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Introduction

The application of �xed point theory is very important in many �elds as mathematics,
statistics, chemistry biology, computer science, engineering and economics in dealing with
problems arising in approximation theory, potential theory, game theory, mathematical
economics, theory of di¤erential equations, theory of integral equations, theory of matrix
equatins etc. (see K. C. Border [20], A. Cataldo, E. A. Lee, X. Liu, E. D. Matsikoudis,
H. Zheng [24], Y. Guo [52], A. Hyvärinen [59], A. Noumsi, S. Derrien, P. Quinton [89],
A. Yantir and S. Gulsan Topal [161]). Fixed point theorems are useful in order to prove
the existence of various types of Nash equilibria (see K. C. Border [20]) in economics,
for proving the existence of weak periodic solutions for a model describing the electrical
heating of a conductor taking into account the Joule-Thomson e¤ect (see M. Badii [12]).

The classical Banach contraction principle is remarkable in its simplicity and it is
perhaps the most widely applied �xed point theorem in all of analysis. This is because
the contractive condition on the operator is easy to test and it requires only the structure
of a complete metric space for its setting (see S. Banach [11]). Several mathematicians
have been dedicated to the improvement and generalization of this principle (see A. M.
Ostrowski [96], M. A. Krasnoselskii, P. P. Zabreiko [74], J. Jachymski [61], E. Rakotch
[117], D. W. Boyd and J. S. W. Wong [21], J. Matkowski [81], F. E. Browder [22], A.
Meir and E. Keeler [82], M. Geraghty [47], J. Jachymski [62], A. D. Arvanitakis [8], C.
Mongkolkeha, W. Sintunavarat, P. Kumam [84], W. Sintunavarat, P. Kumam [144], W.
Sintunavarat, P. Kumam [143]). The classical Banach contraction principle is a very useful
tool in nonlinear analysis with many applications to operatorial equations, fractal theory,
optimization theory and other topics.

A. C. M. Ran and M. C. B. Reurings in [118] investigated the existence of �xed points
of nonlinear contraction operators in metric spaces endowed with a partial ordering and
presented some applications to matrix equations. Since then, several authors have studied
the problem of the existence and uniqueness of a �xed point for contraction type operators
on partially ordered sets (see R. P. Agarwal, M. A. El-Gebeily and D. O�Regan [4], L. Ćiríc,
M. Cakíc, J. S. Rajovíc and J. S. Ume [34], H. K. Nashine, B. Samet, C. Vetro [86], J. J.
Nieto and R. R. López [87], J. J. Nieto and R. R. López [88], Y. J. Cho, R. Saadati and
S. Wang [26], E. Graily, S. M. Vaezpour, R. Saadati, Y. J. Cho [50], W. Sintunavarat, Y.
J. Cho and P. Kumam [145]).

The existence of �xed points for various multivalued contractive mappings has been
studied by many authors under di¤erent conditions, see N. L. Ćiríc [32], [33], N. Mizoguchi,
W. Takahashi [83], B. E. Rhoades [125]. In 1969, S. B. Nadler [85] extended the Banach
contraction principle from singlevalued to multivalued mapping.

Nadler�s Theorem has been modi�ed and generalized by many authors in metric �xed
point theory. These generalizations weak the contractive nature of the map, but often with
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some additional requirements, as for instance to take compact values. See for example the
�xed point results for multivalued mappings of generalized contractive type of Reich [120],
L. Ćiríc [32], V. M Sehgal and R. E. Smithson [142] and N. Mizoguchi, W. Takahashi [83].

Y. Feng and S. Liu de�ned in Y. Feng and S. Liu [42] a di¤erent kind of contractivity
for multivalued mappings, which focuses the requirements on some orbits of the mapping
under consideration. The main �xed point theorem in Y. Feng and S. Liu [42] is also
a proper generalization of Nadler�s Theorem. They also gave �xed point theorems for
multivalued Caristi type mappings.

In 2007, D. Klim and D. Wardowski [72] inspired by Mizoguchi-Takahashi and Feng-
Liu�s work obtain a further generalization of the previous �xed point results given in Y.
Feng and S. Liu [42], N. Mizoguchi, W. Takahashi [83], S. Reich [120].

O. Kada, T. Suzuki and W. Takahashi [64] introduced in 1996 the concept of !-distance
on a metric space and by using this notion they got an improvement of the Takahashi�s
nonconvex optimization Theorem, as well as generalizations of J. Caristi�s �xed point
Theorem and Ekeland�s variational principle. They also gave �xed point theorems for
singlevalued mappings of (!-)contractive type.

In 2009, J. G. Falset, L. Guran and E. Llorens-Fuster [41] obtained a generalization of
the �xed point results presented by D. Klim and D. Wardowski (Theorem 2.1 of [72]), for
multivalued mappings of contractive type in complete metric spaces, by using the concept
of !-distance.

One of our interests is to obtain �xed point results for multivalued operators in cone
metric spaces in order to generalize some results given by J. G. Falset, L. Guran and E.
Llorens-Fuster in [41]. In the next paragraphs we will point out also some essential aspects
regarding cone metric spaces.

In 1905, M. Fréchet [44], [45] introduced the concept of metric spaces. In 1934, his PhD
student Ð. Kurepa [76] introduced more abstract metric spaces, in which the metric takes
values in an ordered vector space. In the literature, the metric spaces with vector valued
metric are known under various names: pseudometric spaces Ð. Kurepa [76], L. Collatz
[35], K-metric spaces J. Eisenfeld [39], P. P. Zabrejko [162], I. A. Rus, A. Petruşel, M. A.
Şerban [134], generalized metric spaces B. Rzepecki [137], vector-valued metric spaces I.
D. Arandelovíc, D. J. Keµckíc [7], cone-valued metric spaces K. J. Chung [30], [31], cone
metric spaces L. G. Huang, X. Zhang [58], S. Jankovíc, Z. Kadelburg and S. Radenovíc
[63].

It is well known that cone metric spaces and cone normed spaces have deep applications
in the numerical analysis and the �xed point theory. Some applications of cone metric
spaces can be seen in L. Collatz [35] and P. P. Zabrejko [162]. J. Schröder [140], [141] was
the �rst who showed the importance of cone metric spaces in numerical analysis and L.
V. Kantorovich [67] showed for the �rst time the importance of cone normed spaces for
the numerical analysis.

Starting from 2007, many authors have investigated cone metric spaces over Banach
spaces and �xed point theorems in such spaces (L. G. Huang, X. Zhang [58], S. Rezapour,
R. Hamlbarani [124], D. Wardowski [160], H. K. Pathak, N. Shahzad [97], I. Şahin, M.
Telsi [150], A. Amini-Harandi, M. Fakhar [6], A. Sönmez [149], A. Latif, F. Y. Shaddad
[78], D. Turkoglu, M. Abuloha [154], M. A. Khamsi [69], S. Radenovíc, Z. Kadelburg [116],
M. Khani, M. Pourmahdian [71], M. Asadi, S. M. Vaezpour, H. Soleimani [9], etc.).

Banach contraction principle was extended for singlevalued contraction on spaces en-
dowed with vector-valued metrics by A. I. Perov [98], A. I. Perov and A.V. Kibenko [99]

4



and J. Ortega and W. Rheinboldt [95]. For some other contributions to this topic we also
refer to A. Bucur, L. Guran and A. Petrusel [23], R.P. Agarwal [3], A. D. Filip and A.
Petrusel [43], D. O�Regan, N. Shahzad, R. P. Agarwal [94], R. Precup, A. Viorel [112],
R. Precup, A. Viorel [113], R. Precup [111], etc. The case of multivalued contractions on
spaces endowed with vector-valued metrics is treated in A. Petrusel [104], I. R. Petre, A.
Petruşel [101], Sh. Rezapour, P. Amiri [123], etc.

In the study of the �xed points for an operator, it is sometimes useful to consider a
more general concept, namely coupled �xed point. The concept of coupled �xed point
for nonlinear operators was introduced and studied by Opoitsev (see V.I. Opoitsev [90]-
[92]) and then, in 1987, by D. Guo and V. Lakshmikantham (see [53]) in connection with
coupled quasisolutions of an initial value problem for ordinary di¤erential equations.

Later, a new research direction for the theory of coupled �xed points in ordered me-
tric space was initiated by T. Gnana Bhaskar and V. Lakshmikantham in [48] and by V.
Lakshmikantham and L. Ćiríc in [77]. In [48] T. Gnana Bhaskar and V. Lakshmikantham
introduced the notion of the mixed monotone property of a given operator. Further-
more, they proved some coupled �xed point theorems for operators which satify the mixed
monotone property and presented as an application, the existence and uniqueness of a so-
lution for a periodic boundary value problem. Their approach is based on some contractive
type conditions on the operator.

In the last few decades, a wide discussion on coupled �xed point theorems attracted the
interest of many mathematicians because of their important role in the study of nonlinear
di¤erential equations, nonlinear integral equations and di¤erential inclusions. For other
results on coupled �xed point theory see T. Gnana Bhaskar and V. Lakshmikantham [48],
D. Guo, Y. J. Cho and J. Zhu [54], S. Hong [57], V. Lakshmikantham and L. Ćiríc [77],
M. D. Rus [135], V. Berinde [14], M. Berzig [17], W. Sintunavarat, P. Kumam, and Y. J.
Cho [147], M. Abbas, W. Sintunavarat, P. Kumam [2], Y. J. Cho, G. He, N. J. Huang [25],
Y. J. Cho, M. H. Shah, N. Hussain [27], Y. J. Cho, B. E. Rhoades, R. Saadati, B. Samet,
W. Shantawi [28], M. E. Gordji, Y. J. Cho, H. Baghani [49], B. Samet, C. Vetro [139], W.
Sintunavarat, Y. J. Cho and P. Kumam [146], W. Sintunavarat, A. Petrusel, P. Kumam
[148], B. Samet [138].

In the present work we develop a detailed and unitary study regarding �xed point and
coupled �xed point existence, uniqueness, data dependence, stability for singlevalued and
multivalued operators considering the mixed monotone and limit shadowing properties.
We support this study by presenting also some applications.

This thesis is devided in four chapters, each chapter containing several sections.
Chapter 1: Preliminaries
In this chapter we present the basic notions which are further considered in the next

chapters of this work, allowing us to present the results of this investigation. This chapter
contains the following sections:

In the �rst section we introduce the concepts of vector-valued space and convergent
to zero matrices.

In the second section we recall some basic �xed point theorems for singlevalued and
multivalued operators.

In the third section we present some open problems regarding �xed points and strict
�xed points.

In the fourth section we remind the classical Cauchy�s Lemma and give a genera-
lization of it.
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Chapter 2: Fixed point theorems in generalized metric spaces
In this chapter, we give some �xed point results for singlevalued and multivalued

operators in spaces endowed with vector-valued metrics and in cone metric spaces. Our
approach is based on Perov �xed point theorem in spaces endowed with vector-valued
metrics. We study the Ulam-Hyers stability and the limit shadowing property of the �xed
point problems. This chapter has three sections.

In the �rst section we give some existence, uniqueness and stability results for �xed
point problem for singlevalued operators in Rm+ generalized metric spaces.

The original contributions in this section are the following results: Theorem 2.1.1 is
an extension of Perov�s Theorem and in the same time it extends some �xed point results
given by V. Berinde [13], S. Reich [119] and G. E. Hardy, T. D. Rogers [55]; Theorem 2.1.2
is a result concerning the Ulam-Hyers stability of a �xed point equation.

The results presented in this section are included in the following works: A. Petrusel,
G. Petrusel and C. Urs [108], A. Petrusel, C. Urs and O. Mleşni̧te [109].

In the second section we present existence and stability results for a �xed point
problem, for multivalued operators in Rm+ generalized metric spaces. The limit shadowing
property is also investigated.

Our main results in this section are: Theorem 2.2.1 is an extension of Nadler�s �xed
point Theorem in a space endowed with a vector-valued metric, it is a multivalued version
of Theorem 2.1.1 presented in the �rst section of this chapter and it is also a generalization
of some results presented by M. Berinde, V. Berinde [15]; Theorem 2.2.4 is a result which
concerns the Ulam-Hyers stability of a �xed point inclusion and limit shadowing property
for a multivalued contraction; Theorem 2.2.5 which is a result regarding Ulam-Hyers
stability of a �xed point inclusion for a multivalued operator.

The results presented in this section are contained in the following papers: A. Petrusel,
G. Petrusel and C. Urs [108], A. Petrusel, C. Urs and O. Mleşni̧te [109].

In the third section we obtained a �xed point result for a multivalued operator using
the concept of c-distance in cone metric spaces. The c-distance, which was introduced
by Y. J. Cho, R. Saadati and S. Wang [26], is a generalization of !-distance given by O.
Kada, T. Suzuki and W. Takahashi [64].

The most important contribution in this section is Theorem 2.3.8, which is a �xed
point result for multivalued operators on cone metric spaces endowed with a c-distance.
This theorem is a generalization of Theorem 3.3 given by J. G. Falset, L. Guran and E.
Llorens-Fuster in [41].

The result, which is obtained in cone metric spaces is included in the paper E. Llorens-
Fuster, C. Urs [79].

Chapter3: Coupled �xed point theorems
In this chapter we present existence, uniqueness and stability results for coupled �xed

point of a pair of contractive type singlevalued and multivalued operators on complete
metric spaces. The approach is based on Perov type �xed point theorem for contractions
in spaces endowed with vector-valued metrics. The chapter is structured in three sections.

In the�rst section we give an existence, uniqueness, data dependence and Ulam-Hyers
stability result for the coupled �xed point of a pair of contractive singlevalued operators
on spaces endowed with vector-valued metrics.

Our main contribution in this section is Theorem 3.1.2 which is an existence, unique-
ness, data dependence and Ulam-Hyers stability result for the coupled �xed point of a pair
of singlevalued operators.
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The result presented in this section is included in the paper C. Urs [155].
In the second section we provide some results in the framework of ordered metric

spaces for the coupled �xed point problem of a pair of singlevalued operators, having the
mixed monotone property.

Our main result in this section is Theorem 3.2.2 which is Gnana Bhaskar-Lakshmikan-
tham type theorem for the coupled �xed point problem associated to a pair of singlevalued
o-perators satisfying a generalized mixed monotone assumption.

The result obtained in this section is included in the paper A. Petruşel, G. Petruşel
and C. Urs [108].

In the third section we investigated the existence, uniqueness, data dependence and
Ulam-Hyers stability of the coupled �xed point of a pair of multivalued operators on spaces
endowed with vector-valued metrics.

Our contributions in this section are: Theorem 3.3.3, which is an Ulam-Hyers stabi-
lity result of a �xed point inclusion for a multivalued operator, with proximinal values
in generalized metric space; Theorem 3.3.4, which is an existence, uniqueness and Ulam-
Hyers stability result of a �xed point inclusion for a multivalued operator; Theorem 3.3.6,
which is an existence and stability result for a system of operatorial inclusions for multi-
valued operators having proximinal values; Theorem 3.3.7, which is a result for existence,
uniqueness and stability of a system of operatorial inclusions for multivalued operators.

The results which are presented in this section are included in the paper C. Urs [155].
Chapter 4: Applications
In this chapter we present some applications to �rst-order di¤erential equations sys-

tems with periodic boundary value conditions and to systems of functional-integral equ-
ations in order to validate our previous results. The results presented in this chapter are
applications of the coupled �xed point problems for contractive type singlevalued and mul-
tivalued operators on spaces endowed with vector-valued metrics. This chapter contains
two sections.

In the �rst section we present an application to integral equations and boundary
value problem.

Our main contribution in this section is Theorem 4.1.3, which represents a result for
the existence, uniqueness and Ulam-Hyers stability of a solution to a periodic boundary
value problem and it is considered as an application of the coupled �xed point Theorem
3.1.2, presented in Chapter 3.

The result given in this section is included in the paper C. Urs [156].
In the second section we give some applications to a �rst-oder di¤erential system

with periodic boundary value conditions, considering also the mixed monotone property
and we present some applications to systems of functional-integral equations.

The �rst contribution in this section is Theorem 4.2.2, which includes the investigation
of the existence and uniqueness of a solution to a periodic boundary value problem as an
application of the coupled �xed point Theorem 3.2.2 presented in Chapter 3. We obtained
Theorem 4.2.2 for the case of singlevalued operators with mixed monotone property in
partially ordered metric space.

The second result, Theorem 4.2.3 is an application of coupled �xed point Theorem
3.2.3 exposed in Chapter 3. This application is an existence and uniqueness result for a
system of functional-integral equations, which appears in tra¢ c �ow models.

The third contribution, Theorem 4.2.4 is also an application of Theorem 3.2.3 and
it is an existence and uniqueness result for a system of functional-integral equations. In
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this case we apply the coupled �xed point theorem to an equivalent operatorial system
of equations. As a consequence, we obtained the last application, Theorem 4.2.10 which
is an existence and uniqueness result for a system of �rst-order boundary value problem
with multivalued operators.

The �rst result, Theorem 4.2.2 is included in the paper C. Urs [157].
The author�s contributions, presented in this work are part of the following scienti�c

papers:
[155] C. Urs, Ulam-Hyers stability for coupled �xed points of contractive type operators,

J. Nonlinear Sci. Appl., 6 (2013), 124-136, (MR 3017896).
[156] C. Urs, Coupled �xed point theorems and applications to periodic boundary value

problems, Miskolc Mathematical Notes, 14 (2013), no. 1, 323-333, (MR 3070711), (IF:
0,304).

[108] A. Petrusel, G. Petrusel, and C. Urs, Vector-valued metrics, �xed points and cou-
pled �xed points for nonlinear operators, Fixed Point Theory and Appl. (2013), 2013:218
doi:10.1186/1687-1812-2013-218, (MR 3108266), (IF: 1,87).

[109] A. Petrusel, C. Urs and O. Mleşni̧te, Vector-valued Metrics in Fixed Point Theory,
Contemporary Math. Series, Amer. Math. Soc., 2013, to appear.

[157] C. Urs, Coupled �xed point theorems for mixed monotone operators and applica-
tions, 2013, Studia Univ. Babeş-Bolyai Math., 2013, to appear.

[79] E. Llorens-Fuster, C. Urs, Fixed point results for multivalued operators with respect
to a c-distance, 2013, submitted.

A signi�cant part of the original contributions included in this thesis were also pre-
sented at the following scienti�c conferences:

- International Conference on Nonlinear Operators, Di¤erential Equations and Applica-

tions (ICNODEA), July 5th�8th, 2011, Babeş-Bolyai University of Cluj-Napoca,

Romania;

- The 5th International Workshop- 2012, Constructive Methods for Non-Linear Boundary

Value Problems, June 28th-July 1st;2012, Tokaj, Hungary;

- 6th European Congress of Mathematics, July 2nd-7th, 2012, Krakow, Poland;

- The 10th International Conference on Fixed Point Theory and its Applications,

July 9th-15th, 2012, Babeş-Bolyai University of Cluj-Napoca, Romania;

- Workshop on Metric Fixed Point Theory, November 15th-17th, 2012, University of

Valencia, Spain.

- The Fourtheenth International Conference on Applied Mathematics and Computer

Science (Theodor Angheluţ¼a Seminar), August 29th-31st, 2013, Cluj-Napoca, Romania.
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Chapter 1

Preliminaries

The aim of this chapter is to present the basic concepts and results, which are further
considered in the next chapters, allowing us to present the results of this work. In the �rst
section of this chapter we recall the notions of generalized metric space and convergent to
zero matrix. The purpose of the second section is to present some important �xed point
theorems which will be the basis of our study. In the third section we present some open
problems regarding �xed points and strict �xed points. The aim of the fourth section is
to recall the classical Cauchy�s Lemma and to give a generalization of it.

The main references for this chapter are the papers of W. A. J. Luxemburg, A. C.
Zaanen [80]; I. A. Rus [126]; A. C. Zaanen [163]; P. P. Zabrejko [162]; R. S. Varga [158];
R. Precup [110]; A. Granas, J. Dugundji [51]; L.-G. Huang, X. Zhang [58]; G. Allaire and
S. M. Kaber [5]; I. A Rus, A. Petruşel and G. Petruşel [131].

1.1 Vector-valued metrics and convergent to zero matrices

In this section we introduce the notions, which are used later in our investigations. Con-
cepts as generalized metric space, as well as convergent to zero matrices are recalled here.

Let X be a nonempty set. A mapping d : X�X ! Rm is called a vector-valued metric
on X if the following properties are satis�ed:

(a) d(x; y) � O for all x; y 2 X; if d(x; y) = O, then x = y; (where O := (0; 0; � � � ; 0)| {z }
m�times

)

(b) d(x; y) = d(y; x) for all x; y 2 X;
(c) d(x; y) � d(x; z) + d(z; y) for all x; y 2 X.
A nonempty set X endowed with a vector-valued metric d is called a Rm+ generalized

metric space and it will be denoted by (X; d). The notions of convergent sequence, Cauchy
sequence, completeness, open and closed subset, open and closed ball, etc. are similar to
those for usual metric spaces.

We denote by Mmm (R+) the set of all m�m matrices with positive elements and by
I the identity m�m matrix. If x; y 2 Rm, x = (x1; :::; xm) and y = (y1; :::; ym), then, by
de�nition:

x � y if and only if xi � yi for i 2 f1; 2; :::;mg:

Notice that, through this work, we will make an identi�cation between row and column
vectors in Rm.
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De�nition 1.1.1 A square matrix A 2 Mmm (R+) is said to be convergent towards zero
if and only if

An ! 0 as n!1

A classical result in matrix analysis is the following theorem (see G. Allaire and S. M.
Kaber [5], R. S. Varga [158]).

Theorem 1.1.2 Let A 2Mmm (R+). The following assertions are equivalents:
(i) A is convergent towards zero;
(ii) The eigenvalues of A are in the open unit disc, i.e j�j < 1, for every
� 2 C with det (A� �I) = 0;
(iii) The matrix (I �A) is nonsingular and

(I �A)�1 = I +A+ :::+An + :::; (1.1)

(iv) The matrix (I �A) is nonsingular and (I �A)�1 has nonnegative
elements;
(v) Anq ! 0 and qAn ! 0 as n!1, for each q 2 Rm;
(vi) The matrices qA and Aq are convergent towards zero, for each q 2 (1; Q),
where Q := 1

�(A) :

For more results regarding matrices convergent towards zero see I. A. Rus [126], A. I.
Perov [98], M. Turinici [152], R. Precup [111].

De�nition 1.1.3 An operator T : X ! X is said to be A-contraction (with respect to the
vector-valued metric d on X) if there exists a convergent towards zero matrix A such that

d(T (u); T (v)) � Ad(u; v)

for all u; v 2 X:

1.2 Basic �xed point theorems for singlevalued and multi-
valued operators

In this section we present some well-known �xed point theorems which will help us further
in our investigation. We recall one of the basic principles of �xed point theory on complete
metric space.

We recall now Perov�s �xed point theorem (see A. I. Perov [98], A. I. Perov, A. V.
Kibenko [99], J. Ortega and W. Rheinboldt [95]). Perov�s �xed point theorem is an
extension of Banach�s contraction principle for singlevalued contraction on spaces endowed
with vector-valued metrics.

Theorem 1.2.1 (Perov) Let (X; d) be a complete generalized metric space and the op-
erator f : X ! X be an A-contraction then:

(i) Fix(f) = fx�g;
(ii) the sequence of successive approximations (xn)n2N, xn = fn (x0) is
convergent and has the limit x�, for all x0 2 X;
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(iii) one has the following estimation

d (xn; x
�) � An (I �A)�1 d (x0; x1) ; (1.2)

(iv) if g : X ! X is an operator such that there exist y� 2 Fix(g) and
� 2

�
Rm+
��with d (f (x) ; g (x)) � �, for each x 2 X, then

d (x�; y�) � (I �A)�1 �;

(v) if g : X ! X is an operator and there exists � 2
�
Rm+
��such that

d (f (x) ; g (x)) � �, for all x 2 X, then for the sequence yn := gn (x0)
we have the following estimation

d (yn; x
�) � (I �A)�1 � +An (I �A)�1 d (xo; x1) : (1.3)

1.3 Fixed points and strict �xed points

It is of interest in �xed point theory to study the following open problems, see A. Petruşel,
I. A. Rus and M. A. Şerban [107].

Problem 1.3.1 Which are the metric conditions on T which imply that

Fix(T ) = SFix(T ) 6= ; ?

Problem 1.3.2 Which are the metric conditions on T which imply that

SFix(T ) = fx�g?

Problem 1.3.3 Which are the metric conditions on T which imply that

Fix(T ) = SFix(T ) = fx�g ?

Problem 1.3.4 In which metric conditions on T; the following implication holds:

SFix(T ) 6= ; =) Fix(T ) = SFix(T ) = fx�g ?

It is an interesting aspect to investigate Problem 1.3.1, Problem 1.3.2, Problem 1.3.3
and Problem 1.3.4 in generalized metric spaces.

1.4 Cauchy-type lemmas

In this section we present the classical Cauchy�s lemma and a result which was given
by I. A. Rus [128] and using it, we obtained stability type results regarding Ulam-Hyers
stability, limit shadowing property for multivalued operators in generalized metric spaces.
We recall also a generalization of Cauchy�s lemma given by I. A. Rus and M. A. Şerban
in [133].
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Chapter 2

Fixed point theorems in generalized
metric spaces

In this chapter, we present some �xed point results for singlevalued and multivalued o-
perators in spaces endowed with Rm+ metrics and in cone metric spaces. The approach is
based on Perov type �xed point theorem in spaces endowed with vector-valued metrics.
The Ulam-Hyers stability and the limit shadowing property of the �xed point problems
are also discussed.

The references which we used in order to develop this chapter are the following: A.
I. Perov [98]; S. B. Nadler [85]; H. Covitz and S. B. Nadler [36]; R. P. Agarwal [3]; O.
Kada, T. Suzuki and W. Takahashi [64]; I. A. Rus, A. Petruşel, A. Sînt¼am¼arian [132]; A.
Petruşel [104]; Y. Feng and S. Liu [42]; D. Klim and D. Wardowski [72]; L. G. Huang,
X. Zhang [58]; M. Berinde and V. Berinde [15], R. Precup and A. Viorel [112]; I. A. Rus
[129], [130]; R. Precup [111], A. Bucur, L. Guran and A. Petruşel [23]; J. G. Falset, L.
Guran and E. Llorens-Fuster [41]; D. Wardowski [160]; S. Radenovíc and B. E. Rhoades
[115]; A. Petruşel and I. A. Rus [106], A. D. Filip and A. Petruşel [43], M. Bota and A.
Petruşel [19], P. T. Petru, A. Petruşel and J. C. Yao [102], Y. J. Cho, R. Saadati and S.
Wang [26].

2.1 Fixed point theorems for singlevalued operators in vec-
torial metric spaces

The aim of this section is to present some existence, uniqueness and stability results for
�xed point equations in Rm+ generalized metric spaces. The approach is based on an
abstract �xed point theorem in ordered complete metric spaces. The results which are
given in this section are related with other existence and stability results for the coupled
�xed point problem for singlevalued operators proved in C. Urs [155], by the support of
Perov�s �xed point Theorem.

Notice that in R. Precup [111], as well as in A. Bucur, L. Guran and A. Petruşel
[23], A. D. Filip and A. Petruşel [43] and R. Precup, A. Viorel [112] are pointed out the
advantages of working with vector-valued norm, with respect to the usual scalar norms.

There is a vast literature concerning this approach, see for example R. P. Agarwal [3],
D. O�Regan, N. Shahzad, R. P. Agarwal [94], A. Petruşel, I. A. Rus [106], R. Precup, A.
Viorel [113], R. Precup [111], etc.
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We will focus our attention to the following system of operatorial equations:�
x = T1 (x; y)
y = T2 (x; y)

where T1; T2 : X �X ! X are two given operators.
By de�nition, a solution (x; y) 2 X �X of the above system is called a �xed point for

the operators T1 and T2: Notice that if S : X �X ! X is an operator and we de�ne:

T1(x; y) := S(x; y) and T2(x; y) := S(y; x);

then we get the classical concept of coupled �xed point for the operator S; introduced by
V.I. Opoitsev and then intensively studied in some papers by D. Guo and V. Lakshmikan-
tham [53], T. Gnana Bhaskar and V. Lakshmikantham [48], V. Lakshmikantham and L.
Ćiríc [77], etc.

The case of an operatorial inclusion is de�ned in a similar way, namely by using the
symbol 2 instead of =. The concept of coupled �xed point for a multivalued operator S
is accordingly de�ned.

The next result is an extension of Perov�s Theorem.

Theorem 2.1.1 Let (X; d) be a generalized complete metric space and let f : X ! X be
an (A,B,C,D,E)-contraction, i.e., A;B;C;D;E 2 Mmm (R+) are such that the matrices
E and C + E or the matrices D and B + D converge to zero and the matrix M :=
(I � C � E)�1(A+ C +D) or the matrix N := (I � B �D)�1(A+ B + E) converges to
zero and

d (f (x) ; f (y)) � Ad (x; y)+Bd(y; f(x))+Cd(x; f(y))+Dd(x; f(x))+Ed(y; f(y)); (2.1)

for all x; y 2 X.
Then, the following conclusions hold:

1. f has at least one �xed point and, for each x0 2 X, the sequence xn := fn (x0) of
successive approximations of f starting from x0 converges to x�(x0) 2 Fix(f) as n!1;

2. For each x0 2 X we have

d(xn; x
�(x0)) �Mn(I �M)�1d(x0; f(x0)); for all n 2 N

or
d(xn; x

�(x0)) � Nn(I �N)�1d(x0; f(x0)); for all n 2 N:

3. If, additionally, the matrix A+B +C converges to zero, then f has a unique �xed
point in X.

We remind two important abstract concepts: weakly Picard operator and  -weakly
Picard operator (see I. A. Rus [129], [130]).

For the proof of the next theorems we need the notion of generalized Ulam-Hyers
stability of a �xed point equation, which was introduced by I. A. Rus in [130] (see also
I. A. Rus [127]). The concept is adapted after the de�nition given by S. Reich and A. J.
Zaslawski in [121] in the context of a metric space.

We give now the following abstract result (see also I. A. Rus [130]) concerning the
Ulam-Hyers stability of a �xed point equation.
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Theorem 2.1.2 Let (X; d) be a generalized metric space and f : X ! X be a  -weakly
Picard operator. Then, the �xed point equation x = f(x) is generalized Ulam-Hyers stable.

2.2 Fixed point theorems for multivalued operators in vec-
torial metric spaces

The aim of this section is to present some existence and stability results for �xed point
inclusions in Rm+ generalized metric spaces.

We give an extension of the Nadler �xed point theorem in a space endowed with
a vector-valued metric, which is also a multivalued version of Perov�s Theorem. The
following result is a generalization of some results given by M. Berinde, V. Berinde [15].

Theorem 2.2.1 Let (X; d) be a generalized complete metric space and let S : X ! Pcl(X)
be a multivalued (A;B;C)-contraction, i.e., A;B;C 2Mmm (R+) are such that the matrix
M := A+ C converges to zero and

H (S (x) ; S (y)) � Ad (x; y) +BD(y; S(x)) + CD(x; S(x)); for all x; y 2 X: (2.2)

Then:
(i) Fix(S) 6= ;;
(ii) for each (x; y) 2 Graph(S) there exists a sequence (xn)n2N (with x0 = x, x1 = y

and xn+1 2 S(xn), for each n 2 N�) such that (xn)n2N is convergent to a �xed point
x� := x�(x; y) of S and the following relations hold

d(xn; x
�) �Mn(I �M)�1d(x0; x1); for each n 2 N�

and
d(x; x�) � (I �M)�1d(x; y):

If in the previous result the matrix C = Om, then we obtain a �xed point theorem for
a multivalued almost contraction in generalized complete metric spaces.

We recal the notions of multivalued weakly Picard and  -multivalued weakly Picard
operator (see I. A. Rus, A. Petruşel, A. Sînt¼am¼arian [132] and A. Petruşel [104]).

We remind two important stability concepts.

De�nition 2.2.2 Let (X; d) be a generalized metric space and F : X ! P (X) be a
multivalued operator. The �xed point inclusion

x 2 F (x); x 2 X (2.3)

is called generalized Ulam-Hyers stable if and only if there exists  : Rm+ ! Rm+ increasing,
continuous in O with  (O) = O such that for each " := ("1; :::; "m) (with "i > 0 for
i 2 f1; :::;mg) and for each "-solution y� 2 X of (2.3), i.e.,

D(y�; F (y�)) � "; (2.4)

there exists a solution x� of the �xed point inclusion (2.3) such that

d(y�; x�) �  ("):
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In particular, if  (t) = C � t, for each t 2 Rm+ (where C 2Mmm(R+)), then the �xed point
inclusion (2.3) is said to be Ulam-Hyers stable.

De�nition 2.2.3 Let (X; d) be a generalized metric space and F : X ! P (X) be a
multivalued operator. Then, the multivalued operator F is said to have the limit shadowing
property if for each sequence (yn)n2N in X such that D(yn+1; F (yn)) ! O as n ! +1,
there exists a sequence (xn)n2N of successive approximations of F such that d(xn; yn)! O
as n! +1.

Using the following auxiliary result (see I. A. Rus [128]) we can get stability type results
(Ulam-Hyers stability and limit shadowing property) for multivalued A-contractions.

Cauchy-type Lemma. Let A 2Mmm (R+) be a matrix convergent towards zero and
(Bn)n2N 2 Rm+ be a sequence, such that lim

n!+1
Bn = Om. Then

lim
n!+1

(

nX
k=0

An�kBk) = Om:

We prove the Ulam-Hyers stability of the �xed point inclusion (2.3) for the case of a
multivalued A-contraction, which has at least one strict �xed point. The limit shadowing
property is also established.

Theorem 2.2.4 Let (X; d) be a generalized complete metric space and let F : X ! Pcl(X)
be a multivalued A-contraction. Suppose also that SFix(F ) 6= ;, i.e., there exists x� 2 X
such that fx�g = F (x�). Then:

(a) Fix(F ) = SFix(F ) = fx�g;
(b) the �xed point inclusion (2.3) is Ulam-Hyers stable;
(c) the multivalued operator F has the limit shadowing property.

We also have the following abstract result, concerning the Ulam-Hyers stability of the
�xed point inclusion (2.3) for multivalued operators.

Theorem 2.2.5 Let (X; d) be a generalized metric space and F : X ! Pcl(X) be a mul-
tivalued  -weakly Picard operator. Suppose also that there exists a matrix C 2Mmm(R+)
such that for any " := ("1; :::; "m) (with "i > 0 for i 2 f1; :::;mg) and any z 2 X with
D(z; F (z)) � " there exists u 2 F (z) such that d(z; u) � C". Then, the �xed point
inclusion (2.3) is generalized Ulam-Hyers stable.

For other examples and results regarding the Ulam-Hyers stability and the limit sha-
dowing property of the operatorial equations and inclusions see I. A. Rus [130], [129], [127],
A. Petruşel and I. A. Rus [106], M. Bota and A. Petruşel [19], P. T. Petru, A. Petruşel
and J. C. Yao [102].

2.3 Fixed point theorems in cone metric spaces endowed
with c-distance

The aim of this section is to present a �xed point result for a multivalued mapping in cone
metric space using the concept of c-distance.
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In this section we present the basic notions in cone metric spaces and we give some
examples of cone metric spaces and c-distances. For basic concepts and results see P. P.
Zabrejko [162].

The �xed point theory for cone metric spaces was re-discovered by L. G. Huang, X.
Zhang [58] in 2007 and became a subject of interest for many authors. Cone metric spaces
are generalizations of metric spaces, where the metric is replaced by the mapping with
values in a cone, from a Banach space.

Y. J. Cho, R. Saadati and S. Wang [26] introduced in 2011 a new concept of c-distance
in cone metric spaces, which is a cone version of !-distance, given by O. Kada, T. Suzuki
and W. Takahashi [64]. They proved in [26] some �xed point theorems for contractive
type mappings in partially ordered cone metric spaces, using c-distance.

In this investigation we will use c-distance in order to obtain a �xed point theorem for
a multivalued mapping, which allows us to give a generalization of Theorem 3.3 presented
by J. G. Falset, L. Guran and E. Llorens-Fuster in [41].

In the following, we introduce some notions which will be used in this section.
Let E be a real Banach space and � denote the zero element in E. Let P be a subset

of E with int P 6= ;, where int P denotes the interior of P: Then P is called a cone if the
following conditions are satis�ed:

(i) P is closed and P 6= f�g;
(ii) if a; b are nonnegative real numbers and x; y 2 P , then ax+ by 2 P ,
(iii) x 2 P \ (�P ) = f�g implies x = �:

For any cone P � E, the partial ordering � with respect to P is de�ned by x � y if
and only if y�x 2 P: The notation x � y stands for x � y, but x 6= y: Also, we use x� y
to indicate that y � x 2int P , whenever int P 6= ;: A cone P is called normal if there
exists a number K > 0 such that

� � x � y =) kxk � K kyk

for all x; y 2 E: The least positive number K satisfying the above condition is called the
normal constant of P:

The cone P is called regular if every increasing sequence which is bounded from above
is convergent. That is, if fxng is sequence such that

x1 � x2 � ::: � xn � ::: � y;

for some y 2 E, then there is x 2 E such that kxn � xk ! 0 (n ! 1). Equivalently
the cone P is regular if and only if every decreasing sequence which is bounded from below
is convergent. It is well known that a regular cone is a normal cone.

We assume in our approach that E is a real Banach space and P is a cone in E with
int P 6= ;:We recall the notions of cone metric and cone metric space (see for example
L.-G. Huang, X. Zhang [58]).

Example 2.3.1 Let E = R3, P = f(z1; z2; z3) 2 E j zi � 0; i = 1; 2; 3g, X = R2 and
d : X �X ! E such that

d(x; y) = (d1(x; y); d2(x; y); d1(x; y)):

Then (X; d) is a cone metric space.
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In the above example we use the Chebyshev metric, the euclidian metric and the
Minkowski metric.

We assume that (X; d) is a cone metric space with respect to E and P and for the sake
of brevity we will omit hereafter to mention E and P:

For further de�nitions and properties of cone metric spaces see L. G. Huang, X. Zhang
[58], S. Radenovíc and B. E. Rhoades [115].

The concept of c-distance on a cone metric space (X; d); which was introduced by Y.
J. Cho, R. Saadati and S. Wang [26] is a generalization of !-distance.

De�nition 2.3.2 (Y. J. Cho, R. Saadati and S. Wang [26]) Let (X; d) be a cone metric
space. Then a function q : X � X ! E is called a c-distance on X if the following are
satis�ed:

(q1) � � q(x; y) for all x; y 2 X;
(q2) q(x; z) � q(x; y) + q(y; z) for all x; y; z 2 X;
(q3) for any x 2 X, if there exists u = ux 2 P such that q(x; yn) � u for each n � 1,

then q(x; y) � u whenever (yn) is a sequence in X converging to a point y 2 X;
(q4) for any c 2 E with � � c, there exists e 2 E with � � e such that q(z; x) � e

and q(z; y)� e imply d(x; y)� c:

Now we give some examples of c-distances, where d is the cone metric, which we
considered in the Example 2.3.1.

Example 2.3.3 Let (X; d) be a cone metric space and P be a normal cone. Let q :
X �X ! E, de�ned by q(x; y) = d(x; y), for all x; y 2 X. Then q is a c-distance. (q1)
and (q2) (see De�nition 2.3.2) are obvious and (q3) (see De�nition 2.3.2) is satis�ed. Let
c := (c1; c2; c3) 2 R3 with (0; 0; 0)� (c1; c2; c3) there exists e := (e1; e2; e3) = ( c12 ;

c2
2 ;

c3
2 ) 2

R3 with (0; 0; 0) � (e1; e2; e3); such that q(z; x) � e and q(z; y) � e. Then q(x; y) �
q(x; z) + q(z; y)� (e1; e2; e3) + (e1; e2; e3) = c. So (q4) (see De�nition 2.3.2) is satis�ed.
Hence q is a c-distance.

Example 2.3.4 Let (X; d) be a cone metric space. and P be a normal cone. Let F be
a bounded and closed subset of X. Assume that F contains at least two points and c is
c := (c1; c2; c3) � (supfd1(x; y)g; supfd2(x; y)g; supfd1(x; y)g) = diamF , where diamF is
the diameter of F: Then q : X �X ! E, de�ned by

q(x; y) =

�
d(x; y); if x; y 2 F
c; if x =2 F or y =2 F ;

is a c-distance.

A set A � X is called closed if for any sequence fxng � A convergent to x we have
x 2 A:

A set A � X is said to be sequentially compact if for any sequence fxng � A; there
exists a subsequence fxnkg of fxng such that fxnkg is convergent to an element of A:

We denote N(X) a collection of all nonempty subsets of X, C(X) a collection of all
nonempty closed subsets of X and K(X) a collection of all nonempty sequentially compact
subsets of X:

Y. Feng and S. Liu [42] obtained an extension of Nadler�s �xed point theorem in
complete metric spaces under following conditions:
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Let T : X ! N(X) be a multivalued mapping. De�ne function f : X ! R as
f(x) = d(x; T (x)):

For a positive constant b (b 2 (0; 1)), de�ne the set Ixb � X as

Ixb = fy 2 T (x) : bd(x; y) � d(x; T (x))g:

Theorem 2.3.5 (Y. Feng and S. Liu [42]) Let (X; d) be a complete metric space, T :
X ! C(X) be a multivalued mapping. If there exists a constant c 2 (0; 1); such that for
any x 2 X there is y 2 Ixb satisfying

d(y; T (y)) � cd(x; y);

then T has a �xed point in X provided c < b and f is lower semi-continuous.

D. Wardowski [160], inspired by the work of Y. Feng and S. Liu [42] introduced the con-
cept of set-valued contractions in cone metric spaces and obtained a �xed point theorem,
considering the distance between a point and a set in the following way:

Let (M;d) be a cone metric space. Let T :M ! C(M). For x 2M , we denote

D(x; Tx) = fd(x; z) : z 2 Txg;
S(x; Tx) = fu 2 D(x; Tx) : kuk = inffkvk : v 2 D(x; Tx)gg:

A mapping f : X ! R is said to be lower semi-continuous at x (lsc for short), with
respect to d; if for any sequence (xn) in X and x 2 X with xn ! x, the inequality
f(x) � lim

n!1
inf f(xn) holds.

Let T : X ! K(X), b 2 (0; 1] and x 2 X. In our investigation we will consider the
following set:

Ixb := fy 2 T (x) : bd(x; y) � S(x; T (x))g;

We give the following de�nition:

De�nition 2.3.6 Let T : X ! K(X) be a multivalued mapping, and let q be a c-distance
on X: De�ne the function f : X ! R by f(x) := Dq(x; T (x)), where Dq(x; T (x)) =
inf

y2T (x)
kq(x; y)k : For each b 2 [0; 1]; we de�ne the set Ixb;q := fy 2 T (x) : b kq(x; y)k �

Dq(x; T (x))g:

Remark 2.3.7 If T : X ! K(X) is a multivalued mapping and 0 < b < 1, it is clear
that, for every x 2 X, the set Ixb;q is nonempty.

We present now a �xed point theorem for multivalued operators on cone metric spaces
endowed with a c-distance.

Theorem 2.3.8 Let (X; d) be a complete cone metric space, P be a regular cone, q be
a c-distance on X and let T : X ! K(X) be a multivalued mapping. Assume that the
g : X ! R de�ned by g(x) = inf

y2T (x)
kq(x; y)k, x 2 X is lower semicontinuous. The

following conditions hold:
1. There exist b 2 (0; 1) and ' : [0;1[! [0; b[ such that
(1i) for each t 2 [0;1[;

lim
r!t+

sup'(r) < b;
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(1ii) for every x 2 X, there exists y 2 Ixb;q such that

Dq(y; T (y)) � '(kq(x; y)k) kq(x; y)k ;

2. for every y 2 X with y =2 T (y)

inffkq(x; y)k+Dq(x; T (x)) : x 2 Xg > 0

Then T has a �xed point.
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Chapter 3

Coupled �xed point theorems

In this chapter we present some coupled �xed points results for contractive type sin-
glevalued and multivalued operators on spaces endowed with vector-valued metrics. The
approach is based on Perov-type �xed point theorem for contractions in metric spaces
endowed with vector-valued metrics. For related results to Perov�s �xed point theorem
and for some generalizations and applications of it we refer to A. Bucur, L. Guran and A.
Petruşel [23], A. D. Filip and A. Petrusel [43], R. Precup [111].

In order to develop this chapter we mention here the references which were considered:
D. Guo and V. Lakshmikantham [53]; D. Guo, Y. J. Cho and J. Zhu [54]; J. J. Nieto
and R. R. López [87]; T. Gnana Bhaskar and V. Lakshmikantham [48]; J. J. Nieto and
R. R. López [88]; S. Hong [57]; R. P. Agarwal, M. A. El-Gebeily and D. O�Regan [4]; L.
Ćiríc, M. Cakíc, J. S. Rajovíc and J. S. Ume [34]; I. A. Rus [130], R. Precup [111]; V.
Lakshmikantham and L. Ćiríc [77]; M. D. Rus [135]; M. Bota and A. Petruşel [19], P. T.
Petru, A. Petruşel and J. C. Yao [102].

3.1 Coupled �xed point theorems for singlevalued operators

The aim of this section is to give an existence, uniqueness, data dependence and Ulam-
Hyers stability result for the coupled �xed point of a pair of contractive singlevalued
operators on spaces endowed with vector-valued metrics.

Let (X; d) be a metric space. We will focus our attention to the following system of
operatorial equations: �

x = T1 (x; y)
y = T2 (x; y)

where T1; T2 : X �X ! X are two given operators.
By de�nition, a solution (x; y) 2 X �X of the above system is called a �xed point for

the pair (T1; T2) : In a similar way, the case of an operatorial inclusion (using the symbol
2 instead of =) could be considered.

For the proof of the main result in this section we need the notion of Ulam-Hyers
stability of a system of operatorial equations (see I. A. Rus [130]).
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De�nition 3.1.1 Let (X; d) be a metric space and let T1; T2 : X �X ! X be two opera-
tors. Then the operatorial equations system�

x = T1 (x; y)
y = T2 (x; y)

(3.1)

is said to be Ulam-Hyers stable, if there exist c1; c2; c3; c4 > 0 such that for each "1; "2 > 0
and each pair (u�; v�) 2 X �X such that

d (u�; T1 (u
�; v�)) � "1 (3.2)

d (v�; T2 (u
�; v�)) � "2;

there exists a solution (x�; y�) 2 X �X of (3.1) such that

d (u�; x�) � c1"1 + c2"2 (3.3)

d (v�; y�) � c3"1 + c4"2:

For examples and other considerations regarding Ulam-Hyers stability and generalized
Ulam-Hyers stability of the operatorial equations and inclusions see I. A. Rus [130], M.
Bota and A. Petruşel [19], P. T. Petru, A. Petruşel and J. C. Yao [102].

The main result of this section is the following existence, uniqueness, data dependence
and Ulam-Hyers stability theorem for the coupled �xed point of a pair of singlevalued
operators (T1; T2).

Theorem 3.1.2 Let (X; d) be a complete metric space, T1; T2 : X � X ! X be two
operators such that

d (T1 (x; y) ; T1 (u; v)) � k1d (x; u) + k2d (y; v) (3.4)

d (T2 (x; y) ; T2 (u; v)) � k3d (x; u) + k4d (y; v)

for all (x; y) ; (u; v) 2 X � X; (where ki 2 R+; for i 2 f1; 2; 3; 4g). We suppose that

A :=

�
k1 k2
k3 k4

�
converges to zero. Then:

(i) there exists a unique element (x�; y�) 2 X �X such that�
x� = T1 (x

�; y�)
y� = T2(x

�; y�);
(3.5)

(ii) the sequence (Tn1 (x; y) ; T
n
2 (x; y))n2N converges to (x

�; y�) as n!1, where

Tn+11 (x; y) := Tn1 (T1 (x; y) ; T2 (x; y))

Tn+12 (x; y) := Tn2 (T1 (x; y) ; T2 (x; y)) ;
(3.6)

for all n 2 N.
(iii) we have the following estimation:�

d (Tn1 (x0; y0) ; x
�)

d (Tn2 (x0; y0) ; y
�)

�
� An (I �A)�1

�
d (x0; T1 (x0; y0))
d (y0; T2 (x0; y0))

�
; (3.7)
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(iv) let F1; F2 : X �X ! X be two operators such that, there exist �1; �2 > 0 with

d (T1 (x; y) ; F1 (x; y)) � �1
d (T2 (x; y) ; F2 (x; y)) � �2;

for all (x; y) 2 X �X. If (a�; b�) 2 X �X is such that�
a� = F1 (a

�; b�)
b� = F2 (a

�; b�) ;
(3.8)

then �
d (a�; x�)
d (b�; y�)

�
� (I �A)�1 �; (3.9)

where � :=
�
�1
�2

�
.

(v) let F1; F2 : X �X ! X be two operators such that, there exist �1; �2 > 0 with

d (T1 (x; y) ; F1 (x; y)) � �1
d (T2 (x; y) ; F2 (x; y)) � �2;

(3.10)

for all (x; y) 2 X �X: If we consider the sequence (Fn1 (x; y) ; Fn2 (x; y))n2N, given by

Fn+11 (x; y) := Fn1 (F1 (x; y) ; F2 (x; y))

Fn+12 (x; y) := Fn2 (F1 (x; y) ; F2 (x; y)) ;
(3.11)

for all n 2 N� and � :=
�
�1
�2

�
; then

�
d (Fn1 (x0; y0) ; x

�)
d (Fn2 (x0; y0) ; y

�)

�
� (I �A)�1 � +An (I �A)�1

�
d (x0; T1 (x0; y0))
d (y0; T2 (x0; y0))

�
;

(vi) the operatorial equations system�
x = T1 (x; y)
y = T2 (x; y)

(3.12)

is Ulam-Hyers stable.

3.2 Coupled �xed point theorems for mixed monotone type
singlevalued operators

In this section the purpose is to present, in the setting of an ordered metric space, a Gnana
Bhaskar-Lakshmikantham type theorem for the coupled �xed point problem associated to
a pair of singlevalued operators satisfying a generalized mixed monotone assumption.

Let X be a nonempty set endowed with a partial order relation denoted by �. Then
we denote

X� := f(x1; x2) 2 X �X : x1 � x2 or x2 � x1g:

If f : X ! X is an operator, then we denote the cartesian product of f with itself as
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follows:

f � f : X �X ! X �X; given by (f � f)(x1; x2) := (f(x1); f(x2)):

The following result will be an important tool in our approach.

Theorem 3.2.1 Let (X; d;�) be an ordered generalized metric space and let f : X ! X
be an operator. We suppose that:

(1) for each (x; y) =2 X� there exists z(x; y) := z 2 X such that (x; z); (y; z) 2 X�;
(2) X� 2 I(f � f);
(3) f : (X; d)! (X; d) is continuous;
(4) the metric d is complete;
(5) there exists x0 2 X such that (x0; f(x0)) 2 X�;
(6) there exists a matrix A 2Mmm(R+) which converges to zero, such that

d(f(x); f(y)) � Ad(x; y); for each (x; y) 2 X�:

Then f : (X; d)! (X; d) is a Picard operator.

We will apply the above result for the coupled �xed point problem generated by two
operators.

Let X be a nonempty set endowed with a partial order relation denoted by �. If we
consider z := (x; y); w := (u; v) two arbitrary elements of Z := X �X, then, by de�nition

z � w if and only if (x � u and y � v):

Notice that � is a partial order relation on Z.
We denote

Z� = f(z; w) := ((x; y); (u; v)) 2 Z � Z : z � w or w � zg:

Let T : Z ! Z be an operator de�ned by

T (x; y) :=

�
T1 (x; y)
T2 (x; y)

�
= (T1 (x; y) ; T2 (x; y)) : (3.13)

The cartesian product of T and T will be denoted by T�T and it is de�ned in the following
way

T � T : Z � Z ! Z � Z; (T � T )(z; w) := (T (z); T (w)):

The �rst main result in this section is the following theorem.

Theorem 3.2.2 Let (X; d;�) be an ordered and complete metric space and let T1; T2 :
X �X ! X be two operators. We suppose:

(i) for each z = (x; y); w = (u; v) 2 X � X which are not comparable with respect to
the partial ordering � on X � X, there exists t := (t1; t2) 2 X � X (which may depend
on (x; y) and (u; v)) such that t is comparable (with respect to the partial ordering �) with
both z and w, i.e.,

((x � t1 and y � t2) or (x � t1 and y � t2)) and ((u � t1 and v � t2) or (u � t1 and v � t2));
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(ii) for all (x � u and y � v) or (u � x and v � y) we have�
T1(x; y) � T1(u; v)
T2(x; y) � T2(u; v)

or
�
T1(u; v) � T1(x; y)
T2(u; v) � T2(x; y)

;

(iii) T1; T2 : X �X ! X are continuous;
(iv) there exists z0 := (z10 ; z

2
0) 2 X �X such that�

z10 � T1(z
1
0 ; z

2
0)

z20 � T2(z
1
0 ; z

2
0)

or
�
T1(z

1
0 ; z

2
0) � z10

T2(z
1
0 ; z

2
0) � z20

;

(v) there exists a matrix A =
�
k1 k2
k3 k4

�
2M2(R+) convergent toward zero such

that

d(T1(x; y); T1(u; v)) � k1d(x; u) + k2d(y; v)

d(T2(x; y); T2(u; v)) � k3d(x; u) + k4d(y; v);

for all (x � u and y � v) or (u � x and v � y);
Then there exists a unique element (x�; y�) 2 X �X such that

x� = T1(x
�; y�) and y� = T2(x

�; y�)

and the sequence of the succesive aproximations (Tn1 (w
1
0; w

2
0); T

n
2 (w

1
0; w

2
0)) converges

to (x�; y�) as n!1, for all w0 = (w10; w20) 2 X �X:

For the particular case of classical coupled �xed point problems (i.e., T1(x; y) := S(x; y)
and T2(x; y) := S(y; x), where S : X �X ! X is a given operator) we get the following
generalization of the Gnana Bhaskar-Lakshmikantham theorem in [48].

Theorem 3.2.3 Let (X; d;�) be an ordered and complete metric space and let S : X �
X ! X be an operator. We suppose:

(i) for each z = (x; y); w = (u; v) 2 X �X which are not comparable with respect to
the partial ordering � on X � X, there exists t := (t1; t2) 2 X � X (which may depend
on (x; y) and (u; v)) such that t is comparable (with respect to the partial ordering �) with
both z and w;

(ii) for all (x � u and y � v) or (u � x and v � y) we have�
S(x; y) � S(u; v)
S(y; x) � S(v; u)

or
�
S(u; v) � S(x; y)
S(v; u) � S(y; x)

;

(iii) S : X �X ! X is continuous;
(iv) there exists z0 := (z10 ; z

2
0) 2 X �X such that�

z10 � S(z10 ; z
2
0)

z20 � S(z20 ; z
1
0)

or
�
S(z10 ; z

2
0) � z10

S(z20 ; z
1
0) � z20

;

(v) there exist k1; k2 2 R+ with k1 + k2 < 1 such that

d(S(x; y); S(u; v)) � k1d(x; u) + k2d(y; v);
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for all (x � u and y � v) or (u � x and v � y);
Then there exists a unique element (x�; y�) 2 X �X such that

x� = S(x�; y�) and y� = S(y�; x�);

and the sequence of the succesive aproximations (Sn(w10; w
2
0); S

n(w20; w
1
0)) converges

to (x�; y�) as n!1, for all w0 = (w10; w20) 2 X �X:

For some recent �xed point results for mixed monotone operators on ordered metric
spaces see R. P. Agarwal, M. A. El-Gebeily and D. O�Regan [4], L. Ćiríc, M. Cakíc,
J. S. Rajovíc and J. S. Ume [34], T. Gnana Bhaskar and V. Lakshmikantham [48], V.
Lakshmikantham and L. Ćiríc [77], J. J. Nieto and R. R. López [87], [88].

3.3 Coupled �xed point theorems for multivalued operators

The aim of this section is to present an existence, uniqueness, data dependence and Ulam-
Hyers stability result for the coupled �xed point of a pair of multivalued operators on
complete metric spaces.

If (X; d) is a metric space and S : X �X ! P (X) is a multivalued operator, then, by
de�nition, a coupled �xed point for S is a pair (x�; y�) 2 X �X satisfying�

x� 2 S (x�; y�)
y� 2 S (y�; x�) : (3.14)

We will consider now the case of multivalued operators.
The main result in this section is an existence, uniqueness, data dependence and Ulam-
Hyers stability theorem for the coupled �xed point of a pair of multivalued operators
(T1; T2): For the proof of our main result, we give the following theorem.

Theorem 3.3.1 Let (X; d) be a complete generalized metric space and let T : X ! Pcl(X)
be a multivalued A-contraction, i.e. there exists A 2 Mmm (R+) which converges towards
zero as n ! 1 and for each x; y 2 X and each u 2 T (x) there exists v 2 T (y) such that
d(u; v) � A � d(x; y): Then T is a MWP-operator, i.e. FixT 6= ; and for each (x; y) 2
Graph(T ) there exists a sequence (xn)n2N of succesive approximations for T starting from
(x; y) which converges to a �xed point x�of T: Moreover d(x; x�) � (I � A)�1d(x; y), for
all (x; y) 2 Graph(T ):

De�nition 3.3.2 Let (X; d) generalized metric space and F : X ! P (X). The �xed point
inclusion

x 2 F (x); x 2 X (3.15)

is called generalized Ulam-Hyers stable if and only if there exists  : Rm+ ! Rm+ increasing,
continuous in o with  (0) = 0 such that for each " := ("1; :::; "m) > 0 and for each
"-solution y�of (3.15), i.e.

Dd(y
�; F (y�)) � "

there exists a solution x� of the �xed point inclusion (3.15) such that

d(y�; x�) �  ("):
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In particular, if  (t) = C � t, for each t 2 Rm+ (where C 2Mmm (R+)), then (3.15) is said
to be Ulam-Hyers stable.

Theorem 3.3.3 Let (X; d) be a complete generalized metric space and let T : X ! Pcl(X)
be a multivalued A-contraction with proximinal values. Then, the �xed point inclusion
(3.15) is Ulam-Hyers stable.

Theorem 3.3.4 Let (X; d) be a complete generalized metric space and let T : X ! Pcl(X)
be a multivalued A-contraction such that there exists x� 2 X with T (x�) = fx�g : Then the
�xed point inclusion (3.15) is Ulam-Hyers stable.

Let (X; d) be a metric space. We will focus our attention to the following system of
operatorial inclusions: �

x 2 T1(x; y)
y 2 T2(x; y)

(3.16)

where T1; T2 : X �X ! P (X) are two given multivalued operators.
By de�nition, a solution (x; y) 2 X �X of the above system is called a coupled �xed

point for the pair (T1; T2):

De�nition 3.3.5 Let (X; d) be a metric space and let T1; T2 : X � X ! P (X) are two
multivalued operators. Then the operatorial inclusions system (3.16) is said to be Ulam-
Hyers stable if there exist c1; c2; c3; c4 > 0 such that for each "1; "2 > 0 and each pair
(u�; v�) 2 X �X which satis�es the relations

d (u�; w) � "1 ; for all w 2 T1 (u�; v�) (3.17)

d (v�; z) � "2 ; for all z 2 T2 (u�; v�)

there exists a solution (x�; y�) 2 X �X of (3.16) such that

d (u�; x�) � c1"1 + c2"2 (3.18)

d (v�; y�) � c3"1 + c4"2:

Now we give our main result in this section.

Theorem 3.3.6 Let (X; d) be a complete metric space and let T1; T2 : X �X ! Pcl(X)
be two multivalued operators. Suppose that T1 has proximinal values with respect to the
�rst variable and T2 with respect to the second one. For each (x; y); (u; v) 2 X �X and
each z1 2 T1(x; y); z2 2 T2(x; y) there exist w1 2 T1(u; v); w2 2 T2(u; v) satisfying

d(z1; w1) � k1d(x; u) + k2d(y; v)

d(z2; w2) � k3d(x; u) + k4d(y; v);

where ki 2 R+; for i 2 f1; 2; 3; 4g : We suppose that A :=
�
k1 k2
k3 k4

�
converges to zero.

Then:
(i) there exists (x�; y�) 2 X �X a solution for (3.16).
(ii) the operatorial system (3.16) is Ulam-Hyers stable.
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Theorem 3.3.7 Let (X; d) be a complete metric space and let T1; T2 : X �X ! Pcl(X)
be two multivalued operators. Suppose there exist x�; y� 2 X such that

T1(x
�; y�) = fx�g; T2(x

�; y�) = fy�g: (3.19)

For each (x; y); (u; v) 2 X � X and each z1 2 T1(x; y); z2 2 T2(x; y) there exist w1 2
T1(u; v); w2 2 T2(u; v) satisfying

d(z1; w1) � k1d(x; u) + k2d(y; v)

d(z2; w2) � k3d(x; u) + k4d(y; v);

where ki 2 R+; for i 2 f1; 2; 3; 4g : We suppose that A :=
�
k1 k2
k3 k4

�
converges to zero.

Then:
(i) there exists (x�; y�) 2 X �X a solution for (3.16),
(ii) the operatorial system (3.16) is Ulam-Hyers stable.
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Chapter 4

Applications

In this chapter we present some applications to periodic boundary value systems and
to systems of functional-integral equations. These applications of the coupled �xed point
results for contractive type singlevalued and multivalued operators on spaces endowed with
vector-valued metrics were established in order to validate our previous investigations.

In order to develop this chapter the following references were used: A. C. M. Ran, M.
C. B. Reurings [118]; T. Gnana Bhaskar and V. Lakshmikantham [48], J. J. Nieto and
R. R. López [88]; V. Lakshmikantham and L. Ćiríc [77]; V. Berinde, M. Borcut [16]; W.
Sintunavarat, P. Kumam, and Y. J. Cho [143]; M. D. Rus [136].

4.1 Application to a periodic boundary value problem

In this section we study the existence, uniqueness and Ulam-Hyers stability of a solution to
a periodic boundary value problem as an application of the coupled �xed point Theorem
3.1.2 presented in Chapter 3. The approach is based on the application presented in T.
Gnana Bhaskar and V. Lakshmikantham [48].

For more applications, see for example: V. Lakshmikantham and L. Ćiríc [77], W.
Sintunavarat, P. Kumam, and Y. J. Cho [143], J. J. Nieto and R. R. López [88], A. C. M.
Ran, M. C. B. Reurings [118].

We consider now the following periodic boundary value problem8>><>>:
u0 = f(t; u) + g(t; v)
v0 = f(t; v) + g(t; u)

u(0) = u(T )
v(0) = v(T )

(4.1)

assuming that f; g are continuous functions and satisfy certain assumptions, which we will
present later.

In general, a problem of this type does not have solution. Take, for example the
following problem �

x0(t) = 1
x(0) = x(T ):

As a consequence, we can point out that the periodic boundary value system (4.1) has
in general no solutions.
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Then, in order to obtain existence results we rewrite the system (4.1) in the following
form and we study the existence of its solution:�

u
0
+ �1u� �2v = f(t; u) + g(t; v) + �1u� �2v;

v
0
+ �1v � �2u = f(t; v) + g(t; u) + �1v � �2u;

(4.2)

together with the periodicity conditions,�
u(0) = u(T );
v(0) = v(T ):

(4.3)

This problem is equivalent to the following integral equations system:8>>>>><>>>>>:
u(t) =

R T
0 G1(t; s)[f(s; u) + g(s; v) + �1u� �2v]

+G2(t; s)[f(s; v) + g(s; u) + �1v � �2u]ds

v(t) =
R T
0 G1(t; s)[f(s; v) + g(s; u) + �1v � �2u]

+G2(t; s)[f(s; u) + g(s; v) + �1u� �2v]ds

where

G1(t; s) =

8>><>>:
1
2

h
e�1(t�s)

1�e�1T +
e�2(t�s)

1�e�2T

i
0 � s < t � T

1
2

h
e�1(t+T�s)

1�e�1T + e�2(t+T�s)

1�e�2T

i
0 � t < s � T

G2(t; s) =

8>><>>:
1
2

h
e�2(t�s)

1�e�2T �
e�1(t�s)

1�e�1T

i
0 � s < t � T

1
2

h
e�2(t+T�s)

1�e�2T � e�1(t+T�s)

1�e�1T

i
0 � t < s � T

Here, �1 = �(�1 + �2) and �2 = (�2 � �1):
We need to guarantee that G1(t; s) � 0, 0 � t, s � T; and G2(t; s) � 0, 0 � t; s � T; by
choosing �1; �2 suitably.
We make the following appropriate assumption:

Assumption There exist �1 > 0; �2 > 0 and �1 > 0; �2 > 0; such that for all u; v 2 R;
v � u;

0 � (f(t; u) + �1u)� (f(t; v) + �1v) � �1(u� v) (4.4)

��2(u� v) � (g(t; u)� �2u)� (g(t; v)� �2v) � 0; (4.5)

where S :=
� �1

�1+�2

�2
�1+�2

�2
�1+�2

�1
�1+�2

�
is a matrix convergent to zero.

The following lemma answers to the above problem, regarding guaranteeing the con-
ditions for G1(t; s) and G2(t; s).
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Lemma 4.1.1 (T. Gnana Bhaskar and V. Lakshmikantham [48]) If

ln

�
2e� 1
e

�
� (�2 � �1)T (4.6)

(�1 + �2)T � 1 (4.7)

then G1(t; s) � 0 for 0 � t; s � T; and G2(t; s) � 0 for 0 � t; s � T:

Let X = C(I;R) be the metric space of all continuous functions u : I ! R; endowed
with the metric d(u; v) = sup

t2I
ju(t)� v(t)j ; for u; v 2 X:

For x; y; u; v 2 X, we also denote ed((x; y); (u; v)) := � d(x; u)
d(y; v)

�
:

Let us de�ne A : X �X ! X for t 2 I; by

A(u; v)(t) =

Z T

0
G1(t; s)[f(s; u) + g(s; v) + �1u� �2v]

+G2(t; s)[f(s; v) + g(s; u) + �1v � �2u]ds:

Note that if (u; v) 2 X �X is a coupled �xed point of A; then we have

u(t) = A(u; v)(t) and v(t) = A(v; u)(t); for all t 2 I:

Thus, (u; v) is a solution of (4.2)- (4.3).
For the proof of our main result we need the following notion.

De�nition 4.1.2 The system8>>>>>><>>>>>>:

u(t) =

Z T

0
G1(t; s)[f(s; u) + g(s; v) + �1u� �2v]

+G2(t; s)[f(s; v) + g(s; u) + �1v � �2u]ds

v(t) =

Z T

0
G1(t; s)[f(s; v) + g(s; u) + �1v � �2u]

+G2(t; s)[f(s; u) + g(s; v) + �1u� �2v]ds

(4.8)

is said to be Ulam-Hyers stable if there exist c1; c2 > 0 such that for each "1; "2 > 0 and
each solution (x�; y�) of the following inequations system8>>>>>><>>>>>>:

j x�(t)�
Z T

0
G1(t; s)[f(s; x

�) + g(s; y�) + �1x
� � �2y�]

+G2(t; s)[f(s; y
�) + g(s; x�) + �1y� � �2x�]ds j� "1

j y�(t)�
Z T

0
G1(t; s)[f(s; y

�) + g(s; x�) + �1y
� � �2x�]

+G2(t; s)[f(s; x
�) + g(s; y�) + �1x� � �2y�]ds j� "2

(4.9)

there exists a solution (u�; v�) of (4.8) such that

ju�(t)� x�(t)j � c1"1 + c2"2

jv�(t)� y�(t)j � c3"1 + c4"2:
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Our main result is the following existence, uniqueness and Ulam-Hyers stability of a
solution to a periodic boundary value problem.

Theorem 4.1.3 Consider the problem (4.1) with f; g 2 C(I �R;R) and suppose that the
Assumption is satis�ed. If (4.6) and (4.7) are ful�lled, then:

(i) there exists a unique solution (u�; v�) of the periodic boundary value problem (4.1).
(ii) let f1; g1 2 C(I � R;R) such that, there exist �1; �2 > 0 with�

jf(t; u)� f1(t; u)j � �1
jg(t; u)� g1(t; u)j � �2

for all (t; u) 2 I�R: Let (a�; b�) 2 X�X be a solution of the problem (4.1) with f replaced
by f1 and g replaced by g1: Then

ed((u�; v�); (a�; b�)) = � d(a�; u�)
d(b�; v�)

�
� (I � S)�1�;

where � :=
�
(�1 + �2)

1
�2��1

(�1 + �2)
1

�2��1

�
:

(iii) the system (4.8) is Ulam-Hyers stable.

4.2 Applications to systems of di¤erential and functional-
integral equations

In this section we provide some applications to �rst-oder di¤erential systems with periodic
boundary value conditions, considering also the mixed monotone property and we present
some applications to systems of functional-integral equations. In the �rst part we investi-
gate the existence and uniqueness of a solution to a periodic boundary value problem, as
an application of the coupled �xed point Theorem 3.2.2 for mixed monotone singlevalued
operators. In the second part of this section we present two applications of Theorem 3.2.3,
which are existence and uniqueness results for systems of functional-integral equations,
which appear in tra¢ c �ow models. The last application which is presented in this section
is an existence and uniqueness result for a system of �rst-order boundary value problem
with multivalued operators.

We study now the existence and uniqueness of the solution to a periodic boundary
value system, as an application to coupled �xed point Theorem 3.2.2 for mixed monotone
type singlevalued operators, in the framework of partially ordered metric space.

We denote the partial order relation by � on C(I) � C(I). If we consider z := (x; y)
and w := (u;w) two arbitrary elements of C(I)� C(I), then by de�nition

z � w if and only if (x � u and y � v);

where x � u means that x(t) � u(t); for all t 2 I.
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We consider the �rst-order periodic boundary value system:8>><>>:
x0(t) = f1(t; x(t); y(t))
y0(t) = f2(t; x(t); y(t))

x(0) = x(T )
y(0) = y(T )

for all t 2 I := [0; T ] (4.10)

where T > 0 and f1; f2 : I � R2 ! R under the assumptions:
(a1) f1; f2 are continuous;
(a2) there exist � > 0 and �1; �2; �3; �4 > 0 such that

0 � f1(t; x; y)� f1(t; u; v) + �(x� u) � �[�1(x� u) + �2(y � v)]

�� [�3(x� u) + �4(y � v)] � f2(t; x; y)� f2(t; u; v) + �(y � v) � 0;

for all t 2 I and x; y; u; v 2 R:
(a3) for each z := (x; y); w := (u;w) 2 C(I)� C(I) which are not comparable with
respect to the partial ordering � on C(I)�C(I) there exists p := (p1; p2) 2 C(I)�C(I)
such that p is comparable (with respect to the partial ordering �) with both z and w,
i.e.

((x � p1 and y � p2) or (x � p1 and y � p2)) and

(u � p1 and v � p2) or (u � p1 and v � p2)):

(a4) for all (x � u and y � v) or (u � x and v � y) we have�
f1(t; x; y) � f1(t; u; v)
f2(t; x; y) � f1(t; u; v)

or
�
f1(t; u; v) � f1(t; x; y)
f2(t; u; v) � f2(t; x; y)

:

(a5) there exists z0 := (z10 ; z
2
0) 2 C(I)� C(I) such that the following relations hold:

(a5�) �
z10(t) � f1(t; z

1
0(t); z

2
0(t))

z20(t) � f2(t; z
1
0(t); z

2
0(t))

or
�
f1(t; z

1
0(t); z

2
0(t)) � z10(t)

f2(t; z
1
0(t); z

2
0(t)) � z20(t)

(a5�)

(1 + �)

Z T

0
G�(t; s)z

1
0(s)ds � z10(t)

(1 + �)

Z T

0
G�(t; s)z

2
0(s)ds � z20(t)

for all t 2 I:
(a6) the matrix S :=

�
�1 �2
�3 �4

�
is convergent to zero.

Lemma 4.2.1 Let x 2 C1(I) be such that it satis�es the periodic boundary value problem�
x0(t) = h(t)
x(0) = x(T )

t 2 I;
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with h 2 C(I): Then for some � 6= 0 the above problem is equivalent to

x(t) =

Z T

0
G�(t; s)(h(s) + �x(s))ds, for all t 2 I;

where

G�(t; s) =

(
e�(T+s�t)

e�T�1 ; if 0 � s < t � T
e�(s�t)

e�T�1 ; if 0 � t < s � T
:

The problem (4.10) is equivalent to the coupled �xed point problem�
x = F1(x; y)
y = F2(x; y)

; with X = C(I) and F1; F2 : X2 ! X de�ned by

F1(x; y)(t) =

Z T

0
G�(t; s) [f1(s; x(s); y(s)) + �x(s)] ds

F2(x; y)(t) =

Z T

0
G�(t; s) [f2(s; x(s); y(s)) + �y(s)] ds

We consider the complete metric d induced by the sup-norm on X;

d(x; y) = sup
t2I

jx(t)� y(t)j , for x; y 2 C(I):

For x; y; u; v 2 X, we also denote ed((x; y); (u; v)) := � d(x; u)
d(y; v)

�
:

Note that if (x; y) 2 X �X is a coupled �xed point of F , then we have

x(t) = F1(x; y)(t) and y(t) = F2(x; y)(t) for all t 2 I;

where F (x; y)(t) := (F1(x; y)(t); F2(x; y)(t)):

Theorem 4.2.2 Consider the problem (4.10) under the assumptions (a1)-(a6). Then
there exists a unique solution (x�; y�) of the �rst-order boundary value problem (4.10).

As an application of Theorem 3.2.3, we present now an existence and uniqueness result
for a system of functional-integral equations which appears in some tra¢ c �ow models.8<: x(t) = f

�
t; x(t);

R T
0 k(t; s; x(s); y(s))ds)

�
y(t) = f

�
t; y(t);

R T
0 k(t; s; x(s); y(s))ds)

� (4.11)

By a solution of system (4.11) we understand a couple (x; y) 2 C[0; T ]�C[0; T ]; which
satis�es the system for all t 2 [0; T ].

As before, we consider on X := C[0; T ] the following partial ordering relation

x �C y if and only if x(t) � y(t); for all t 2 [0; T ]

and the max-norm
kxkC := max

t2[0;T ]
jx(t)j:
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Notice that, as before, the partial ordering relation �C generates on X � X a partial
ordering �C .
If we de�ne

S : X�X ! X; (x; y) 7�! S(x; y); where S(x; y)(t) := f(t; x(t);

Z T

0
k(t; s; x(s); y(s))ds);

then, the above system can be represented as a coupled �xed point problem:�
x = S(x; y)
y = S(y; x)

An existence and uniqueness result for the system (4.11) is the following theorem.

Theorem 4.2.3 Let k : [0; T ] � [0; T ] � R2 ! R and f : [0; T ] � R � R ! R be two
continuous mappings. We suppose:

(i) there exists z0 := (z10 ; z
2
0) 2 C[0; T ]� C[0; T ] such that(

z10(t) � f(t; z10(t);
R T
0 k(t; s; z10(t); z

2
0(t))ds)

z20(t) � f(t; z20(t);
R T
0 k(t; s; z20(t); z

1
0(t))ds)

or

(
z10(t) � f(t; z10(t);

R T
0 k(t; s; z10(t); z

2
0(t))ds)

z20(t) � f(t; z20(t);
R T
0 k(t; s; z20(t); z

1
0(t))ds)

;

(ii) (a) f(t; �; z) is increasing, for all t 2 [0; T ], z 2 R and k(t; s; �; z) is increasing,
k(t; s; w; �) is decreasing and f(t; w; �) is increasing, for all t; s 2 [0; T ], w; z 2 R

or
(b) f(t; �; z) is decreasing, for all t 2 [0; T ], z 2 R and k(t; s; �; z) is decreasing,

k(t; s; w; �) is increasing and f(t; w; �) is decreasing, for all t; s 2 [0; T ], w; z 2 R;
(iii) there exist k1; k2 2 R+ such that

jf(t; w1; z1)� f(t; w2; z2)j � k1jw1 � w2j+ k2jz1 � z2j;

for all t 2 [0; T ] and w1; w2; z1; z2 2 R;
(iv) there exist �; � 2 R+ such that, for all t; s 2 [0; T ] and w1; w2; z1; z2 2 R we have

jk(t; s; w1; z1)� k(t; s; w2; z2)j � �jw1 � w2j+ �jz1 � z2j;

(v) k1 + k2T (�+ �) < 1.
Then, there exists a unique solution (x�; y�) of the system (4.11).

We present now another application of Theorem 3.2.3, an existence and uniqueness re-
sult for a system of functional-integral equations. We apply a coupled �xed point theorem
to an equivalent system of operatorial equations8<: x(t) = f

�
t; x(t);

R t
0 k(t; s; x(s); y(s))ds)

�
y(t) = f

�
t; y(t);

R t
0 k(t; s; x(s); y(s))ds)

� (4.12)

By a solution of system (4.12) we understand a couple (x; y) 2 C[0; T ] � C[0; T ]; which
satis�es the system for all t 2 [0; T ].
We consider on X := C[0; T ] the following partial ordering relation

x �B y if and only if x(t) � y(t); for all t 2 [0; T ]
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and the Bielecki norm
kxkB := max

t2[0;T ]

�
jx(t)je��t

�
;

for some suitable � > 0:
Notice that, the partial ordering relation �B generates on X � X a partial ordering

�B.
If we de�ne the operator

S : X �X ! X; (x; y) 7�! S(x; y); where S(x; y)(t) := f(t; x(t);

Z t

0
k(t; s; x(s); y(s))ds);

then, the above system can be represented as a coupled �xed point problem:�
x = S(x; y)
y = S(y; x)

An existence and uniqueness result for the system (4.12) is the following theorem.

Theorem 4.2.4 Let k : [0; T ] � [0; T ] � R2 ! R and f : [0; T ] � R � R ! R be two
continuous mappings. We suppose:

(i) there exists z0 := (z10 ; z
2
0) 2 C[0; T ]� C[0; T ] such that(

z10(t) � f(t; z10(t);
R t
0 k(t; s; z

1
0(t); z

2
0(t))ds)

z20(t) � f(t; z20(t);
R t
0 k(t; s; z

2
0(t); z

1
0(t))ds)

or

(
z10(t) � f(t; z10(t);

R t
0 k(t; s; z

1
0(t); z

2
0(t))ds)

z20(t) � f(t; z20(t);
R t
0 k(t; s; z

2
0(t); z

1
0(t))ds)

;

(ii) (a) f(t; �; z) is increasing, for all t 2 [0; T ], z 2 R and k(t; s; �; z) is increasing,
k(t; s; w; �) is decreasing and f(t; w; �) is increasing, for all t; s 2 [0; T ], w; z 2 R

or
(b) f(t; �; z) is decreasing, for all t 2 [0; T ], z 2 R and k(t; s; �; z) is decreasing,

k(t; s; w; �) is increasing and f(t; w; �) is decreasing, for all t; s 2 [0; T ], w; z 2 R;
(iii) there exist k1; k2 2 R+ such that

jf(t; w1; z1)� f(t; w2; z2)j � k1jw1 � w2j+ k2jz1 � z2j;

for all t 2 [0; T ] and w1; w2; z1; z2 2 R;
(iv) there exist �; � 2 R+ such that, for all t; s 2 [0; T ] and w1; w2; z1; z2 2 R we have

jk(t; s; w1; z1)� k(t; s; w2; z2)j � �jw1 � w2j+ �jz1 � z2j;

(v) k1 < 1.
Then, there exists a unique solution (x�; y�) of the system (4.12).

As the consequence, of the above results we can obtain an existence and uniqueness
result for a system of �rst-order boundary value problem with multivalued operators.

In what follows, we will consider a basic selection theorem. For other results regarding
continuous selections for lower semicontinuous and upper semicontinuous multi-function
with convex values see A. Petruşel [103].

De�nition 4.2.5 Let X;Y be nonempty sets and F : X ! P (Y ): Then the singlevalued
operator f : X ! Y is called a selection of F if and only if f(x) 2 F (x), for each x 2 X.

36



Theorem 4.2.6 (Michael�s Selection Theorem) Let (X; d) be a metric space, Y be a
Ba-nach space and F : X ! Pcl;cv(R) be lower semicontinuous on X. Then there exists
f : X ! Y a continuous selection of F:

We consider the following �rst-order periodic boundary value system:8>><>>:
x0(t) 2 F1(t; x(t); y(t))
y0(t) 2 F2(t; x(t); y(t))

x(0) = x(T )
y(0) = y(T )

for all t 2 I := [0; T ] ; (4.13)

where T > 0 and F1; F2 : [0; T ]� R2 ! Pcl;cv(R).
For all t 2 I and x; y 2 C1(I) we denote

G1 : [0; T ]! Pcl;cv(R); G1(t) := F1(t; x(t); y(t)) and

G2 : [0; T ]! Pcl;cv(R); G2(t) := F2(t; x(t); y(t)):

Remark 4.2.7 If G1 and G2 are lower semicontinuous, then G1, G2 have (by Michael�s
Selection Theorem) continuous selections.

Thus there exist

g(1)xy : [0; T ]! R;

g(2)xy : [0; T ]! R;

continuous selections for G1 and G2 (i.e. g
(1)
xy (t) 2 G1(t) = F1(t; x(t); y(t)),

g
(2)
xy (t) 2 G2(t) = F2(t; x(t); y(t))):
We consider now the periodic boundary value problem:8>>><>>>:

x0(t) = g
(1)
xy (t)

y0(t) = g
(2)
xy (t)

x(0) = x(T )
y(0) = y(T )

for all t 2 I := [0; T ] : (4.14)

Remark 4.2.8 Any solution for (4.14) is a solution for (4.13).

Remark 4.2.9 The periodic boundary value problem (4.14) is equivalent to the following
system 8>><>>:

x(t) =
R T
0 G�(t; s)

h
g
(1)
xy (s) + �x(s)

i
ds

y(t) =
R T
0 G�(t; s)

h
g
(2)
xy (s) + �y(s)

i
ds

where

G�(t; s) =

8><>:
e�(T+s�t)

e�T�1 ; if 0 � s < t � T

e�(s�t)

e�T�1 ; if 0 � t < s � T
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As before, the problem (4.14) is equivalent to the coupled �xed point problem

(
x = G

(1)
xy

y = G
(2)
xy

,

where X = C(I) and G(1)xy ; G
(2)
xy : X2 ! X are de�ned by

G(1)xy (t) =

Z T

0
G�(t; s)

h
g(1)xy (s) + �x(s)

i
ds

G(2)xy (t) =

Z T

0
G�(t; s)

h
g(2)xy (s) + �y(s)

i
ds:

We consider the complete metric d induced by the sup-norm on X;

d(x; y) = sup
t2I

jx(t)� y(t)j , for x; y 2 C(I):

For x; y; u; v 2 X, we also denote ed((x; y); (u; v)) := � d(x; u)
d(y; v)

�
:

Theorem 4.2.10 We consider the problem (4.13) and we suppose that:
(i) G1 : [0; T ]! Pcl;cv(R); G1(t) := F1(t; x(t); y(t)) is lower semicontinuous,

G2 : [0; T ]! Pcl;cv(R); G2(t) := F2(t; x(t); y(t)) is lower semicontinuous, for each

x; y 2 C[0; T ];

(ii) for any g(1)xy and g
(2)
xy continuous selection for G1, respectively G2, there exist � > 0

and �1; �2; �3; �4 > 0 such that

0 � g(1)xy (t)� g(1)uv (s) + �(x� u) � �[�1(x� u) + �2(y � v)]

0 � g(2)xy (t)� g(2)uv (t) + �(y � v) � � [�3(x� u) + �4(y � v)] ;

(iii) the matrix S :=
�
�1 �2
�3 �4

�
is convergent to zero,

Then there exists a unique solution of the �rst-order boundary value problem (4.13).
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[150] I. Şahin, M. Telsi, A theorem on common �xed point of expansion type mapping in
cone metric spaces, An. St. Univ. Ovidius. Constanţa, 18 (2010) 329�356.
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