bull. Chem. Soc. Jpn., 2003, 76, 1493.
- 6. P. Corradini, G. Guerra, L. Cavallo, Acc. Chem. Res., 2004, 37, 231.
- A. Van der Linden, C. J. Schaverien, N. Meiboom, C. Ganter, A. G. Orpen, J. Am. Chem. Soc., 1995, 117, 3008.
- 8. E. Y. Tshuva, I. Goldberg, M. Kol, J. Am. Chem. Soc., 2000, 122, 10706.
- 9. J. Balsells, P. J. Carroll, P. J. Walsh, Inorg. Chem., 2001, 40, 5568.
- 10. J. P. Tian, D. Hustad, G. W. Coates, J. Am. Chem. Soc., 2001, 123, 5134.
- 11. S. Basharat, C. J. Carmalt, R. Palgrave, S. A. Barnett, D. A. Tocher, H. O. Davies, J. Organomet. Chem., 2008, 693, 1787.
- 12. D. C. Bradley, R. M. Mehrotra, I.P. Rothwell, A. Singh, *Alkoxo and Aryloxo Derivatives of Metals*; Academic Press: London, 2001.
- 13. R. M. Mehrotra, A. Singh, Prog. Inorg. Chem., 1997, 46, 239.
- 14. L. G. Hubert-Pfalzgraf, Coord. Chem. Rev., **1998**, 178-180, 967.
- 15. P. Shao, R. A. L. Gendron, D. J. Berg, G. W. Bushnell, *Organometallics*, **2000**, *19*, 509.
- 16. R. M. Gauvin, J. A. Osborn, J. Kress, Organometallics, 2000, 19, 2944.
- 17. G. Manickam, G. Sundararajan, Tetrahedron: Asymmetry, 1999, 10, 2913.
- 18. H. Mack, M. Eisen, J. Chem. Soc., Dalton Trans., 1998, 917.
- 19. C. Capacchione, A. Proto, H. Ebeling, R. Muhaupt, K. Moller, T. P. Spaniol, J. Okuda, J. Am. Chem. Soc., 2003, 125, 4964.
- 20. S. Fokken, F. Reichwald, T. P. Spaniol, J. Okuda, *J. Organomet. Chem.*, **2002**, *663*, 158.
- 21. L. S. Natrajan, C. Wilson, J. Okuda, P. L. Arnold, Eur. J. Inorg. Chem., 2004, 3724.
- 22. C. Capacchione, R. Manivannan, M. Barone, K. Beckerle, R. Centore, L. Oliva, A. Proto, A. Tuzi, T. P. Spaniol, J. Okuda, *Organometallics*, **2005**, *24*, 2971.
- 23. H.-J. Krüger, Angew. Chem. Int. Ed., **1999**, *38*, 627; c) Y. Nakayama, H. Saito, N. Ueyama, A. Nakamura, Organometallics, **1999**, *18*, 3149.
- 24. P. L. Arnold, L. S. Natrajan, J. J. Hall, S. J. Bird, C. Wilson, *J. Organomet.Chem.*, **2002**, *647*, 205.
- 25. E. Y. Tshuva, S. Groysman, I. Goldberg, M. Kol, Z. Goldschmidt, *Organometallics*, **2002**, *21*, 662.
- L. Lavanant, A. Silvestru, A. Faucheux, L. Toupet, R. F. Jordan, J.-F. Carpentier, Organometallics 2005, 24, 5604.
- R. D. J. Froese, D. G. Musaev, T. Matsubara, K. Morokuma, J. Am. Chem. Soc., 1997, 119, 7190.
- R. D. J. Froese, D. G. Musaev, T. Matsubara, K. Morokuma, Organometallics, 1999, 18, 373.
- 29. Y. Nakayama, K. Watanabe, N. Ueyama, A. Nakamura, A. Harada, J. Okuda, *Organometallics*, **2000**, *19*, 2498.
- I. Caracelli, J. Zukerman-Schpector, E. R. T. Tiekink, Coordination Chemistry Reviews, 2012, 256, 412.
- Md. Mijanuddin, A. Ray, P. C. Mondal, J. Marek, M. Ali, J. Molec. Struct., 2007, 826, 17
- 32. B. Das, R. Chakraborty, S. Sarkar, E. Zangrando, P. Chattopadhyay, *Transition Met. Chem.*, **2011**, *36*, 663.

- 33. Y. Takashima, Y. Nakayama, T. Hirao, H. Yasuda, A. Harada, J. Organomet. Chem., **2004**, *689*, 612.
- 34. P. Chaudhuri, M. Hess, U. Flörke, K. Wieghardt, *Angew. Chem., Int. Ed.*, **37**, 1998, **2217.**
- 35. T. K. Paine, T. Weyhermueller, K. Wieghardt, P. Chaudhuri, *Dalton Trans.*, 2004, 2092.
- 36. G. Fragale, M. Neuburger, T. Wirth, Chem. Commun., 1998, 1867.
- 37. T. Wirth, G. Fragale, M. Spichty, J. Am. Chem. Soc., 1998, 120, 3376.
- 38. T. Wirth, Angew. Chem., Int. Ed. Engl., 1995, 34, 1726.
- 39. T. Wirth, G. Fragale, Chem. Eur. J. 1997, 3, 1894.
- 40. N. Kurose, T. Takahashi, T. Koizumi, J. Org. Chem., 1996, 61, 2932.
- 41. T. Wirth, Molecules, 1998, 3, 164.
- 42. A. J. Mukherjee, S. S. Zade, H. B. Singh, R. B. Sunoj, Chem. Rev., 2010, 110, 4357.
- 43. M. D. Milton, S. Khan, J. D. Singh, V. Mishra, B. L. Khandelwal, *Tetrahedron Letters*, **2005**, *46*, 755.
- 44. M. A. Cooper, A. Ward, Tetrahedron, 2004, 60, 7963.
- 45. J. Malmstrom, *Synthesis, Properties and Applications of Chalcogen-Containing Antioxidants*, Doctoral Thesis, University of Uppsala, **2000**, p. 25.
- 46. A. Kumar, G. K. Rao, F. Saleem, A. K. Singh, *Dalton Trans.*, **2012**, *41*, 11949 and references therein.
- 47. J. Emsley, Die Elemente, Walter de Gruyter, Berlin, 1994.
- 48. M.-H. Yang, G.-B. Yan, Y.-F. Zheng, *Tetrahedron Lett.*, **2008**, *49*, 6471.
- 49. T. Wirth, Angew. Chem., Int. Ed., 2000, 39, 3740.
- 50. A. Krief, J. L. Laboureur, Tetrahedron Lett., 1987, 28, 1545.
- 51. A. Krief, J. L. Laboureur, W. Dumont, Tetrahedron Lett., 1987, 28, 1549.
- 52. D. L. J. Clive, *Tetrahedron*, **1978**, *34*, 1049–1132.
- 53. S. Uemura, K. Ohe, N. J. Sugita, Chem. Soc., Perkin Trans., 1990, 1, 1697.
- 54. T. Hori, K. B. J. Sharpless, Org. Chem., 1978, 43, 1689.
- 55. M. Tiecco, L. Testaferri, F. Marini, C. Santi, L. Bagnoli, A. Temperini, *Tetrahedron: Asymmetry*, **1999**, *10*, 747.
- 56. J. L. Laboureur, A. Krief, Tetrahedron Lett., 1984, 25, 2713.
- 57. M. Tiecco, L. Testaferri, F. Marini, A. Temperini, L. Bagnoli, C. Santi, *Synth. Commun.*, **1997**, *27*, 4131.
- 58. M. W. Esterhuysen, R. Brüll, H. G. Raubenheimer, C. Esterhuysen, G. J. Kruger, J. Organomet. Chem., 2001, 619, 164.
- 59. D. Pou, C. López, S. Pérez, X. Solans, M. Font-Bardía, P. W. N. M. van Leeuwen, G. P. F. van Strijdonck, *Eur. J. Inorg. Chem.*, **2010**, 1642.
- S. Pérez, C. López, A. Caubet, X. Solans, M. Font-Bardia, J. Organomet. Chem., 2004, 689, 3184.
- 61. G. R. Owen, H. A. Burkill, R. Vilar, A. J. P. White, D. J. Williams, J. Organomet. *Chem.*, **2005**, 690, 5113.
- 62. J. W. Faller, J. Parr, Organometallics, 2000, 19, 1829.
- 63. I. D. Kostas, B. R. Steele, A. Terzis, S. V. Amosova, A. V. Martynov, N. A. Makhaeva, *Eur. J. Inorg. Chem.*, **2006**, 2642.
- 64. A. Kumar, M. Agarwal, A. K. Singh, Polyhedron, 2008, 27, 485.
- 65. A. Kumar, M. Agarwal, A. K. Singh, J. Organomet. Chem., 2008, 693, 3533.

- 66. A. Kumar, M. Agarwal and A. K. Singh, Inorg. Chim. Acta, 2009, 362, 3208.
- 67. G. K. Rao, A. Kumar, B. Kumar, D. Kumar, A. K. Singh, *Dalton Trans.*, **2012**, *41*, 1931.
- 68. P. Singh, A. K. Singh, Organometallics, **2010**, *29*, 6433.
- 69. P. Singh, A. K. Singh, Inorg. Chim. Acta, 2012, 387, 441.
- 70. I. C. Reyes, E. VandenHoven, A. Mohammed, B. M. Pinto, *Can. J. Chem.*, **1995**, *73*, 113.
- 71. I. C. Reyes, H. Hu, J. H. Gu, E. VandenHoven, A. Mohammed, S. Holdcroft, B. M. Pinto, *Can. J. Chem.*, **1996**, *74*, 533.
- 72. C. Bornet, R. Amardeil, P. Meunier, J. C. Daran, J. Chem. Soc., Dalton Trans., 1999, 1039.
- 73. G. N. Ledesma, E. Schulz Lang, E. M. Vazquez-Lopez, U. Abraham, *Inorg. Chem. Commun.*, 2004, 7, 478.
- 74. W. Levason, S. D. Orchard, G. Reid, Coord. Chem. Rev., 2002, 225, 159.
- 75. A. Khalid, A. K. Singh, Polyhedron, 1997, 16, 33.
- 76. K. Y. Abid, N. I. Al-Salim, M. Greaves, W. R. McWhinnie, A. A. West, J. Chem. Soc. Dalton Trans., **1989**, 1697.
- 77. Y. Sakimoto, K. Hirao, D. G. Musaev, J. Phys. Chem. A, 2003, 107, 5631.
- 78. G. Schatte, T. Chivers, H. M. Tuononen, R. Suontamo, R. Laitinen, J. Valkonen, Inorg. Chem., 2005, 44, 443.
- 79. J. Beckmann, D. Dakternieks, A. Duthie, N. A. Lewcenko, C. Mitchell, M. Schurmann, Z. Anorg. Allg. Chem., 2005, 631, 1856.
- 80. M. S. Silva, J. V. Comasseto, Tetrahedron, 2011, 67, 8763.
- M. G. Thorn, Z. C. Etheridge, P. E. Fanwick, I. P. Rothwell, Organometallics, 1998, 17, 3636.
- D. C. H. Oakes, B. S. Kimberley, V. C. Gibson, D. J. Jones, A. J. P. White, D. J. Williams, *Chem. Commun.*, **2004**, 2174.
- 83. L. Lavanant, T. Y. Chou, Y. Chi, C. W. Lehmann, L. Toupet, J. F. Carpentier, Organometallics, 2004, 23, 5450.
- 84. R. M. Gauvin, J. A. Osborn, J. Kress, Organometallics, 2000, 19, 2944.
- E. Y. Tshuva, I. Goldberg, M. Kol, Z. Goldschmidt, Organometallics, 2001, 14, 3017.
- 86. H. Mack, M. Eisen, J. Chem. Soc., Dalton Trans., 1998, 917.
- 87. T. Tsukahara, D. C. Swenson, R. F. Jordan, Organometallics, 1997, 16, 3303.
- Y. Takashima, Y. Nakayama, T. Hirao, H. Yasuda, A. Harada, J. Organomet. Chem., 2004, 689, 612.
- S. Fokken, T. P. Spaniol, H. C. Kang, W. Massa, J. Okuda, Organometallics, 1996, 15, 5069.
- Z. Janas, L. B. Jerzykiewicz, K. Przybylak, P. Sobota, K. Szczegot, D. Wisniewska, Eur. J. Inorg. Chem., 2005, 1063.
- 91. Z. Janas, L. B. Jerzykiewicz, K. Przybylak, P. Sobota, K. Szczegot, *Eur. J. Inorg. Chem.*, **2004**, 1639.
- 92. Z. Janas, L. B. Jerzykiewicz, P. Sobota, K. Szczegot, D. Wioeniewska, *Organometallics*, **2005**, *24*, 3987.
- P. F. Knowles and N. Ito, *Perspectives in Bio-inorganic Chemistry*, ed. R. W. Hay, J. R. Dilworth and K. B. Nolan, Jai, London, **1994**, vol.2, pp. 207.

- 94. B. M. Chamberlain, M. Cheng, D. R. Moore, T. M. Ovitt, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc., 2001, 123, 3229.
- 95. D. Chakraborty, E. Y. X. Chen, Organometallics, 2003, 22, 769.
- 96. M. H. Chisholm, J. C. Gallucci, K. Phomphrai, Inorg. Chem., 2005, 44, 8004.
- 97. H. Y. Chen, H. Y. Tang, C. C. Lin, Macromolecules, 2006, 39, 3745.
- 98. D. A. Walker, T. J. Woodman, M. Schormann, D. L. Hughes, M. Bochmann, Organometallics, 2003, 22, 797.
- 99. Y. Sarazin, M. Schormann, M. Bochmann, Organometallics, 2004, 23, 3296.
- 100. Y. Sarazin, R. H. Howard, D. L. Hughes, S. M. Humphrey, M. Bochmann, *Dalton Trans.*, **2006**, 340.
- 101. C. M. Byrne, S. D. Allen, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc., 2004, 126,11404.
- 102. R. Eberhardt, M. Allmendinger, G. A. Luinstra, B. Rieger, *Organometallics*, **2003**, 22, 211.
- 103. E. Frankland, Justus Liebigs Ann. Chem., 1849, 71, 171.
- 104. S. Schulz, U. Florke, J. Chem. Crystallogr., 2010, 40, 888.
- 105. W. T. Kong, H. L. Seng, S. L. Fei Shen, S. C. Cheah, N. G. Chew, S. K. Kong, M. R. Mustafa, S. W. Ng, M. J. Maah, *Polyhedron*, **2012**, *38*, 275.
- 106. T. Bal-Demirci Polyhedron, 2008, 27, 440.
- 107. P. K. Dhara, M. G. B. Drew, P. Chattopadhyay, J.Coord.Chem., 2007, 60, 627
- 108. G. Rajsekhar, C. P. Rao, P. K. Saarenketo, E. Kolehmainen, K. Rissanen, *Inorg. Chem. Commun.*, **2002**, *5*, 649.
- 109. M. Casarin, T. Devic, A. Famengo, D. Forrer, S. Gross, E. Tondello, A.
- 110. J. Lewinski, W. Marciniak, Z. Ochal, J. Lipkowski, I. Justyniak, *Eur. J. Inorg. Chem.*, **2003**, 2753.
- 111. N. Mangayarkarasi, M. Prabhakar, P. S. Zacharias, Polyhedron, 2002, 21, 925.
- 112. A. Patra, S. Sarkar, R. Chakraborty, M. G. B. Drew, P. Chattopadhyay, *J.Coord.Chem.*, **2010**, *63*, 1913.
- 113. C. Sudbrake, H. Vahrenkamp, Eur.J.Inorg.Chem., 2001, 751.
- 114. C. Sudbrake, H. Vahrenkamp, Z. Anorg. Allg. Chem., 2001, 627, 857.
- 115. R. Baggio, M. Perec, M. T. Garland, Acta Crystallogr., Sect. C:Cryst. Struct. Commun., 1996, 52, 2457.
- 116. E. Labisbal, J. A. Garcia-Vazquez, C. Gomez, A. Macias, J. Romero, A. Sousa, U. Englert, D. E. Fenton, *Inorg. Chim. Acta*, **1993**, *203*, 67.
- 117. M. Taki, H. Hattori, T. Osako, S. Nagatomo, M. Shiro, T. Kitagawa, S. Itoh, *Inorg.Chim.Acta*, **2004**, *357*, 3369.
- 118. R. Bouwman, P. Evans, R. A. G. de Graaf, H. Kooijman, R. Poinsot, P. Rabu, J. Reedijk, A. L. Spek, *Inorg.Chem.*, **1995**, *34*, 6302.
- 119. Ming-Lai Fu, N. L. Rangel, R. D. Adams, J. M. Seminario, J. Cluster Sci., 2010, 21, 867.
- 120. I. G. Dance, R. G. Garbutt, D. C. Craig, Inorg. Chem., 1987, 26, 3732.
- 121. J. M. Varela, E. M. V. Lopez, Dalton Trans., 2010, 39, 3931.
- 122. E. Labisbal, J. Romero, J. A. Garcia-Vazquez, C. Gomez, A. Sousa, R. Pritchard, C. A. McAuliffe, *Polyhedron*, **1994**, *13*, 1735.
- 123. J. S. Casas, R. Collazo, M. D. Couce, M. Garcia-Vega, A. Sanchez, J. Sordo, E. M. Vazquez-Lopez, *Cryst. Growth Des.*, **2011**, *11*, 5370.

- 124. E. M. Nolan, S. J. Lippard, J. Am .Chem. Soc., 2007, 129, 5910.
- 125. J. S. Casas, A. Castineiras, M. D. Couce, M. Garcia-Vega, M. Rosende, A. Sanchez, J. Sordo, J. M. Varela, E. M. Vazquez-Lopez, *Polyhedron*, **2008**, *27*, 2436.
- 126. A. Mazouz, P. Meunier, M. M. Kubicki, B. Hanquet, R. Amardeil, C. Bornet, A. Zahidi, *Dalton. Trans.*, **1997**, 1043.
- 127. A. K. Singh, V. Singh, Phosphorus, Sulfur and Silicon, **1993**, *80*, 95.
- 128. R. Batheja, S. Katiyar, V. Singh, A. K. Singh, Polyhedron, 1994, 13, 777.
- 129. A. Covaci, A. Silvestru, unpublished results.
- 130. S. J. Angus-Dunne, L. E. P. Lee Chin, R. C. Burns, G. A. Lawrance, *Trans. Met. Chem.*, **2006**, *31*, 268.
- 131. T. Chakravorty, K. Srivastava, H. B. Singh, R. J. Butcher, *J. Organomet. Chem.*, **2011**, *696*, 2782.
- 132. S. D. Apte, S. S. Zade, H. B. Singh, R. J. Butcher, Organometallics, 2003, 22, 5473.
- 133. R. Kaur, S. C. Menon, S. Panda, H. B. Singh, R. P. Patel, R. J. Butcher, *Organometallics*, **2009**, *28*, 2363.
- 134. T. Chakravorty, H. B. Singh, R. J. Butcher, Acta Cryst., 2012, E68, m113.
- 135. P. N. Jayaram, G. Roy, G. Mugesh, J. Chem. Sci., 2008, 120, 143.
- 136. MestReC and MestReNova, Mestrelab Research S.L., A Coruña 15706, Santiago de Compostela.
- 137. G.M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112.
- 138. K. Brandenburg, DIAMOND Visual Crystal Structure Information System, Release 3.1d, Crystal Impact GbR, Bonn, Germany, **2006**.
- 139. PLATON: (a) A. L. Spek, J. Appl. Crystallogr., **2003**, 36, 7e13; (b) A. L. Spek, Acta Crystallogr. D, **2009**, 65, 148e155.

Publications resulted from the PhD Thesis

1. New diorganoselenium(II) compounds and their behavior towards late transition metals A. Pop, D. Rosca, **R. Mitea**, A. Silvestru, *Inorg. Chim. Acta*, **2013**, 405, 235-242.

2 Cobalt (II) complexes with hypervalent triarylphosphanes. **R. Mitea**, A. Covaci, C. Silvestru, A. Silvestru, *Rev. Roum. Chim.*, **2013**, *58*(2-3), 265-273

3. Copper complexes with hypervalent triarylphosphanes. A. Covaci, **R. Mitea**, I. Hosu, A. Silvestru, *Polyhedron, submitted*.

4. Diorganoselenium(II) ligands with hydroxo functionalities and their coordination behavior towards d metals. **R. Mitea**, A. Pop, A. Silvestru,
J. Organomet. Chem., in preparation.

Conferences

 New copper complexes with triarylphosphines
 R. Mitea, A. Covaci, I. Hosu, A. Silvestru
 7th International Conference of the Chemical Societies of the South-Eastern European Countries, Bucharest, Romania, September 2010.

New dialcoxo ligands and their metal complexes
 R. Mitea and A. Silvestru
 Academic Days of Timisoara, 12th Edition, Timisoara, Romania, May 2011.

 Diorganochalcogen (II) species bearing alkoxo functionalities and their coordination behavior
 R. Mitea and A. Silvestru

International Conference on Organometallic Chemistry, Lisbon, Portugal, September 2012.