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Tóth Attila

Department of Physics
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Introduction
Over the last few decades, since their first experimental realisation in 1960
[1], lasers became integrated in our daily life. Due to the coherency and
high monocromaticity of the light produced by lasers, they are used in
a wide array of applications. These applications are ranging from indus-
trial and commercial uses, such as material processing (cutting, welding,
drilling, engraving), storing and retrieving data from optical discs, bar-
code readers, laser printers, optical communications just to mention a few,
to military applications. Another area where laser technology is becoming
increasingly important is medicine.

Beside the implementation of the various applications, laser technology
continuously progressed. The achievable intensities became ever higher
and in parallel pulsed lasers appeared with shorter and shorter pulse du-
rations. A milestone in this development is the invention of the “chirped
pulse amplification” (CPA) in 1985, which managed to overcome the tech-
nical limitations of previous lasers designs, bringing an increase of about
six orders of magnitude for the achievable intensities. Accordingly, state
of the art laser facilities are capable of producing ultra-short laser pulses
with durations of the order of 10 fs, and intensities well above 1015W/cm2.
These conditions opened the door for the investigation of new, previously
unknown phenomena.

The dominant response of matter towards irradiation by an intense
external field is ionisation, which can occur via multi-photon ionisation
(MPI), tunnelling ionisation (TI) or over the barrier ionisation (OBI).
The fundamental difference of field induced ionisation compared to im-
pact ionisation with a charged particle is that the ejected electrons move
under the influence of the oscillating external radiation field. Accord-
ingly, these photoelectrons will have a quiver motion, and there is a good
chance that they return sufficiently close to their parent ions in order to
interact with them. These interactions can take various forms such as
excitation or further ionisation, but there are two scenarios which lead to
particularly interesting applications. In the first case, the returning elec-
tron recombines with the ion and consequently looses its excess energy by
the emission of a single, high-frequency photon. This process is known
as high harmonic generation (HHG). In the second scenario, instead of
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being reabsorbed, the redirected electron is scattered on the residual ion.
This way, the electron wave packet produced by the laser field can be
used to obtain information regarding the structure of the target atom
or molecule. This process is known as light-induced electron diffraction
(LIED)[2, 3, 4, 5, 6]. In case of the LIED, under certain circumstances
it is possible that beside the signal (diffracted) wave packet a reference
(unscattered) wave is also present. The interference of these two wave
packets leads to a radial fringe pattern in the momentum distribution of
the free electrons [7, 8, 9], which can be interpreted as the holographic
mapping (HM) of the target’s state.

The timescale of almost all phenomena occurring in the quantum world
is in the femtosecond regime or below. In order to investigate these fast
processes a high temporal resolution of the detection technique is de-
manded. This suitable time resolution became available with the devel-
opment of ultrashort laser pulses achieving pulse durations of a couple of
fs or even below. This way, it is possible to follow the movement of atoms
in molecules during chemical reactions [10], or the dynamics of bound
electrons in atoms and molecules [11, 12].

The subject of the present thesis is the investigation of atomic sys-
tems irradiated by intense two-cycle EUV laser pulses. Due to the char-
acteristics of the employed laser light, the corresponding field strength is
comparable to the Coulombic bond between the electron and the nuclei,
and a number of non-perturbative phenomena can take place. This makes
perturbation theory inappropriate for the correct description of the sys-
tems dynamics, which leaves the direct solution of the time-dependent
Schrödinger equation the only reliable approach.
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Interaction of matter with

external radiation fields
The second and third chapter of the present thesis are intended to serve
as a short introduction into the world of laser-matter interaction. The
discussion begins with a description of the fundamental concepts that
lead to laser operation. Than, the various techniques, such as Q-switching,
mode-locking, high harmonic generation, and chirped pulse amplification,
that are essential to generate ultrashort and high intensity radiation are
briefly described.

Next, a mathematical description of the laser fields is given. The
notion of gauge transformation is introduced, than the validity of the
classical description of the laser fields, and of the dipole approximation

employed in our calculations is justified. Afterwards, the Hamiltonian
formalism, necessary for the quantum mechanical description of the inter-
action of a charged particle with a radiation field is derived.

As the subject of the present thesis is the theoretical investigation of
the ionisation of atoms, the various mechanisms through which ionisation
can occur are presented. Depending on the parameters of the laser field,
these are single-photon ionisation, multi-photon and above threshold ion-
isation, tunnelling and over-the-barrier ionisation.

In order to study the above presented ionisation processes, one has to
solve the time dependent Schrödinger equation. An analytical solution
of this problem does not exist, therefore two alternatives emerge. The
obvious one is based on a direct numerical solution. The advantage of
these methods is that they provide exact results, although at the expense
of high computational resource demands. The second alternative is to
consider some kind of justifiable approximations. This limits the appli-
cability of the resulting method and reduces the accuracy of the results,
but on the upside requires much less numerical computations. The most
frequently used such approximate methods (perturbation theory, essential
state model, Floquet model, Keldysh-Reiss-Faisal model, Coulomb-Volkov
model and Ammosov-Delano-Krainov model) are presented briefly, con-
centrating mainly on their advantages and limitations. Than the attention
is turned to the ab-initio approach employed in the present work.
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Numerical solution of the time

dependent Schrödinger

equation
The time dependent Schrödinger (TDSE) equation is a partial differential
equation which contains the first order derivative in time and up to second
order spatial derivatives. In coordinate space, for a system of n-particles,
it can be written as

i
∂

∂t
Ψ(r, t) = Ĥ(t)Ψ(r, t), (1)

where r denotes the n-particle position vector. A numerical solution of
equations of this type have two key aspects, namely the numerical rep-
resentation of the Ψ(r, t) functions at a given time moment (spatial dis-
cretisation) and the propagation of these functions until the desired final
time moment. In the literature there are numerous methods to accom-
plish both of these goals, but here only those implemented in our numer-
ical code will be presented. The number n of particles considered in the
calculations increases drastically the computational requirements of the
problem, meaning that current day computational resources are capable
of treating exactly systems that consist of at most two electrons, i.e. the
helium atom. For this reason, in our investigations we restrict ourselves to
the interaction of a single electron with external radiation. This approach
is exact for the description of the hydrogen atom. For the other, more
complex atoms (noble gases) considered in our investigations, we employ
the single active electron approximation (SAE), where only the outermost
electron interacts with the laser field, while the others are included in the
calculations as a simple static shielding of the nucleus.

Spatial discretisation

The wave functions associated to quantum systems span an infinite di-
mensional vector space of square integrable functions called the Hilbert
space. In a numerical solution of the TDSE, due to the finite amount of
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memory available in computers, the exact wave function has to be repre-
sented by a finite set of discrete values. Accordingly, in the calculations
the continuous functions Ψ(r, t) are replaced by vectors of finite length
(N), while linear operators, such as the Hamiltonian or its constituents,
are represented by square (N ×N) matrices.

Even when only a single active electron is considered, the solution of
the TDSE is a three dimensional (spatial) problem which is computation-
ally demanding. However, considering the symmetry properties of the
system, the calculations at hand can be simplified.

Time depending close-coupling

Due to the spherical symmetry of the binding potentials considered in
our calculations, it is advantageous to recast the TDSE in spherical polar
coordinates ({r, θ, φ}). Accordingly, the wave function can be expanded
in the basis of spherical harmonics

Ψ(r, t) =
∞∑

l=0

l∑

m=−l

Rl,m(r, t)

r
Y m
l (θ, φ), (2)

which is the core idea of the widely used time dependent close-coupling
(TDCC) [13, 14] approach. Inserting this partial wave expansion into (1),
and taking the inner product of both sides with Y m∗

l (θ, φ) gives

i
∂

∂t

∞∑

l=0

l∑

m=−l

Rl,m(r, t)

r

∫

Y m′∗

l′ (θ, φ)Y m
l (θ, φ)dΩ =

=

∞∑

l=0

l∑

m=−l

(∫

Y m′∗

l′ (θ, φ)Ĥ(t)Y m
l (θ, φ)dΩ

)
Rl,m(r, t)

r
,

(3)

where dΩ = sin θdθdφ. This way the three-dimensional Schrödinger equa-
tion is reduced to an infinite set of coupled one-dimensional partial differ-
ential equations, which is much easier to handle than the original problem.
Of course, in practical calculations the infinite set is truncated at a certain
lmax value for which convergence is reached.

The
〈

Y m′

l′

∣
∣
∣Ĥ(t)

∣
∣
∣Y m

l

〉

matrix elements of the Hamiltonian can be eval-
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uated analytically, leading to the close-coupling equation

i
∂

∂t
Rl,m(r, t) =

[
l(l + 1)

2r2
−

1

2

∂2

∂r2
−

1

r

]

Rl,m(r, t)−

− qE(t)r

[√

(l −m+ 1)(l +m+ 1)

(2l+ 1)(2l + 3)
Rl−1,m(r, t)+

+

√

(l −m)(l +m)

(2l − 1)(2l+ 1)
Rl+1,m(r, t)

]

(4)

in the length gauge description of the laser-electron interaction, and

i
∂

∂t
Rl,m(r, t) =

[
l(l + 1)

2r2
−

1

2

∂2

∂r2
−

1

r

]

Rl,m(r, t)+

+ i
q

m
Az(t)

[√

(l −m)(l +m)

(2l − 1)(2l+ 1)

(
∂

∂r
−
l

r

)

Rl−1,m(r, t)−

−

√

(l −m+ 1)(l +m+ 1)

(2l + 1)(2l+ 3)

(
∂

∂r
+
l + 1

r

)

Rl+1,m(r, t)

]

.

(5)

in the velocity gauge formalism.

Discretisation of the radial wave function

In order to solve the above presented close-coupling equations, the Rl,m(r, t)
radial wave functions still need to be discretised. For this purpose we
employed the finite element discrete variable representation (FEDVR)
[15, 16, 17, 18]. This is based on the finite element (FE) method, which
implies the division of the configuration space into finite elements. In our
1D problem this means that the coordinate space is divided into segments
with variable lengths, delimited by a set of nodes

rmin = r1 < r2 < . . . < rN = rmax. (6)

In contrast with the spectral representation, the wave function is not
expanded in terms of global functions, but it is represented by a set of local

discrete variable representation (DVR) basis functions f
(i)
m (r) defined only

inside a given finite element (f
(i)
m (r) = 0 ∀m if r /∈ [r(i), r(i+1)]), which
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Figure 1: FE grid

define a local grid (see figure 1). The continuity of the wave function
is ensured by placing the starting and ending point of the neighbouring
local subgrids such a way that they overlap, which implies the use of a
Gauss-Lobbato integration quadrature rule. Finally, the wave functions
can be written as

Ψ(r) =

N∑

i=1

Mi∑

j=1

w
(i)
j Ψ(r

(i)
j )f

(i)
j (r). (7)

This approach brings together the advantages of both the FE and the
DVR methods. That is, the flexibility provided by the FE method can be
exploited to accurately represent the Coulomb singularity at the nucleus,
by choosing sufficiently small finite elements in the vicinity of the core (it
implies a denser grid). This has another advantage. Since most of the
important dynamics, i. e. population transfer between bound states and
bound-free transitions, takes place in that region, it is important to have
a good resolution for the wave function. In contrast, free states (which
span regions far from the nucleus) can reasonably well be described with
fewer gridpoints, i.e. larger finite elements. The advantage of the DVR
method is that similarly to the usual spectral representation techniques,
it provides high accuracy for the calculation of derivatives. Moreover, in
the FEDVR method, due to the local nature of the basis functions, the

kinetic energy matrix elements Dmn =
〈

f
(i)
m (r)

∣
∣
∣
∂2

∂r2

∣
∣
∣ f

(j)
n (r)

〉

are differ-

ent from zero only if the two basis functions involved are defined in the
same finite element (i = j). Consequently, the kinetic energy matrix is
composed of several small blocks which overlap at only one point. Also,
with a good approximation, the potential energy operator’s matrix repre-
sentation is diagonal. This sparse structure of the Hamiltonian’s matrix
representation can be exploited to reduce the computational cost of the
solution of the TDSE.

7
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Time propagation

The solution of differential equations of type (1) is known in mathematics
as an initial value problem. This means that at some arbitrary (initial)
time moment t0 the wave function Ψ(r, t ≡ t0) is known, therefore the
solution of the equation is equivalent with the determination of the time
evolution of this initial state. The wave function at an arbitrary time
moment can be expressed with the help of the so called evolution operator

Ψ(r, t) = Û(t, t0)Ψ(r, t0). (8)

This evolution operator can be expressed as

Û(t+∆t, t) = T exp

(

−i

∫ t+∆t

t

Ĥ(t′)dt′

)

, (9)

where T denotes the time-ordering operator, which must be present due
to the non-commutivity of the Hamiltonian at different time moments
([

Ĥ(t1), Ĥ(t2)
]

6= 0
)

. The direct evaluation of the above equation is

inconvenient, therefore in all practical cases the time interval over which
the TDSE needs to be solved is divided into subintervals over which the
Hamiltonian does not change appreciably. Consequently, the evolution
operator corresponding to the individual subintervals reduces to

Û(t+∆t, t) ≃ exp
(

−iĤ(t)∆t
)

. (10)

With this result the TDSE can be solved by successive application of the
appropriate evolution operators on the initial wave function

Ψ(r, t0+n∆t) = exp
[

−iĤ(t0 + (n− 1)∆t)∆t
]

× . . .

× exp
[

−iĤ(t0 +∆t)∆t
]

exp
[

−iĤ(t0)∆t
]

Ψ(r, t0). (11)

In order to evaluate the right hand side of equation (11), one has to know
how to apply the exponential of an operator on a wave function. Such an
exponential can be expanded in Taylor series as

exp
(

−iĤ(t)∆t
)

=

∞∑

n=0

1

n!

(

−iĤ(t)∆t
)n

, (12)
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therefore the action of the exponential on the wave function can be easily
evaluated since the power of an operator is nothing else than

(

−iĤ(t)∆t
)n

Ψ(r, t) =
(

−iĤ(t)∆t
)

× . . .×
(

−iĤ(t)∆t
)

︸ ︷︷ ︸

n times

Ψ(r, t). (13)

This propagation scheme is known as the Taylor propagator.
There is another, more direct way to evaluate the right hand side of

equation (11). This is done by the explicit evaluation of the

exp
(

−iĤ(t)∆t
)

matrix exponential, which leads to the

exp
(

−iĤ(t)∆t
)

Ψ(r, t) =
[
Φ−1diag

(
e−iE1∆t, e−iE2∆t, . . .

)
Φ
]
Ψ(r, t) (14)

propagation scheme, where Φ represents a column matrix built from
the Φk eigenvectors of the instantaneous Hamiltonian operator, while
diag

(
e−iE1∆t, e−iE2∆t, . . .

)
is the diagonal matrix of the exponential of

its eigenenergies.
Employing this approach is too demanding from a computational point

of view, since it requires the diagonalisation of a large matrix at each
timestep. For this reason we implemented the Lanczos method, which
is the state-of-the-art approach used by leading groups working on the
theoretical investigation of laser-matter interaction. The first step of the
method is to generate the Krylov subspaceKn+1 of order n+1 by repeated
action of the Hamiltonian on the initial state | Ψ0 〉 = Ψ(r, t) as

Kn+1 =
{

|Ψ0〉, Ĥ|Ψ0〉, Ĥ
2|Ψ0〉, . . . , Ĥ

n|Ψ0〉
}

= {|Ψ0〉, |Ψ1〉, |Ψ2〉, . . . , |Ψn〉} . (15)

Afterwards, the Gram-Schmidth procedure is used to obtain an orthonor-
mal set of vectors that span Kn+1

Qn+1 = {|q0〉, |q1〉, |q2〉, . . . , |qn〉} . (16)

Now, it is possible to transform the Hamiltonian into an (n+ 1)× (n+ 1)
matrix ĥ in the Qn+1 basis

Ĥ ≃ ĤQ = QĥQ†, (17)

9



where Q is a column matrix made from the qk vectors. Accordingly, the
evolution operator can be approximated as

Û(t+∆t, t) ≃ ÛQ(t+∆t, t) = exp
(

−iĤQ∆t
)

= Q exp
(

−iĥ∆t
)

Q†

= Q
[
Φ†diag

(
e−iǫ1∆t, . . . , e−iǫn+1∆t

)
Φ
]
Q†.
(18)

This last equality shows that the Lanczos algorithm is appealing because
−iĥ∆t can be inexpensively exponentiated according to equation (14),
since n ≪ N , where N is the dimension of the discretised Hamiltonian.
The time stepping can be simplified using the associativity property of
matrix-matrix multiplications

Ψ(r, t+∆t) = ÛQ(t+∆t, t)Ψ(r, t)

= Q
{
Φ†diag

(
e−iǫ1∆t, . . . , e−iǫn+1∆t

) [
Φ
[
Q†q0

]]}
, (19)

and due to the orthonormality of the q vectors this equation can be re-
duced to

Ψ(r, t+∆t) = Q
[
Φ†diag

(
e−iǫ1∆t, . . . , e−iǫn+1∆t

)
Φ1

]

=

n∑

k=0

ak|qk〉, (20)

where Φk is the kth column of the Φ matrix formed from the eigenvectors
of ĥ, and the expansion coefficients are given by

ak = Φk+1diag
(
e−iǫ1∆t, . . . , e−iǫn+1∆t

)
Φ1

=

n+1∑

j=1

Φk+1(j)e
−iǫj∆tΦ1(j). (21)

Calculation of observable quantities

The most complete information that can be acquired from an ionisation
process is the fully differential momentum distribution of the ejected elec-
tron. We calculate this quantity by projecting the wave function onto the
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ψk(r) continuum functions, which leads to

dP

dk
= |〈ψk(r) | Ψ(r, t)〉|

2

=

∣
∣
∣
∣
∣

∞∑

l=0

l∑

m=−l

1

k
i−leiσlY m

l (k̂)

∫ ∞

0

φk,l(r)Rl,m(r, t)dr

∣
∣
∣
∣
∣

2

. (22)

For a purely Coulombic potential (ionisation of the hydrogen atom) these
continuum functions can be obtained analytically (regular Coulomb func-
tions). In case of our calculations employing the single active electron
approximation (SAE) for the description of more complex systems, the
continuum functions are obtained by the numerical solution of the appro-
priate time independent Schrödinger equation with the Numerov method.
The obtained fully differential momentum distribution is used to calculate
other relevant quantities such as the photoelectron spectrum (integrating
over k̂), the angular distribution of the ejected electrons (integrating over
|k|) and the total ionisation probability (integrating over k).

Before starting to use the newly built numerical code, its reliability
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Figure 2: Energy spectrum of the
ejected electrons: + calculations per-
formed by Duchateau et. al ; TDSE-
analytic Coulomb − spectrum obtained
by projecting the wave function onto an-
alytically obtained Coulomb functions;
TDSE-Numerov − spectrum obtained
by projecting the wave function onto
numerically obtained continuum func-
tions.

had to be tested. For this rea-
son we performed extensive con-
vergence test, i.e. studied how the
change of the numerical parame-
ters affects the quality of the out-
put. These parameters are mainly
determined by the parameters of
the considered laser pulse, and are
the following: the size of the sim-
ulation box, the density of the nu-
merical grid, and the size of the
timestep used in the propagation.
We found that for appropriately
chosen parameters, our results are
only limited by machine precision.
In order to further validate our im-
plementation, we compared our re-
sults with that obtained from an

independently written code [19]. As it can be seen on figure 2 an excel-
lent agreement was obtained.
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Ionisation of atoms by

few-cycle laser pulses
The aim of the present work is to investigate the various structures that
appear in the fully differential momentum distribution of the photoelec-
trons, and to determine their origin. In order to achieve this, we employ
ultra-short, two-cycle laser pulses described by

E(t) =

{
ǫ̂E0 sin

2
(
πt
τ

)
sin(ωt+ ϕ0), 0 ≤ t ≤ τ

0, otherwise
, (23)

which is a plane wave modulated by a a sine-square envelope function.
We set the carrier-envelope phase to be

ϕ0 = −
ωτ

2
−
π

2
(24)

in order to describe a time symmetric laser pulse (the maximum of the car-
rier wave coincides with the maximum of the envelope function).
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Figure 3: Temporal profile of the two-
cycle laser pulse used in our calcula-
tions, where T = 2π/ω is the period of
the carrier wave.

The temporal profile of the electric
component of such a pulse is pre-
sented on figure 3. We used lin-
early polarised laser pulses along
the z direction, and we set the car-
rier frequency to be ω = 0.4445
a.u., which corresponds to a wave-
length of λ = 102 nm (Ultravio-
let range), and the strength of the
field to E0 = 1 a.u., which cor-
responds to an intensity of I =
3.51 × 1016W/cm2. During the
numerical solution of the TDSE
(time propagation) we have access

at all times to the time dependent wave function. In order to identify
the processes that occur during the interaction of the target atom with
the laser field, we used these wave functions to calculate various physical
quantities. In figure 4 snapshots on the time evolution of the momentum
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distribution of the free electrons is presented as a function of momentum
components parallel (kpar) and perpendicular (kper) to the laser polarisa-
tion. Above each momentum distribution, the laser pulse is plotted with
a verical line indicating the time moment when the snapshot was taken.

At the beginning of the laser pulse (t < 5 a.u.), the continuum elec-
trons show a dipole-like momentum distribution (see figure 4a)) indicat-
ing single-photon ionisation. Taking a look at figure 5, where the total
ionisation probability is plotted as a function of time, we can conclude
that the overall contribution of this process is negligible. Progressing fur-
ther in time, the strength of the laser field undergoes a fast increase,

Figure 4: Momentum distribution of the continuum electrons as a function
of parallel and perpendicular momentum components at different time
moments indicated by the vertical lines on the laser pulse.
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which results in a sudden increase of the total ionisation probability
between t ≈ 5 and 10 a.u.. The corresponding momentum distribu-
tions show that the photoelectrons are mainly emitted in the direction
of the laser field polarisation, and they exhibit a strong forward-backward
asymmetry (see figure 4 b)-c)). This indicates that the dominant ion-
isation process is tunnelling and over-the-barrier ionisation. We calcu-
lated the value of the critical field’s strength at which OBI appears.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

Io
ni

sa
tio

n 
pr

ob
ab

ili
ty

Time [a.u.]

10-9

10-6

10-3

100

0 5 10

Figure 5: Total ionisation probability
as a function of time. The inset present:
the laser pulse (upper left); zoom of to-
tal ionisation probability on a logarith-
mic scale. On both insets the vertical
red lines represent the time moments
when the condition for OBI is fulfilled.

The moment when the laser field
reaches this value is indicated by
vertical lines on the insets of figure
5, where, for a closer inspection,
the total ionisation probability is
plotted on a logarithmic scale. It
can be seen, that the rapid ioni-
sation of the target occurs in the
time interval when the E > Ecrit

condition is fulfilled, which consol-
idates that the undergoing ionisa-
tion process is OBI. The resulting
electronic wave packet is moving
under the combined action of the
electric fields generated by the par-
ent ion and the laser pulse. Ini-
tially, under the action of the laser
field, it departs from the vicinity of

the parent ion (figure 4 c)). Next, when the direction of the field changes,
it is driven back to the core, and a characteristic radial pattern appears
in the momentum distribution (figure 4 d)). This can be attributed to
the scattering of the wave packet by the parent ion. Later on, concentric
rings of maxima and minima appear in the ionisation probability density
(see figure 4 e)). This pattern can be attributed to a temporal interfer-
ence, i.e. coherent superposition of wave packets liberated from the atom
at different time moments by the laser pulse. By now, all the dominant
features are present in the momentum distribution. The remaining minor
changes are due to the further quiver motion of the electrons and due to
the electron recapture at the end (t > 21 a.u.) of the laser pulse (figure 4
f)).
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Temporal interference

As pointed out in the previous section, the concentric circles of maxima
and minima in figure 4 e) may be explained as the result of the interference
between the electronic wave packets emitted at different parts of the laser
pulse, i.e. at different time moments. This process can be interpreted as
a double- (multi-) slit interference in time domain [20], and it was studied
in detail by several groups both theoretically [9, 21, 22, 23] and exper-
imentally [20, 24]. A more detailed quantitative analysis of the process
can be performed employing the strong field approximation (SFA). In this
picture, the effect of the core’s Coulomb potential on the free electrons
is neglected. The first wave packet is emitted at time moment t1 with
momentum k1(t1), while the second at time t2 with k2(t2), and they are
added coherently in the continuum if the

k1(t2) = k2(t2) (25)

condition is fulfilled. In the framework of the SFA the phase difference
between the two wave packets can be calculated, and the temporal inter-
ference pattern is given by

I(k, t1, t2) ∼
∣
∣
∣1 + ei∆φ(k,t1,t2)

∣
∣
∣ . (26)

Figure 6: SFA interference rings (white circles) on top of the TDCC ioni-
sation probability density expressed as a function of parallel and perpendic-
ular momentum components. On the right figure, the “up arrows” indicate
the {15.25, 18.59}, while the “down arrows” indicate the {17.00, 20.26} pair of
{t1, t2} values.
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By fitting the SFA interference pattern of equation (25) to the one ob-
tained during the exact TDCC calculations (figure 4 e)), we were able to
calculate the t1 and t2 emission times for the interfering electron wave
packets. We have found two pairs of {t1, t2} values (see figure 6 right
part). In the left part of figure 6 one can observe the SFA extrema rings
(indicated by white circles), which are in good agreement with the TDCC
calculations.

Spatial interference

Now, let us turn our attention to the other, more prominent structure
of the momentum distribution of the free electrons by first reviewing the
undergoing processes. According to the three step model, when an atom
or molecule is illuminated with a sufficiently intense laser radiation, free
electronic wave packets are emitted via tunnelling or over-the-barrier ion-
isation. Under the action of the external field they are first accelerated
away from the core, then, as the field changes its direction, they are turned
back. The returning wave packets with low transverse momenta arrive in
the near vicinity of the target ion and interact with it. This interaction
can lead to different processes such as reabsorption or scattering of the
wave packet. When recombination occurs, the excess energy of the elec-
trons, gained from the field, is released in a burst of high-energy photons.
This process is known as high harmonic generation.

Alternatively, the returning wave packet may scatter on the core.
Since these laser-induced electronic waves are fully coherent, in the angle-
resolved photoelectron spectra, this scattering manifests in the form of a
diffraction pattern. Moreover, as the returning wave packet travels in the
field of the parent ion, it encodes spatial information of this field, which
can be retrieved from the resulting diffraction pattern. This self-imaging
process is known as laser-induced electron diffraction (LIED) [2, 3, 4, 5].

Recent papers [7, 8, 9] have suggested that the radial fringe struc-
ture present in the momentum distribution of the free electrons originate
from an alternative process to LIED. In this scenario, scattering on the
parent ion still has a central role, but the crucial aspect is the differ-
ence of the final phases accumulated by electronic wave packets emitted
during the same quarter-cycle of the driving laser pulse which follow dif-
ferent paths. In [7] it was pointed out, that under suitable conditions,
only one of the above mentioned paths involves collision with the ion,
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while the wave packet with larger transverse momenta which follows the
other path is propagating without being affected by the core potential.

Core

Electron

k k

Scattered Path

Direct Path

z
0

Figure 7: The direct and scattered electron
trajectories in the two-path model.

Since the laser-induced free
electronic waves are fully
coherent, the concept of
holography can be em-
ployed to interpret the in-
terference structure in the
momentum distribution as
the holographic mapping
(HM) of the target atom’s
or molecule’s state. Since
the position and shape of
these interference extrema
are strongly influenced by
the short range potential
describing the structure of

the target, the HM is a potentially powerful tool to investigate the dy-
namic structure of atoms and molecules.

In their publication [7], Huismans et. al proposed a simple, intuitive
model to grasp the essence of the HM. In their model electronic wave
packets are formed via tunnelling ionisation at a z0 distance from the
core, and may follow either a direct or a scattered path, as represented
schematically on figure 7. If the core is considered as an uniform point
scatterer, the phase difference accumulated by the electrons associated
with the two possible trajectories can be calculated analytically as

∆φ = (k − kz)z0, (27)

where k is the final momentum, kz is the momentum component in the
z direction, while z0 is the distance to the point scatterer. With this
expression, the spatial interference pattern can be given as

I(k) ∼
∣
∣
∣1 + ei(k−kz)z0

∣
∣
∣ . (28)

Key to the HM is the existence of a distinct signal and reference wave,
which is realised if the free electrons appear at a large z0 distance from
the core via tunnelling ionisation. As we have seen, in case of the laser
parameters employed in our calculations the free wave packets are formed
by OBI, which means that they appear in the immediate vicinity of the
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Figure 8: Ionisation probability densities as a function of parallel and
perpendicular momentum components obtained in the framework of the
CTMC and TDCC models.

core. However, under the action of the field they depart to a certain
distance from the parent ion before they are redirected. Consequently,
the two path model is applicable for our investigations.
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Figure 9: The distribution of rmin

values for (a) all CTMC trajecto-
ries, and (b) CTMC trajectories with
0.5 < kper < 0.7 and 0.7 < kpar <
0.9. The distributions were nor-
malised to 1.

In order to test the validity
of the basic assumptions of the
model, i.e. the existence of the
two distinct electron paths, our ex-
ternal collaborator Károly Tőkési
performed classical stochastic cal-
culations in the framework of the
classical trajectory Monte Carlo
(CTMC) method [25]. With the
exception of the interference ef-
fects, which are of quantum origin,
a good overall agreement can be
observed between the TDCC and
CTMC momentum distributions
(see figure 8). The general agree-
ment allowed us to perform de-
tailed analysis of the CTMC elec-
tron trajectories. From the trajec-
tories provided by the CTMC cal-
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culation we selected those which contribute to the formation of the HM
pattern, namely those where the electron is ionised at the very beginning
of the laser pulse and then are redirected towards the parent ion by the
laser field. For each of these trajectories, we have calculated the minimal
distance rmin between the core and the electron in the return phase. If
all selected trajectories are considered, the obtained distribution of rmin

values is broad (see figure 9(a)), without any characteristic feature. How-
ever, if we consider only those CTMC trajectories where the asymptotic
momentum is fixed (these are the ones that interfere with each other), the
distribution completely changes. We will have two well separated groups
of trajectories (see figure 9(b)): those with small rmin considered to be
scattered, and those with large rmin considered to be direct. Hence, these
findings confirm the assumption of the two-path model.

Influence of the laser pulse parameters

The main prediction of the two-path model is that the density of the HM
interference fringes is determined by the value of z0, i.e. how far the liber-
ated electronic wave packet departs from the parent ion before recollision.
According to equation 27, with increasing z0 the HM interference pattern
becomes denser. The value of z0 depends mainly on the value of the aver-
age velocity of the of the electronic wave packet, and on how much time
the wave packet has to depart from the parent ion before it is returned.
By varying the parameters of the laser pulse we are able to control both
the velocity and the return time of the wave packets, thus influence z0
indirectly.

First, we have fixed the laser field frequency at ω = 0.4445 a.u. and
decreased the field strength gradually from E0 = 1 a.u. down to E0 = 0.1
a.u.. By doing so, we have decreased the average velocity of the wave
packets, and implicitly z0. Furthermore, we have fixed the velocity of the
electronic wave packets by fixing the ∆k ∼ E0T momentum transfer from
a half-cycle of the laser field to the electron, and by increasing the period
of the laser pulse we have increased the time interval available for the wave
packet to propagate away from the core. This inherently increases the z0
distance reached by the wave packet before its return. The behaviour of
the HM pattern obtained for the various field parameters was in good
qualitative agreement with the predictions of the two-path model, that is,
by increasing the z0 distance the density of the HM pattern also increases.

For the complete characterisation of ultra-short laser pulses contain-
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Figure 10: Ionisation probability densities as a function of parallel and perpen-
dicular momentum components at different field parameters. Upper row: fixed
ω =0.4445 a.u., τ = 28.27 a.u.; (a) E0=0.75 a.u.; (b) E0=0.5 a.u.; (c) E0=0.25
a.u.; Lower row: the momentum transfer to the electron over one half cycle is
kept constant ∆k ≃ E0T/2 = 7.06 a.u.; (d) ω = 0.66675 a.u, τ = 18.84 a.u.,
E0 = 1.5 a.u.; (e) ω = 0.4445 a.u, τ = 28.27 a.u., E0 = 1 a.u.; (f) ω = 0.22225
a.u, τ = 56.51 a.u., E0 = 0.5 a.u..

ing only a few oscillations of the field, one also has to know the carrier-
envelope phase (CEP). In order to investigate the dependence of the HM
interference pattern on the CEP, we have performed calculations for the
ionisation of the H atom by two-cycle laser pulses with carrier frequency
ω = 0.4445 a.u. for several CEP values ϕ0 ∈ {0◦, 30◦, 60◦, 90◦, 120◦, 150◦}.
The obtained momentum distributions of the continuum electrons for
E0 = 1 a.u are presented on figures 11. It can be observed that the
shape of the field is highly sensitive to the CEP, and as a result, the en-
tire dynamics of the system is changed when different CEP values are
considered. We found that in order to obtain a clear HM interference
pattern it is desirable that only one scattering to take place, which is the
case for laser pulses with large asymmetry of the neighbouring pulse peak
strengths predominantly in the 60◦ ≤ ϕ0 ≤ 90◦ CEP region.

We continued to study the HM on the hydrogen atom by employing
a simple pump-probe setup (see figure 12), which grasps the essence of
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Figure 11: Momentum distribution of the continuum electrons as a function
of parallel and perpendicular momentum components at the end of a two-cycle
pulse with ω = 0.4445 a.u. and E0 = 1 a.u. for the following CEP values:
a) ϕ0 = 0◦, b) ϕ0 = 30◦, c) ϕ0 = 60◦, d) ϕ0 = 90◦, e) ϕ0 = 120◦, f) ϕ0 =
150◦. On the right side of each momentum distribution the temporal profile of
the corresponding field E(t)/E0, and the total ionisation probability (P (t)) is
plotted as a function of time.

the involved process. In this setup a continuum electronic wave packet is
formed by the ionisation of the target with a half-cycle electric

E
(t

)

Time

delay

pump
probe

Figure 12: Shape of the electric
pulses used in our pump-probe setup.

pulse (i.e. the pump pulse.). Us-
ing a second half-cycle pulse (i.e.
the probe pulse), the previously
formed wave packet is redirected
toward the parent ion, where it
scatters, leading to the formation
of the characteristic interference
pattern in the momentum distri-
bution of the free electrons. The
average distance z0 reached by the
free electronic wave packet, before
it is turned back by the probe
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pulse, was directly controlled by the delay between the pump and the
probe pulse. Larger delay meant that the electrons had more time to
propagate away from the core, and consequently they reached a larger z0
distance. We found that in accordance with our previous conclusions, and
with the predictions of the two-path model, with the increase of z0 the den-
sity of the HM interference extrema also increased. Next, we investigated
the influence of the final average velocity vz of the continuum electrons
on the HM pattern. This parameter was controlled by the strength of the
probe pulse. We concluded that vz only influences the shape and position
of the interference extrema, but it does not change their number.

Influence of the core potential - Ionisation of noble

gases

The importance of the HM is that it provides spatial and temporal infor-
mation about the investigated target. As the returning wave packet inci-
dent on the target travels in the potential of the residual ion, structural
information of this ion is encoded in the scattered electrons wave function,
with the obvious condition that they are sufficiently energetic (the cor-
responding de Broglie wavelengths have to be comparable to the length
scales over which the shape of the investigate structures change). This
means that the obtained HM pattern can be considered as a snapshot of
the target taken at the moment of recollision. In real atoms and molecules,
after the creation of a free wave packet, i.e. ejection of an electron from a
bound state to the continuum, the residual electron cloud readjusts to the
new configuration. For molecules this materialises in the variation of bond
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Figure 13: SAE model potentials of
different noble gas atoms

lengths. According to [6], tempo-
ral information about the evolu-
tion of the ion’s structure can be
obtained by “taking snapshots” at
different time instants. This can
be easily achieved by employing
laser pulses with a number of dif-
ferent wavelengths.

In order to investigate the be-
haviour of the HM pattern toward
changing the target atom, we per-
formed calculations for different

noble gases in the framework of the single active electron approximation.
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In this picture only the outermost electron is treated explicitly, while the
rest (if any) of them are only providing a static shielding of the nucleus.
This way, the active electron is initially bound in a model atom described
by a pseudo potential given by

V (r) = −
Zc + a1e

−a2r + a3re
−a4r + a5e

−a6r

r
, (29)

where the parameters were optimised to provide ionisation potentials in
good agreement with the experimentally obtained values. The resulting

Figure 14: Momentum distribution of the continuum electrons as a function
of parallel and perpendicular momentum components for different target atoms
as indicated on the figures. Laser pulse parameters: E0 = 1.00 a.u., ω = 0.4445
a.u., ϕ0 = 90◦.

23

Chapter6/fig/noble_gases/noble_gases_md_E0_1.eps


model potentials are plotted on figure 13, where it can be observed that
they differ considerably only in the near vicinity of the core.

It is clear that in this SAE formalism the residual ions do not suffer any
structural changes, the scattered electrons simply map the bare Coulomb
potential in case of H, and the static SAE potentials for the other noble
gases. In figure 14 the momentum distributions of the free electrons at
the end of a laser pulse with ω0 = 0.4445 a.u, ϕ0 = 90◦ and E0 = 1
a.u. are presented for the different target atoms. It can be observed that
the potential experienced by them clearly has a large influence on the
resulting HM patterns. Looking at figure 15, where the total ionisation
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Figure 15: a) total ionisation probabil-
ities as a function of time ; b) expecta-
tion value of the z coordinate as a func-
tion of time for the different noble gas
targets.

probabilities and the expectation
values of the z coordinate are plot-
ted as a function of time for the
considered target atoms, one can
see that the Ar atom behaves sim-
ilarly to the H while the behaviour
of the He is similar to that of the
Ne. The prominent difference be-
tween the two groups is the exis-
tence of a secondary interference
structure in the low momentum re-
gion of the velocity maps. The
precise examination of the wave
packet dynamics leading to the for-
mation of this secondary interfer-
ence pattern will be the subject
of further research. Nevertheless,
what we can say is that under the
action of the third peak of the laser

pulse the low momentum components of the free wave packet, which did
not depart too far from the core are driven back to its near vicinity. In
case of the H and Ar atoms, this part of the free wave packet is recaptured
(see the decrease in the total ionisation probability), while in case of He
and Ne it is rescattered leading to the secondary HM pattern.

As we have seen, the studied atoms can be divided in two groups
according to the dynamics of the liberated electronic wave packets. Nev-
ertheless, the momentum distributions obtained for the atoms in the same
group are different: the HM pattern obtained for Ar and Ne is denser than
the one obtained for H and He, respectively. This can be explained by
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the following reasoning. When a free electron is moving toward its parent
ion, it is accelerated by the potential of the ion. Analogously, after it is
scattered and departs from the core, it is decelerated to its initial veloc-
ity. Now, looking at figure 13, we can see that the short range part of
the Ar and Ne atom’s potentials are “deeper” than that of the H and He,
respectively. As a result the free electrons that scatter off the Ar (Ne) ion
undergo a larger velocity change than the ones that move in the field of
the N (He) atom. Consequently, they accumulate a greater phase differ-
ence compared to the reference electrons, which follow paths that do not
involve collision with the target. This larger phase difference ultimately
leads to a denser HM interference pattern.
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Conclusions
In the present thesis we have investigated theoretically the interaction
of atoms with ultrashort and intense linearly polarised laser pulses. To
this end, we employed numerical methods for the direct solution of the
time dependent Schrödinger equation. Most of the work was invested
in the development of a new numerical code which is able to treat any
problem that arises when a single active electron initially bound in a
spherically symmetric static potential interacts with a linearly polarised
laser field. This was achieved in the framework of the TDCC method
by the discretisation of the TDSE on a FEDVR numerical grid and by
propagation of the time dependent wave function of the active electron
using the Lanczos algorithm.

After we have established that our numerical program is working cor-
rectly by performing various convergence checks, and comparing the pro-
duced results with theoretical data obtained by other groups, we started
to investigate the interaction between the hydrogen atom and intense
two-cycle EUV laser pulses. First, we identified the processes that occur
during the action of the laser pulse. We found that most of the electrons
are liberated by OBI, when the instantaneous intensity of the field in-
creases above a critical value. After ionisation, secondary processes may
occur, which leave their imprint on the final momentum distribution. We
identified two such secondary process. The first one is a temporal interfer-
ence between electronic wave packets emitted at different time moments,
while the second one is a spatial interference between wave packets that
are born in the same time instance but follow different paths. This spa-
tial interference pattern can be considered as the holographic image of
the target atom, meaning that beside the dynamics of the free electron,
structural and temporal information about the target is also encoded in
the momentum distribution. By performing TDCC calculations, we in-
vestigated the behaviour of the HM pattern as a function of the pulse pa-
rameters. We found that the dynamics of the free electronic wave packets
is greatly influence by the CEP. The clearest HM pattern was observed
when the free wave packet scatters strongly only once on the core, which
is the case in the 60◦ ≤ ϕ0 ≤ 90◦ CEP range. For this reason, in all
our other calculations we used laser pulses characterised by ϕ0 = 90◦.
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By modifying consecutively the intensity of the field and the wavelength
of the carrier wave, in agreement with the simple two-path model of [7],
we concluded that the shape of the HM pattern is mainly determined by
the z0 parameter, which measures how far the free wave packet departs
from the parent ion before it is driven back by the laser field. This result
was also validated by a different set of calculations, where instead of the
two-cycle laser field we employed two separate half-cycle electric pulses in
a pump-probe setup, which allowed us to easily modify z0 as well as the
average velocity of the returning wave packet. Finally, in order to test
the sensitivity of the HM pattern toward the potential experienced by the
scattered electrons, which is the essential aspect of this technique as long
as applications are concerned, we performed TDCC calculations for the
He, Ne and Ar atoms in the framework of the SAE approximation. We
found that the ionisation potential is an important factor in the determi-
nation of the undergoing processes. Accordingly, the studied atoms can
be classified in two groups displaying similar dynamics, with the H and
the Ar forming one, while the He and Ne the other. More importantly,
the influence of the target atom’s static potential on the HM pattern was
confirmed.
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