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Bolyai University).

Cluj-Napoca November 2013



iv Contents



Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

I Positive linear operators 1

1 On positive linear operators 3
1.1 Basic notion . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Rate of convergence . . . . . . . . . . . . . . . . . . . . . 3
1.3 Fuzzy aspects on positive linear operators . . . . . . . . 3

2 New results on some classes of positive linear operators 5
2.1 On some fuzzy positive and linear operators . . . . . . . 5
2.2 An asymptotic formula for Jain’s operators . . . . . . . . 6
2.3 An approximation property of the generalized Jain’s op-

erators of two variables . . . . . . . . . . . . . . . . . . . 8

II History-Dependent Operators in Contact Me-
chanics 11

3 Preliminaries 13
3.1 Backgrounds on functional analysis . . . . . . . . . . . . 13

3.1.1 Basic notion . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 History-dependent operators . . . . . . . . . . . . 14
3.1.3 Function spaces in Contact Mechanics . . . . . . 14

3.2 Modelling of contact problems . . . . . . . . . . . . . . . 14



vi Contents

3.2.1 Physical setting . . . . . . . . . . . . . . . . . . . 14
3.2.2 Constitutive laws . . . . . . . . . . . . . . . . . . 15
3.2.3 Contact conditions . . . . . . . . . . . . . . . . . 15
3.2.4 Friction laws . . . . . . . . . . . . . . . . . . . . . 16

4 A history-dependent frictional contact problem 17
4.1 Problem statement . . . . . . . . . . . . . . . . . . . . . 17
4.2 Existence and Uniqueness . . . . . . . . . . . . . . . . . 18
4.3 A convergence result . . . . . . . . . . . . . . . . . . . . 21

5 A history-dependent frictionless contact problem 23
5.1 Problem statement . . . . . . . . . . . . . . . . . . . . . 23
5.2 Existence and uniqueness . . . . . . . . . . . . . . . . . . 25
5.3 A convergence result . . . . . . . . . . . . . . . . . . . . 27

6 A history-dependent frictionless contact problem with in-
ternal state variable 31
6.1 Problem statement . . . . . . . . . . . . . . . . . . . . . 31
6.2 Existence and uniqueness . . . . . . . . . . . . . . . . . . 32
6.3 A convergence result . . . . . . . . . . . . . . . . . . . . 35

References 39



Introduction vii

Introduction

The classical approximation theory represents an older topic of math-
ematical analysis which still remains an area with active implications
in the present. One of the most modern chapters of the approximation
theory refers to the function approximation by positive linear opera-
tors, which represents our first interest in this work. Besides the aspects
concerning approximation theory, the second interest in this thesis is
the modelling and analysis of different problems which arise in Contact
Mechanics. Contact phenomena involving deformable bodies are often
encountered in industry and everyday life and, for this reason, the liter-
ature dedicated to this field is extensive, since considerable efforts have
been made in their modelling and analysis. For example the interaction
between road and tyres, breaking pads with wheels, hip implants, artifi-
cial knee joints or the impact analysis of cars represent just few real life
problems covered by the theory of Contact Mechanics.

The aim of this thesis is to present some results concerning both posi-
tive linear operators and history-dependent operators, respectively. The
first part of the thesis is dedicated to the study of the function approxi-
mation by positive linear operators while the second part is centered on
history-dependent operators and their applications in Contact Mechan-
ics.

The present thesis is structured into two parts and seven chapters
which are listed bellow.

Part I contains Chapters 1–2 and represents a brief introduction in
the study of function approximation by positive linear operators. More
precisely, we present here a study of the various convergence properties
for such kind of operators.

Part II contains Chapters 3–6 and it presents background results on
modelling of contact problems, as well as new results obtained in the
analysis of frictionless and frictional contact problems. More precisely, we
study three contact problems for which we obtain existence, uniqueness
and convergence results. The common feature of these problems arise in
the fact that all of them are governed by history-dependent operators
which appear either in the constitutive law or in contact conditions.

A detailed description of the chapters is as follows.



viii Introduction

Chapter 1 presents the specific framework for the problems we stud-
ied in Chapter 2. In other words, we give representative notions concern-
ing positive linear operators, modules of continuity and different type of
convergence. Finally, we present some Voronovskaja-type theorems.

Chapter 2 hosts the main results obtained in the first part of the
thesis. In this chapter we emphasize the conditions required for a certain
type of positive linear operators in order to fulfil a Korovkin-type theo-
rem. The results in this chapter were published in the papers [46], [47]
and [48]

Chapter 3 is devoted to preliminary material used throughout the
second part of the manuscript. More specific, in the first part of this
chapter we start with a survey of the basic properties of Banach and
Hilbert space. Then, we introduce the notion of history-dependent oper-
ator, provide some examples and state an existence and uniqueness result
for variational inequalities with history-dependent operators. In addition,
we emphasize some function spaces we need in the study of the contact
problems we approach in the rest of the manuscript. The second part of
this chapter represents an introduction to the modelling of the contact
problems which are presented in the following chapters. In order to deal
with this kind of problems, we present the constitutive laws we use, we
describe the contact conditions and, finally, we point out the frictionless
and frictional conditions, including the well known Coulomb’s law of dry
friction.

Chapter 4 is devoted to the study of a quasistatic frictional contact
problem in which the material’s behavior is modelled with a viscoelas-
tic constitutive law with long memory. The contact is modelled with
normal compliance and memory term and the friction is modelled with
Coulomb’s law of dry friction. For this problem we present both the clas-
sical formulation and the variational formulation, respectively. The main
result of this chapter is given by Theorem II.4.1 which states the unique
weak solvability of the problem. The proof is based on arguments of vari-
ational inequalities with history-dependent operators. The second main
result of the chapter is Theorem II.4.4. It states the continuous depen-
dence of the solution with respect to the data. The material presented in
this chapter made the object of the paper [117].

Chapter 5 deals with a mathematical model which describes the con-
tact between a viscoplastic body and a foundation. In this case the con-
tact is frictionless and is modelled with normal compliance, unilateral
constraint and memory term. The novelty in this chapter lies in the
contact condition. As in the previous chapter, we obtain a variational
formulation of the problem and we state and prove the unique weak
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solvability of the problem (Theorem II.5.1). The proof of Theorem II.5.1
is based on a Banach fixed point argument combined with arguments on
variational inequalities with history-dependent operators. We also give
a result which states the existence and uniqueness of the solution of a
penalized problem (Theorem II.5.4). This theorem also guarantees that
the solution of the penalized problem converges to the solution of the
variational problem obtained earlier in this chapter, as the penalization
parameter converges to zero. The content of this chapter was written
following [49] and [100].

Chapter 6 presents a frictionless contact problem in which, as in
Chapter 5, the contact is modelled with normal compliance, unilateral
constraint and memory term. The novelty of this chapter arises in the fact
that here the material’s behavior is modelled with a rate-type constitutive
law with internal state variable. As usual, we present the classical and
the variational formulation of the problem together with two main results
concerning the existence and uniqueness of the solution of the problem
and its convergence, respectively. Theorem II.6.1 represents the first main
result in this chapter. Its proof is based on arguments on variational
inequalities with history-dependent operators. Theorem II.6.4 guarantees
the continuous dependence of the solution with respect to the data. This
chapter follows our paper [122].

The manuscript ends with a list of references in which various details,
comments and complements on the topics related to the material in this
thesis can be found.

The original results presented in this thesis have been distributed
in Chapter 2, Chapter 4, Chapter 5 and Chapter 6 as follows.

In Section 2.1: Lemma I.2.2 and Theorem I.2.3 that we find in paper
[47].

Section 2.2: Lemma I.2.6, Lemma I.2.7, Lemma I.2.8, Lemma I.2.9 and
Theorem I.2.10 published in [46].

Section 2.3: Lemma I.2.11, Theorem I.2.12 and Theorem I.2.14 that
follows our paper [48].

Section 4.2: Theorem II.4.1, Lemma II.4.2, Lemma II.4.3. Section 4.3:
Theorem II.4.4. All these results were published in the paper [117].

Section 5.2: Theorem II.5.1, Lemma II.5.2, Lemma II.5.3 published in
[49].

Section 5.3: Theorem II.5.4, Lemma II.5.5, Lemma II.5.6, Lemma II.5.7,
Lemma II.5.8, Lemma II.5.9, all published in [100].

Section 6.2 and 6.3: Theorems II.6.1, Lemma II.6.2, Lemma II.6.3 and
II.6.4, respectively, which follow our paper [122].



x Introduction

The author’s contribution to this thesis is also part of the following
scientific papers:
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A. Farcaş, An approximation property of the generalized Jain’s oper-
ators of two variables (accepted in Mathematical Sciences & Applications
E-Notes (MSAEN).
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Mirakjan operators.

XIme Colloque Franco Roumain de Mathmatiques Appliques,
Bucarest, 24-30 Aot 2012, with the paper Analyse dun problme de contact
viscoplastique sans frottement.
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Positive linear operators
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1
On positive linear operators

In this chapter we present some important notion concerning positive
linear operators, modules of continuity and aspects regarding different
types of convergence as well as Voronovskaja-type theorems for positive
linear operators. All these notion will be used later in Chapter 2.

1.1 Basic notion

This section is devoted to both, properties of positive linear operators and
the description of the summability methods. First of all we introduce the
concept of positive linear operator.

1.2 Rate of convergence

In this section we present two types of convergence and we refer to the
general framework for the rate of convergence of positive linear operators
regarding an asymptotic method of Voronovskaja type.

1.3 Fuzzy aspects on positive linear operators

In this section we collect some basic elements regarding the fuzzy positive
linear operators.
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2
New results on some classes of positive
linear operators

In this chapter we present our results that we obtained for the first part
of this thesis. First section aims to present a result concerning the fuzzy
version of a class of positive linear operators while in the second section
we give an asymptotic formula for a class of positive linear operators
defined on an unbounded interval. Finally the last part of this chapter
refers to an approximation property for a generalization of the operators
presented in the second section. The results presented in this chapter are
based on the papers [46], [47] and [48].

2.1 On some fuzzy positive and linear operators

In this section we prove that the fuzzy Bernstein-Stancu operators satisfy
the A-statistical version of fuzzy Korovkin theorem and we provide an
example that fits this case.

Definition I.2.1 Let f ∈ C([0, 1],RF), m ∈ N, 0 ≤ α ≤ β. We define

(FLα,βm f)(x) =

m∑∗

k=0

pm,k(x)� f
(
k + α

m+ β

)
, x ∈ [0, 1], (I.2.1)

where pm,k(x) =

(
m
k

)
xk(1− x)m−k.

Here RF represents the set of real fuzzy numbers and
∑∗ stands for fuzzy

summation.
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Lemma I.2.2 The fuzzy Bernstein-Stancu operators defined by (I.2.1)
are positive and linear operators.

Theorem I.2.3 If the sequence (FL
(α,β)
m f)m∈N of operators defined by

(I.2.1) satisfies the conditions

stA − lim
m
‖L̃m

(α,β)
(ei)− ei‖ = 0, i = 0, 1, 2, (I.2.2)

then
stA − lim

m
D∗(FL(α,β)

m , f) = 0. (I.2.3)

2.2 An asymptotic formula for Jain’s operators

In this section we prove a Voronovskaja type result for a class of linear
positive operators of discrete type depending on a real parameter.

Lemma I.2.4 ( [70]) For 0 < α <∞, |β| < 1, let

ωβ(k, α) = α(α + kβ)k−1e−(α+kβ)/k! ; k ∈ N0. (I.2.4)

then
∞∑
k=0

ωβ(k, α) = 1. (I.2.5)

Lemma I.2.5 ([70]) Let

S(r, α, β) =
∞∑
k=0

(α + βk)k+r−1e−(α+βk)/k!, r = 0, 1, 2, ... (I.2.6)

and
αS(0, α, β) = 1. (I.2.7)

Then

S(r, α, β) =
∞∑
k=0

βk(α + kβ)S(r − 1, α + kβ, β). (I.2.8)

Lemma I.2.6 Let S be the function defined in Lemma I.2.5. Then, one
has

(i) S(3, α, β) =
α3

(1− β)3
+

3αβ2

(1− β)4
+
β3 + 2β4

(1− β)5
,

(ii) S(4, α, β) =
α3

(1− β)4
+

6α2β2

(1− β)5
+
αβ3(11β + 4)

(1− β)6
+

6β6 + 8β5 + β4

(1− β)7
.
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The operator defined by Jain is given by

(P [β]
n f)(x) =

∞∑
k=0

ωβ(k, nx) · f
(
k

n

)
, f ∈ C[0,∞), (I.2.9)

Lemma I.2.7 The operators defined by (I.2.9) verify the following iden-
tities.

(i) (P [β]
n e3)(x) =

x3

(1− β)3
+

3x2

n(1− β)4
− x(6β4 − 6β3 − 2β − 1)

n2(1− β)5
.

(ii)(P [β]
n e4)(x) =

x4

(1− β)4
+

6x3

n(1− β)5
−x

2(36β4 − 72β3 + 36β2 − 8β − 7)

n2(1− β)6

+
x(105β5 − 14β4 − 2β3 + 12β2 + 8β + 1)

n3(1− β)7
.

Lemma I.2.8 Let the operator P
[βn]
n be defined by relation (I.2.9) and

let ϕx be given by

ϕx ∈ C2[0,∞), ϕx(t) = t− x. (I.2.10)

Then

(i) (P [βn]
n ϕ3

x)(x) =
x3

(1− βn)3
− 3x3

(1− βn)2
+

3x3

1− βn
− x3 +

3x2

n(1− βn)4

− 3x2

n(1− βn)3
− x(6β4

n − 6β3
n − 2βn − 1)

n2(1− βn)5
.

(ii) (P [βn]
n ϕ4

x)(x) =
x4

(1− βn)4
− 4x4

(1− βn)3
+

6x4

(1− βn)2
− 4x4

1− βn
+ x4

+
6x3

n(1− βn)5
− 12x3

n(1− βn)4
+

6x3

n(1− βn)3

− x2(36β4
n − 72β3

n + 36β2
n − 8βn − 7)

n2(1− βn)6

+
4x2(6β4

n − 6β3
n − 2βn − 1)

n2(1− βn)5

+
x(105β5

n − 14β4
n − 2β3

n + 12β2
n + 8βn + 1)

n3(1− βn)7
.

Lemma I.2.9 Let P
[βn]
n be the Jain operator and let ϕx be defined in

(I.2.8). In addition, if

lim
n→∞

βn = 0 (I.2.11)
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holds, then

P [βn]
n ϕ4

x ≤
12x3

n(1− βn)5
+

24x2

n2(1− βn)5
+

106x

n3(1− βn)7
.

Theorem I.2.10 Let f ∈ C2([0,∞)) and let the operator P
[βn]
n be de-

fined as in (I.2.9). If (I.2.9) holds, then

lim
n→∞

n

(
P [βn]
n (f ;x)− f(x)

)
=
x

2
f ′′(x), ∀x > 0.

2.3 An approximation property of the generalized Jain’s
operators of two variables

The purpose of this section is to introduce a new class of double positive
linear operators which depend on a parameter β. For these operators we
prove a Korovkin type theorem and we present some associated conver-
gence properties.

We present a new class of operators namely a generalization of Jain’s

operators on the nodes
(k1 + α1

m+ γ1

,
k2 + α2

m+ γ2

)
.

[β]J α,γ
m,n =

∞∑
k1=0

∞∑
k2=0

ω1
β(k1,mx)ω2

β(k2, ny)f
(k1 + α1

m+ γ1

,
k2 + α2

n+ γ2

)
(I.2.12)

with (x, y) ∈ D, f ∈ C(D) and α = (α1, α2), γ = (γ1, γ2).

Lemma I.2.11 Let (x, y) ∈ C(D) and let f00(x, y) = 1, f10(x, y) =
x, f01(x, y) = y, f20(x, y) = x2, f02(x, y) = y2. Then for the operators
described in relation (I.2.12) we have:
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[β]J α,γ
m,n(f0, 0;x, y) = 1 (I.2.13)

[β]J α,γ
m,n(f1, 0;x, y) =

mx

(m+ γ1)(1− β)
+

α1

m+ γ1

(I.2.14)

[β]J α,γ
m,n(f0, 1;x, y) =

ny

(n+ γ2)(1− β)
+

α2

n+ γ2

(I.2.15)

[β]J α,γ
m,n(f2, 0 + f0, 2;x, y) =

mx2

(m+ γ1)2(1− β)2
(I.2.16)

+
mx

(m+ γ1)2

[ 1

(1− β3)
+

2α1

1− β

]
+

α2
1

(m+ γ1)2

+
ny2

(n+ γ2)2(1− β)2
+

ny

(n+ γ2)2

[ 1

(1− β3)
+

2α2

1− β

]
+

α2
2

(n+ γ2)2
.

Theorem I.2.12 Let f ∈ C(D) and βn → 0 when n → ∞. Then the
sequence [βn]{J α,γ

m,n(f ;x, y)} converges uniformly to f(x, y) on K ⊂ D,
where K = [0, A]× [0, A], 0 < A <∞, that is

lim
m,n→∞

∥∥∥ [βn]J α,γ
m,n(f ;x, y)− f(x, y)

∥∥∥
K

= 0.

Theorem I.2.13 [34] Let A = (aj,k,m,n) be a nonnegative RH-regular
summability matrix method. Let {Lm,n} be a double sequence of positive
linear operators acting from C(D) into itself. Then, for all f ∈ C(D),

st2A − lim
m,n
‖Lm,nf − f‖C(D) = 0

if and only if

st2A − lim
m,n
‖Lm,nfi − fi‖C(D) = 0, (i = 0, 1, 2, 3), (I.2.17)

where f0(x, y) = 1, f1(x, y) = x, f2(x, y) = y and f3(x, y) = x2 + y2.

Theorem I.2.14 Let [β]J α,γ
m,n be the operators defined in (I.2.12). In ad-

diton we take β = βn and α = αn, γ = γn with the properties

βn → 0, n→∞ (I.2.18)

and,
αn → 0, n→∞, γn → 0, n→∞, (I.2.19)
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respectively. Then we have

∣∣∣[βn]J αn,γn
m,n (f ;x, y)− f(x, y)

∣∣∣ ≤ ω(f ; δ)
{

1 +
1

δ2
(2x2 + 2y2)

}
. (I.2.20)



Part II

History-Dependent Operators
in Contact Mechanics
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3
Preliminaries

In this chapter we gather both preliminary material which will be used
later in the study of boundary value problems presented in Chapters 4–
6 and preliminary material which is necessary in the modelling of the
boundary value problems we present in Chapters 4–6 of the thesis. This
chapter is divided into two main sections. First section is devoted to
background results from functional analysis and the second section aims
to present some preliminary results concerning the modelling of contact
problems.

3.1 Backgrounds on functional analysis

In this section we first recall important notion concerning the conver-
gence on normed spaces and some details regarding the Hilbert spaces.
Then we introduce the concept of history-dependent operators. We pro-
vide some examples, describe their properties, and present an existence
and uniqueness result for variational inequalities with history-dependent
operators. We continue with a short description of the function spaces
we need in the study of contact problems. Most of the results are stated
without proof since they are standard and they can be found in many
other references while for the results which are frequently used through-
out the manuscript we give the proofs, too.
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3.1.1 Basic notion

In this subsection one can find information regarding the Hilbert space
and some theorems which we use later in the manuscript.

3.1.2 History-dependent operators

In this subsection we present the definition and some examples of history-
dependent operators as well as fixed point results used later in the ma-
nuscript. Finally, we present an abstract existence and uniqueness result
concerning a class of history-dependent variational inequalities.

3.1.3 Function spaces in Contact Mechanics

In order to introduce a mathematical model that describes a contact
process, we need to describe first the spaces to which the data and the
unknowns belong.

3.2 Modelling of contact problems

We start this section by presenting the physical setting of contact pro-
cesses. Then we make a survey of the constitutive laws used in the lit-
erature, including the viscoelastic and the viscoplastic constitutive laws
we use in this manuscript. We proceed with a description of the contact
conditions. Finally, we discuss the frictionless and the frictional condi-
tions, including the Coulomb law of dry friction. More details on top-
ics related to the material presented in this chapter can be found in
[8, 35, 39, 42, 54, 59, 61, 73, 86, 101, 114, 118, 128].

3.2.1 Physical setting

We consider a general physical setting presented in Figure 3.1 and we
describe it in what follows. A deformable body occupies, in the reference
configuration, an open bounded connected set Ω ⊂ Rd with boundary Γ,
composed of three sets Γ1, Γ2 and Γ3, with the mutually disjoint relatively
open sets Γ1, Γ2 and Γ3. The body is clamped on Γ1. Surface tractions
of density f 2 act on Γ2 and volume forces of density f 0 act in Ω. In the
reference configuration the body is in contact on Γ3 with an obstacle, the
so-called foundation.

We are interested in mathematical models which describe the equilib-
rium of the mechanical state of the body, in the physical setting above,
in the framework of small strain theory. To this end, we denote by u,
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f0

f2

Ω

FIGURE 3.1. The physical setting; Γ3 is the contact surface

σ, and ε = ε(u) the displacement vector, the stress tensor, and the lin-
earized strain tensor, respectively. These are functions which depend on
the spatial variable x and on the time variable t. Nevertheless, in what
follows we do not indicate explicitly the dependence of these quantities
on x and t i.e., for instance, we write σ instead of σ(x, t). Also, recall
that the components of the linearized strain tensor ε(u) are given by

εij(u) = (ε(u))ij =
1

2
(ui,j + uj,i) (II.3.1)

where ui,j = ∂ui/∂xj. Finally, note that, here and below, all variables
are assumed to have sufficient degree of smoothness consistent with de-
velopments they are involved in. To present a mathematical model for
a specific contact process, we need to precise the constitutive law, the
balance equation, the boundary conditions, the contact conditions and,
eventually, the initial conditions.

3.2.2 Constitutive laws

A constitutive law represents a relationship between the stress σ and the
strains ε and their derivatives, eventually, which characterizes a specific
material. It describes the deformations of the body resulting from the
action of forces and tractions. Though the constitutive laws must satisfy
some basic axioms and invariance principles, they originate mostly from
experiments.

3.2.3 Contact conditions

In order to present a mathematical model for a specific contact process,
beside the constitutive law we need to describe the balance equation, the
boundary conditions and the contact conditions.
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We describe here the basic equations and boundary conditions which
are used in the study of contact problems with viscoelastic and viscoplas-
tic materials. We assume in what follows that the data and the unknowns
depend on time and we study the contact process in unbounded time in-
terval R+.

3.2.4 Friction laws

We present now some conditions in the tangential directions, called also
frictional conditions or friction laws. The simplest one is the so-called
frictionless condition in which the tangential part of the stress, (also
named the friction force) vanishes, i.e.

στ = 0. (II.3.2)



4
A history-dependent frictional contact
problem

In this chapter we consider a mathematical model which describes the
contact between a viscoelastic body and a foundation. The contact is
frictional and is modelled with normal compliance and memory term,
associated to the Coulomb’s law of dry friction. We derive a variational
formulation of the problem which is in a form of a variational inequal-
ity for the displacement field or, equivalently, in a form of a history-
dependent variational inequality for the velocity field. Our main results
in this chapter are Theorem II.4.1 and II.4.4. Theorem II.4.1 states the
unique solvability of the problem and is obtained in several steps, based
on the arguments presented in Section 3.1.2. Theorem II.4.4 states the
continuous dependence of the solution with respect to the data. It is ob-
tained using various estimates and monotonicity arguments. The material
presented in this chapter made the object of the article [117].

4.1 Problem statement

For the problem studied in this chapter the contact is frictional. It is
modelled with normal compliance and memory term, associated to the
Coulomb’s law of dry friction. The material’s behavior is described with a
viscoelastic constitutive law with long memory. The classical formulation
of the contact problem is the following.

Problem P . Find a displacement field u : Ω × R+ → Rd and a stress
field σ : Ω× R+ → Sd such that
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σ(t) = Aε(u̇(t)) + Bε(u(t)) +

∫ t

0

K(t− s)ε(u̇(t)) ds, in Ω, (II.4.1)

Divσ(t) + f 0(t) = 0 in Ω, (II.4.2)

u(t) = 0 on Γ1, (II.4.3)

σ(t)ν = f 2(t) on Γ2, (II.4.4)

−σν(t) = p(uν(t)) +

∫ t

0

b(t− s)u+
ν (s) ds on Γ3, (II.4.5)

‖στ (t)‖ ≤ µ |σν(t)|,

−στ (t) = µ |σν(t)| u̇τ (t)

‖u̇τ (t)‖ if u̇τ (t) 6= 0

 on Γ3 (II.4.6)

for all t ∈ R+ and, moreover,

u(0) = u0 in Ω. (II.4.7)

4.2 Existence and Uniqueness

First we assume that the viscosity operator satisfies the condition

(a) A : Ω× Sd → Sd.
(b) There exists LA > 0 such that
‖A(x, ε1)−A(x, ε2)‖ ≤ LA‖ε1 − ε2‖
∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) There exists mA > 0 such that
(A(x, ε1)−A(x, ε2)) · (ε1 − ε2) ≥ mA ‖ε1 − ε2‖2

∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(d) The mapping x 7→ A(x, ε) is measurable on Ω,

for any ε ∈ Sd.
(e) The mapping x 7→ A(x,0Sd) belongs to Q.



(II.4.8)
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Also, the elasticity operator and the relaxation tensor satisfy the follow-
ing conditions.

(a) B : Ω× Sd → Sd.
(b) There exists LB > 0 such that
‖B(x, ε1)−A(x, ε2)‖ ≤ LB‖ε1 − ε2‖
∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) The mapping x 7→ B(x, ε) is measurable on Ω,
for any ε ∈ Sd.

(e) The mapping x 7→ B(x,0Sd) belongs to Q.


(II.4.9)

K ∈ C(R+; Q∞). (II.4.10)

The densities of body forces and surface tractions are such that

f 0 ∈ C(R+;L2(Ω)d), f 2 ∈ C(R+;L2(Γ2)d) (II.4.11)

and the normal compliance function p satisfies

(a) p : Γ3 × R→ R+.
(b) There existsLp > 0 such that

|p(x, r1)− p(x, r2)| ≤ Lp |r1 − r2|
∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(c) The mapping x 7→ p(x, r) is measurable on Γ3,
for any r ∈ R.

(d) p(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.


(II.4.12)

Finally, the surface memory function, the coefficient of friction and the
initial data verify

b ∈ C(R+;L∞(Γ3)), b(t,x) ≥ 0 (II.4.13)

for all t ∈ R+, a.e. x ∈ Γ3,

µ ∈ L∞(Γ3), µ(x) ≥ 0 a.e. x ∈ Γ3, (II.4.14)

u0 ∈ V. (II.4.15)
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Problem PV . Find a displacement field u : R+ → V such that u(0) = u0

and the following inequality holds, for all t ∈ R+:(
Aε(u̇(t)) + Bε(u(t)), ε(v)− ε(u̇(t))

)
Q

(II.4.16)

+
(∫ t

0

K(t− s)ε(u̇(t)) ds, ε(v)− ε(u̇(t))
)
Q

+
(
p(uν(t)) +

∫ t

0

b(t− s)u+
ν (s) ds, vν − u̇ν(t)

)
L2(Γ3)

+
(
µ
(
p(uν(t)) +

∫ t

0

b(t− s)u+
ν (s) ds

)
, ‖vτ‖ − ‖u̇τ (t)‖

)
L2(Γ3)

≥ (f 0(t),v − u̇(t))L2(Ω)d + (f 2(t),v − u̇(t))L2(Γ2)d ∀v ∈ V.

A couple of functions (u,σ) which satisfies (II.4.1) and (II.4.16) is
called a weak solution for the frictional contact problem, Problem P .

We have the following existence and uniqueness result.

Theorem II.4.1 Assume that (II.4.8)–(II.4.15) hold. Then, Problem PV
has a unique solution which satisfies

u ∈ C1(R+;V ). (II.4.17)

Problem QV . Find a velocity field w : R+ → V such that the following
inequality holds, for all t ∈ R+:

(Aε(w(t)), ε(v)− ε(w(t)))Q (II.4.18)

+ϕ(Rw(t),v)− ϕ(Rw(t),w(t)))

≥ (f(t),v −w(t))Q ∀v ∈ V.

Lemma II.4.2 Let u ∈ C1(R+;V ) and w ∈ C(R+;V ) be given func-
tions such that u = Sw. Then u is a solution to the Problem PV if and
only if w is a solution to the Problem QV .

Lemma II.4.3 There exists a unique solution w to Problem QV and,
moreover, it satisfies w ∈ C(R+;V ).
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4.3 A convergence result

Consider the following assumptions:

Kρ → K in C(R+; Q∞) as ρ→ 0. (II.4.19)

There exists F : R+ → R+ and L0 ≥ 0 such that

(a) |pρ(x, r)− p(x, r)| ≤ F (ρ)(|r|+ 1)
∀ r ∈ R, a.e. x ∈ Γ3, for each ρ > 0.

(b) F (ρ)→ 0 as ρ→ 0.

(c) Lρ ≤ L0 as ρ→ 0.


(II.4.20)

bρ → b in C(R+;L∞(Γ3)) as ρ→ 0. (II.4.21)

f 0ρ → f 0 in C(R+;L2(Ω)d) as ρ→ 0. (II.4.22)

f 2ρ → f 2 in C(R+;L2(Γ2)d) as ρ→ 0. (II.4.23)

Theorem II.4.4 Assume that (II.4.19)–(II.4.23) hold. Then the solution
uρ of Problem PVρ converges to the solution u of Problem PV , i.e.

uρ → u in C1(R+;V ) (II.4.24)

as ρ→ 0.
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5
A history-dependent frictionless contact
problem

In this chapter we consider a first mathematical model which describes
the quasistatic contact between a viscoplastic body and a foundation. The
contact is frictionless and is modelled with normal compliance, unilateral
constraint and memory effects. We derive a variational formulation of the
problem, then we prove its unique weak solvability. The two main theo-
rems which state the unique solvability and the convergence result in this
chapter are Theorem II.5.1 and Theorem II.5.4, respectively. The proof
of Theorem II.5.1 is based on arguments presented in Section 3.1.2. The-
orem II.5.4 states that the solution of the penalized problem converges to
the solution of the variational problem, obtained previously. The results
obtained in this chapter were published in [49] and [100].

5.1 Problem statement

For the problem analyzed in this chapter the contact is modelled with
normal compliance, unilateral constraint and memory term. The ma-
terial’s behavior is described with a viscoplastic constitutive law. The
classical formulation of the problem is the following.



24 5. A history-dependent frictionless contact problem

Problem M. Find a displacement field u : Ω × R+ → Rd and a stress
field σ : Ω× R+ → Sd such that

σ̇(t) = Eε(u̇(t)) + G(σ(t), ε(u(t))) in Ω, (II.5.1)

Divσ(t) + f 0(t) = 0 in Ω, (II.5.2)

u(t) = 0 on Γ1, (II.5.3)

σ(t)ν = f 2(t) on Γ2, (II.5.4)

for all t ∈ R+, there exists ξ : Γ3 × R+ → R which satisfies

uν(t) ≤ g, σν(t) + p(uν(t)) + ξ(t) ≤ 0,

(uν(t)− g)
(
σν(t) + p(uν(t) + ξ(t)

)
= 0,

0 ≤ ξ(t) ≤
∫ t

0

b(t− s)u+
ν (s) ds,

ξ(t) = 0 if uν(t) < 0,

ξ(t) =

∫ t

0

b(t− s)u+
ν (s) ds if uν(t) > 0


on Γ3, (II.5.5)

for all t ∈ R+ and, moreover,

στ (t) = 0 on Γ3, (II.5.6)

u(0) = u0, σ(0) = σ0 in Ω. (II.5.7)
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5.2 Existence and uniqueness

In the study of problem M we assume that the elasticity tensor E and
the nonlinear constitutive function G satisfy the following conditions.

(a) E = (Eijkl) : Ω× Sd → Sd.
(b) Eijkl = Eklij = Ejikl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d.

(c) There exists mE > 0 such that

Eτ · τ ≥ mE‖τ‖2 ∀ τ ∈ Sd, a.e. in Ω.

 (II.5.8)

(a) G : Ω× Sd × Sd → Sd.

(b) There exists LG > 0 such that

‖G(x,σ1, ε1)− G(x,σ2, ε2)‖
≤ LG (‖σ1 − σ2‖+ ‖ε1 − ε2‖)
∀σ1,σ2, ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) The mapping x 7→ G(x,σ, ε) is measurable on Ω,

for any σ, ε ∈ Sd.
(d) The mapping x 7→ G(x,0Sd ,0Sd) belongs to Q.


(II.5.9)

Also, the normal compliance function p satisfy

(a) p : Γ3 × R→ R+.

(b) There existsLp > 0 such that

|p(x, r1)− p(x, r2)| ≤ Lp |r1 − r2|
∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(c) (p(x, r1)− p(x, r2))(r1 − r2) ≥ 0

∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(d) The mapping x 7→ p(x, r) is measurable on Γ3,

for any r ∈ R.
(e) p(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.



(II.5.10)

Finally, the densities of body forces and surface traction, the memory
function and the initial data are such that

f 0 ∈ C(R+;L2(Ω)d), f 2 ∈ C(R+;L2(Γ2)d), (II.5.11)

b ∈ C(R+;L∞(Γ3)), b(t,x) ≥ 0 a.e. x ∈ Γ3, (II.5.12)

u0 ∈ V, σ0 ∈ Q. (II.5.13)
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Consider now the subset U ⊂ V , the operators P : V → V , B :
C(R+;V )→ C(R+;L2(Γ3)) and the function f : R+ → V defined by

U = {v ∈ V : vν ≤ g on Γ3 }, (II.5.14)

(Pu,v)V =

∫
Γ3

p(uν)vν da ∀u, v ∈ V, (II.5.15)

(Bu(t), ξ)L2(Γ3) =
(∫ t

0

b(t− s)u+
ν (s) ds, ξ

)
L2(Γ3)

(II.5.16)

∀u ∈ C(R+;V ), ξ ∈ L2(Γ3), t ∈ R+,

(f(t),v)V =

∫
Ω

f 0(t) · v dx (II.5.17)

+

∫
Γ2

f 2(t) · v da ∀v ∈ V, t ∈ R+.

Problem MV . Find a displacement field u : R+ → U and a stress field
σ : R+ → Q such that, for all t ∈ R+,

σ(t) = Eε(u(t)) +

∫ t

0

G(σ(s), ε(u(s))) ds+ σ0 − Eε(u0), (II.5.18)

(σ(t), ε(v)− ε(u(t)))Q + (Pu(t),v − u(t))V (II.5.19)

+(Bu(t), v+
ν − u+

ν (t))L2(Γ3) ≥ (f(t),v − u(t))V ∀v ∈ U.

A couple (u,σ) which satisfies (II.5.1) and (II.5.19) is called a weak
solution for the frictionless contact problem, Problem M.

The unique solvability of ProblemMV is given by the following result.

Theorem II.5.1 Assume that (II.5.8)–(II.5.13) hold. Then ProblemMV

has a unique solution, which satisfies u ∈ C(R+;U) and σ ∈ C(R+;Q).

Lemma II.5.2 For each function u ∈ C(R+;V ) there exists a unique
function Su ∈ C(R+;Q) such that

Su(t) =

∫ t

0

G(Su(s) + Eε(u(s)), ε(u(s))) ds (II.5.20)

+σ0 − Eε(u0) ∀ t ∈ R+.

Moreover, the operator S : C(R+;V )→ C(R+;Q) is a history-dependent
operator, i.e. it satisfies the following property: for every n ∈ N there
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exists sn > 0 such that

‖Su1(t)− Su2(t)‖Q ≤ sn

∫ t

0

‖u1(s)− u2(s)‖V ds (II.5.21)

∀u1, u2 ∈ C(R+;V ), ∀ t ∈ [0, n].

Lemma II.5.3 Let (u,σ) be a couple of functions such that u ∈ C(R+;V ),
σ ∈ C(R+;Q). Then, (u,σ) is a solution of Problem MV if and only if

σ(t) = Eε(u(t)) + Su(t) ∀ t ∈ R+, (II.5.22)

(Eε(u(t)), ε(v)− ε(u(t)))Q + (Su(t), ε(v)− ε(u(t)))Q (II.5.23)

+(Bu(t), v+
ν − u+

ν (t))L2(Γ3) + (Pu(t),v − u(t))V

≥ (f(t),v − u(t))V ∀v ∈ U, ∀ t ∈ R+

hold.

5.3 A convergence result

In this section we prove a convergence result in the study of ProblemMV .
To this end, everywhere in this section we restrict to the homogenous case
i.e. assume that the function p does not depend on x ∈ Γ3. Moreover, we
assume that p satisfies

(a) p : R→ R+.

(b) There exists Lp > 0 such that
|p(r1)− p(r2)| ≤ Lp|r1 − r2| ∀ r1, r2 ∈ R.

(c) (p(r1)− p(r2))(r1 − r2) ≥ 0 ∀ r1, r2 ∈ R.

(d) p(r) = 0 for all r < 0.


(II.5.24)

Let q be a function which satisfies

(a) q : [g,+∞[→ R+.

(b) There exists Lq > 0 such that
|q(r1)− q(r2)| ≤ Lq|r1 − r2| ∀ r1, r2 ≥ g.

(c) (q(r1)− q(r2))(r1 − r2) > 0 ∀ r1, r2 ≥ g, r1 6= r2.

(d) q(g) = 0.


(II.5.25)
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Let µ > 0 and consider the function pµ defined by

pµ(r) =

{
p(r) if r ≤ g,

1
µ
q(r) + p(g) if r > g. (II.5.26)

Using assumption (II.5.25) it follows that the function pµ satisfies condi-
tion (II.5.24), i.e.

(a) pµ : R→ R+.

(b) There exists Lpµ > 0 such that
|pµ(r1)− pµ(r2)| ≤ Lpµ |r1 − r2| ∀r1, r2 ∈ R.

(c) (pµ(r1)− pµ(r2))(r1 − r2) ≥ 0 ∀r1, r2 ∈ R.

(d) pµ(r) = 0 for all r < 0.


(II.5.27)

This allows us to consider the operator Pµ : V → V defined by

(Pµu,v)V =

∫
Γ3

pµ(uν)vν da ∀u, v ∈ V (II.5.28)

and, moreover, we note that Pµ is a monotone, Lipschitz continuous op-
erator.

With these notation, we consider the following contact problem.

ProblemMµ. Find a displacement field uµ : Ω×R+ → Rd and a stress
field σµ : Ω× R+ → Sd such that

σ̇µ(t) = Eε(u̇µ(t)) + G(σµ(t), ε(uµ(t))) in Ω, (II.5.29)

Divσµ(t) + f 0(t) = 0 in Ω, (II.5.30)

uµ(t) = 0 on Γ1, (II.5.31)

σµ(t)ν = f 2(t) on Γ2, (II.5.32)

for all t ∈ R+, there exists ξ : Ω× R+ → R which satisfies

σµν(t) + pµ(uµν(t)) + ξ(t) = 0,

0 ≤ ξ(t) ≤
∫ t

0

b(t− s)u+
µν(s) ds,

ξ(t) = 0 if uµν(t) < 0,

ξ(t) =

∫ t

0

b(t− s)u+
µν(s) ds if uµν(t) > 0


on Γ3, (II.5.33)
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for all t ∈ R+ and, moreover,

σµτ (t) = 0 on Γ3, (II.5.34)

uµ(0) = u0, σµ(0) = σ0 in Ω. (II.5.35)

ProblemMV
µ . Find a displacement field uµ : R+ → U and a stress field

σµ : R+ → Q such that, for all t ∈ R+,

σµ(t) = Eε(uµ(t)) +

∫ t

0

G(σµ(s), ε(uµ(s))) ds (II.5.36)

+σ0µ − Eε(u0µ),

(σµ(t), ε(v)− ε(uµ(t)))Q + (Puµ(t),v − uµ(t))V (II.5.37)

+(Buµ(t), v+
ν − u+

µν(t))L2(Γ3) ≥ (f(t),v − uµ(t))V ∀v ∈ U.

We have the following existence, uniqueness and convergence result.

Theorem II.5.4 Assume that (II.5.24), (II.5.11), (II.5.13) and (II.5.25)
hold. Then:

a) For each µ > 0 there exists a unique solution uµ ∈ C(R+;V ) to
Problem MV

µ .

b) The solution uµ of Problem MV
µ converges strongly to the solution

u of Problem MV , that is

‖uµ(t)− u(t)‖V + ‖σµ(t)− σ(t)‖Q → 0 (II.5.38)

as µ→ 0, for all t ∈ R+.

Lemma II.5.5 There exists a unique solution uµ ∈ C(R+;V ) to prob-
lem MV

µ .

In order to complete the proof of the main theorem we consider the
auxiliary problem of finding a displacement field ũµ : R+ → V such that,
for all t ∈ R+,

(Eε(ũµ(t)), ε(v)− ε(ũµ(t)))Q + (Su(t), ε(v)− ε(ũµ(t)))Q (II.5.39)

+(Pµũµ(t),v − ũµ(t)))V + (Bu(t), v+
ν − ũ+

µν(t))L2(Γ3)

≥ (f(t),v − ũµ(t)))V ∀v ∈ V.
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Lemma II.5.6 There exists a unique function ũµ ∈ C(R+;V ) which
satisfies (II.5.39), for all t ∈ R+.

Lemma II.5.7 As µ→ 0,

ũµ(t) −⇀ u(t) in V,

for all t ∈ R+.

Lemma II.5.8 As µ→ 0,

‖ũµ(t)− u(t)‖V → 0,

for all t ∈ R+.

Lemma II.5.9 The following convergence holds.

‖uµ(t)− u(t)‖V + ‖σµ(t)− σ(t)‖Q → 0 as µ→ 0 for all t ∈ R+.



6
A history-dependent frictionless contact
problem with internal state variable

In this chapter we consider a second mathematical model which describes
the quasistatic contact between a viscoplastic body and a foundation.
Unlike the problem studied in the previous chapter here we model the
material’s behavior with a rate-type constitutive law with internal state
variable. The contact is frictionless and is modelled with normal compli-
ance, unilateral constraint and memory term. We present the classical
formulation of the problem, list the assumptions on the data and derive
a variational formulation of the model. Then, in Theorem II.6.1 we prove
its unique weak solvability. The proof is based on arguments of history-
dependent quasivariational inequalities. We also study the dependence
of the solution with respect to the data and prove a convergence result,
Theorem II.6.4. The content of this chapter is based on the paper [122].

6.1 Problem statement

For the problem studied in this chapter the contact is modelled with
normal compliance, unilateral constraint and memory term. Moreover,
the material’s behavior is described with a rate-type constitutive law
with internal state variable. The classical formulation of the problem is
the following.

Problem N . Find a displacement field u : Ω × R+ → Rd, a stress field
σ : Ω× R+ → Sd and an internal state variable κ : Ω× R+ → Rm such
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that

σ̇(t) = Eε(u̇(t)) + G(σ(t), ε(u(t)),κ(t)) in Ω, (II.6.1)

κ̇(t) = G(σ(t), ε(u(t)),κ(t)) in Ω, (II.6.2)

Divσ(t) + f 0(t) = 0 in Ω, (II.6.3)

u(t) = 0 on Γ1, (II.6.4)

σ(t)ν = f 2(t) on Γ2, (II.6.5)

στ (t) = 0 on Γ3, (II.6.6)

for all t ∈ R+, there exists ξ : Γ3 × R+ → R which satisfies

uν(t) ≤ g, σν(t) + p(uν(t)) + ξ(t) ≤ 0,

(uν(t)− g)
(
σν(t) + p(uν(t)) + ξ(t)

)
= 0,

0 ≤ ξ(t) ≤
∫ t

0

b(t− s)u+
ν (s) ds,

ξ(t) = 0 if uν(t) < 0,

ξ(t) =

∫ t

0

b(t− s)u+
ν (s) ds if uν(t) > 0


on Γ3, (II.6.7)

for all t ∈ R+ and, moreover,

u(0) = u0, σ(0) = σ0, κ(0) = κ0 in Ω. (II.6.8)

6.2 Existence and uniqueness

In this section we list the assumptions on the data, derive the varia-
tional formulation of the problem N and then we state and prove its
unique weak solvability. To this end we assume that the elasticity tensor
E satisfies

(a) E = (Eijkl) : Ω× Sd → Sd.
(b) Eijkl = Eklij = Ejikl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d.

(c) There exists mE > 0 such that

Eτ · τ ≥ mE‖τ‖2 ∀ τ ∈ Sd, a.e. in Ω.

 (II.6.9)
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and the constitutive functions G and G satisfy the following conditions.

(a) G : Ω× Sd × Sd × Rm → Sd.
(b) There exists LG > 0 such that

‖G(x,σ1, ε1,κ1)− G(x,σ2, ε2,κ2)‖
≤ LG(‖σ1 − σ2‖+ ‖ε1 − ε2‖+ ‖κ1 − κ2‖)
∀σ1, σ2, ε1, ε2 ∈ Sd,κ1, κ2 ∈ Rm, a.e. x ∈ Ω.

(c) The mapping x 7→ G(x,σ, ε,κ) is measurable on Ω,

for any σ, ε ∈ Sd and κ ∈ Rm.

(d) The mapping x 7→ G(x,0Sd ,0Sd ,0Rm) belongs to Q.


(II.6.10)

(a) G : Ω× Sd × Sd × Rm → Rm.

(b) There exists LG > 0 such that

‖G(x,σ1, ε1,κ1)−G(x,σ2, ε2,κ2)‖
≤ LG(‖σ1 − σ2‖+ ‖ε1 − ε2‖+ ‖κ1 − κ2‖)
∀σ1, σ2, ε1, ε2 ∈ Sd, κ1, κ2 ∈ Rm, a.e. x ∈ Ω.

(c) The mapping x 7→ G(x,σ, ε,κ) is measurable on Ω,

for any σ, ε ∈ Sd and κ ∈ Rm.

(d) The mapping x 7→ G(x,0Sd ,0Sd ,0Rm)

belongs to L2(Ω)m.



(II.6.11)

The densities of body forces and surface tractions are such that

f 0 ∈ C(R+;L2(Ω)d), f 2 ∈ C(R+;L2(Γ2)d) (II.6.12)

and the normal compliance function p satisfies

(a) p : Γ3 × R→ R+.

(b) There existsLp > 0 such that

|p(x, r1)− p(x, r2)| ≤ Lp |r1 − r2|
∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(c) (p(x, r1)− p(x, r2))(r1 − r2) ≥ 0

∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(d) The mapping x 7→ p(x, r) is measurable on Γ3,

for any r ∈ R.
(e) p(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.



(II.6.13)

Also, the surface memory function and the initial data verify

b ∈ C(R+;L∞(Γ3)), b(t,x) ≥ 0 for all t ∈ R+, a.e. x ∈ Γ3, (II.6.14)
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u0 ∈ V, σ0 ∈ Q, κ0 ∈ L2(Ω)m. (II.6.15)

Problem N V . Find a displacement field u : R+ → U , a stress field
σ : R+ → Q and an internal state variable κ : R+ → L2(Ω)m such that,
for all t ∈ R+, we have

σ(t) =

∫ t

0

G(σ(s), ε(u(s)),κ(s)) ds+ σ0 − Eε(u0) + Eε(u(t)),

κ(t) =

∫ t

0

G(σ(s), ε(u(s)),κ(s)) ds+ κ0,

(σ(t), ε(v)− ε(u(t)))Q + (Pu(t),v − u(t))V

+
(
Bu(t), v+

ν − u+
ν (t)

)
L2(Γ3)

≥ (f(t),v − u(t))V ∀v ∈ U.

In the study of the problem N V we have the following existence and
uniqueness result.

Theorem II.6.1 Assume that (II.6.9)–(II.6.15) hold. Then, Problem N V

has a unique solution which satisfies

u ∈ C(R+;U), σ ∈ C(R+;Q) and κ ∈ C(R+;L2(Ω)m). (II.6.16)

Lemma II.6.2 For each u ∈ C(R+;V ) there exists a unique function
Su = (S1u,S2u) ∈ C(R+;Q× L2(Ω)m) such that

S1u(t) =

∫ t

0

G(S1u(s) + Eε(u(s)), ε(u(s)),S2u(s)) ds (II.6.17)

+σ0 − Eε(u0),

S2u(t) =

∫ t

0

G(S1u(s) + Eε(u(s)), ε(u(s)),S2u(s)) ds (II.6.18)

+κ0

for all t ∈ R+. Moreover, the operator S : C(R+;V ) → C(R+;Q ×
L2(Ω)m) is a history-dependent operator, i.e. it satisfies the following
property: for every n ∈ N∗ there exists sn > 0 which depends only on n,
d, G, G and E, such that

‖Su(t)− Sv(t)‖Q×L2(Ω)m ≤ sn

∫ t

0

‖u(s)− v(s)‖V ds (II.6.19)

∀u, v ∈ C(R+;V ) ∀ t ∈ [0, n].
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Lemma II.6.3 Let (u,σ,κ) be a triple of functions which satisfy (II.6.16).
Then (u,σ,κ) is a solution of N V if and only if

σ(t) = Eε(u(t)) + S1(u(t)), (II.6.20)

κ(t) = S2u(t), (II.6.21)

(Eε(u(t)), ε(v)− ε(u(t)))Q + (S1u(t), ε(v)− ε(u(t)))Q (II.6.22)

+(Pu(t),v − u(t))V + (Bu(t) , v+
ν − u+

ν (t))L2(Γ3)

≥ (f(t),v − u(t))V , ∀v ∈ U,

for all t ∈ R+.

6.3 A convergence result

We now study the dependence of the solution of Problem N V with
respect to perturbations of the data. To this end, we assume in what
follows that (II.6.9)–(II.6.15) hold and we denote by (u,σ,κ) the solu-
tion of Problem N V obtained in Theorem II.6.1. For each ρ > 0 let pρ,
bρ, f 0ρ, f 2ρ, u0ρ, σ0ρ and κ0ρ represent perturbations of p, b, f 0, f 2,
u0, σ0 and κ0, respectively, which satisfy conditions (II.6.12)–(II.6.15).
In addition, for every ρ > 0 we define the operators Pρ : V → V ,
Bρ : C(R+;V ) → C(R+;L2(Γ3)) and the function f ρ : R+ → V by
equalities

(Pρu,v)V =

∫
Γ3

pρ(uν)vν da ∀u, v ∈ V, (II.6.23)

(Bρu(t), ξ)L2(Γ3) =
(∫ t

0

bρ(t− s)u+
ν (s) ds, ξ

)
L2(Γ3)

(II.6.24)

∀u ∈ C(R+;V ), ξ ∈ L2(Γ3), t ∈ R+,

(f ρ(t),v)V =

∫
Ω

f 0ρ(t) · v dx+

∫
Γ2

f 2ρ(t) · v da (II.6.25)

∀v ∈ V, t ∈ R+.

With these data, we consider the following perturbation of Problem
N V .
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Problem N V
ρ . Find a displacement field uρ : R+ → U , a stress field

σρ : R+ → Q and an internal state variable κρ : R+ → L2(Ω)m such that

σρ(t) =

∫ t

0

G(σρ(s), ε(uρ(s)),κρ(s)) ds+ σ0ρ − Eε(u0ρ) (II.6.26)

+Eε(uρ(t)),

κρ(t) =

∫ t

0

G(σρ(s), ε(uρ(s)),κρ(s)) ds+ κ0ρ, (II.6.27)

(σρ(t), ε(v)− ε(uρ(t)))Q + (Pρu(t),v − uρ(t))V (II.6.28)

+
(
Bu(t), v+

ν − u+
ρν(t)

)
L2(Γ3)

≥ (f ,v − uρ(t))V ∀v ∈ V,

for all t ∈ R+.

It follows from Theorem II.6.1 that, for each ρ > 0, Problem N V
ρ

has a unique solution (uρ,σρ,κρ) with the regularity uρ ∈ C(R+;U),
σρ ∈ C(R+;Q) and κρ ∈ C(R+;L2(Ω)m). Consider now the following
assumptions:

There exists F : R+ → R+ and α ∈ R+ such that

(a) |pρ(x, r)− p(x, r)| ≤ F (ρ)(|r|+ α)
∀ r ∈ R, a.e. x ∈ Γ3, for each ρ > 0.

(b) F (ρ)→ 0 as ρ→ 0.

 (II.6.29)

bρ → b in C(R+;L∞(Γ3)) as ρ→ 0. (II.6.30)

f 0ρ → f 0 in C(R+;L2(Ω)d) as ρ→ 0. (II.6.31)

f 2ρ → f 2 in C(R+;L2(Γ2)d) as ρ→ 0. (II.6.32)

u0ρ → u0 in V as ρ→ 0. (II.6.33)

σ0ρ → σ0 in Q as ρ→ 0. (II.6.34)

κ0ρ → κ0 in L2(Ω)m as ρ→ 0. (II.6.35)

We have the following convergence result.

Theorem II.6.4 Assume that (II.6.29)–(II.6.35) hold. Then the solu-
tion (uρ,σρ,κρ) of Problem N V

ρ converges to the solution (u,σ,κ) of
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Problem N V , i.e.

uρ → u in C(R+;V ),

σρ → σ in C(R+;Q),

κρ → κ in C(R+;L2(Ω)m)

 (II.6.36)

as ρ→ 0.
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sur le calcul de probabilités, Comm. Kharkov math. Soc. 13(1912),
1–2.
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[33] Z. Denkowski, S. Migórski and A. Ochal, Existence and uniqueness
to a dynamic bilateral frictional contact problem in viscoelasticity,
Acta Appl. Math. 94 (2006), 251–276.



42 References

[34] F. Dirik, K. Demirici, Korovkin type approximation theorem for
functions of two variables in statistical sense, Turk J. Math. 34
(2010), 73–83.

[35] I. Doghri, Mechanics of Deformable Solids, Springer, Berlin, 2000.
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[130] E. V. Voronovskaja, Détermination de la forme asymptotique de
l’approximation des functions par les polynômes de S. Bernstein,
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