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Introduction

A special place in abstract algebra is taken by Representation Theory. Let us consider a
group (taken from nature, for example). We do this by considering sets of symmetries of
an object, which are closed under composition and under inverses. What Representation
Theory tries to find out is on what objects does this group act on? Informally talking, if
we take G to be the group we are talking about, for what objects X, does there exist a
map

α : G×X → X

compatible with the group law? The work is much easier when we consider X to be a
vector space and the action of G to be linear.

History says that this whole branch started in 1896 when the German mathematician
Richard J.W. Dedekind wrote a letter to his friend Ferdinand G. Frobenius asking for his
help. He observed that taking the multiplication table of a finite group G and turning it
into a matrixXG by replacing every entry g of this table with a variable xg the determinant
of XG factors into a product of irreducible polynomials in {xg} with multiplicity equal
to its degree. Dedekind asked Frobenius to prove this for the general case, not just for
some special cases, as Dedekind did.

A number of mathematicians such as Ferdinand G. Frobenius, William Burnside,
Issai Schur (who was actually a student of Frobenius) and Richard Brauer in their work
about 100 years ago, were interested in Representation Theory. It wasn’t until 1937
when the American mathematician Alfred H.Clifford introduced Clifford Theory in [5]
describing the relation between representations of a group and the representations of a
normal subgroup. Generally speaking the aim of this thesis is to study Clifford Theory
and field extensions.

Our interest in this field of study was triggered by some articles by Everett C. Dade
([6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) and Alexandre Turull ([61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72]).

Alexandre Turull’s research on Clifford theory, and specifically the one in combination
with Schur indices, offered a motivation for the research behind this thesis. A. Turull
introduced Clifford classes in [61] in order to describe the Schur indices from families of
groups closely connected to finite simple groups and in order to study some general prop-
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erties of representations of finite groups. With these notions he proved a strengthening
of the McKay conjecture for solvable groups in [64]. He also noticed that the Clifford
classes do not form a group. When fixing their centers, things become more interesting.
Let G be a finite group. Unlike the previous attempt made by A. Turull (in 1994) the set
of equivalence classes of these central simple G-algebras with given fixed center form a
group called the Brauer-Clifford group. He introduced this notion in [67]. The definition
he gives is similar to the definition of the Brauer group. The last group has been studied
greatly. Some basic properties are found in [49].

Strongly graded algebras are natural for Clifford Theory. That is why the entire thesis
is build around this notion. We also use Morita equivalences, more specifically, graded
Morita equivalences, because in the recent years it has proven to be of great relevance
for Group Representation Theory.

Why do we wish to work with G-graded algebras? There are a number of reasons.
Probably the most noticeable one is that theorems such as Theorem 4.3.13 and a number
of Theorems found in Turull’s articles ([61, Theorem 3.5][70, Theorem 4.7], [71, Theo-
rem 4.9], [70, Theorem 7.5], [71, Theorem 7.5]) look like consequences of G-graded Morita
equivalences or Rickard equivalences.

We now give a presentation of the content of this thesis. The present work uses
as starting points important theorems such as those of: Jordan-Hölder, Krull-Schmidt,
Noether and Schur (Theorem 1.1.4), Schur-Zassenhaus, Glauberman-Isaacs (Theorem 6.2.3),
Watanabe and many others.

Let R be a finite dimensional strongly G-graded F -algebra, where F is a field. The
present research started by trying to find an answer to a number of questions, such as:

(a) Can the Brauer-Clifford group be characterized using Morita equivalences? How
about the Clifford classes?

(b) Let K/F be an algebraic field extension. Then the R-module induced from the R1-
module generates a category that is equivalent to the category of modules over its
endomorphism algebra. What happens to the G-graded derived equivalences over F?
Do they preserve Clifford Theory defined by corresponding simple modules? How
about Galois actions and Schur indices?

(c) Can Turull’s results from [61, 67] about the Brauer-Clifford group be generalized for
the case of strongly group graded algebras? These results could then characterize the
Clifford Theory.

(d) Do we have good compatibility properties for endoisomorphisms between endomor-
phisms of G-algebras of modules over strongly G-graded algebras?

(e) Can we use graded Morita equivalences to deduce Turull’s observations from [66] and
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L.Puig’s from [53]. More precisely, can the Morita equivalence from [75] be extended
to a graded Morita equivalence?

The results of the study of these questions are presented throughout this thesis and
the overall view is as follows. In Chapter 2 we investigate the G-graded algebras, the
G-acted algebras and the Morita equivalences over a commutative G-ring Z. We also
study the particular case of skew-group algebras and the relation between G-graded
Morita equivalences and G-equivariant Morita equivalences. The authors results are
presented in: Lemma 2.2.3, Lemma 2.2.4, Lemma 2.2.5, Theorem 2.2.6, Lemma 2.3.2
and Corollary 2.3.3.

The next chapter, Chapter 3 we study the Clifford Theory in connection with the
action of the Galois group of a field extension in the context of group graded algebras.
Original results of the author and A. Mărcuş are given by: Theorem 3.4.2, Corollary 3.4.4
and Theorem 3.4.5.

In Chapter 4 we analyze the Clifford Theory for a finite group using the Brauer-Clifford
group. Original results are given in Theorem 4.3.13 and Proposition 4.5.1 continuing the
results of Chapter 2 and Chapter 3.

Chapter 5 is devoted to research triggered by Turull’s articles [70], [71]. Using p-
modular systems we prove some equivalences of categories and give some good compati-
bility properties. Results of the author are given in Theorem 5.5.1 and Theorem 5.6.1.

The last chapter, presents joined work of the author with A. Mărcuş. In order to
answer the last question in our plan, we started from the Glauberman correspondence
and we present some special graded equivalences. The main results are given by: Theo-
rem 6.5.9 and Theorem 6.6.5.

For a more easier reading, the new concepts will be introduced gradually, as needed,
except for the general notions presented in Chapter 1.

Key words

Clifford theory, field extensions, center simple algebras, strongly graded algebras, the
Brauer-Clifford group, group graded algebras, G-algebras, Morita equivalences, charac-
ters, Galois action, endoisomorphisms, Glauberman correspondence.
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Chapter 1

Preliminaries

1.1 Field extensions and the Galois action

We present a theorem derived from the work of Noether (1933) and Schur(1909) which
will be used later. In order to do this we introduce first some well known concepts. For
general terminology we refer the reader to the book by Grigory Karpilovsky [36]. By a
ring we understand a associative ring with unity. All modules will be assumed to be left
modules, unless otherwise specified.

1.1.1. Semisimple algebras.
Let F be a field, A a finite dimensional F -algebra. We suppose that A is defined over

a perfect subfield of F .

1.1.2. Let K/F be an algebraic normal field extension, and consider the Galois group
Ĝ := Gal(K/F ). Then Ĝ acts on the set of isomorphism classes of simple K ⊗F A-
modules, and if W is a simple K ⊗F A-module, denote

ĜW = {σ ∈ Ĝ | σW ' W as K ⊗F A-modules}

the stabilizer of W .

Definition 1.1.3. Let A be an algebra over a field F . We say that F is a splitting field
for A if for each simple A-module V we have EndA(V ) = F.

In this setting we have results similar to Clifford theory, due to Schur and Noether
(see [36, Theorem 8.1.11]).

Theorem 1.1.4 (Noether, Schur). With the above notations, the following statements
hold.

1) If V is a simple A-module, then K ⊗F V is a semisimple K ⊗F A-module.
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2) Let W be a simple K ⊗F A-module that is a direct summand of K ⊗F V , where V
is a simple A-module. Then

K ⊗F V ' m
⊕

σ∈[Ĝ/ĜW ]

σW, for some positive integer m.

3) For any simple K⊗F A-module W , there exists a simple A-module V , unique up to
isomorphism, such that W is a summand of K ⊗F V .

1.2 Graded Morita equivalences

Let G be a finite group and O be a commutative ring. We say that there is a G-
graded Morita equivalence between two strongly G-graded O-algebras R and S if there
are G-graded (R,S)-bimodules M and a G-graded (S,R)-bimodule N inducing a Morita
equivalence between R and S such that the bimodule isomorphism

α : M ⊗S N → R and β : N ⊗RM → S

are grade preserving (that is, α(Mx ⊗S Ny) ⊆ Rxy and β(Nx ⊗R My) ⊆ Sxy, for all
x, y ∈ G).

We present the following theorem because we consider it is important and offers a
motivation for the research that follows, but the theorem is not original, as it is due to
A. Mărcuş [44, Theorem 5.1.2].

Theorem 1.2.1. Let M1 be an (R1, S1)-bimodule, N1 an (S1, R1)-bimodule, and denote

M = R⊗R1 M1 and N = N1 ⊗S1 S.

The following statements are equivalent: (i) There is a structure of a G-graded (R,S)-
bimodule on M and a structure of a G-graded (S,R)-bimodule on N (extending the given
structure), such that M and S induce a graded Morita equivalence between R and S.
(ii) M1 and N1 induce a Morita equivalence between R1 and S1, and M1 extends to a
∆-module, where

∆ =
⊕
x∈G

(Rg ⊗O Sop
g ).
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Chapter 2

Group graded bimodules over a
commutative G-ring

The aim of this chapter is to study G-graded algebras, G-acted algebras and Morita
equivalences over a commutative G-ring Z. We present a setting appropriate for the
next chapter and show how to associate a central simple G-graded algebra over Z to a
character of a strongly G-graded algebra over a field of characteristic zero. The results
are due to D. Gliţia and can be found in [23].

2.1 Motivation

Let G be a finite group, Z a commutative G-ring, and let F = ZG. Let A and B be two G-
acted F -algebras such that Z → Z(A) and Z → Z(A) are G-ring homomorphisms. Then
the tensor product over Z of A and B is again a G-acted F -algebra over Z. Motivated
by the study of Clifford theory in combination with Schur indices, Turull has introduced
an equivalence relation between simple algebras of this kind, which comes down to the
notion of equivariant Morita equivalence over Z between them.

However, strongly graded algebras are natural for Clifford theory. So let R and S

be two strongly G-graded algebras such that Z → Z(R1) and Z → Z(S1) are G-ring
homomorphisms.

Turull’s equivalence classes over F (see [61]) can be generalized to the case of strongly
G-graded algebras (see Mărcuş [46], [47]). The problem is that the tensor product over
Z of R and S is no longer an algebra. More precisely, we have:

Remark 2.1.1. 1) R and S are F -algebras and R1 and S1 are actually Z-algebras.
2) Many arguments in [43] where based on the fact that R⊗F S

op is a G×G-graded
F -algebra, and then the subalgebra

∆(R⊗F S
op) :=

⊕
g∈G

(Rg ⊗F S
op
g )
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is a strongly G-graded F -algebra.
3) Here we may also construct R ⊗Z S, but this is not a ring in general, nor is

∆(R⊗Z S).

2.2 G-graded F -algebras over Z and Morita equiva-

lences

Nevertheless, we show that we can still consider G-graded Morita equivalences over Z
(not only over F ) between R and S. For this, we introduce the following notion.

Definition 2.2.1. We say that M is a G-graded (R,S)-bimodule over Z if M is a (R,S)-
bimodule, M has a decomposition M =

⊕
x∈GMx such that RgMxSh = Mgxh, and

mgz =g zmg for all g ∈ G, z ∈ Z, and mg ∈Mg.

Remark 2.2.2. If M is a G-graded (R, S)-bimodule then RgM1Rg−1 = M1. But obvi-
ously, we can not say M is a R⊗Z S

op-module because R⊗Z S
op is not a ring.

Lemma 2.2.3. ∆(R ⊗Z S
op) is a ring, moreover an G-algebra over Z and R ⊗Z S

op is
a right ∆(R⊗Z S

op)-module.

Let N be a ∆-module, where ∆ = ∆(R⊗Z S
op), then N it is also a ∆1-module.

Lemma 2.2.4. If N is a ∆-module, there exists an isomorphism of G-graded (R,S)-
bimodules over Z:

R⊗R1 N ' N ⊗S1 S ' (R⊗Z S
op)⊗∆ N =: Ñ .

Lemma 2.2.5. 1) Assume that N is a left ∆(R⊗Z S
op)-module and N ′ is a left ∆(S⊗Z

T op)-module. Then N ⊗S1 N
′ is a ∆(R⊗Z T

op)-module with multiplication

(rg ⊗Z t
op
g )(n⊗S1 n

′) =
l∑

i=1

rgns
′
i ⊗S1 sintg−1 .

Moreover we have the isomorphism of G-graded (R, T )-bimodules over Z:

˜N ⊗S1 N
′ ' Ñ ⊗S Ñ ′.

2) Assume that N is a ∆(S ⊗Z R
op)-module and N a ∆(S ⊗Z T

op)-module. Then
HomS1(N,N

′) is a ∆(R⊗Z T
op)-module with multiplication:

(rg−1ftg)(n) =
l∑

i=1

s′if(sinrg−1)tg for n ∈ N and f ∈ HomS1(N,N
′).
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Moreover we have the isomorphism of G-graded (R, T )-bimodules over Z:

HomS(Ñ , Ñ ′) ' ˜HomS1(N,N
′).

Theorem 2.2.6. Let M1 be a (R1, S1)-bimodule and N1 a (S1, R1)-bimodule such that
the bimodules M1 and N1 induce a Morita equivalence between R1 and S1. Moreover, if
M1 is a ∆1-module then N1 extends to a ∆-module and M̃1, Ñ1 induce G-graded Morita
equivalences between R and S over Z.

2.3 Skew group algebras

In this section we discuss the particular case of skew group algebras and the relation
between G-graded Morita equivalences and G-equivariant Morita equivalences.

Let G be a finite group, Z a commutative G-algebra, and let F = ZG. Let A and B

be G-algebras over Z. In this case, the skew group algebras A∗G and B ∗G are G-graded
F -algebras over Z. We denote R = A ∗G and S = B ∗G. Note that the tensor products
A⊗Z B and A⊗Z B

op are both G-algebras with diagonal action.

Definition 2.3.1. A Morita equivalence over Z between A and B induced by two bi-
modules M and N is said to be G-equivariant if M is a (A⊗Z B

op) ∗G module, N is a
(B ⊗Z A

op) ∗ G module and all homomorphisms involved in the Morita equivalence are
ZG-linear.

By [32, Proposition 9] two central separable G-algebras are equivalent (in the sense
of Turull [67]) if and only if they are equivariantly Morita equivalent and the group
of equivalence classes of central separable G-algebras over a commutative G-algebra is
isomorphic to BrClif(Z,G). We wish to relate this to strongly graded central simple
algebras.

Lemma 2.3.2. Let A and B to be G-algebras over Z and let R = A ∗G and S = B ∗G.
There is the following isomorphism of G-graded F -algebras over Z:

∆(R⊗Z S
op) ' (A⊗Z B

op) ∗G.

Corollary 2.3.3. Let M1 be a (A,B)-bimodule. If M1 induces a G-equivariant Morita
equivalence between A and B then R ⊗R1 M1 induces a G-graded Morita equivalence
between R and S. Conversely, let M be a G-graded (R,S)-bimodule. If M induces a
G-graded Morita equivalence over Z between R and S, then M1 induces a G-equvariant
Morita equivalence over Z between A and B.

12



Chapter 3

Field extensions and Clifford theory

We go on to study Clifford theory in connection with the action of the Galois group of a
field extension in the context of group graded algebras (see [25]).

3.1 Motivation

Let G be a finite group, let K/F be an algebraic field extension, and let R =
⊕

g∈GRg

be a finite dimensional strongly G-graded F -algebra. A simple R1-module, as well as a
simple K ⊗F R1-module, define a “Clifford theory". The main idea is that the R-module
induced from a simple R1-module generates an abelian subcategory of the category of
R-module which is equivalent to the category of modules over its endomorphism algebra.
We investigate the relationships between these theories. One of the main results below
says that a G-graded derived equivalence over F preserves the Clifford theory defined by
corresponding simple modules, and also preserves Galois actions and Schur indices.

An important motivation for this chapter is Turull’s approach to Clifford theory and
Schur indices via G-algebras. He considers the Clifford theory defined by an R-module
lying over a simple (or semisimple) R1-module and introduces the notion of endoisomor-
phism to formalize the idea of two modules determining the same Clifford theory. We
show in Section 3.4 that a G-graded derived equivalence over F induces an endoisomor-
phism between two corresponding simple R-modules. This is related to the results of
[47].

In what follows, groups are finite and algebras and modules are finite dimensional. We
consider only algebras over fields, but this is enough for our purposes, as we essentially
deal with simple modules. Our notations are standard.
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3.2 Clifford theory for strongly G-graded algebras

We present Dade’s treatment of Clifford theory for strongly G-graded F -algebras. The
results presented in this section are Dade’s version [10], [11] of the Clifford correspondence
for group graded algebras.

3.2.1. As in the introduction, let G be a finite group, F a field, and let R =
⊕

g∈GRg

be a finite dimensional strongly G-graded F -algebra.
The group G acts on the set of isomorphism classes of simple R1-modules. If V be a

simple R1-module, we denote gV = Rg ⊗R1 V , and let

GV := {g ∈ G | Rg ⊗R1 V ' V as R1-modules}

be the stabilizer in G of V .

Theorem 3.2.2. If M is a simple R-module, then there exists a simple R1-module V
such that V is a direct summand in M . More precisely, R1M is a semisimple R1-module
and has the structure

R1M ' n
⊕

g∈[G/GV ]

gV , for some positive integer n.

3.2.3. Let M and V be as above. Because we have a monomorphism V
ι
↪→ R1M , there

exists the surjective R-homomorphism from R⊗R1 V to M that takes r ⊗ v to rι(v).

Definition 3.2.4. We denote by (R|V )-mod the full subcategory of R-mod consisting of
R-modules M for which there exists an R-epimorphism

(R⊗R1 V )(I) →M → 0

for some set I. Then (R|V )-mod is called the category of R-modules above V .

Theorem 3.2.5. The category (R|V )-mod is abelian, and coincides with the full subcat-
egory of R-mod consisting of R-modules M that viewed as R1-modules have the structure
as in Theorem (3.2.2).

3.2.6. If we denote E := EndR(R ⊗R1 V )op then E is a G-graded algebra, and R ⊗R1 V

is a G-graded (R,E)-bimodule. Moreover, we have that Eg = 0 for g ∈ G\GV (because
in this case V 6' gV ), hence E = EGV

may be regarded as a strongly GV -graded algebra.
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Theorem 3.2.7. We have the commutative diagram of equivalences of categories

(R|V )-mod
HomR(R⊗R1

V,−)
//

(−)GV
��

E-mod
(R⊗R1

V )⊗E−
oo

(RGV
|V )-mod

R⊗RGV
−

OO

HomGV
(RGV

⊗R1
V,−)

//
EGV

-mod.
(RGV

⊗R1
V )⊗EGV

−
oo

3.3 Galois action and Clifford correspondence

We study the relationship between the Clifford theories over F and over K. Consequently
we discuss the scalar extension from F to K and the action of the Galois group Gal(K/F )

on K ⊗F R-modules.The general setting is the same as the one for Theorem 1.1.4 with
some additional notions introduced bellow. Hence let K/F be an algebraic normal field
extension. We denote by Ĝ the Galois group Gal(K/F ). Then Ĝ acts on the set of
isomorphism classes of simple K ⊗F A-modules. Let W be a simple K ⊗F A-module.
Denote by ĜW = {σ ∈ Ĝ | σW ' W as K ⊗F A-modules} the stabilizer of W .

Let Ŵ :=
⊕

σ∈[Ĝ/ĜW ]
σW be the sum of distinct Ĝ-conjugates of W and R =

⊕
g∈GRg

a finite dimensional strongly G-graded F -algebra, and let F ≤ K be an algebraic normal
field extension. Denote KR := K ⊗F R, which is a strongly G-graded K-algebra. We
suppose that R1 (and hence R) is defined over a perfect subfield of F .

3.3.1. Let W be a simple KR1-module and V a simple R1-module. Denote also

Ê := EndKR(KR⊗KR1 Ŵ )op.

One can see that Ê = ÊGŴ
, so Ê is strongly GŴ -graded.

Notation 3.3.2. We consider the following stabilizers, also called inertia groups :

• IG(V ) := GV = {g ∈ G | Rg ⊗R1 V ' V as R1-modules},

• IG(W ) := GW = {g ∈ G | KRg ⊗KR1 W ' W as KR1-modules},

• IG,F (W ) := {g ∈ G | there exists σ ∈ Ĝ such that

KRg ⊗KR1 W ' σW as KR1-modules},

• IG(K ⊗F V ) := {g ∈ G | KRg ⊗KR1 K ⊗F V ' K ⊗F V as KR1-modules}.

Also, denote T := IG,F (W ). We obviously have that IG(W ) ≤ IG,F (W ) = T ≤ G.

Notation 3.3.3. Apart from the subcategory (R|V )-mod introduced in Section 3.2, we
consider the following full subcategories:
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• (KR|W )-mod, consisting of KR-modules M such that there exists an epimorphism
of KR-modules

(KR⊗KR1 W )(I) →M → 0, for some set I.

• (KR|W,F )-mod consisting of KR-modules M such that KR1M is isomorphic to a
direct sum of G× Ĝ-conjugates of W .

• (KR|K⊗F V )-mod consisting of KR-modules M such that there exists an epimor-
phism of KR-modules

(KR⊗KR1 K ⊗F V )(I) →M → 0, for some set I.

Theorem 3.3.4. With the above notation, assume that W is a direct summand of K⊗F

V . Then IG,F (W ) = IG(K ⊗F V ) and the categories (KR|W,F )-mod and (KR|K ⊗F

V )-mod coincide. Moreover, we have the following commutative diagram of equivalences
of categories:

(KR|W,F )-mod
HomKR(KR⊗KR1

Ŵ ,−)
//

'
��

Ê-mod
(KR⊗KR1

Ŵ )⊗Ê−
oo

(KRGŴ
|W,F )-mod

KR⊗KRG
Ŵ
−

OO

HomKRG
Ŵ

(KRG
Ŵ
⊗KR1

Ŵ ,−)
//
ÊGŴ

-mod.
(KRG

Ŵ
⊗KR1

Ŵ )⊗Ê−
oo

3.3.5. We next discuss the relationship between the inertia groups IG(V ) and T =

IG(K ⊗F V ), and between the subcategories (R|V )-mod and (KR|K ⊗F V )-mod. We
denote KE := EndKR(KR⊗KR1 (K ⊗F V ))op. As before, KE = KET may be regarded
as a strongly T -graded K-algebra.

Lemma 3.3.6. In this setting we have IG(V ) ≤ IG(K ⊗F V ) = T and the extension of
scalars K ⊗F − : R-mod → KR-mod induces by restriction a functor

K ⊗F − : (R|V )-mod → (KR|K ⊗F V )-mod.

Corollary 3.3.7. We have the following commutative diagram of categories and functors:

(R|V )-mod
//

**VVVVVVVVV E-modoo

**UUUUUUUUUUUUUUUUUUUU

tthhhhhhhhhhhhhhhhhhhh

(RT |V )-mod

R⊗RT
−

OO 44hhhhhhhhhhhhhhhhhhhh

**VVVVVVVVVVVVVVVVVV
(KR|K ⊗F V )-mod

//
KE-modoo

iiiiiiiiiiiiiiiiii

ttiiiiiiiiiiiiiiiiii

(KRT |K ⊗F V )-mod.

44iiiiiiiiiiiiiiiiii
KR⊗KRT

−
OO
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3.4 Quasihomogeneous R-modules

Turull [67], [70] considers the „Clifford theory determined by an R-module" instead of
an R1-module. We discuss here the connections with the point of view of the preceding
sections. Let W be a simple KR1-module as before.

Definition 3.4.1. An R-module M is W -quasihomogeneous if K⊗FM ∈ (KR|W )-mod.

The first question is whether the Clifford theory depends on the choice of a W -quasi-
homogeneous module. The next result says that it does not depend.

Theorem 3.4.2. Assume that M and M ′ are W -quasihomogeneous R-modules. Then
there exists a G-equivariant Morita equivalence between the G-algebras EndR1(M) and
EndR1(M

′).

3.4.3. We next consider the following context. Let R and R′ be G-graded F -algebras. Let
M be a W -quasihomogeneous R-module and M ′ be a W ′-quasihomogeneous R′-module,
where W is a KR1-module and W ′ a KR′1-module. Then the question is: when is the
Clifford theory determined by M equivalent to the Clifford theory determined by M ′?

Corollary 3.4.4. If there exists an isomorphism ε : EndR1(M) → EndR′1(M
′), of G-

algebras over F , then there exists an equivalence of categories

(KR|W,F )-mod ' (KR′|W ′, F )-mod.

that preserves the gradings of modules and commutes with the action of the Gal(K/F ).

An isomorphism EndR(R ⊗R1 M) ' EndR(R ⊗R1 M
′) of G-graded algebras is called

an endoisomorphism in [70]. But when does an endoisomorphism exist?

Theorem 3.4.5. Assume that there is a Rickard equivalence between the G-graded F -
algebras R and R′. Let M be a simple W -quasihomogeneous R-module and let M ′ be the
corresponding R′-module.

1) There exists an isomorphism ε : EndR1(M) → EndR′1(M
′) of G-algebras over F ,

induced by Rickard equivalences.
2) The simple KR1-module W also corresponds to a simple KR′1-module W ′, and

the derived equivalence induces the equivalence (KR|W,F )-mod ' (KR′|W ′, F )-modof
Corollary 3.4.4.
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Chapter 4

Brauer-Clifford classes and character
correspondences

The results of [67] can be generalized to the case of group graded algebras. This is the
aim of this chapter.

4.1 Motivation

Let G be a group and F a field. We take a strongly G-graded F -algebra R and two
R-modules M and M ′, preferably simple or semisimple. The question we ask is when
do these two modules have the same Clifford theory? For this we start by giving some
properties of character correspondences and their Brauer-Clifford elements.

4.2 The Brauer-Clifford group

The ingredients to define the Brauer-Clifford group, introduced in the paper [69], are a
finite group G and a commutative simple G-ring Z. One of the essential differences from
the previous definition consists precisely in this choice of Z, whereas in [67, 68] Z was a
commutative simple G-algebra over a field.

If G is a finite group and Z a commutative simple G-ring we say that a central simple
G-algebra A over Z is trivial if there exists a non-zero G-module M over Z such that
EndZ(M) is isomorphic to A as central simple G-algebras over Z. Perhaps the most
notable difference between [69] and [67, 68], as far as the definition of the Brauer-Clifford
group goes, is that in the latest definition trivial G-algebras are central simple G-algebras
over Z whereas under the old definition, trivial G-algebras always where required to have
a field as their center.

The definition for the Brauer-Clifford group given in the paper [69] is more general
then that in [67, 68], but it is essentially equivalent. We shall now present this refined
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definition of the notion of Brauer-Clifford group.

Definition 4.2.1. Let G be a finite group, and Z be a commutative simple G-ring. We
define the Brauer-Clifford group of G over Z to be the set BrClif(G,Z) together with a
binary operation. The elements of BrClif(G,Z) are equivalence classes of central simple
G-algebras of finite rank over Z, under the equivalence given as follows. Suppose A and
B are central simple G-algebras of finite rank over Z. Then, we say that A is equivalent
to B if and only if there exist trivial central simple G-algebras T1 and T2 over Z such
that

A⊗Z T1 ' B ⊗Z T2

as central G-algebras over Z. The binary operation on BrClif(G,Z) is that induced by
the tensor product over Z of central simple G-algebras over Z.

4.3 The Brauer-Clifford class and the central G-algebra

of a character

Let G be a group, Z a commutative simple G-ring, F be a field of characteristic zero,
and let F̄ be an algebraic closure of F . We assume that all characters take their values
in F̄ . We denote by Irr(G) the set of all irreducible characters of a finite group G and
restriction and induction of a character in the usual way. We wish to study Cifford theory
in the special case of strongly graded algebras.

4.3.1. LetG be a finite group and let R be a stronglyG-graded semisimple F -algebra. Let
ψ be an irreducible character of the algebra F̄RH where H ≤ G. Let θ1 be an irreducible
character of F̄R1 which is contained in the restriction of ψ to F̄R1, θ1, . . . , θr ∈ Irr(F̄R1)

be the G×Gal(F̄ /F )-orbit of θ1, and let

θ̄ = θ1 + · · ·+ θr.

Let eθ1 , . . . , eθr be the corresponding primitive idempotents of Z(F̄R1), and set e =

eθ1 + · · · + eθr . Then clearly e ∈ Z(R1), and if we set F0 := e(R1 ∩ Z(R)) then F0 is a
field.

Remark 4.3.2. If Θ := {θ1, . . . , θr} is any orbit of G × Gal(F̄ /F ) on Irr(F̄R1), and if
eΘ denotes the sum of the idempotents corresponding to the irreducible characters in Θ,
then eΘ is a primitive idempotent of R1 ∩Z(R). The map Θ 7→ eΘ from the set of orbits
of G×Gal(F̄ /F ) on Irr(F̄R1) to the set of primitive idempotents of R1 ∩Z(R) provides
a bijection.
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Definition 4.3.3. The central algebra of ψ with respect to R and F is the G-acted
F0-algebra eZ(R1). We denote it by Z(ψ,R, F ). For each θ ∈ {θ1, . . . , θr}, the central
character associated with θ, restricts non-trivially to a map

ωθ : Z(ψ,R, F ) → F̄

which we also call the central character associated with θ.

Z(ψ,R, F ) is a commutative central simple G-algebra over the field F0, uniquely
determined by ψ and F and

Z(ψ,R, F ) ' F (θ1)⊕ F (θ2)⊕ · · ·F (θs),

where the G-action on the algebra on the right is obtained from the G-action on Θ. The
center algebra holds informations about the character. The next proposition describes
how this happens.

Proposition 4.3.4. Let R and R′ be two strongly G-graded semisimple F -algebras, and
let ψ1 and ψ2 be two irreducible character of the algebra F̄RH and F̄R′H , respectively,
where H ≤ G. Let θ1 ∈ Irr(F̄R1) be contained in ResF̄RF̄R1

(ψ1) and θ2 ∈ Irr(F̄R′1) be
contained in ResF̄R

′

F̄R′1
(ψ2). For i = 1, 2 let Oi be the G × Gal(F̄ /F )-orbit of θi. We set

Z1 = Z(ψ1, R, F ) and Z2 = Z(ψ2, R
′, F ). Then the following are equivalent:

(1) There exists α : Z1 → Z2 an isomorphism of G-algebras over F which sends the
central character associated with θ1 to the central character associated with θ2.

(2) There is a bijection β : O1 → O2 which preserves the action of G×Gal(F̄ /F ) and is
such that β(θ1) = θ2.

Moreover, if α and β exist then they are unique.

4.3.5. Let ψ be an irreducible character of the algebra F̄RH where H ≤ G. We let θ1 be
an irreducible character contained in the restriction of ψ to F̄R1, and we let θ1, . . . , θr ∈
Irr(F̄R1) be the G × Gal(F̄ /F )-orbit of θ1, and we let θ̄ = θ1 + · · · + θr. (θ̄ does not
depend on the choice of θ1.)

Recall that the notion of quasihomogeneous R-module was introduced in Definition 3.4.1
but we referred to the module as being above a certain other module. Now we give the
definition of quasihomogeneous when the module is in a sense "above" a character.

Definition 4.3.6. A R-module M is ψ-quasihomogeneous (with respect to R1) if it is
not 0 and the character of F̄ ⊗F M , χ, is of the form mθ̄R1 , where m is a positive integer.

We always have such a R-module M over F which is ψ-quasihomogeneous.
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Theorem 4.3.7. Let Z = Z(ψ,R, F ) be the center algebra of ψ with respect to F .
Suppose that M is any ψ-quasihomogeneous R-module over F . Then EndR1(M) is a
central simple G-algebra over Z and its class in BrClif(G,Z) does not depend on M .

Remark 4.3.8. In Theorem 3.4.5 we have that EndR1(M) is a central simple G-algebra,
and can be regarded as representative for the Brauer-Clifford class of W (see [67] and [23]
for strongly G-graded algebras). Then Theorem 3.4.2 says that the Brauer-Clifford class
of W does not depend on the choice of a W -quasihomogeneous R-module, while Theorem
3.4.5 says that a G-graded derived equivalence over F “preserves Brauer-Clifford classes"
(see also [47, Theorem 5.3]).

Definition 4.3.9. Let Z = Z(ψ,R, F ) be the center algebra of ψ with respect to R and
F . Suppose that M is any ψ-quasihomogeneous R-module over F . We view EndR1M as
a central simple G-algebra over Z, and we denote by

[[ψ]] = [[ψ,R, F ]] ∈ BrClif(G,Z)

the element of BrClif(G,Z) that it defines. We say that this is the element of the Brauer-
Clifford group associated to ψ.

4.3.10. Let G a finite group, R and R′ two strongly G-graded F -algebras that are both
semisimple. Let ψ be an irreducible character of the algebra F̄RH where H ≤ G and ψ1

be an irreducible character of the algebra F̄R′H′ where H ′ ≤ G. Let Z = Z(ψ,R, F ) be
the center algebra of ψ with respect to R and F , and let Z ′ = Z(ψ1, R

′, F ) be the center
algebra of ψ1 with respect to R′ and F . Assume that we have a G-algebra isomorphism
α : Z → Z ′. We denote by

ᾱ : BrClif(G,Z) → BrClif(G,Z ′)

the isomorphism induced by α. Finally, assume that ᾱ([[ψ]]) = [[ψ1]].

Remark 4.3.11. Let F0 = ZG and we let F ′0 = (Z ′)G. Of course, α(F0) = F ′0. Let,
for the moment, M be any ψ-quasihomogeneous R-module over F , and let M ′ be any
ψ1-quasihomogeneous R′-module over F . Then, the center of EndR1(M) is naturally
identified with Z, and the class of EndR′1(M

′) in BrClif(G,Z) is [[ψ]], and the center of
EndR′1(M

′) is naturally identified with Z ′, and the class of EndR′1(M
′) in BrClif(G,Z ′) is

[[ψ1]]. Since ᾱ[[ψ]] = [[ψ1]], there exist trivial G-algebras T1 over F0 and T2 over F ′0 and
an isomorphism of G-algebras over F

β : EndR1(M)⊗F0 T1 → EndR′1(M
′)⊗F ′0

T2

which restricts to the centers of the algebras (using the identifications) as the map α :

Z → Z ′. If we tensor with further trivial algebras if necessary, we assume, without loss
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of generality, that the underlying modules for T1 and T2 are free non-zero G-modules and
if we tensor these with M and M ′, respectively we obtain new quasiprimitive modules
over F , which we rename M and M ′ respectively. We obtain the isomorphism β from
A = EndR1(M) to A′ = EndR′1(M

′). The above yield a one-to-one correspondence from
characters of R to characters of R′. For more details see [61].

4.3.12. If H is a subgroup of G then we denote by Irr(H,R, ψ) the set of irreducible
characters φ of F̄RH such that the restriction of ψ to F̄R1 contains at least one irreducible
(hence all) characters that are G×Gal(F̄ /F )-conjugate to some irreducible contained in
the restriction of ψ to F̄R1. We let ZIrr(H,R, ψ) be the set of integer linear combinations
of elements of Irr(H,R, ψ). We do likewise for subgroups of G, R′ a strongly G-graded
F -algebra and the character ψ1.

Theorem 4.3.13. Assume the notations from 4.3.10. Assume furthermore that θ ∈
Irr(F̄R1) is G×Gal(F̄ /F )-conjugate to an irreducible character contained in the restric-
tion of ψ to F̄R1, and, that θ1 ∈ Irr(F̄R′1) is G × Gal(F̄ /F )-conjugate to an irreducible
character contained in the restriction of ψ1 to F̄R1. Assume that the central character
associated with θ restricted to Z corresponds to the central character associated with θ1

restricted to Z ′ under the isomorphism α. Then, there is a bijection φ 7→ φ′ from the
union of ZIrr(F̄RS|ψ) to the union of ZIrr(F̄R′S|ψ1) as S runs over the subgroups of G
satisfies the following properties:

(1) For each H a subgroup of G, restriction of the map φ 7→ φ′ provides an isomorphism
of Z-modules from ZIrr(F̄RH |ψ) to ZIrr(F̄R′H |ψ1), that preserves the usual inner
product, and restriction provides a bijection from Irr(F̄RH |ψ) to Irr(F̄R′H , |ψ1).

(2) There is some rational constant d, such that, whenever H is a subgroup of G, φ ∈
ZIrr(F̄RH |ψ) and φ 7→ φ′, then φ′(1) = dφ(1).

(3) The map φ 7→ φ′ commutes with induction and restriction of characters, multiplica-
tion with characters of F̄RH , with any Galois automorphism that fixes F and with
conjugation by G.

(4) The map φ 7→ φ′ preserves the field of values of irreducible characters and the corre-
sponding elements of Brauer group and in particular the Schur indices.

(5) If φ 7→ φ′ and φ is irreducible, then φ and φ′ have isomorphic center algebras, under
an isomorphism that preserves the correspondence. More precisely, suppose that φ ∈
Irr(F̄RS), and I,H, are subgroups of G with I � H. Then, there is a unique H/I-
algebra isomorphism

β : Z(φ,RH/I , F ) → Z(φ′, RH/I , F )
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with, for every irreducible character γ contained in ResRRI
(φ), the central character

associated to γ corresponds to the central character associated to γ′ under β. We let β̄
denote the group isomorphism between the Brauer-Clifford groups deterined by β and
[[φ,RH/I , F ]] ∈ BrClif(H/I, Z(φ,RH/I , F )) and β̄([[φ,R, F ]]) = [[φ′, RH/I , F ]].

4.4 Field extensions

Equality of the Brauer-Clifford classes over a field gives rise to equality over a bigger
field. Let F be a field of characteristic zero. We consider that our characters have values
in F̄ . Let K be a subfield of F̄ containing F . Let R and R′ be two strongly G-graded
semisimple F -algebras. Let θ ∈ Irr(F̄R1), and let θ′ ∈ Irr(F̄R′1), let Z = Z(θ,R, F ) be
the center algebra of θ with respect to R and F , and let Z ′ = Z(θ′, R′, F ) be the center
algebra of θ′ with respect to R and F .

Proposition 4.4.1. Assume there is a G-algebra isomorphism α : Z → Z ′, which induces
the isomorphism ᾱ : BrClif(G,Z) → BrClif(G,Z ′) and is such that α sends the central
character associated with θ to the central character associated with θ′. Assume, further-
more, that ᾱ([[θ,R, F ]]) = [[θ′, R′, F ]]. Set SK = Z(θ,KR,K) and Z ′K = Z(θ′, KR′, K).
Then, there is a unique G-algebra isomorphism β : ZK → Z ′K, such that β sends the
central character associated with θ to the central character associated with θ′. Moreover,
if we denote by β̄ : BrClif(G,ZK) → BrClif(G,Z ′K) the isomorphism induced by β then,
β̄([[θ,KR,K]]) = [[θ′, KR′, K]].

4.5 A Morita equivalence over Z

Take M to be a simple R-module, and let ψ be the character of a simple submodule of
the F̄R-module F̄ ⊗F M . Let θ1 be an irreducible character contained in the restriction
of ψ to F̄A and θ1, . . . , θr, θ̄, e and F0 as in Section 4.3, where A = R1. Let θ1, . . . , θs be
the representatives for the orbits of the action of Gal(F̄ /F ) on {θ1 . . . θr}.

Then EndR(R⊗AM)op is a central simple G-graded F0-algebra over Z, where

Z := eZ(A) ' F (θ1)⊕ F (θ2)⊕ · · · ⊕ F (θs)

as G-acted F0-algebras. Instead of M as above we may use another more general R-
module: a ψ-quasihomogeneous R-module M ′.

Proposition 4.5.1. If M ′ is a ψ-quasihomogeneous R-module, then there is a G-graded
Morita equivalence over Z between EndR(R⊗AM) and EndR(R⊗AM

′).
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Chapter 5

Modular G-graded algebras and
G-algebras of endomorphisms

We wish to study Clifford Theory and field extensions for strongly G-graded algebras.
Alexandre Turull in [70], [71] introduced the notion of endoisomorphism showing that
there is a natural connection between it and Clifford Theory of finite groups algebras.
An endoisomorphism is an isomorphism between G-algebras of endomorphisms, where
G is a finite group. We consider here endoisomorphisms between modules over strongly
G-graded algebras. An endoisomorphism induces equivalences of categories with some
good compatibility properties (see Theorem 5.5.1 and Theorem 5.6.1 below). The results
are due to D. Gliţia and can be found in [24].

5.1 General setting

5.1.1. Let p be a prime number. We shall consider the p-modular systems (K,O, k) and
(K̂, Ô, k̂) such that K̂ is a finite extension of K and Ô is the ring of integers of K̂. Let m

be the maximal ideal of O and m̂ be the maximal ideal of Ô.

5.1.2. Let G be a finite group. Let R =
⊕

g∈GRg a strongly G-graded O-algebra, free of
finite rank over O. We denote ÔR = Ô ⊗O R, K̂R = K̂ ⊗O R and k̂R = k̂ ⊗O R.

We denote by H a subgroup of G. We assume that for any such R and H, the
algebra KRH is symmetric, K̂RH and k̂RH are split (not necessarily semisimple). Unless
otherwise specified, modules are assumed to be finitely generated. We denote by RK(R)

the Grothendieck group of the category of finitely generated KR-modules. If M is an
KR-module, we let [M ] denote its image in RK(R).

Let IrrK(R) denote the set of isomorphism classes of simple KR-modules. Then
RK(R) = ZIrrK(R) is the free abelian group with basis IrrK(R). We denote by IBr(kR)

the set of isomorphism classes of simple kR-modules.
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5.1.3. The decomposition homomorphism. Let M be an KR-module. An R-lattice
of M is an R-submodule L of M with the following properties. We take a K-basis in
M and let L be the O-submodule of M generated by this basis and by all the products
between the elements of this basis and the elements of an O-basis of R. Then L is actually
an R-submodule of M with the property that K ⊗O L 'M.

Let L be an R-lattice of M . This yields the kR-module L/mL, called a reduction
modulo p of M . This module is not unique even up to isomorphism but all modules have
the same composition factors, up to isomorphism, for all choices of L. In this way, the
decomposition map

d : ZIrr(KR) → ZIBr(kR).

send the class of M in RK(R) to the class of of L/mL in Rk(R).

5.1.4. Recall from [46, Theorem 3.4] that there is an action of KG-modules on KR-
modules. Let M be a R-module and N a KG-module. Then we may construct the
KR-module M ⊗O N that is also a module over the (G×G)-graded algebra R⊗O KG.

5.2 Categories of modules above a given module

Let R be a strongly G-graded O-algebra, and let M be an R-lattice.

Definition 5.2.1. We denote by M̂ ′
K the direct sum of countably infinite number of copies

of KR-modules M ⊗O KGand by (KRH |M)-mod be the full subcategory of KRH-mod
consisting of KRH-modules that are quotients of finitely generated KRH-submodules of
M̂ ′
K. We say that a module from (KRH |M) is above M .

Definition 5.2.2. The field extensionK ofO is a good extension for M if ResKRKR1
(K⊗OM)

is a semisimple module and

K ⊗O EndR1(M) = EndR1(K ⊗O M).

If we assume that KR1 is semisimple. Then the extension K/O is good for M . For
the remaining of this section assume that KA1 is semisimple.

Definition 5.2.3. Let V be a KR1-module. Denote by Irr(KR|V ) the set of all isomor-
phism classes of simple KR-modules whose restriction to R1 contains a simple summand
that is also a summand of V . We say that a module from Irr(KR|V ) is above V .

Proposition 5.2.4. Let V be the direct sum of all nonisomorphic simple K̂R1-modules
that appear in the decomposition of ResRR1

(K̂ ⊗O M). Then, a K̂RH-module W is in
(K̂RH |M)-mod if and only if W is an N-linear combination of the elements in Irr(K̂RH |V ).
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Definition 5.2.5. Let W be a kR1-module. We denote by IBr(kR|W ) the set of all iso-
morphism classes of simple kR1-modules that restricted to R1 contain a simple summand
that is also a summand of W . We say that a module in IBr(kR|W ) is above W .

5.3 Endoisomorphisms and module correspondences

Let R and R′ be two strongly G-graded O-algebras. Let M be an R-lattice, and let M ′

be a R′-lattice. Assume that the extension K of O is good for M and M ′.

5.3.1. Similar to Section 3.4 we define an endoisomorphism over O from M to M ′ is an
isomorphism of G-algebras over O

ε : EndR1(M) → EndR′1(M
′).

We will see that an isomorphism ε as above determines a module correspondence κε
compatible with field extensions and subgroups of G.

Definition 5.3.2. a) A G-algebra Z over K is called a center algebra of KR if, setting
Z0 = Z(R1/J(R1)), so Z0 is a commutative G-algebra over K, then, for some idempotent
e of ZG

0 we have Z = eZ0.
b) Let e be the sum of all the primitive idempotents of ZG

0 which act non trivially on
K ⊗O M . Then eZ0 is called the center algebra of R associated with K ⊗O M , and it is
denoted by Z(M,R,K).

Theorem 5.3.3. Let ε be an endoisomorphism from M to M ′. Then ε determines an
isomorphism of G-algebras over K denoted ε̄K from Z(M,R,K) to Z(M ′, R′,K) and an
endoisomorphism

ε̂K : EndR1(M̂K) → EndR1(M̂
′
K).

that in its turn determines a K-linear isomorphism κε of categories from (KAH |M)-mod
to (KA′H |M ′)-mod.

5.3.4. An isomorphism φ : M → M ′ induces an endoisomorphism ε from M to M ′. In
this case, the isomorphism of categories κε takes each module to a module isomorphic to
it.

If there is a G-graded Morita equivalence over O between R and R′ such that M
corresponds to M ′, then there is an endoisomorphism from M to M ′.

5.4 Endoisomorphisms over K and over O

Let R and R′ be two strongly G-graded O-algebras. Let M be a KR-module, and M ′

a KR′-module. Starting from an endoisomorphism over the field of fractions K of the
principal ideal domain O, we can obtain the endoisomorphism over O.
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Let E = EndKR1(M), so E is a finite dimensional K-algebra. Recall that an O-
order in E is an O-subalgebra B of E that contains a K-basis of E, and such that every
element of B is integral over O. One can obtain O-orders in our context by taking first
an R-lattice.

Theorem 5.4.1. Assume that the restriction ResKRKR1
(M) is semisimple. Then any O-

order in E is finitely generated as an O-module. Moreover, E has an O-order B that is
G-invariant and maximal among the G-invariant orders of E, and there is a G-invariant
lattice L such that B = {e ∈ E | e(L) ⊆ L} .

Theorem 5.4.2. Assume that ResKRKR1
(M) and ResKR

′

KR′1
(M ′) are semisimple, and let ε be

an endoisomorphism over K from M to M ′. Then there exists a G-invariant O-lattice
L of M , a G-invariant O-lattice L′ of M ′ and an endoisomorphism ν from EndR1(L) to
EndR′1(L

′), such that ε = K ⊗O ν, and in addition,

EndKR1(M) = K ⊗O EndR1(L) and EndKR′1(M
′) = K ⊗O EndR′1(L

′).

5.5 Correspondences in characteristic zero

Let R and R′ two strongly G-graded O-algebras, and assume that KR1 and KR′1 are
semisimple.

Theorem 5.5.1. Let M be a KR-module, and M ′ is a KR′-module. Let

ε : EndKR1(M) → EndKR′1(M
′)

be an endoisomorphism from M to M ′. Let V be the direct sum of all nonisomorphic
simple K̂R1-modules that appear in the decomposition of ResK̂RK̂R1

(M) and V ′ be be the
direct sum of all nonisomorphic simple K̂R′1-modules that appear in the decomposition of
ResK̂R

′

K̂R′1
(M ′). Then the following statements hold.

(1) κε induces isomorphisms of ZIrr(KH)-modules

κε : ZIrr(K̂ ⊗O RH |V ) → ZIrr(K̂ ⊗O R′H |V ′).

(2) κε sends the simple summands of K̂ ⊗K M to simple summands of K̂ ⊗K M ′ and
commutes with restriction and induction of modules, with the action of Gal(K̂/K)

and with conjugation by G.

(3) Let χ be the character of a simple module from Irr(K̂ ⊗O RH |V ), let [χ] denote the
element of the Brauer group Br(K(χ)) associated with it. Then we have K(κε(χ)) =

K(χ) and [κε(χ)] = [χ]. In particular, the Schur indices of the irreducible characters
are preserved under κε.
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Corollary 5.5.2. Let W ∈ Irr(KR1) and W ′ ∈ Irr(KR′1). Set Z = Z(W,R,K) and
Z ′ = Z(W ′, R′,K) be the respective center algebras, and let [[W ]] ∈ BrClif(G,Z) and
[[W ′]] ∈ BrClif(G,Z ′) be the respective elements of the Brauer-Clifford group. Suppose
that the G-algebra isomorphism α : Z → Z ′ sends the central character associated to
W to the central character associated with W ′, and, denoting by ᾱ the induced group
isomorphism between the respective Brauer-Clifford groups we have ᾱ([[W ]]) = [[W ′]].

Then, there exist M a finitely generated W -quasihomogeneous KR-module, M ′ a
finitely generated W ′-quasihomogeneous KR′-module, and an endoisomorphism ε over K
from M to M ′ such that:

(1) the module V from Theorem 5.5.1 is the sum of the G×Gal(K̂/K)-orbit of W , and
V ′ is the sum of the G×Gal(K̂/K)-orbit of W ′.

(2) κε sends W to W ′ and induces the isomorphism of Z-modules

κε : ZIrr(KRH |W ) → ZIrr(KR′H |W ′);

5.6 Correspondences in characteristic p

Let R and R′ two strongly G-graded O-algebras. Let M be an R-lattice and M ′ be an
R′-lattice. We assume that KR1 and KR′1 are semisimple. Assume also that the extension
k̂ of O is a good extension for M and M ′.

Theorem 5.6.1. Let W be the direct sum of all the nonisomorphic simple k̂ ⊗O R1-
modules that appear in a composition series of ResRR1

(k̂ ⊗O M), and let W ′ be the direct
sum of all the nonisomorphic simple k̂⊗OR′1-modules that appear in a composition series
of ResRR1

(k̂ ⊗O M ′). Let ε be an endoisomorphism from M to M ′. Then the following
statements hold:

(1) ε induces the endoisomorphism

K ⊗O ε : EndKR1(K ⊗O M) → EndKR′1(K ⊗O M ′)

from K ⊗O M to K ⊗O M ′, so Theorem 5.5.1 applies.

(2) κε induces the isomorphisms

κε : ZIBr(k̂RH |W ) → ZIBr(k̂R′H |W ′),

of ZIrr(kH)-modules, sending simple modules to simple modules, and summands of
k ⊗O M to summands of k ⊗O M ′.

(3) κε commutes with restriction and induction of modules, and with conjugation by G.

28



Chapter 6

Glauberman correspondence and
related Morita equivalences

Starting with P -interior algebras, where P is a finite p-group, we prove two theorems
establishing certain group graded Morita equivalences. These apply to the case of blocks
with normal defect groups, and defect zero blocks of normal subgroups, respectively. The
main results are gathered in [26] and are due to D. Gliţia and A. Mărcuş.

6.1 Introduction

This chapter is motivated by several results on the existence of Morita equivalences in
the context of the Glauberman-Watanabe correspondence (see [37], [31], [28], [75], [54]
and the references given there). In order to explain this, let (K,O, k) be a p-modular
system, let G be a finite group and let A a solvable finite group acting on G such that G
and A have coprime order. Let b be an A-invariant block of OG. Under some additional
conditions, there exists a Morita equivalence between bOG and w(b)OGA induced by a
(bOG,w(b)OGA)-bimodule M with the property that regarded as a G×GA-module, M
has a source which is an endopermutation module. Moreover, when we have a splitting
p-modular system, this Morita equivalence induces a bijection

π(G,A) : IrrK(G, b) → IrrK(GA, w(b)),

which coincides with the Glauberman correspondence, where the block w(b) of OGA is
the Watanabe correspondent of b (see [73]).

By induction, this is reduced to the case when we consider blocks lying over a block
of a normal p′-subgroup of G, actually of Op′(G). More generaly, instead of a normal
p′-subgroup it is useful to consider blocks of defect zero of a normal subgroup (see [29]).
It turns out that it is enough to consider a strongly G-graded P -interior O-algebra R,
where the p-group P is also a normal subgroup of the group of homogeneous units of
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R, and whose identity component R1 is an O-simple algebra. The identity of R1 has a
defect group Q ≤ P , and the other algebra is constructed by first considering the Brauer
quotient R1(Q). Theorem 6.6.5 below will generalize the main result of Dade [6] on
correspondences above the Glauberman corresponcence (see also Turull [66] and Ladisch
[40]), and our approach is more in the spirit of [6] and [8], by systematical use of Clifford
extensions.

In fact, our method of proof is inspired from [17], and therefore, our first main result
is a generalization of Structure Theorem for blocks with normal defect group due to
Külshammer (see also [51, Proposition 14.6], Alperin, Linckelman and Rouquier [2], Fan
and Puig [20, Theorem 1.17]). Instead of starting with a block of a group algebra OG, we
only consider a separable algebra extension OP → B, where P is a finite p-group and B
has finite O-rank, and then we construct our Morita equivalent algebras from this data.

6.2 Motivation: the Glauberman correspondence

We start off with a presentation of this correspondence and move on to some of the more
recent developments that where triggered by a theorem of Atumi Watanabe in 1999 (see
[73]), a theorem that motivates the study of Morita equivalences in this context.

Let A and K be finite groups. We assume that A acts on K. We can then construct
the semidirect product

K o A = {(x, a)|x ∈ K, a ∈ A} , where (x, a)(y, b) = (xay, ab).

Moreover, we have the following split exact sequence

1 → K → K o A
π−→ A→ 1

There exists a group homomorphism λ : A→ K o A such that πλ = 1A.

Hypothesis 6.2.1. Let K be a finite group and A a solvable finite group. We assume
that A acts on K and (|K|, |A|) = 1.

6.2.2. Let p be a prime number. We take a p-modular system (K,O, k) that is "big
enough". In this case Irr(K) = IrrK(K). This happens because any KK module has a
character that determines the isomorphism class. A character χ can be defined either as

χ : K → K or χ : K → C

but χ(K) ⊆ K ∩ C. We denote IrrK(K)A = {χ ∈ IrrK(K) | aχ = χ, ∀a ∈ A}.
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Theorem 6.2.3 (Glauberman-Isaacs). Assume Hypothesis 6.2.1. Then there is a
bijection

π(K,A) : IrrK(K)A → IrrK(KA)

with the following properties:

(1) For all B � A we have π(K,B)(IrrK(K)A) ⊆ IrrK(KB)A. Moreover, in Irr(K)A we
have

π(K,A) = π(KB, A/B) ◦ π(K,B),

hence the following diagram commutes

Irr(K)A
π(K,A) //

π(K,B)

��

Irr(KA)

Irr(KB)A
π(KB ,A/B)

// Irr((KB)A/B).

(2) If A is a q-group, where q is a prime number, then π(K,A)(χ) is the unique irreducible
character of KA that is a component of ResKKA(χ) and has multiplicity prime to q,
for all χ ∈ Irr(K)A.

Watanabe’s theorem says that the bijection from Theorem 6.2.3 preserves p-blocks.

6.2.4. Permutation and endo-permutation OP -modules.

Definition 6.2.5. A OP -lattice M is called a permutation lattice if M has a P -invariant
O-basis. The module M is called the permutation module.

If M is a permutation module then M is isomorphic to a direct sum of OP -modules
induced by subgroups Q ≤ P , of the form

OP ⊗OQ V = IndPQV,

where V is the trivial OQ-module.

Definition 6.2.6. Let M be a OP -module. Then EndO(M) is a P -algebra free over O,
where

(uf)(m) = f(u−1m).

Actually, there exists a homomorphism from P to AutO(M).
We say that M is called the endo-permutation OP -lattice if M is a OP lattice such

that EndO(M) is a permutation OP -module under the conjugation action of P . In other
words we require the existence of a P -invariant O-basis (stable basis) of EndO(M). The
module M , in this case, is called an endo-permutation module.
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6.2.7. The Brauer homomorphism. The following construction works particularly
well for modules with a P -stable basis.

6.2.8. Let B be a interior OD-algebra that has a P -stable basis, hence B is a O-algebra,
free of finite rank over O and there exists a O-algebra homomorphism from OD to B.

The Brauer homomorphism BrD : BD → B(D), is defined as follows. Let

BD := {b ∈ B|ub = b for all u ∈ D} ,

with ub = ubu−1. Let
B(D) := k ⊗O

BD∑
Q<D TrDQB

Q
,

where BQ = {b ∈ B|ub = b ∀u ∈ Q}. Then BrD = BrBD is a surjective k-algebra homo-
morphism.

6.2.9. Categorical equivalences.
Character isometries are often the result of the existence of a Morita or Richard

equivalence of blocks. Koshitani and Michler in 2001 in their article [37] and Harris and
Linckelmann in 2002 in their article [31] showed that with some additional conditions
there exists a Morita equivalence between bOK and w(b)OKA, where b is a block of OK
that is A-invariant and w(b) the coresponding block of OKA.

Theorem 6.2.10. With the hypothesis of Watanabe’s theorem there exists a Morita equiv-
alence between bOK ' w(b)OKA induced by a (bOK,w(b)OKA)-bimodule M with the
property that regarded as a K×KA-module,M has a source W that is a endo-permutation
OD-module. Moreover, this Morita equivalence induces a bijection

π(K,A) : IrrK(K, b) → IrrK(KA, w(b))

under the condition that either K is p-solvable and (K,O, k) is big enough (by [31]) or
D �K and (K,O, k) is big enough (by [37]) orb is a nilpotent block and (K,O, k) is big
enough (by [54]) and some other additional conditions.

By induction, Theorem 6.2.10 is reduced to the case when we have a block of a normal
p′-subgroup of K, actually Op′(K). Hence the group algebra OOp′(K) is semisimple.

6.2.11. More generally, instead of the normal p′-subgroup it is useful to consider blocks
of defect zero of a normal subgroup (see [31]). For this one can consider the case of [29],
[6], [66], [40] and [75, Paragraph 2.4] when K �G and b a block with defect zero of OK
where (K,O, k) is "big enough" (see the articles of Dade or Harris), O = Zp, K = Qp

and k = Fp.
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6.3 Graded Morita equivalence between algebras

Considering that the theorem (by Glauberman and Isaacs, Theorem 6.2.3) and by Watan-
abe’s theorem refer to solvable groups, by induction their proofs are reduced to a special
case. This situation refers to the case when we have a character that is from a p-block
with defect zero of a normal subgroup. In this section we present this context following
the articles of Dade [6], Turull [66] and Ladisch [40]. Let G be a finite group, K �G and
K �M ≤ G such that M/K is a p-group. Let θ ∈ Irr(K). Then θ : K → C and θ(x) is
an algebraic integer. Let us assume that θ is in a p-block of K having defect 0.

Let k = Fp the field with p elements, K = Qp the p-adic number field and O = Zp

the ring of p-adic integers. Hence, (K,O, k) is a p-modular system. Let K̂ = K(θ), let
Ô = O(θ) and k̂ = Zp(θ)/pZp(θ). Hence, (K̂, Ô, k̂) is a p-modular system.

6.3.1. The p-block of θ.
The p-block that contains θ can be viewed as follows. There exists a central primitive

idempotent eθ ∈ Z(ÔK) associated to θ. Then eθK̂K is a central simple K̂-algebra.
Moreover, we have that eθK̂K 'Mn(K̂) and θ is a (complex) character associated to the
unique simple eθK̂K-module V̂ . If we denote by K̄ the algebraic closure of K̂ then the
module θ appears in the decomposition of K̄ ⊗K̂ V̂ . In this case we have

Ĝ := Gal(K̂/K) ' Gal(Ô/O) ' Gal(k̂/k).

Moreover, there exists a primitive idempotent eθ,O ∈ Z(OK) such that eθ,OKK is a
simple K-algebra with the center K̂, θ is a component of V ⊗K K̂ and eθ,OKK 'Mm(K̂).

Actually, V ⊗K K̂ is a sum of Ĝ-conjugates of θ.

Remark 6.3.2. K̂ is a splitting field for eθ,OKK.

6.3.3. Let K �G, K �M ≤ G and M/K be a p-group. Let θ ∈ Irr(K).
To the character θ corresponds a unique primitive central idempotent eθ,O ∈ Z(KK)

but one can prove that this idempotent is actually in OK. Then we have that eθ,O ∈
Z(OK) is a primitive idempotent. Moreover,

eθ,OKK 'Mm(K̂) and eθ,OOK 'Mn(Ô).

Actually, eθ,OKK ' K ⊗O eθ,OOK. Assume that eθ,O is G-invariant, so θ is G-semi-
invariant. eθ,O has a defect group P ≤ G with the property that Q := P ∩K is a defect
group of eθ,O in K. Because θ has defect group zero we have that Q = {1}. Denote
M := KP = PK ≤ G.

We consider the Brauer surjective homomorphism

Brp : (OK)p → kCK(P )
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of O-algebras defined as follows∑
x∈K

αxx 7−→
∑

x∈CK(P )

ᾱxx,

where α ∈ O is mapped to ᾱ ∈ k = O/J(O) by Brp. In this case eθ,O determines a unique
bloc eϕ,O ∈ Z(OCK(P )) such that eϕ,O ∈ Z(kCK(P )). Hence, the character θ determines
a character ϕ of CK(P ), actually eϕ,OCK(P ) is also a central simple K̂-algebra having a
unique simple module W and ϕ is a component of K̂ ⊗KW . Also, eϕ,O has defect group
P in H and defect zero in CK(P ) = L as well. Using the so called Frattini argument we
have that G/K ' H/L. Then we have the G/K-graded algebras eθ,OOG and eϕ,OOH.

The next theorem is the main theorem of this section and is due to E.Dade from [6],
A.Turull from [66] and F.Ladisch from [40].

Theorem 6.3.4. There exists a G/K-graded Morita equivalence between the algebras
eθ,OOG and eϕ,OOH.

A proof of this theorem in a slightly more general framework considering some central
simple O-algebras on which some p-groups act can be given using Section 6.6 .

Remark 6.3.5. If K is a p′-group (hence by Maschke’s theorem all blocks of OK have p-
defect zero), then the correspondence θ 7→ ϕ described above coincides with the Glauber-
man correspondence.

Remark 6.3.6. 1) In this case if we denote by R := eθ,OOG and S := eϕ,OOH, then
R1 = eθ,OOK and S1 = eϕ,OOL.

2) Because P ∩K = {1} we have that PK/K ' P , hence P can be viewed as a subgroup
of G/K.

6.4 Modular group graded algebras

We consider a p-modular system (K,O, k), where k is a perfect field. An important
particular case is when K = Qp, O = Zp and k = Fp.

Our main objects of study are G-graded crossed products R =
⊕

g∈GRg, where R
is assumed to be free of finite rank over O, so G is a finite group. We have an exact
sequence of groups

1 → R×1 → hU(R) → G→ 1,

where hU(R) denoted the group of homogeneous units of R. We denote A := R1.

Remark 6.4.1. Let K be a normal subgroup of H, G = H/K and let b a block of OK.
Then we take R = bOH and R1 = bOK. Then H acts on OK by conjugation, while
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H/K acts on Z(OK). We denote by Gb the stabilizer of G. In this case the algebra
bOHb is Morita equivalent to OGbOG, and bOHb = bOHb, so we can assume without
much loss of generality that b is G-invariant. We will no longer work with K and H and
refer only to R, G and the defect groups.

6.4.2. We will frequently use the following construction from [52, Chapter 9], which gives
a bijection between K-interior H-algebras and G-graded H-interior algebras, where H is
a group, K is a normal subgroup of H, G = H/K, and OH is regarded as a G-graded
O-algebra in an obvious way (see also [16, Section 2]).

As in [52, 4.2], a K-interior H-algebra is an O-algebra A with group homomorphisms
ϕ : H → Aut(A) and ψ : K → A× such that, for any x ∈ H, y ∈ K and a ∈ A, we have
(y ·a)x = yx ·ax and ay = y−1 ·a·y, where y ·a and a·y denote ψ(y)a and aψ(y) respectively,
and ax := ϕ(x)−1(a). Then A determines a G-graded O-algebra R :=

⊕
g∈GRg by letting

R := A⊗OK OH =
⊕

x∈[H/K]

A⊗ x,

and there exists a homomorphism ψ : OH → R, of G-graded algebras.
Conversely, if ψ : OH → R is a homomorphism of G-graded O-algebras, then A := R1

is a K-interior H-algebra, where

ϕ : H → Aut(A), ϕ(h)(a) = ψ(h)aψ(h)−1,

and ψ : K → A× is the restriction of ψ.

6.4.3. We denote by Jgr(R) the Jacobson radical of the crossed product R, and let
R̄ = R/Jgr(R). We need a connection between the splittings of the group extension
hU(R) and the splittings of hU(R̄). A generalization of E. Dade, proved in [44, Theorem
3.1.8] states that if the extension hU(R̄) of Ā× by G splits and there is ā ∈ Ā such that
TrG1 (ā) = 1 then there is a bijection between the splittings of hU(R̄) and the (1 + J(A))-
conjugacy classes of splittings of hU(R).

6.4.4. Let P be a p-group. Recall that a kP -module M is called endopermutation if
Endk(M) has a P -stable basis. By [66, Theorem 3.3], if k̂/k is a field extension and M is
an endopermutation k̂P -module, then there is an endopermutation kP -module M0 such
that M ' k̂ ⊗k M0.

Theorem 6.4.5 (Dade). Let R be a G-graded crossed product such that R1 = kP , and let
M be a G-invariant indecomposable endopermutation kP -module. Let E = EndR(R ⊗R1

M)op and Ē = E/Jgr(R). Then the following group extension splits:

1 → Ē×
1 → hU(Ē) → G→ 1.
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6.5 The “normal defect group" situation

The main result of this section is a generalization of the structure theorem for blocks
with normal defect group, originally due to Külshammer [38]. There is another approach
in [2] using modules, and here we generalize the main result of [17], by establishing a
Morita equivalence between strongly graded algebras. We lay down our assumptions in
6.5.1 and 6.5.2, while the algebras in discussion are defined after several steps in 6.5.5
and 6.5.8 below.

6.5.1. Let B be a interior OD-algebra, free of finite rank over O, having a D-stable basis.
We suppose that 1 is a primitive idempotent in Z(B), and that B has defect group D.
We also assume that ODB and BOD are projective.

6.5.2. There exists a primitive idempotent i ∈ BD such that B | Bi ⊗OD iB as (B,B)-
bimodules. Let

γ =
{
aia−1 | a ∈ (BD)×

}
the (BD)×-conjugacy class of i. Then the pair (D, γ) = Dγ is called a defect pointed
group of B (a notion due to Puig, see [60]). Moreover, BrD(i) is a primitive idempotent
in B(D), and BrD(γ) is a point of B(D), because BrD : BD → B(D) is surjective.

There is a unique maximal ideal of BD, denoted mγ, that corresponds to γ such that
γ 6⊂ mγ, and a unique maximal ideal of B(D), denoted mBrD(γ), that corresponds to
BrD(γ) such that BrD(γ) 6⊂ mBrD(γ). Moreover, we have that

BD/mγ ' B(D)/mBrD(γ),

and we denote by S the simple k-algebra B(D)/mBrD(γ).
Let V̄ be the unique (up to a isomorphism) simple S-module. There is a unique

central primitive idempotent eγ ∈ Z(B(D)) such that eγBrγ(i) 6= 0 and the image of
eγ ∈ B(D) via the canonical map B(D) → S is actually the identity of S.

We will assume that S has Schur index 1, that is, k̂ := EndS(V̄ ) is a field. We have
that k̂ = Z(S), and S ' Endk̂(V̄ ) 'Mm(k̂), where m = dimk̂V̄ .

6.5.3. Let CB×(D) and NB×(D) be the centralizer in of D in B× and the normalizer of
D in B×, respectively. Then CB×(D) is a normal subgroup of NB×(D), and we denote

G := NB×(D)/CB×(D) and Ḡ := NB×(D)/DCB×(D).

Note that NB×(D) acts on BD and on B(D) as algebra automorphisms. Moreover, we
have the following maps that are compatible with the action of NB×(D):

CB×(D) ↪→ BD → B(D).
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In this setting we can construct the G-graded crossed product denoted B(D) ∗G.

6.5.4. It is clear that if a ∈ NB×(D) , then aia−1 remains a primitive idempotent in BD.
Let

NB×(D)γ :=
{
a ∈ NB×(D) | aγa−1 = γ

}
be the stabilizer of γ inNB×(D). Clearly, CB×(D) ⊆ NB×(D)γ, and letGγ := NB×(D)/CB×(D)

be the stabilizer of γ in G. The stabilizer of eγ in NB×(D) coincides with NB×(D)γ. We
also have that D ⊆ NB×(D)γ, and we denote

Ḡγ := NB×(D)γ/DCB×(D) and D̄ := D/Z(D) ' DCB×(D)/CB×(D).

Because the map D → B× is injective, we have that Z(D) = D∩CB×(D), so Ḡγ = Gγ/D̄.

6.5.5. Notice that all the homomorphisms of the diagram

BD
BrD //

��

B(D)

��
BD/mγ

// B(D)/mBr(γ) = S

areNB×(D)γ-algebra homomorphisms. Observe that eγB(D) is a CB×(D)-interiorNB×(D)-
acted k-algebra, so as in 6.4.2 we may construct the strongly Gγ-graded crossed product
R := eγB(D) ∗G, where R1 := eγB(D).

In addition, since k̂ is a perfect field and D is a p-group, there is a group homomor-
phism σ : D → S× such that for all u ∈ D and all s ∈ S we have us = σ(u)sσ(u)−1, hence
the D-algebra S is actually a interior D-algebra, Consequenty, S is a DCB×(D)-interior
NB×(D)γ-acted k̂-algebra, and again as in 6.4.2 we can construct the Ḡγ-graded crossed
product k-algebra R̄ := S ∗ Ḡγ.

We will assume that γ is G-invariant, that is, G = Gγ, because in general, passing
from G to Gγ is done by a Morita equivalence.

Remark 6.5.6. When we start with a block B of OG, then there exist the maps

OCG(D) ↪→ OG BrD−→ kCG(D),

and we have that eγB(D) = kCG(D)eγ .

6.5.7. The group Ḡ acts on k̂, so we have a group homomorphism

θ : Ḡ→ Gal(k̂/k).

Let K ≤ Ḡ the kernel of θ. By hypothesis, the extension OD → B is separable, hence
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ēγ ∈ TrḠ1 (k̂) and ēγ ∈ Z(S) = k̂. It follows that k̂ is a projective module over a group
algebra k̂K, so by Maschke’s theorem p - |K|.

The group NB×(D) also acts by conjugation on D, and CB×(D) acts trivially and we
have the group homomorphisms

G→ Aut(D) → Out(D), and Ḡ→ Out(D).

Notice that this implies that the group Ḡ (and hence G) is finite. The action of NB×(D)

on D and on k̂ induces the commutative diagram

1 // D̄ //

��

G //

��

Ḡ //

σ

wwp p p p p p p

��

1

1 // Int(k̂D) // Autk(k̂D) // Outk(k̂D) // 1,

By [20, Corollary 3.13], there exists a group homomorphism σ : Ḡ→ Autk(k̂D) that lifts
the homomorphism Ḡ→ Outk(k̂D).

6.5.8. Since we have assumed V̄ to be Ḡ-invariant, by Clifford theory we have the iso-
morphism of Ḡ-graded algebras

EndR̄(R̄⊗S V̄ )op ' k̂θβḠ,

where k̂θβḠ is a Ḡ-graded crossed product of k̂ and Ḡ determined by the 2-cocycle β :

Ḡ× Ḡ→ k̂× and the action θ : Ḡ→ Gal(k̂/k). In this case we have a Ḡ-graded Morita
equivalence between R̄ = S ∗ Ḡ and k̂θβḠ, and moreover the isomorphism R̄ ' S⊗k̂ (k̂θβḠ)

of G-graded algebras takes sḡ to s⊗k̂ g. By using the homomorphism σ : Ḡ→ Autk(k̂D),
we can construct the strongly Ḡ-graded crossed product (k̂D)σḠ, with 1̄-component k̂D.

In fact, (k̂D)σβḠ can be viewed as a strongly G-graded algebra with the 1-component
k̂Z(D), which means that we refine the grading by viewing k̂D as a D̄-graded algebra.
Let R′ := (k̂D)σβḠ, viewed as a G-graded algebra, with 1-component R′1 = k̂Z(D).

Theorem 6.5.9. There exists a G-graded Morita equivalence between R = eγB(D) ∗ G
and R′ = (k̂D)σβḠ.

6.6 G-graded OP -interior algebras

6.6.1. Let R be a G-graded O-algebra as in Section 2. The assumptions in this section
are as follows:

(1) R is a crossed product of A := R1 and G, hence we have the exact sequence

1 → A× → hU(R) → G→ 1.
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(2) A is a simple k-algebra, and denoting k̂ := Z(A), k̂ is a Galois extension of k, that
is, A has Schur index 1. Denote by V the unique (up to isomorphism) simple A-module.

(3) There exists a finite p-group P and a unital homomorphism ϕ : OP → such that

OPR and ROP are projective modules (hence free, so in particular, ϕ is injective).
(4) ϕ(P ) ∩ A× = {1}, hence we have the commutative diagram

P

��

ψ

{{v
v

v
v

v P

��
1 // A× // hU(R) // G // 1.

Assume that P is a normal subgroup of hU(R), hence also of G, and we denote Ḡ := G/P.

(5) Let Q ≤ P be a defect group of kA. We assume that regarded as a central simple
k̂ algebra, kA is a Dade Q-algebra.

6.6.2. Note that because k is perfect, there exists a unique group homomorphism ψ :

P → kA× such that detψ(u) = 1, and inducing the action of P on A. Obviously ψ

extends to an algebra homomorphism ψ : OP → A, hence we can view A as a interior
P -algebra. Then the map OQ → A splits as a bimodule map, and the Brauer quotient
A(Q) is not zero.

6.6.3. The group hU(R) acts on the simple algebra kA and on k̂ = Z(kA), and moreover,
P (kA)× acts trivially on k̂. So we have a group homomorphism

θ : Ḡ→ Gal(k̂/k),

and denote by K be the kernel of θ.

6.6.4. Consider the normalizers and centralizersNA×(Q), NhU(R)(Q), CA×(Q) and ChU(R)(Q).
Then there exists a group homomorphism CA×(Q) → A(Q)×, and moreover, this map,
and the Brauer homomorphism AQ → A(Q) are compatible with the conjugation action
of NhU(R)(Q) on these objects. Denote

G′ := NhU(R)(Q)/CA×(Q),

so G′ can be naturally regarded as a subgroup of G. We can now construct, as in 6.4.2,
the G′-graded crossed product R′ := A(Q) ∗G′, with 1-component A′ := A(Q).

Theorem 6.6.5. Assume that G′ = G. Then there is a G-graded Morita equivalence
over k between kR and R′.
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