
BABEŞ-BOLYAI UNIVERSITY

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

EÖTVÖS LORÁND UNIVERSITY

FACULTY OF INFORMATICS

Agent Based Pattern Recognition

PhD Thesis Abstract

PhD student: Radu D. Găceanu

Scientific supervisor UBB: Prof. Dr. Horia F. Pop

Scientific supervisor ELTE: Assoc. Prof. Dr. Habil. László Kozma

2012

Acknowledgments

I would like to express my gratitude to my supervisors, Prof. Dr. Horia F. Pop and Assoc. Prof. Dr.
Habil. László Kozma for their guidance, suggestions and support. I would also like to thank to all my
collaborators.

The author would like to thank for the financial support provided from programs co-financed by
The Sectorial Operational Programme Human Resources Development, Contract POSDRU 6/1.5/S/3
“Doctoral studies: through science towards society”.

List of publications

[CDG07] C. Chira, D. Dumitrescu, and R. D. Găceanu. Stigmergic agent systems for solving
NP-hard problems. Studia Informatica, Special Issue KEPT-2007: Knowledge Engineer-
ing: Principles and Techniques (June 2007):177–184, June 2007. (indexed MathSciNet,
Zentralblatt MATH, EBSCO Publishing).

[GP10] R. D. Găceanu and H. F. Pop. An adaptive fuzzy agent clustering algorithm for search en-
gines. InMACS2010: Proceedings of the 8th Joint Conference on Mathematics and Computer
Science, pages 185–196. Komarno, Slovakia, 2010. (indexed MathematicalReviews).

[GP11a] R. D. Găceanu and H. F. Pop. A context-aware ASM-based clustering algorithm. Stu-
dia Universitatis Babes-Bolyai Series Informatica, LVI(2):55–61, 2011. (indexed Math-
SciNet, Zentralblatt MATH, EBSCO Publishing).

[GO11] R. D. Găceanu and G. Orbán. Using rsl to describe the stock exchange domain. In
microCAD International Scientific Conference. University of Miskolc, Hungary, 31 March –
1 April 2011. (International conference).

[GP11b] R. D. Găceanu and H. F. Pop. A fuzzy clustering algorithm for dynamic environments.
In KEPT2011: Knowledge Engineering Principles and Techniques, Selected Papers, Eds:
M. Frentiu, H.F. Pop, S. Motogna, pages 119–130. Babes-Bolyai University, Cluj-Napoca,
Romania, July 4–6 2011. (ISI — Conference Proceedings Citation Index).

[GP11c] R. D. Găceanu and H. F. Pop. An incremental ASM-based fuzzy clustering algorithm.
In Informatics’2011, Slovakia, i’11:Proceedings of the Eleventh International Conference
on Informatics, Informatics 2011, Eds: V. Novitzká, S̆tefan Hudák, pages 198–204. Slovak
Society for Applied Cybernetics and Informatics, Roz̆n̆ava, Slovakia, November 16–18 2011.
(indexed MathematicalReviews).

[Găc11] Radu D. Găceanu. A bio-inspired fuzzy agent clustering algorithm for search engines.
Procedia Computer Science, 7(0):305 – 307, 2011. Proceedings of the 2nd European Fu-
ture Technologies Conference and Exhibition 2011 (FET 11), 10.1016/j.procs.2011.09.060.
http://www.sciencedirect.com/science/article/pii/S187705091100620X. (ISI — Confer-
ence Proceedings Citation Index).

[CCGa] Gabriela Czibula, Istvan Czibula, and Radu D. Găceanu. Intelligent data structures
selection using neural networks. Knowledge and Information Systems, Springer London,
pages 1–22. 10.1007/s10115-011-0468-3. (ISI — Science Citation Index Expanded)
IF = 2.0 (2010)

[GP12] R. D. Găceanu and H. F. Pop. An incremental approach to the set covering problem. Studia
Universitatis Babes-Bolyai Series Informatica, LVIII(2), 2012. — under review. (indexed
MathSciNet, Zentralblatt MATH, EBSCO Publishing).

[CCGb] Gabriela Czibula, Istvan Czibula, and Radu D. Găceanu. A Support Vector Machine
Model For Intelligent Selection of Data Representations. Applied Soft Computing — under
review. (ISI — Science Citation Index Expanded) IF = 2.1 (2010)

1

Contents

Introduction 5

1 Theoretical background 9
1.1 Data analysis and data mining . 9
1.2 Pattern recognition . 9
1.3 Soft computing . 10
1.4 Multi agent interactions . 10

2 Contributions to NP optimization problems 11
2.1 NP-completeness . 11
2.2 Stigmergic agents . 12
2.3 Soft agents . 12
2.4 A new approach to the set covering problem . 13
2.5 Conclusions and future work . 13

3 New approaches to unsupervised learning 15
3.1 Agent-based unsupervised learning . 16
3.2 ASM-based clustering . 16
3.3 Incremental clustering . 17
3.4 Conclusions and future work . 17

4 Supervised learning in software development 19
4.1 The problem of dynamic data structure selection . 20
4.2 Automatic selection of data representations using ANN 20
4.3 Experimental evaluation . 21
4.4 Comparison to related work . 21
4.5 Automatic selection of data representations using SVM 21
4.6 Computational experiments . 22
4.7 Comparison to related work . 23
4.8 Conclusions and future work . 23

5 Conclusions 25

Bibliography 27

2

Contents of the thesis

Introduction 6

1 Theoretical background 10
1.1 Data analysis and data mining . 10
1.2 Pattern recognition . 11

1.2.1 Cluster analysis . 11
1.2.2 Classification . 13

1.3 Soft computing . 19
1.4 Multi agent interactions . 22

1.4.1 Direct agent interactions . 22
1.4.2 Indirect agent interactions . 25

2 Contributions to NP optimization problems 28
2.1 NP-completeness . 28
2.2 Stigmergic agents . 29
2.3 Soft agents . 31

2.3.1 General agent models . 31
2.3.2 The soft agent model . 33
2.3.3 Possible extensions and applications . 38

2.4 A new approach to the set covering problem . 39
2.4.1 SCP overview . 39
2.4.2 Incremental SCP . 41

2.5 Conclusions and future work . 43

3 New approaches to unsupervised learning 45
3.1 Agent-based unsupervised learning . 46
3.2 ASM-based clustering . 48

3.2.1 Fuzzy ASM-based clustering . 49
3.2.2 Context-aware ASM-based clustering . 50
3.2.3 Case studies . 53
3.2.4 Discussion . 60

3.3 Incremental clustering . 61
3.3.1 General considerations . 61
3.3.2 Incremental ASM approach . 63
3.3.3 Experiments . 64

3.4 Conclusions and future work . 67

4 Supervised learning in software development 69
4.1 The problem of dynamic data structure selection . 70

4.1.1 Example . 72
4.1.2 Experiment . 73

4.2 Automatic selection of data representations using ANN 75
4.2.1 Formal aspects . 76
4.2.2 Methodology . 77

3

CONTENTS 4

4.3 Experimental evaluation . 82
4.3.1 Case study . 82
4.3.2 Data collection and pre-processing . 83
4.3.3 Testing . 84
4.3.4 Discussion . 84

4.4 Comparison to related work . 85
4.5 Automatic selection of data representations using SVM 86

4.5.1 Overview . 87
4.5.2 Formal aspects . 92
4.5.3 Methodology . 94

4.6 Computational experiments . 97
4.6.1 SVM model . 97
4.6.2 First case study . 98
4.6.3 Second case study . 99
4.6.4 Discussion . 102

4.7 Comparison to related work . 103
4.8 Conclusions and future work . 104

5 Conclusions 105

Bibliography 107

Introduction

This work is the result of my research in the field of Pattern Recognition, particularly Agent Based
Pattern Recognition, research conducted under the supervision of both Prof. Dr. Horia F. Pop
(starting from 2008) and of Assoc. Prof. Dr. Habil. László Kozma (starting from 2009).

The research topic is about using several types of software agents in pattern recognition. We will
investigate in the thesis the use of agents in NP-hard optimization problems as well as in hybrid data
analysis.

The rapid growth of data comes with the natural need for extracting and analysing meaningful
information and knowledge from this data. This information and knowledge could be used in different
applications, ranging from fraud detection, to production control, market basket analysis, customer
analytics and so on. Data analysis can be viewed as a step forward in the information technology
evolution. It is the process of inspecting, transforming, and modelling data with the goal of uncovering
patterns, associations and anomalies and thus support decision making.

An important step in data mining is pattern recognition which deals with assigning a label to a
given input data. Classification and clustering are examples of pattern recognition. Classification and
clustering can be applied in many fields like in marketing (for finding groups of customers with similar
behaviour), biology (classification of plants and animals given their features), fraud detection, and
document classification.

Classification is the process of assigning a label to a piece of input data based, for example, on
a predefined model. Since the class label of each training data item is provided, classification is
a supervised learning problem. On the other hand, clustering is an unsupervised learning problem
and it deals with finding a structure in a collection of unlabelled data. Classification and clustering
together with a general overview of data analysis are presented in Chapter 1.

In both classification and clustering object data belonging to the same class or cluster have to
be similar with each other and items from different classes or clusters have to be as dissimilar as
possible. This implies a great deal of imprecision and uncertainty and a way to handle this is by
using soft computing methods. Soft computing deals with imprecision and uncertainty in the attempt
to achieve robustness and low cost solutions. This multidisciplinary field was introduced by Lotfi A.
Zadeh and its main goal is to develop intelligent systems and to solve mathematically unmodelled
problems [Zad97, CMR+07, VSP09].

Soft Computing opens the possibility of solving complex problems for which a mathematical model
is not available. Moreover, it introduces human knowledge like cognition, recognition, learning into the
field of computing. This opens the way for constructing intelligent, autonomous, self-tuning systems.

In order to design autonomous and intelligent systems software agents are employed. An agent
is an entity that can be viewed as perceiving its environment through sensors and acting upon that
environment through effectors. An agent that always tries to optimize an appropriate performance
measure is called a rational agent. Agents exhibit several characteristics ([SP04, Ser06]) from which
the most interesting one is self-organization. It is the capability of an entity to organize and improve
its behaviour without being guided or managed. Agents seldom reside alone in the environment.
Instead they coexist and interact forming multi-agent systems. Chapter 1 presents several types of
interactions in a multi-agent system.

The thesis is structured in four chapters as follows.
Chapter 1, Theoretical background, introduces the field of data analysis and agent-based data

analysis. Data analysis is becoming increasingly popular, due to the rapid growth of data amounts and
the natural need for extracting meaningful information and knowledge from this data. The information

5

INTRODUCTION 6

and knowledge could be used in different applications ranging from intrusion detection systems, to
production control, pattern recognition and so on. Data analysis can be viewed as a step forward in
the information technology evolution. This chapter presents some of the most important problems in
data analysis like clustering and classification and also the use of software agents.

The Chapters 2, 3 and 4 contain our original contribution in the field of agent-based pattern
recognition. For each original approach that we propose, we outline possibilities for improvement and
future research directions. Chapter 5 outlines the conclusions of the thesis.

Chapter 2, Contributions to NP optimization problems, begins with a short overview of NP
completeness and NP optimization problems in Section 2.1. The rest of the chapter is entirely original
and presents our contribution to NP optimization problems, focusing on two well-known NP-hard
problems: Travelling Salesman Problem (TSP) and Set Covering Problem (SCP). In Section 2.1 a short
overview of NP completeness is made. In Section 2.2 the travelling salesman problem is approached
using the stigmergic agent model. The Stigmergic Agent System (SAS) combines the strengths of
Multi-agent Systems (MAS) and Ant Colony Systems (ACS). Stigmergy provides a general mechanism
that relates individual and colony level behaviours: individual behaviour modifies the environment,
which in turn modifies the behaviour of other individuals. The stigmergic agent mechanism employs
several agents able to interoperate in order to solve problems by using both direct communication
and indirect (stigmergic) communication. The algorithm was evaluated on several standard datasets
outlining the potential of the method. In Section 2.3 the soft agent model is introduced. A soft agent
is an intelligent agent that may deal with imprecision, uncertainty, partial truth and approximation
during its execution as a reactive agent or goal oriented agent or both. This new agent model is used
in Section 2.4 where a new incremental clustering approach to the Set Covering Problem is presented.
Experiments on standard datasets suggest that the approach is promising. Section 2.5 outlines the
conclusions of the chapter and indicates future research directions.

Chapter 3, New approaches to unsupervised learning, begins with a short overview of vari-
ous agent-based clustering approaches in Section 3.1. The rest of the chapter is entirely original and
presents our contribution to agent-based clustering, particularly in two main directions: ASM-based
batch clustering and incremental clustering [EKS+98, Kam10, LKC02, LLLH10, DL11]. We are fo-
cusing on developing clustering algorithms that allow the discovery and analysis of hybrid data. In
Section 3.1 a short overview of various agent-based clustering approaches is presented. We approach
the idea of agent-based cluster analysis in Section 3.2. Each data is represented by an agent placed
in a two dimensional grid. The agents will group themselves into clusters by making simple moves
according to some local environment information and the parameters are selected and adjusted adap-
tively. This behaviour based on ASM (Ant Sleeping Model [CXC04]) where an agent may be either in
an active state or in a sleeping state. In order to avoid the agents being trapped in local minima, they
are also able to directly communicate with each other. Furthermore, the agent moves are expressed
by fuzzy IF-THEN rules and hence hybridization with a classical clustering algorithm is needless.
The proposed fuzzy ASM-based clustering algorithm is presented in Section 3.2.1. In this model data
items to be clustered are represented by agents that are able to react according to the changes in
the environment, namely the number of neighbouring agents. However a change in the data item
itself is not handled at runtime. An extension to a context-aware system would be beneficial in many
practical situations. In general, context-aware systems could greatly change the way we interact with
the world — they could anticipate our needs and advice us when taking some decisions. In a chang-
ing environment context-awareness is undoubtedly beneficial. Such systems could make much more
relevant recommendations and support decision making. An extension to a context-aware approach
is presented in Section 3.2.2. Case studies for both approaches including experiments on standard
datasets [Iri88, Win91] are presented in Section 3.2.3. The idea behind incremental clustering is that
it is possible to consider one instance at a time and assign it to one of the already built clusters
without significantly affecting the already existing structures. Section 3.3 presents an incremental
clustering approach based on ASM. In incremental clustering only the cluster representations need to
be kept in memory so not the entire dataset and thus the space requirements for such an algorithm
are very small. Whenever a new instance is considered an incremental clustering algorithm would
basically try to assign it to one of the already exiting clusters. Such a process is not very complex and

INTRODUCTION 7

therefore the time requirements for an incremental clustering algorithm are also small. The fuzziness
of the approach allows the discovery of hybrid data. Experimental evaluation on standard datasets
[Iri88, Win91] are presented in Section 3.3.3. Section 3.4 outlines the conclusions of the chapter and
indicates some research directions that will be followed.

Chapter 4, New supervised learning approaches to software development, is entirely
original and it focuses on the problem of dynamically selecting, using supervised learning approaches,
the most suitable representation for an abstract data type, according to the software system’s current
execution context. In this direction, a neural network approach and a support vector machine approach
are proposed. Selecting and creating the appropriate data structure for implementing an abstract data
type (ADT) can greatly influence the performance of a software system. It is not a trivial problem for
a software developer, as it is hard to anticipate all the usage scenarios of the deployed application. It is
not clear how to select a good implementation for an abstract data type when access patterns to it are
highly variant, or even unpredictable. Due to this fact, the software system may choose the appropriate
data representation, at runtime, based on the effective data usage pattern. This dynamic selection
can be achieved using machine learning techniques, which can assure complex and adaptive systems
development. In this chapter we approach the problem of dynamically selecting, using supervised
learning approaches, the most suitable representation for an abstract data type according to the
software system’s current execution context. In this direction, a neural network model and a support
vector machine model are proposed. The considered problem arises from practical needs, it has a major
importance for software developers. Improper use of data structures in software applications leads to
performance degradation and high memory consumption. These problems can be avoided by properly
selecting data structures for implementing ADTs, according to the nature of the manipulated data. In
Section 4.1 the problem of dynamic data structure selection is presented. It is explained that this is a
complex problem because each particular data structure is usually more efficient for some operations
and less efficient for others and that is why a static analysis for choosing the best representation can
be inappropriate, as the performed operations can not be statically predicted. A practical example
is presented and an experiment is performed in order to motivate our approach. In Section 4.2 we
present our first proposal of using supervised learning for dynamically selecting the implementation
of an abstract data type from the software system, based on its current execution context. For this
purpose, a neural network model will be used. In fact, selecting the most appropriate implementation
of an abstract data type is equivalent to predicting, based on the current execution context, the type
and the number of operations performed on the ADT, on a certain execution scenario. In Section 4.3
we evaluate the accuracy of the technique proposed in Section 4.2, i.e. the ANN model’s prediction
accuracy. Starting from a data set given at [For10], we have simulated an experiment for selecting
the most appropriate data structure for implementing the List ADT. Experimental results suggest
that our approach provides optimized data structure selection and reduces the computational time
by selecting the data structure implementation which provides a minimum overall complexity for the
operations performed on a certain abstract data type on a given execution scenario. Section 4.4
presents a comparison to related work. In Section 4.5 the problem of data representation selection
problem (DRSP) is approached using support vector machines. Computational experiments from
Section 4.6 confirm a good performance of the proposed model and indicates the potential of our
proposal. The advantages of our approach in comparison with similar approaches are also emphasized
in Section 4.7.

Chapter 5, Conclusions, draws the conclusions of the thesis.
The original contributions introduced by this thesis are contained in Chapters 2, 3 and 4 and they

are as follows:

• A stigmergic agent system algorithm for solving the travelling salesman problem (Section 2.2)
[CDG07].

• A new model for software agents: the soft agent model (Section 2.3) [GP12].

• An incremental clustering algorithm for solving the set covering problem (Section 2.4) [GP12].

INTRODUCTION 8

• Experimental evaluation of both algorithms on standard datasets (Section 2.2 and Section 2.4)
[CDG07, GP12].

• A fuzzy ASM-based clustering algorithm (Section 3.2.1) [GP10, Găc11].

• A context-aware fuzzy clustering algorithm (Section 3.2.2) [GP11a, GP11b].

• An incremental fuzzy clustering algorithm (Section 3.3) [GP11c].

• Experimental evaluation of the algorithms on standard datasets (Section 3.2.3 and Section 3.3.3)
[GP10, Găc11, GP11a, GP11b, GP11c].

• The discovery and analysis of hybrid data (Section 3.2.3 and Section 3.3.3) [GP11a, GP11b,
GP11c].

• The applicability of the fuzzy ASM-based methods in clustering web search results (Section
3.2.3) [GP10, Găc11].

• A supervised learning approach for the dynamic selection of abstract data types implementations
during the execution of a software system, in order to increase the system’s efficiency (Section
4.2) [CCGa, CCGb].

• A neural networks approach to the considered problem (Section 4.2.2) [CCGa].

• Accuracy evaluation of the proposed neural network based technique on a case study (Section
4.3) [CCGa].

• A support vector machines approach to the considered problem (Section 4.5.3) [CCGb].

• Accuracy evaluation of the proposed support vector machine based technique on a case study
(Section 4.6) [CCGb].

• A comparison of the advantages of the proposed supervised learning approaches to DRSP with
existing similar approaches (Section 4.4 and Section 4.7) [CCGa, CCGb].

Chapter 1

Theoretical background

Data analysis is becoming increasingly popular due to the rapid growth of data amounts and the
natural need for extracting meaningful information and knowledge from this data. Various applications
ranging from production control to intrusion detection systems and pattern recognition may benefit
from the extracted information and learned knowledge. Data analysis may be seen as a step forward
in the evolution of information technology. In this chapter some of the most important problems in
pattern recognition are presented, namely, clustering and classification. The field of soft computing is
briefly presented in Section 1.3 and the topic of multi agent interactions is presented in Section 1.4.

1.1 Data analysis and data mining

The process of gathering, modelling and transforming data in the attempt to extract relevant infor-
mation that may support decision making is called data analysis. Data mining focuses on modelling
predictive rather than purely descriptive purposes and it is a particular technique of data analysis.
Business intelligence refers to data analysis techniques applied mainly in analysing business data aim-
ing to increase decision making support. Data analysis may be divided into exploratory data analysis
and confirmatory data analysis. Exploratory data analysis deals with discovering new features in the
data. On the other hand, confirmatory data analysis deals with confirming or falsifying given hy-
potheses. However there are several data analysis varieties. Predictive analytics, for example, applies
statistical models in forecasting future events. Text analytics focuses on applying various techniques
to extract and classify information contained in sources of textual data.

1.2 Pattern recognition

Pattern recognition is the problem of assigning a label to a given input data. According to the type of
the involved learning procedure, algorithms in pattern recognition may be categorized in supervised
learning, unsupervised learning and semi-supervised learning algorithms. In the following we will refer
to clustering which is an unsupervised learning problem and to classifications which is a supervised
learning problem.

According to [Mar09], clustering is “the most important unsupervised learning problem”. Given
a collection of unlabelled data the goal of a clustering process is to find a structure in the considered
dataset. In [Mar09] clustering is defined as “the process of organizing objects into groups whose
members are similar in some way”. So a cluster is a group of objects which are “similar” between
them and are “dissimilar” to the objects belonging to other clusters [Mar09].

Classification is the process of assigning a piece of input data (instance or data item) described by
a vector of features to a given category (class). Initially a classifier is built based on a given dataset.
This step is the training (learning) phase and at this point a classifier is built by learning from a
training dataset containing a set of data items with their features and the associated class labels.
Because the class label of each training data item is provided, classification is a supervised learning
problem. More formally, classification may be seen as learning a mapping, y = f(X), such that given
a data item from X the class label y can be predicted. This model is then used for classification.

9

CHAPTER 1. THEORETICAL BACKGROUND 10

The performance or the quality of a classifier can be evaluated by computing its accuracy, i.e., the
percentage of test set data items that are correctly classified. Other performance measures could
be the computation speed, robustness (the ability to handle noisy or missing data), scalability and
interpretability (the level of understanding and insight that is provided by the classifier) [HK06].

1.3 Soft computing

Proposed by Lotfi A. Zadeh [Bla94b], soft computing [Zad94] is a multidisciplinary field that deals
with imprecision, uncertainty, approximation, and partial truth in order to achieve robustness and low
cost solutions. The main objective of soft computing is the development of intelligent systems and
solving non-linear and mathematically complicated to model problems [Zad97]. The main advantages
of soft computing are:

• it opens the possibility of solving complex problems, in which mathematical models are not
available

• it introduces the human knowledge such as cognition, recognition, understanding, learning, and
others into the field of computing and hence opens the way for constructing intelligent, au-
tonomous, self-tuning systems.

Soft computing comprises, but is not limited to, the following components: fuzzy systems, neural
networks, swarm intelligence, evolutionary computing. Fuzzy sets [Zad65] represent a mathematical
theory for modelling imprecision and they are central to soft computing. They were introduced by
Zadeh, having a major success initially in Japan and China and then in the whole world [Bla94a].

1.4 Multi agent interactions

A multi agent system (MAS) is a system composed of several interacting agents. Multi-agent systems
may be used for solving problems which are difficult or impossible for an individual agent or a mono-
lithic system to solve. Communication is crucial in MAS. In general direct communication is assumed
in a classical MAS and in this case we deal with intelligent agents. But communication could also be
done indirectly, through the environment. In this case we deal with formations of simple creatures
like ant colonies or bird flocks which collectively lead to the emergence of intelligent global behaviour,
to what is known as swarm intelligence.

An agent is an entity that can be viewed as perceiving its environment through sensors and acting
upon that environment through effectors [SP04]. An agent that always tries to optimize an appropriate
performance measure is called a rational agent. Such a definition of a rational agent is fairly general
and can include human agents (having eyes as sensors, hands as actuators), robotic agents (having
cameras as sensors, wheels as actuators), or software agents (having a graphical user interface as sensor
and as actuator).

Ant colony optimization (ACO) [DS04] is a nature-inspired metaheuristic that addresses combi-
natorial optimization (CO) problems [PS82]. Some inherently hard problems can be addressed using
metaheuristics [BR03]. Examples of metaheuristics are: ACO, tabu search, simulated annealing and
evolutionary computation. It is important to note that these are approximation algorithms, i.e., they
are used for obtaining good enough solutions in an acceptable amount of time [Glo89, Glo90, KJV83].

Chapter 2

Contributions to NP optimization

problems

The chapter begins with a short overview of NP completeness and NP optimization problems in Section
2.1. The rest of the chapter is entirely original and presents our contribution to NP optimization
problems, focusing on two well-known NP-hard problems: Travelling Salesman Problem (TSP) and
Set Covering Problem (SCP).

The approaches presented in this chapter represent original works published in [CDG07, GP12].
The chapter is structured as follows. In Section 2.1 a short overview of NP completeness is

made. In Section 2.2 the travelling salesman problem is approached using the stigmergic agent model.
The Stigmergic Agent System (SAS) combines the strengths of Multi-agent Systems (MAS) and Ant
Colony Systems (ACS). Stigmergy provides a general mechanism that relates individual and colony
level behaviours: individual behaviour modifies the environment, which in turn modifies the behaviour
of other individuals. The stigmergic agent mechanism employs several agents able to interoperate in
order to solve problems by using both direct communication and indirect (stigmergic) communication.
The algorithm was evaluated on several standard datasets outlining the potential of the method. In
Section 2.3 the soft agent model is introduced. A soft agent is an intelligent agent that has to deal
with imprecision, uncertainty, partial truth and approximation during its execution as a reactive
agent or goal oriented agent or both. This new agent model is used in Section 2.4 where a new
incremental clustering approach to the Set Covering Problem is presented. Experiments on standard
datasets suggest that the approach is promising. Section 2.5 outlines the conclusions of the chapter
and indicates future research directions.

The original contributions of this chapter are:

• A stigmergic agent system algorithm for solving the travelling salesman problem (Section 2.2)
[CDG07].

• A new model for software agents: the soft agent model (Section 2.3) [GP12].

• An incremental clustering algorithm for solving the set covering problem (Section 2.4) [GP12].

• Experimental evaluation of both algorithms on standard datasets (Section 2.2 and Section 2.4)
[CDG07, GP12].

2.1 NP-completeness

In computational complexity theory, the complexity class NP-complete is a class of decision problems
for which the required time for solving using any currently known algorithm increases very quickly as
the size of the problem grows. Even though a method for computing the solutions to NP-complete
problems using a reasonable amount of time remains unknown, it is still necessary to deal with these
problems. In many situations approximation algorithms are used in order to address NP-complete
problems [CLRS09].

11

CHAPTER 2. CONTRIBUTIONS TO NP OPTIMIZATION PROBLEMS 12

2.2 Stigmergic agents

In [CDG07] a Stigmergic Agent System (SAS) combining the strengths of Ant Colony Systems and
Multi-Agent Systems concepts is proposed. The agents from the SAS are using both direct and
indirect (stigmergic) communication. Stigmergy occurs as a result of individuals interacting with and
changing an environment [DS04]. Stigmergy was originally discovered and named in 1959 by Grasse,
a French biologist studying ants and termites. Grasse was intrigued by the idea that these simple
creatures were able to build such complex structures. The ants are not directly communicating with
each other and have no plans, organization or control built into their brains or genes. Nevertheless,
ants lay pheromones during pursuits for food, thus changing the environment. Even though ants are
not able to directly communicate with each other, they do communicate however — indirectly —
through pheromones.

Stigmergy provides a general mechanism that relates individual and colony level behaviours: indi-
vidual behaviour modifies the environment, which in turn modifies the behaviour of other individuals.

The SAS mechanism employs several agents able to interoperate on the following two levels in
order to solve problems:

• direct communication: agents are able to exchange different types of messages in order to share
knowledge and support direct interoperation; the knowledge exchanged refers to both local and
global information

• indirect (stigmergic) communication: agents have the ability to produce pheromone trails that
influence future decisions of other agents within the system.

2.3 Soft agents

An architecture based on agents using indirect communication is proposed in [Ste90]. In [HSP08] social
relationships are modelled using a fuzzy-agent model. In [CXC04] an ant-based clustering algorithm is
presented. It is based on the ASM (Ants Sleeping Model) approach. In [CDG07] a Stigmergic Agent
System (SAS) combining the strengths of Ant Colony Systems and Multi-Agent Systems concepts is
proposed. The agents from the SAS are using both direct and indirect communication. By using direct
communication the risk of getting trapped in local optima is lower. However, as showed in [SCCK04],
most ant-based algorithms can be used only in a first phase of the clustering process because of the
high number of clusters that are usually produced. In a second phase a k-means-like algorithm is
often used. In [SCCK04], an algorithm in which the behaviour of the artificial ants is governed by
fuzzy IF-THEN rules is presented. Like all ant-based clustering algorithms, no initial partitioning of
the data is needed, nor should the number of clusters be known in advance. The ants are capable
to make their own decisions about picking up items. Hence the two phases of the classical ant-
based clustering algorithm are merged into one, and k-means becomes superfluous. In the approaches
from [GP10, GP11a] fuzzy agents are employed for solving the clustering problem. Agent moves are
expressed by fuzzy IF-THEN rules and hence hybridization with a classical clustering algorithm is
needless.

A soft agent is an intelligent agent that has to deal with imprecision, uncertainty, partial truth and
approximation during its execution as a reactive agent or goal oriented agent or both. An important
property of the soft agents is that they only can sense their local environment. They can communicate
with remote agents, but their vision is limited to a local neighbourhood and they maintain little
information about their state. Nevertheless they can act on the global environment. A soft agent
perceives its local environment though the Perception layer. This layer is also responsible for listening
to messages from other, possibly remote, agents. The Controller layer is responsible for deciding which
of the following layers should have control over the agent. The control layer can be implemented as a set
of control rules which can also act as a filter suppressing information from sensors. The reactive layer
provides an immediate response to changes that occur in the local environment. Roughly speaking,
it implements a mapping situation → action. The Procative layer achieves the agent’s proactive
behaviour, it ensures that the agent reaches its goal. The Action layer is responsible for executing the
selected action on the environment (local or global) and with dispatching messages to other agents.

CHAPTER 2. CONTRIBUTIONS TO NP OPTIMIZATION PROBLEMS 13

2.4 A new approach to the set covering problem

The set covering problem is a classical problem in computer science and complexity theory and it
serves as a model for many real-world applications especially in the resource allocation area. In an
environment where the demands that need to be covered change over time, special methods are needed
that adapt to such changes. We reformulate the set covering problem as a clustering problem where
the within cluster sum of squared errors to be minimized corresponds to the cost associated to a
certain set covering that needs to be minimal. We have developed an incremental clustering algorithm
in order to address the set covering problem. The algorithm continuously considers new items to be
clustered. Whenever a new data item arrives it is encapsulated by an agent which will autonomously
decide to be included in a certain cluster in the attempt to either maximize its cover or minimize the
cost. We have introduced the soft agent model in order to encapsulate this behaviour. Initial tests
suggest the potential of our approach.

The Set Covering Problem (SCP) is a classical problem in computer science and complexity theory
and it serves as a model for many applications in the real world like: facility location problem, airline
crew scheduling, resource allocation, assembly line balancing, vehicle routing, information retrieval
etc. Let us consider a set X and a family F of subsets of X such that every element from X belongs
to at least one subset from F . The set covering problem is the problem of finding a minimum number
of subsets from F (or subsets of minimum cost) such that their union is the set X.

In our model the input is an m × n incidence matrix A, where m =| X | and each column
corresponds to a set Sj with j ∈ {1, . . . , n}. Each column j has a corresponding cost cj > 0. We
say that a column j covers a row i if aij = 1. In our incremental approach, whenever a new data
item arrives it is encapsulated by an agent which will autonomously decide to join a certain cluster in
the attempt to either maximize the cluster cover or minimize its the cost. We have used soft agents
in order to deal with the two conflicting objectives: maximize cover and minimize cost. As in any
approximation algorithm an optimal solution is not guaranteed to be found, the purpose being to
find reasonably good solutions fast enough. Ongoing tests on large datasets [Bea] suggest promising
results.

2.5 Conclusions and future work

In this chapter we have presented our contributions to NP optimization problems namely to the
travelling salesman problem and to the set covering problem. These approaches have been presented
in our original papers [CDG07, GP12].

We have seen that the proposed SAS approach for solving TSP is a powerful optimization tech-
nique that combines the advantages of two models: Ant Colony Systems and Multi-Agent Systems.
Interoperation between agents is based on both indirect communication — given by pheromone levels
— and direct knowledge sharing, greatly reducing the risk of falling into the trap of local minima.
Experimental results on standard datasets outline the advantage of the approach over the classical
Ant Colony Systems. We have also developed an incremental clustering algorithm in order to address
the set covering problem. The algorithm continuously considers new items to be clustered. Whenever
a new data item arrives it is encapsulated by an agent which will autonomously decide to join a certain
cluster in the attempt to either maximize the cluster cover or minimize its the cost. We have used soft
agents in order to deal with the two conflicting objectives: maximize cover and minimize cost. As in
any approximation algorithm an optimal solution is not guaranteed to be found, the purpose being to
find reasonably good solutions fast enough. Ongoing tests on large datasets [Bea] suggest promising
results.

For each original approach proposed in this chapter we have emphasized improvement possibilities
and possible future extensions.

As future research directions we intend to improve the approaches presented in this chapter, to
extend the evaluation of the proposed techniques and to investigate and develop other computational
models for addressing NP-hard problems.

Ongoing research focuses on numerical experiments to demonstrate the robustness of the proposed

CHAPTER 2. CONTRIBUTIONS TO NP OPTIMIZATION PROBLEMS 14

model. The SAS method has to be further refined in terms of types of messages that agents can
directly exchange. Furthermore, other metaheuristics are investigated with the aim of identifying
additional potentially beneficial hybrid models.

Chapter 3

New approaches to unsupervised

learning

This chapter begins with a short overview of various agent-based clustering approaches in Section 3.1.
The rest of the chapter is entirely original and presents our contribution to agent-based clustering,
particularly in two main directions: ASM-based batch clustering and incremental clustering. We are
focusing on developing clustering algorithms that allow the discovery and analysis of hybrid data.

The unsupervised learning approaches presented in this chapter are original works published in
[GP10, GP11a, GP11b, Găc11, GP11c].

The chapter is structured as follows. In Section 3.1 a short overview of various agent-based
clustering approaches is presented. We approach the idea of agent-based cluster analysis in Section
3.2. Each data is represented by an agent placed in a two dimensional grid. The agents will group
themselves into clusters by making simple moves according to some local environment information and
the parameters are selected and adjusted adaptively. This behaviour based on ASM (Ant Sleeping
Model) where an agent may be either in an active state or in a sleeping state. In order to avoid the
agents being trapped in local minima, they are also able to directly communicate with each other.
Furthermore, the agent moves are expressed by fuzzy IF-THEN rules and hence hybridization with
a classical clustering algorithm is needless. The proposed fuzzy ASM-based clustering algorithm is
presented in Section 3.2.1. In this model data items to be clustered are represented by agents that are
able to react according to the changes in the environment, namely the number of neighbouring agents.
However a change in the data item itself is not handled at runtime. An extension to a context-
aware system would be beneficial in many practical situations. In general, context-aware systems
could greatly change the way we interact with the world — they could anticipate our needs and
advice us when taking some decisions. In a changing environment context-awareness is undoubtedly
beneficial. Such systems could make much more relevant recommendations and support decision
making. An extension to a context-aware approach is presented in Section 3.2.2. Case studies for
both approaches including experiments on standard datasets [Iri88, Win91] are presented in Section
3.2.3. The idea behind incremental clustering is that it is possible to consider one instance at a time and
assign it to existing clusters without significantly affecting the already existing structures. Section 3.3
presents an incremental clustering approach based on ASM. In incremental clustering only the cluster
representations need to be kept in memory so not the entire dataset and thus the space requirements
for such an algorithm are very small. Whenever a new instance is considered an incremental clustering
algorithm would basically try to assign it to one of the already exiting clusters. Such a process is not
very complex and therefore the time requirements for an incremental clustering algorithm are also
small. The fuzziness of the approach allows the discovery of hybrid data. Experimental evaluation on
standard datasets [Iri88, Win91] are presented in Section 3.3.3. Section 3.4 outlines the conclusions
of the chapter and indicates some research directions that will be followed.

The original contributions of this chapter are:

• A fuzzy ASM-based clustering algorithm (Section 3.2.1) [GP10, Găc11].

• A context-aware fuzzy clustering algorithm (Section 3.2.2) [GP11a, GP11b].

15

CHAPTER 3. NEW APPROACHES TO UNSUPERVISED LEARNING 16

• An incremental fuzzy clustering algorithm (Section 3.3) [GP11c].

• Experimental evaluation of the algorithms on standard datasets (Section 3.2.3 and Section 3.3.3)
[GP10, Găc11, GP11a, GP11b, GP11c].

• The discovery and analysis of hybrid data (Section 3.2.3 and Section 3.3.3) [GP11a, GP11b,
GP11c].

• The applicability of the fuzzy ASM-based methods in clustering web search results (Section
3.2.3) [GP10, Găc11].

3.1 Agent-based unsupervised learning

Several clustering algorithms exist each with its own strengths and weaknesses. Some algorithms need
an initial estimation of the number of clusters (k-means, fuzzy c-means); others could often be too
slow (agglomerative hierarchical clustering algorithms). Ant-based clustering algorithms often require
hybridization with a classical clustering algorithm such as k-means.

3.2 ASM-based clustering

In ASM (Ants Sleeping Model), an agent located on a two-dimensional grid may be in any of the
following states: active or sleeping. When the agent’s fitness is low, it has a higher probability to
wake up and start searching for a more secure and comfortable position to sleep in. When such a
position in located, the agent has a higher probability to move in a sleeping sate until the surrounding
environment becomes less hospitable and activates it again. At the beginning of every considered
ASM-based clustering approach the agents are randomly scattered on the grid in active state. In
each loop, after the agent moves to a new position, it will recalculate its current fitness fdisim and
probability pa so as to decide whether it needs to continue moving. While the pa is high the agent is
likely in active state and it continues to move on the grid. If the current pa becomes small, the agent
has a lower probability of continuing to move on the grid and it may stop at the current position and
switch to sleeping state. With increasing number of iterations, such movements gradually increase,
eventually, making similar agents gathered within a small area and different types of agents located
in separated areas. Thus, the corresponding data items are clustered.

The agents decide upon the way they move on the grid according to their similarity with the
neighbours, using fuzzy IF-THEN rules. Thus two agents can be similar (S), different (D), very
different (VD). If two agents are similar they would get closer to each other. If they are different or
very different they will get away from each other. The number of steps they do each time they move
depend on the similarity level. So if the agents are V D they would jump many steps away from each
other; if they are D they would jump less steps away from each other. In the end the ants which are S
will be in the same cluster. The parameter α is the average distance between agents and this changes
at each step further influencing the fitness function. The parameter λ influences the agents’ activation
pressure and it may decrease over time. The parameter t is used for the termination condition which
could be something like t < tmax. The parameters sx, sy, the agent’s vision limits, may also be updated
in some situations.

The skeleton of the context aware approach is based on the ASM-like algorithm from [CXC04]
embellished with features from [CDG07, GP10, SCCK04]. The agents decide upon the way they move
on the grid according to their similarity with the neighbours, using fuzzy IF-THEN rules. Thus two
agents can be similar (S), different (D), very different (VD). If two agents are similar or very similar
they would get closer to each other. If they are different or very different they will get away from
each other. The number of steps they do each time they move depend on the similarity level. So
if the agents are V D they would jump many steps away from each other; if they are D they would
jump less steps away from each other. In the end the ants which are S will be in the same cluster.
The similarity computation is taking into account the actual structure of the data or the data density

CHAPTER 3. NEW APPROACHES TO UNSUPERVISED LEARNING 17

from the agent’s neighbourhood; a bigger change from one agent to another translates into a certain
similarity which then affects the agent’s movement on the grid.

Computational experiments showing the potential of the proposed method are presented. In the
first case study a custom dataset is considered and comparison with the k-means clustering is done
suggesting the strength of the proposed algorithm. In the second case study the algorithm is tested on
a larger dataset. Comments regarding the performance together with idea for further improvements
are presented. The third case study is presenting a possible application of this clustering approach in
a real-life scenario — clustering web search results [GP10]. The advantages and disadvantages of the
proposed techniques over similar approaches are also discussed in the thesis.

3.3 Incremental clustering

The idea behind incremental clustering is that it is possible to consider one instance at a time and
assign it to existing clusters without significantly affecting the already existing structures. The
incremental approach to clustering is also applicable in online situations like wireless sensor net-
works or data streams. Ongoing research is done in the area sensor data and data stream mining
[SdLFdCG09, HZK+09, GKS09]. In [SdLFdCG09], a new approach to novelty detection in data
streams is presented. The ability to detect new concepts is an important aspect in machine learning
systems. The approach presented in this paper [SdLFdCG09] takes novelty detection beyond one-class
classification, by detecting emerging cohesive and representative clusters of examples, and then further
by merging similar concepts. The proposed method goes in the direction of constructing a class struc-
ture that aims at reproducing the real one in an unsupervised continuous learning fashion. The paper
[HZK+09] presents a general approach for context-aware adaptive mining of data streams that tries to
dynamically and autonomously adjust data stream mining parameters according to changes in context
and situations. Data stream processing adaptation to variations of data rates and resource availability
is crucial for consistency and continuity of running applications like health care systems. In [GKS09]
a new data model called Spatio-Temporal Sensor Graphs (STSG), which is designed to model sensor
data on a graph by allowing the edges and nodes to be modelled as time series of measurement data
is presented. It is shown how this model could be applied in finding patterns like growing hotspots
in sensor data. The case studies and the related study show that the presented model is less memory
expensive. At the beginning of the algorithm from [CXC04], the agents are randomly scattered on the
grid in active state. They randomly move on the grid. In each loop, after the agent moves to a new
position, it will recalculate its current fitness f and probability pa so as to decide whether it needs to
continue moving.

In order to test the algorithm in a real-world scenario, the Iris dataset [Iri88] was considered for
a first test case. For the second case study the wine dataset [Win91] was considered. This dataset
contains the results of a chemical analysis of wines grown in the same region in Italy but derived from
three different wine growers. The analysis determined the quantities of 13 constituents found in each
of the three types of wines. In [Win91] it is mentioned that the initial dataset had 30 attributes. So
the current dataset has 13 attributes plus the class. There are 178 instances grouped in three classes
corresponding to the three wine growers. Items ranging from 1 to 59 belong to the first class, items
from 60 to 130 belong to the second class and items from 131 to 178 belong to the third class.

3.4 Conclusions and future work

We have introduced in this chapter new agent-based unsupervised learning approaches based on our
original papers [GP10, GP11a, GP11b, Găc11, GP11c].

The algorithms presented in Section 3.2 are based on the adaptive ASM approach from [CXC04].
The major improvement is that, instead to moving the agents at a randomly selected site, we are
letting the agents choose the best location. Agents can directly communicate with each other —
similar to the approach from [CDG07]. In [SCCK04], the fuzzy IF-THEN rules are used for deciding if
the agents are picking up or dropping an item. In our model we are using the fuzzy rules for deciding
upon the direction and length of the movement. Moreover, in the approach from Section 3.2.2 the

CHAPTER 3. NEW APPROACHES TO UNSUPERVISED LEARNING 18

agents are able to adapt their movements if changes in the environment would occur. Case studies for
these approaches have been performed in Section 3.2.3. In order to test the algorithm in a real-world
scenario, the Iris and Wine datasets have been considered [Iri88, Win91]. Experiments outline the
ability of our approaches to discover hybrid data. In Section 3.3 an incremental clustering algorithm
is introduced. Incremental clustering is used to process sequential, continuous data flows or data
streams and in situations in which cluster shapes change over time. Such algorithms are well fitted in
real-time systems, wireless sensor networks or data streams because in such systems it is difficult to
store the datasets in memory. The algorithm considers one instance at a time and it basically tries
to assign it to one of the existing clusters. Only cluster representations need to be kept in memory
so computation is both fast and memory friendly. We have seen in the tests from the incremental
approach (Section 3.3.3) that most of the apparently classification errors were actually items that have
high membership degrees to more than one cluster. Nevertheless, in our opinion, it is again clear that
we are dealing with hybrid data. Actually the hybrid nature of the data is suggested in [Iri88] and
in [Win91] and this is the main reason for choosing these datasets for our analysis. By using fuzzy
methods such features of the data are easy to be observed. The fact that there are hybrid items could
be an indication of the quality of data.

For each approach proposed in this chapter we have outlined the advantages and drawbacks and
emphasised improvement possibilities and directions for further extension.

As future research directions we intend to improve the approaches presented in this chapter, to
extend the evaluation of the proposed techniques and to investigate the use of various metaheuristics
in unsupervised learning.

Chapter 4

New supervised learning approaches to

software development

This chapter is entirely original and it focuses on the problem of dynamically selecting, using supervised
learning approaches, the most suitable representation for an abstract data type according to the
software system’s current execution context. In this direction, a neural network approach and a
support vector machine approach are proposed.

The supervised learning approaches for the problem of automatic selection of data representations
presented in this chapter are original works published in [CCGa] and under review in [CCGb].

Selecting and creating the appropriate data structure for implementing an abstract data type
(ADT) can greatly impact the performance of a software system. It is not a trivial problem for a
software developer, as it is hard to anticipate all the usage scenarios of the deployed application. It
is not clear how to select a good implementation for an abstract data type when access patterns to
it are highly variant, or even unpredictable. Due to this fact, the software system may choose the
appropriate data representation, at runtime, based on the effective data usage pattern. This dynamic
selection can be achieved using machine learning techniques, which can assure complex and adaptive
systems development.

In this chapter we approach the problem of dynamically selecting, using supervised learning ap-
proaches, the most suitable representation for an abstract data type according to the software system’s
current execution context. In this direction, a neural network model and a support vector machine
model are proposed. The considered problem arises from practical needs, it has a major importance
for software developers. Improper use of data structures in software applications leads to performance
degradation and high memory consumption. These problems can be avoided by properly selecting
data structures for implementing ADTs, according to the nature of the manipulated data.

To our knowledge, so far, there are no existing machine learning approaches for the problem of
automatic selection of data representations.

The chapter is structured as follows. In Section 4.1 the problem of dynamic data structure selection
is presented. It is explained that this is a complex problem because each particular data structure is
usually more efficient for some operations and less efficient for others and that is why a static analysis
for choosing the best representation can be inappropriate, as the performed operations can not be
statically predicted. A practical example is presented and an experiment is performed in order to
motivate our approach. In Section 4.2 we present our first proposal of using supervised learning for
dynamically selecting the implementation of an abstract data type from the software system, based
on its current execution context. For this purpose, a neural network model will be used. In fact,
selecting the most appropriate implementation of an abstract data type is equivalent to predicting,
based on the current execution context, the type and the number of operations performed on the ADT,
on a certain execution scenario. In Section 4.3 we evaluate the accuracy of the technique proposed
in Section 4.2, i.e. the ANN model’s prediction accuracy. Starting from a data set given at [For10],
we have simulated an experiment for selecting the most appropriate data structure for implementing
the List ADT. Experimental results suggest that our approach provides optimized data structure
selection and reduces the computational time by selecting the data structure implementation which

19

CHAPTER 4. SUPERVISED LEARNING IN SOFTWARE DEVELOPMENT 20

provides a minimum overall complexity for the operations performed on a certain abstract data type
on a given execution scenario. Section 4.4 presents a comparison to related work. In Section 4.5
the problem of data representation selection problem (DRSP) is approached using support vector
machines. Computational experiments from Section 4.6 confirm a good performance of the proposed
model and indicates the potential of our proposal. The advantages of our approach in comparison
with similar approaches are also emphasized in Section 4.7.

The original contributions of this chapter are:

• To introduce a supervised learning approach for the dynamic selection of abstract data types
implementations during the execution of a software system, in order to increase the system’s
efficiency (Section 4.2) [CCGa, CCGb] .

• To approach the considered problem using neural networks (Section 4.2.2) [CCGa].

• To evaluate the accuracy of the proposed neural network based technique on a case study (Section
4.3) [CCGa].

• To approach the considered problem using support vector machines (Section 4.5.3) [CCGb].

• To evaluate the accuracy of the proposed support vector machine based technique on a case
study (Section 4.6) [CCGb].

• To emphasize the advantages of the proposed supervised learning approaches to DRSP in com-
parison with existing similar approaches (Section 4.4 and Section 4.7) [CCGa, CCGb] .

4.1 The problem of dynamic data structure selection

Abstract data types (ADTs) [WB01] are used in software applications to model real world entities
from the application domain. An ADT can be implemented using different data structures. The
study of data structures and the algorithms that manipulate them is among the most fundamental
topics in computer science [Mou01]. Most of what computer systems spend their time doing is storing,
accessing, and manipulating data in one form or another. There are numerous examples from all areas
of computer science where a relatively simple application of good data structure techniques resulted
in massive savings in computation time and, hence, money.

Let us consider that in a software application a Collection ADT (also known as Bag) is used. The
main operations supported by a collection of elements are: insertion of an element into the collection,
deletion of an element from the collection and searching an element in the collection. In order to
better motivate our approach, we performed an experiment considering the List ADT and three data
structures for implementing a List: vector (dynamic array), linked list and balanced search tree.
The main operations supported by a list of elements are: insertion of an element into the list (at the
beginning, at the end, at a certain position), deletion of an element from the list (a given element
or from a given position), searching an element in the list, iterating through the list, accessing an
element from the list at a certain position and updating an element from a certain position.

4.2 Automatic selection of data representations using ANN

Data structures [WB01] provide means to customize an abstract data type according to a given usage
scenario. The volume of the processed data and the data access flow in the software application
influence the selection of the most appropriate data structure for implementing a certain abstract
data type. During the execution of the software application, the data flow and volume is fluctuating
due to external factors (such as user interaction), that is why the data structure selection has to be
dynamically adapted to the software system’s execution context. This adaptation has to be made
during the execution of the software application and it is hard or even impossible to predict by the
software developer. Consequently, in our opinion, machine learning techniques would provide a better
selection at runtime of the appropriate data structure for implementing a certain abstract data type.

CHAPTER 4. SUPERVISED LEARNING IN SOFTWARE DEVELOPMENT 21

Artificial neural networks are emerging as the technology of choice for many applications, such as
pattern recognition, speech recognition [SH07], prediction [LB05], system identification and control.
We will use a feedforward neural network that will be trained using the backpropagation-momentum
learning technique [RN02].

4.3 Experimental evaluation

In this section we aim at evaluating the accuracy of the technique proposed in Section 4.2, i.e. the
ANN model’s prediction accuracy.

As there is no publicly available case study for the problem of automatic selection of data rep-
resentations, nor a case study in the related literature that can be reproduced, we consider our own
case study. We describe in this section simulation results of applying our learning based approach
to a selection problem that will be described below. Starting from the data set given at [For10], we
have simulated an experiment for selecting the most appropriate data structure for implementing the
List ADT. The considered data set consists of the results of a chemical analysis of wines grown in the
same region in Italy but derived from different cultivars. The analysis determined the quantities of 13
constituents found in each types of wines [Win91].

The data set for evaluating the ANN classification model presented in Section 4.2 consists of (input,
output) samples collected and pre-processed as we have described in Subsection 4.2.2. An input
represents an execution context and the target output is the most suitable implementation for the List
ADT (1, 2 or 3 according to the selected implementation). In our case study, as the instantiation of
the List ADT occurs in the Wine class, an execution context will contain the values of the attributes
of this class (13 attributes corresponding to the wine constituents described at [Win91]). The collected
data set consists of 178 input-output samples and will be denoted by D.

Considering the experimental results presented above, we can conclude that our approach provides
optimized data structure selection and reduces the computational time by selecting the data structure
implementation which provides a minimum overall complexity for the operations performed on a
certain abstract data type on a given execution scenario.

4.4 Comparison to related work

In this section we aim at providing a brief comparison of our approach with several existing approaches
for the problem of automatic selection of data representations. To our knowledge, so far, there are no
existing machine learning approaches for the considered problem, and, moreover, there are no publicly
available case studies for it.

4.5 Automatic selection of data representations using SVM

The design and implementation of efficient abstract data types are important issues for software
developers. Selecting and creating the appropriate data structure for implementing an abstract data
type is not a trivial problem for a software developer, as it is hard to anticipate all the use scenarios
of the deployed application. Moreover, it is not clear how to select a good implementation for an
abstract data type when access patterns to it are highly variant, or even unpredictable. The problem
of automatic data structure selection is a complex one because each particular data structure is
usually more efficient for some operations and less efficient for others, that is why a static analysis
for choosing the best representation can be inappropriate, as the performed operations can not be
statically predicted. Therefore, we propose a predictive model in which the software system learns
to choose the appropriate data representation, at runtime, based on the effective data usage pattern.
This paper describes a new attempt to use a Support Vector Machine model in order to dynamically
select the most suitable representation for an aggregate according to the software system’s execution
context. Computational experiments confirm a good performance of the proposed model and indicates
the potential of our proposal. The advantages of our approach in comparison with similar approaches
are also emphasized.

CHAPTER 4. SUPERVISED LEARNING IN SOFTWARE DEVELOPMENT 22

The study of data structures and the algorithms that manipulate them is among the most funda-
mental topics in computer science [Mou01]. Most of what computer systems spend their time doing is
storing, accessing, and manipulating data in one form or another. There are numerous examples from
all areas of computer science where a relatively simple application of good data structure techniques
resulted in massive savings in computation time and, hence, money. Software applications use abstract
data types (ADTs) [WB01] to model real world entities from the application domain. An ADT can
be implemented using different data structures.

Let us consider that in a software application a Collection ADT (also known as Bag) is used. The
main operations supported by a collection of elements are: insertion of an element into the collection,
deletion of an element from the collection and searching an element in the collection. In order to
better motivate our approach, we performed an experiment considering the List ADT and three data
structures for implementing a List: vector (dynamic array), linked list and balanced search tree.
The main operations supported by a list of elements are: insertion of an element into the list (at the
beginning, at the end, at a certain position), deletion of an element from the list (a given element
or from a given position), searching an element in the list, iterating through the list, accessing an
element from the list at a certain position and updating an element from a certain position.

In this section we present several existing approaches for the problem of automatic selection of
data repesentations. To our knowledge, so far, there are no existing machine learning approaches for
the considered problem, and, moreover, there are no publicly available case studies for it.

Data structures [WB01] provide means to customize an abstract data type according to a given
usage scenario. The volume of the processed data and the data access flow in the software application
influence the selection of the most appropriate data structure for implementing a certain abstract
data type. During the execution of the software application, the data flow and volume is fluctuating
due to external factors (such as user interaction), that is why the data structure selection has to be
dynamically adapted to the software system’s execution context. This adaptation has to be made
during the execution of the software application and it is hard or even impossible to predict by the
software developer. Consequently, in our opinion, machine learning techniques would provide a better
selection at runtime of the appropriate data structure for implementing a certain abstract data type.

First, the software system S is monitored during the execution of a set of scenarios that include
the instantiation of the abstract data type T . The result of this supervision performed by a software
developer is a set of execution contexts, as well as the type and the number of operations from
O performed on T saved in a log file. The software developer will analyze the resulted log file
and will decide, for each execution context (input) , the most suitable implementation for T given
the execution context (output). This decision will be based on computing the global computational
complexity of the operations performed on T during the scenario given by the execution context for
each possible implementation of Di of T and then selecting the implementation that minimizes the
overall complexity.

SVMs use a technique known as the “kernel trick” to apply linear classification techniques to non-
linear classification problems. Using a Kernel function [Vap00], the data points from the input space
are mapped into a higher dimensional space. Constructing (via the Kernel function) a separating hy-
perplane with maximum margin in the higher dimensional space yields a non-linear decision boundary
in the input space separating the tuples of one class from another.

In our current implementation, we have considered execution contexts of radius 0 (i.e. R = 0).
This means that the execution context contains only the state of the object that uses the abstract
data type T considered for optimisation.

4.6 Computational experiments

In this section we aim at evaluating the accuracy of the technique proposed in Section 4.2, i.e. the
SVM classification model’s prediction accuracy. As there is no publicly available case study for the
problem of automatic selection of data representations, nor a case study in the related literature that
can be reproduced, we consider our own case studies. We describe in this section simulation results of
applying our classification approach to two selection problems that will be described in the following.

CHAPTER 4. SUPERVISED LEARNING IN SOFTWARE DEVELOPMENT 23

Starting from the data set given at [For10], we have simulated an experiment for selecting the most
appropriate data structure for implementing the List ADT. The considered data set consists of the
results of a chemical analysis of wines grown in the same region in Italy but derived from different
cultivars. The analysis determined the quantities of 13 constituents found in each types of wines.
More details about this data set can be found at [Win91].

The data set for evaluating the SVM classification model presented in Section 4.2 consists of (input,
output) samples collected and pre-processed. An input represents an execution context and the target
output is the most suitable implementation for the List ADT (vector, linked list or balanced
search tree) within the input execution context. The data set consists of 178 samples. An overall
learning acuracy of 0.9625 was obtained.

We will consider a real software system as a case study for evaluating the learning accuracy of the
SVM. It is a DICOM (Digital Imaging and Communications in Medicine) [DICiM11] and HL7 (Health
Level 7) [HL0] compliant PACS (Picture Archiving and Communications System) system, facilitating
medical images management, offering quick access to radiological images, and making the diagnosing
process easier. The analyzed application is a large distributed system, consisting of several subsystems
in form of stand-alone and web-based applications. We have considered as our case study one of the
subsystems from this application. The analyzed subsystem is a stand-alone Java application used
by physicians in order to interpret radiological images. The application fetches clinical images from
an image server (using DICOM protocol) or from the local file system (using DICOM files), displays
them, and offers various tools to manage radiological images.

We have used for evaluation a set of 96 image series samples which were obtained from publicly
available DICOM image files [Osi10, RiplsDis10, cir10, oPDsf10, hp10]. The images are real images
from real patients, but anonymized for confidentiality reasons. For managing the DICOM image files,
an open source implementation of the DICOM standard was used [sciom11].

The results are stable, a standard deviation of 0.040024407 on the classification accuracies was
obtained. The low value of the standard deviation indicates a good precision of the proposed approach.

Considering the experimental results presented in Section 4.6, we can conclude that our approach
provides optimized data structure selection and reduces the computational time by selecting the data
structure implementation which provides a minimum overall complexity for the operations performed
on a certain abstract data type on a given execution scenario.

4.7 Comparison to related work

In this section we aim at providing a brief comparison of our approach with the existing approaches
for the problem of automatic selection of data representations.

4.8 Conclusions and future work

In this chapter we have presented our model for dynamically selecting the most suitable implementation
of an abstract data type from a software application based on the system’s execution context. For
predicting, at runtime, the most appropriate data representation, a neural network and a support
vector machine classification model were used. We have also illustrated the accuracy of both proposed
approaches on case studies.

Considering the results presented in Section 4.3 and in Section 4.6, we can conclude that the
approaches introduced in this paper for a dynamic selection of data representations have the following
advantages:

• They are general, as they can be used for determining the appropriate implementation for
any abstract data type, and with arbitrary number of data structures that can be chosen for
implementing the ADT.

• They reduce the computational time by selecting the data structure implementation which pro-
vides a minimum overall complexity for the operations performed on a certain abstract data

CHAPTER 4. SUPERVISED LEARNING IN SOFTWARE DEVELOPMENT 24

type on a given execution scenario. Consequently the efficiency of the software system during
its evolution is increased.

• They are is scalable, as even if the considered software system is large, the abstract data types
are locally optimized, considering only the current execution context. The size of the execution
context does not depend on the size of the software system as shown in the thesis.

However, the main drawback of both approaches is that it is hard to supervise the learning process,
as the supervision of an expert software developer is required for inspecting the collected execution
contexts.

Further work will be focused on:

• Improving the proposed classification model by adding to it the capability to adapt itself using
a feed-back received when inappropriate data representations are selected.

• Applying other machine learning techniques [KTL11, ZDYZ11] , self-organizing feature maps
[SK99], or other modelling techniques [RKY10, Ngu10, TD10] for solving the problem of auto-
matic selection of data representations during the execution of a software system.

• Studying the applicability of other learning techniques, like semi-supervised learning [ZL10] or
reinforcement learning [SB98] in order to avoid as much as possible the supervision during the
training process.

• Evaluating our approach on other case studies and real software systems.

Chapter 5

Conclusions

It has been that seen pattern recognition is central in data analysis tasks. As data is often characterised
by a great deal of imprecision and uncertainty, intelligent, autonomous systems need to be developed
that can handle such complex problems.

In Chapter 4 we have presented our model for dynamically selecting the most suitable implemen-
tation of an abstract data type from a software application based on the system’s execution context.
For predicting, at runtime, the most appropriate data representation, a neural network and a support
vector machine classification model were used. We have also illustrated the accuracy of both proposed
approaches on case studies.

Considering the results presented in Section 4.3 and in Section 4.6, we can conclude that the
approaches introduced in this paper for a dynamic selection of data representations have the following
advantages:

• They are general, as they can be used for determining the appropriate implementation for
any abstract data type, and with arbitrary number of data structures that can be chosen for
implementing the ADT.

• They reduce the computational time by selecting the data structure implementation which pro-
vides a minimum overall complexity for the operations performed on a certain abstract data
type on a given execution scenario. Consequently the efficiency of the software system during
its evolution is increased.

• They are is scalable, as even if the considered software system is large, the abstract data types
are locally optimized, considering only the current execution context. The size of the execution
context does not depend on the size of the software system as shown in the corresponding section
from the thesis.

In Chapter 3 we have presented our contribution to agent-based clustering, particularly in two main
directions: ASM-based batch clustering and incremental clustering. We have focused on developing
clustering algorithms that allow the discovery and analysis of hybrid data. The algorithms presented
in Section 3.2 are based on the adaptive ASM approach from [CXC04]. The major improvement is
that, instead to moving the agents at a randomly selected site, we are letting the agents choose the
best location. Agents can directly communicate with each other — similar to the approach from
[CDG07]. In [SCCK04], the fuzzy IF-THEN rules are used for deciding if the agents are picking up
or dropping an item. In our model we are using the fuzzy rules for deciding upon the direction and
length of the movement. Moreover, in the approach from Section 3.2.2 the agents are able to adapt
their movements if changes in the environment would occur. Case studies for these approaches have
been performed in Section 3.2.3. In order to test the algorithm in a real-world scenario, the Iris and
Wine datasets have been considered [Iri88, Win91]. Experiments outline the ability of our approaches
to discover hybrid data. In Section 3.3 an incremental clustering algorithm is introduced. Incremental
clustering is used to process sequential, continuous data flows or data streams and in situations in
which cluster shapes change over time. Such algorithms are well fitted in real-time systems, wireless
sensor networks or data streams because in such systems it is difficult to store the datasets in memory.

25

CHAPTER 5. CONCLUSIONS 26

The algorithm considers one instance at a time and it basically tries to assign it to one of the existing
clusters. Only cluster representations need to be kept in memory so computation is both fast and
memory friendly. We have seen in the tests from the incremental approach (Section 3.3.3) that most
of the apparently classification errors were actually items that have high membership degrees to more
than one cluster. Nevertheless, in our opinion, it is again clear that we are dealing with hybrid data.
Actually the hybrid nature of the data is suggested in [Iri88] and in [Win91] and this is the main
reason for choosing these datasets for our analysis. By using fuzzy methods such features of the data
are easy to be observed. The fact that there are hybrid items could be an indication of the quality of
data.

In Chapter 2, we have presented our contribution to NP optimization problems, focusing on two
well-known NP-hard problems: Travelling Salesman Problem (TSP) and Set Covering Problem (SCP).
In Section 2.1 a short overview of NP completeness is made. In Section 2.2 the travelling salesman
problem is approached using the stigmergic agent model. The Stigmergic Agent System (SAS) com-
bines the strengths of Multi-agent Systems (MAS) and Ant Colony Systems (ACS). Stigmergy provides
a general mechanism that relates individual and colony level behaviours: individual behaviour modi-
fies the environment, which in turn modifies the behaviour of other individuals. The stigmergic agent
mechanism employs several agents able to interoperate in order to solve problems by using both direct
communication and indirect (stigmergic) communication. The algorithm was evaluated on several
standard datasets outlining the potential of the method. In Section 2.3 the soft agent model is intro-
duced. A soft agent is an intelligent agent that has to deal with imprecision, uncertainty, partial truth
and approximation during its execution as a reactive agent or goal oriented agent or both. This new
agent model is used in Section 2.4 where a new incremental clustering approach to the Set Covering
Problem is presented. Experiments on standard datasets suggest that the approach is promising.

As future research directions, we intend to improve the proposed approaches, to extend the eval-
uation of the techniques that were proposed in this thesis and to investigate the use and to develop
other computational models in pattern recognition.

Future work will be conducted in the following directions:

• investigating other metaheuristics with the aim of identifying additional potentially beneficial
hybrid models

• using our models for solving other NP-optimization problems

• extending our methods in order to handle categorical data

• applying the incremental clustering approach in Intrusion Detection Systems

• improving the proposed classification model for DRSP by adding to it the capability to adapt
itself using a feedback received when inappropriate data representations are selected

• applying other machine learning techniques like self-organizing feature maps or other modelling
techniques for solving the problem of automatic selection of data representations during the
execution of a software system

• studying the applicability of other learning techniques like semi-supervised learning or reinforce-
ment learning in order to avoid as much as possible the supervision during the training process

• evaluating our techniques on other case studies and real software systems.

Bibliography

[AAA03] Noga Alon, Baruch Awerbuch, and Yossi Azar. The online set cover problem. In
Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, STOC
’03, pages 100–105, New York, NY, USA, 2003. ACM.

[ABKS99] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. Optics:
Ordering points to identify the clustering structure. In SIGMOD Conference, pages
49–60, 1999.

[AM10] Laurent Alfandari and Jérôme Monnot. Approximation of the clustered set covering
problem. Electronic Notes in Discrete Mathematics, 36:479–485, 2010.

[AY01] Charu C. Aggarwal and Philip S. Yu. Outlier detection for high dimensional data. In
SIGMOD Conference, pages 37–46, 2001.

[AZAY10] Moh’d Belal Al-Zoubi, Al-Dahoud Ali, and Abdelfatah A. Yahya. Fuzzy clustering-
based approach for outlier detection. In Proceedings of the 9th WSEAS international
conference on Applications of computer engineering, ACE’10, pages 192–197, Stevens
Point, Wisconsin, USA, 2010. World Scientific and Engineering Academy and Society
(WSEAS).

[BC96] J.E Beasley and P.C Chu. A genetic algorithm for the set covering problem. European
Journal of Operational Research, 94(2):392 – 404, 1996.

[Bea] J E Beasley. OR-Library. http://people.brunel.ac.uk/∼mastjjb/jeb/orlib
/scpinfo.html.

[BG08] Irad Ben-Gal. Bayesian Networks. John Wiley & Sons, Ltd, 2008.

[Bla94a] Betty Blair. Interview with zadeh, creator of fuzzy logic. Azerbaijan International,
2(4):46–47, Winter 1994.

[Bla94b] Betty Blair. Short biographical sketch. Azerbaijan International, 2(4):4, Winter 1994.

[BR03] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Comput. Surv., 35(3):268–308, 2003.

[BW94] Aart J. C. Bik and Harry A. G. Wijshoff. On automatic data structure selection
and code generation for sparse computations. In Proceedings of the 6th International
Workshop on Languages and Compilers for Parallel Computing, pages 57–75, London,
UK, 1994. Springer-Verlag.

[BW96] Aart J. C. Bik and Harry A. G. Wijshoff. Automatic data structure selection and
transformation for sparse matrix computations. IEEE Trans. Parallel Distrib. Syst.,
7:109–126, February 1996.

[CCFM97] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental
clustering and dynamic information retrieval. In Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing, STOC ’97, pages 626–635, New York, NY,
USA, 1997. ACM.

27

BIBLIOGRAPHY 28

[CCGa] Gabriela Czibula, Istvan Czibula, and Radu Găceanu. Intelligent data structures
selection using neural networks. Knowledge and Information Systems, pages 1–22.
10.1007/s10115-011-0468-3.

[CCGb] Gabriela Czibula, Istvan Czibula, and Radu Găceanu. A support vector machine model
for intelligent selection of data representations. Applied Soft Computing. under review.

[CDG07] C. Chira, D. Dumitrescu, and R. D. Găceanu. Stigmergic agent systems for solving NP-
hard problems. Studia Informatica, Special Issue KEPT-2007: Knowledge Engineering:
Principles and Techniques (June 2007):177–184, June 2007.

[CH96] Tyng-Ruey Chuang and Wen L. Hwang. A probabilistic approach to the problem of
automatic selection of data representations. SIGPLAN Not., 31:190–200, June 1996.

[cir10] Patient contributed image repository. http://www.pcir.org/, 2010.

[CL11] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms (3. ed.). MIT Press, 2009.

[CM01] Maria Stella Fiorenzo Catalano and Federico Malucelli. Practical parallel computing.
chapter Parallel randomized heuristics for the set covering problem, pages 113–132.
Nova Science Publishers, Inc., Commack, NY, USA, 2001.

[CMP06] C. Chira C. M. Pintea, P. Pop. Reinforcing ant colony system for the generalized trav-
eling salesman problem. In Volume of Evolutionary Computing, International Con-
ference Bio-Inspired Computing - Theory and Applications (BIC-TA), pages 245–252,
New York, NY, USA, September 18–22, 2006. Wuhan, China.

[CMR+07] Oscar Castillo, Patricia Melin, Oscar Montiel Ross, Roberto Seplveda Cruz, Witold
Pedrycz, and Janusz Kacprzyk. Theoretical Advances and Applications of Fuzzy Logic
and Soft Computing. Springer Publishing Company, Incorporated, 1st edition, 2007.

[coNop] A compendium of NP optimization problems. http://www.nada.kth.se/
viggo/problemlist/compendium.html.

[CSM+11] Broderick Crawford, Ricardo Soto, Eric Monfroy, Fernando Paredes, and Wenceslao
Palma. A hybrid ant algorithm for the set covering problem. International Journal of
the Physical Sciences, 6(19):4667–4673, September 16 2011.

[CST00] Nello Cristianini and John Shawe-Taylor. An introduction to support Vector Machines:
and other kernel-based learning methods. Cambridge University Press, New York, NY,
USA, 2000.

[CXC04] L. Chen, X. H. Xu, and Y. X Chen. An adaptive ant colony clustering algorithm. In
Machine Learning and Cybernetics, 2004. Proceedings of 2004 International Conference
on, Vol. 3, pages 1387–1392, 2004.

[DB05] Marco Dorigo and Christian Blum. Ant colony optimization theory: A survey. Theor.
Comput. Sci., 344(2-3):243–278, 2005.

[DDC99] Marco Dorigo and Gianni Di Caro. The ant colony optimization meta-heuristic, pages
11–32. McGraw-Hill Ltd., UK, Maidenhead, UK, England, 1999.

BIBLIOGRAPHY 29

[DGF+91] J. L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, and L. Chretien.
The dynamic of collective sorting robot-like ants and ant-like robots. In SAB90 - 1st
Conf. On Simulation of Adaptive Behavior: From Animals to Animats, pages 356–365.
MIT Press, 1991.

[DICiM11] Digital Imaging and Communications in Medicine. http://medical.nema.org/, 2011.

[DL11] Steven Simske Dalong Li. Training set compression by incremental clustering. Journal
of Pattern Recognition Research, 6:56–64, 2011.

[Dor07] M. Dorigo. Ant colony optimization. Scholarpedia, 2(3):1461, 2007.

[DP95] Dan Dumitrescu and Horia Florin Pop. Degenerate and non-degenerate convex decom-
position of finite fuzzy partitions — I. Fuzzy Sets and Systems, 73:365–376, 1995.

[DP98] Dan Dumitrescu and Horia Florin Pop. Degenerate and non-degenerate convex decom-
position of finite fuzzy partitions — II. Fuzzy Sets and Systems, 96:111–118, 1998.

[DS04] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, 2004.

[EKS+98] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Michael Wimmer, and Xiaowei Xu.
Incremental clustering for mining in a data warehousing environment. In Proceedings
of the 24rd International Conference on Very Large Data Bases, VLDB ’98, pages
323–333, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[EpKSX96] Martin Ester, Hans peter Kriegel, Jrg S, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. pages 226–231. AAAI
Press, 1996.

[Est09] Martin Ester. Density-based clustering. In Encyclopedia of Database Systems, pages
795–799. 2009.

[Etz96] O. Etzioni. Moving up the information food chain: deploying softbots on the world
wide web. In Proceedings of the 13rd national Conference on Artificial Intelligence
(AAAI- 96), pages 4–8. Portland, OR, 1996.

[fIPA] Foundation for Intelligent Physical Agents. http://www.fipa.org/.

[FLM97] T. Finin, Y. Labrou, and J. Mayfield. Kqml as an Agent Communication Language.
Software Agents, B.M. Jeffrey, MIT Press, 1997.

[FMPS00] Kilian Foth, Wolfgang Menzel, Horia Florin Pop, and Ingo Schröder. An experiment
on incremental analysis using robust parsing techniques. In The 18th International
Conference on Computational Linguistics, pages 1026–1030. Universität des Saarlandes,
Saarbrücken, Germany, July-August 2000.

[For10] M Forina. http://archive.ics.uci.edu/ml, 2010.

[Găc11] Radu D. Găceanu. A bio-inspired fuzzy agent clustering algorithm for search engines.
Procedia Computer Science, 7(0):305 – 307, 2011. Proceedings of the 2nd European
Future Technologies Conference and Exhibition 2011 (FET 11).

[GC10] Serge Guillaume and Brigitte Charnomordic. Interpretable fuzzy inference systems for
cooperation of expert knowledge and data in agricultural applications using fispro. In
FUZZ-IEEE, pages 1–8, 2010.

[Gei93] S. Geisser. Predictive inference: an introduction. Monographs on statistics and applied
probability. Chapman & Hall, 1993.

BIBLIOGRAPHY 30

[GKP02] Mihaela Gordan, Constantine Kotropoulos, and Ioannis Pitas. A support vector
machine-based dynamic network for visual speech recognition applications. EURASIP
J. Appl. Signal Process., 2002:1248–1259, January 2002.

[GKS09] Betsy George, James M. Kang, and Shashi Shekhar. Spatio-temporal sensor graphs
(stsg): A data model for the discovery of spatio-temporal patterns. Intell. Data Anal.,
13(3):457–475, 2009.

[Glo89] Fred Glover. Tabu search - part I. INFORMS Journal on Computing, 1(3):190–206,
1989.

[Glo90] Fred Glover. Tabu search - part II. INFORMS Journal on Computing, 2(1):4–32, 1990.

[GO11] R. D. Găceanu and G. Orbán. Using rsl to describe the stock exchange domain. In mi-
croCAD International Scientific Conference. University of Miskolc, Hungary, 31 March
– 1 April 2011.

[Gol89] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

[GP08] Darwin Gouwanda and S. G. Ponnambalam. Evolutionary search techniques to solve
set covering problems. In World Academy of Science, Engineering and Technology,
pages 20–26. WASET, March 2008.

[GP10] R. D. Găceanu and H. F. Pop. An adaptive fuzzy agent clustering algorithm for search
engines. In MACS2010: Proceedings of the 8th Joint Conference on Mathematics and
Computer Science, pages 185–196. Komarno, Slovakia, 2010.

[GP11a] R. D. Găceanu and H. F. Pop. A context-aware ASM-based clustering algorithm. Studia
Universitatis Babes-Bolyai Series Informatica, LVI(2):55–61, 2011.

[GP11b] R. D. Găceanu and H. F. Pop. A fuzzy clustering algorithm for dynamic environments.
In KEPT2011: Knowledge Engineering Principles and Techniques, Selected Papers,
Eds: M. Frentiu, H.F. Pop, S. Motogna, pages 119–130. Babes-Bolyai University, Cluj-
Napoca, Romania, July 4–6 2011.

[GP11c] R. D. Găceanu and H. F. Pop. An incremental ASM-based fuzzy clustering algorithm. In
Informatics’2011, Slovakia, i’11:Proceedings of the Eleventh International Conference
on Informatics, Informatics 2011, Eds: V. Novitzká, S̆tefan Hudák, pages 198–204.
Slovak Society for Applied Cybernetics and Informatics, Roz̆n̆ava, Slovakia, November
16–18 2011.

[GP12] R. D. Găceanu and H. F. Pop. An incremental approach to the set covering problem.
Studia Universitatis Babes-Bolyai Series Informatica, LVIII(2), 2012.

[Har75] J.A. Hartigan. Clustering algorithms. Wiley series in probability and mathematical
statistics. Applied probability and statistics. Wiley, 1975.

[HCL00] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical guide to support
vector classification, 2000.

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H. Witten. The weka data mining software: an update. SIGKDD Explorations,
11(1):10–18, 2009.

[HK06] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques, 2nd ed.
Morgan Kaufmann, 2006.

[HKT01] J. Han, M. Kamber, and A. K. H. Tung. Spatial Clustering Methods in Data Mining:
A Survey. Taylor and Francis, 2001.

BIBLIOGRAPHY 31

[HL0] Health Level 7. www.hl7.org/, 0.

[hp10] DICOM home page. ftp://medical.nema.org/medical/dicom/datasets/, 2010.

[HSP08] Samer Hassan, Mauricio Salgado, and Juan Pavón. Friends forever: Social relationships
with a fuzzy agent-based model. In HAIS, pages 523–532, 2008.

[HZK+09] Pari Delir Haghighi, Arkady B. Zaslavsky, Shonali Krishnaswamy, Mohamed Medhat
Gaber, and Seng Wai Loke. Context-aware adaptive data stream mining. Intell. Data
Anal., 13(3):423–434, 2009.

[Ins] MP-TESTDATA The TSPLIB Symmetric Traveling Salesman Problem Instances.
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html.

[Iri88] Machine Learning Repository Iris. http://archive.ics.uci.edu/ml/datasets/iris, 1988.

[Kam10] A. Kamble. Incremental clustering in data mining using genetic algorithm. Interna-
tional Journal of Computer Theory and Engineering, 2(3):1793–8201, 2010.

[KH01] Gregor Kiczales and Erik Hilsdale. Aspect-oriented programming. SIGSOFT Softw.
Eng. Notes, 26:313–, September 2001.

[KHK99] George Karypis, Eui-Hong Han, and Vipin Kumar. Chameleon: Hierarchical clustering
using dynamic modeling. IEEE Computer, 32(8):68–75, 1999.

[KJV83] Scott Kirkpatrick, D. Gelatt Jr., and Mario P. Vecchi. Optimization by simmulated
annealing. Science, 220(4598):671–680, 1983.

[KKvdSS96] Ben Krse, Ben Krose, Patrick van der Smagt, and Patrick Smagt. An introduction to
neural networks, 1996.

[Kot07] Sotiris B. Kotsiantis. Supervised machine learning: A review of classification tech-
niques. Informatica (Slovenia), 31(3):249–268, 2007.

[KS05] Vikas Kumar and Marta Schuhmacher. Fuzzy uncertainty analysis in system modelling.
In European Symposium on Computer Aided Process Engineering 15 L. Puigjaner and
A. Espua (Editors), 2005.

[KS08] P. R. Kumar K. Sreelakshmi. Performance evaluation of short term wind speed pre-
diction techniques. IJCSNS International Journal of Computer Science and Network
Security, 8(8):162–169, 2008.

[KTL11] Suzan Köknar-Tezel and Longin Jan Latecki. Improving svm classification on imbal-
anced time series data sets with ghost points. Knowl. Inf. Syst., 28:1–23, July 2011.

[KY95] GEORGE J. Klir and BO Yuan. FUZZY SETS AND FUZZY LOGIC Theory and
Applications. Prentice Hall, 1995.

[LB05] Kristopher R. Linstrom and A. John Boye. A neural network prediction model for a
psychiatric application. In Proceedings of the Sixth International Conference on Com-
putational Intelligence and Multimedia Applications, pages 36–40, Washington, DC,
USA, 2005. IEEE Computer Society.

[LF94] E. Lumer and B. Faieta. Diversity and adaptation in populations of clustering ants.
In J.-A.Meyer, S.W.Wilson(Eds.), Proceedings of the Third International Confer-
ence on Simulation of Adaptive Behavior: From Animats, Vol.3, pages 501–508. MIT
Press/Bradford Books,Cambridge, MA, 1994.

BIBLIOGRAPHY 32

[LKC02] Kyung-Soon Lee, Kyo Kageura, and Key-Sun Choi. Implicit ambiguity resolution using
incremental clustering in korean-to-english cross-language information retrieval. In Pro-
ceedings of the 19th international conference on Computational linguistics - Volume 1,
COLING ’02, pages 1–7, Stroudsburg, PA, USA, 2002. Association for Computational
Linguistics.

[LLLH10] Zhenhui Li, Jae-Gil Lee, Xiaolei Li, and Jiawei Han. Incremental clustering for tra-
jectories. In Hiroyuki Kitagawa, Yoshiharu Ishikawa, Qing Li, and Chiemi Watanabe,
editors, Database Systems for Advanced Applications, volume 5982 of Lecture Notes in
Computer Science, pages 32–46. Springer Berlin / Heidelberg, 2010.

[Low78] James R. Low. Automatic data structure selection: an example and overview. Commun.
ACM, 21:376–385, May 1978.

[LR76] James Low and Paul Rovner. Techniques for the automatic selection of data struc-
tures. In Proceedings of the 3rd ACM SIGACT-SIGPLAN symposium on Principles on
programming languages, POPL ’76, pages 58–67, New York, NY, USA, 1976. ACM.

[MA75] E. H. Mamdani and S. Assilian. An experiment in linguistic synthesis with a fuzzy
logic controller. International Journal of Man-Machine Studies, 7(1):1–13, 1975.

[Mar09] Stephen Marsland. Machine Learning: An Algorithmic Perspective. Chapman &
Hall/CRC, 1st edition, 2009.

[Mat] Fuzzy Logic Toolbox MathWorks. http://www.mathworks.com/help/toolbox
/fuzzy/fp351dup8.html.

[Mit97] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1
edition, 1997.

[MK91] S. Miyake and F. Kanaya. A neural network approach to a bayesian statistical decision
problem. IEEE Trans. Neural Networks, 2:538–540, 1991.

[Mou01] D.M. Mount. Lecture notes CMSC 420, Data Structures, 2001.

[NGS11] K Venkatramaiah Deepak P C Navneet Goyal, Poonam Goyal and Sanoop P S. An effi-
cient density based incremental clustering algorithm in data warehousing environment.
In 2009 International Conference on Computer Engineering and Applications IPCSIT
vol.2 (2011), IACSIT Press, Singapore, pages 482 – 486, 2011.

[Ngu10] Nam Nguyen. A new svm approach to multi-instance multi-label learning. In Pro-
ceedings of the 2010 IEEE International Conference on Data Mining, ICDM ’10, pages
384–392, Washington, DC, USA, 2010. IEEE Computer Society.

[NMM06] Giuseppe Narzisi, Venkatesh Mysore, and Bud Mishra. Multi-objective evolutionary
optimization of agent-based models: An application to emergency response planning.
In Computational Intelligence, pages 228–232, 2006.

[oPDsf10] Washington State University College of Pharmacy DICOM sample files.
http://info.betaustur.org/, 2010.

[Osi10] Advanced Imaging in 3D/4D/5D Sample DICOM Image Sets Osirix.
http://pubimage.hcuge.ch:8080/, 2010.

[OSM] ObjectWeb: Open Source Middleware. http://asm.objectweb.org/.

[PS82] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algo-
rithms and Complexity. Prentice-Hall, 1982.

BIBLIOGRAPHY 33

[PS96] Horia Florin Pop and Costel Sârbu. A new fuzzy regression algorithm. Anal. Chem.,
68:771–778, 1996.

[PSHD96] Horia Florin Pop, Costel Sârbu, Ossi Horowitz, and Dan Dumitrescu. A fuzzy classifi-
cation of the chemical elements. J. Chem. Inf. Comput. Sci., 36:465–482, 1996.

[RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations
by error propagation, pages 318–362. MIT Press, Cambridge, MA, USA, 1986.

[RiplsDis10] J.-P.: Signal Roux and image processing lab sample DICOM image sets.
http://www.creatis.insa-lyon.fr/ jpr/public/gdcm/gdcmsampledata/, 2010.

[RKY10] Vikas C. Raykar, Balaji Krishnapuram, and Shipeng Yu. Designing efficient cas-
caded classifiers: tradeoff between accuracy and cost. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining, KDD ’10,
pages 853–860, New York, NY, USA, 2010. ACM.

[RN02] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 2002.

[Roj96] Raúl Rojas. Neural networks: a systematic introduction. Springer-Verlag New York,
Inc., New York, NY, USA, 1996.

[Rov78] P. Rovner. Automatic representation selection for associative data. Managing Require-
ments Knowledge, International Workshop, 1978.

[SB98] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT
Press, Cambridge, MA, USA, 1st edition, 1998.

[SC08] Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer Publish-
ing Company, Incorporated, 1st edition, 2008.

[SCCK04] S. Schockaert, M. De Cock, C. Cornelis, and E. E. Kerre. Fuzzy ant based clustering. In
Ant Colony Optimization and Swarm Intelligence, 4th International Workshop (ANTS
2004), LNCS 3172, pages 342–349, 2004.

[sciom11] Open source clinical image and object management. http://www.dcm4che.org/, 2011.

[SdLFdCG09] Eduardo J. Spinosa, André Carlos Ponce de Leon Ferreira de Carvalho, and João Gama.
Novelty detection with application to data streams. Intell. Data Anal., 13(3):405–422,
2009.

[Ser06] Gabriela Serban. Sisteme Mutiagent in inteligenta artificiala distribuita. Arhitecturi si
aplicatii. Ed. Risoprint, Cluj-Napoca, 2006.

[sf] Apache software foundation. http://www.apache.org/.

[SGT+02] Ingo Schröder, K. Giannakoglou, D. Tsahalis, J. Periaux, K. Papailiou, T. Fogarty
(eds, Horia F. Pop, A Fachbereich Informatik, Wolfgang Menzel, and Kilian A. Foth.
Learning weights for a natural language grammar using genetic algorithms, 2002.

[SH07] Mark D. Skowronski and John G. Harris. Automatic speech recognition using a predic-
tive echo state network classifier. Neural Networks, 20(3):414 – 423, 2007. Echo State
Networks and Liquid State Machines.

[SK99] Panu Somervuo and Teuvo Kohonen. Self-organizing maps and learning vector quan-
tization forfeature sequences. Neural Process. Lett., 10:151–159, October 1999.

[SP00] Costel Sârbu and Horia Florin Pop. Fuzzy clustering analysis of the first 10 meic
chemicals. Chemosphere, 40:513–520, 2000.

BIBLIOGRAPHY 34

[SP04] Gabriela Serban and Horia Florin Pop. Tehnici de Inteligenta Artificiala. Abordari
bazate pe Agenti Inteligenti. Ed. Mediamira, Cluj-Napoca, 2004.

[Spe87] C. Spearman. The proof and measurement of association between two things. By C.
Spearman, 1904. The American journal of psychology, 100(3-4):441–471, 1987.

[SS01] Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA,
USA, 2001.

[SSS79] Edmond Schonberg, Jacob T. Schwartz, and Micha Sharir. Automatic data structure
selection in setl. In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, POPL ’79, pages 197–210, New York, NY, USA,
1979. ACM.

[SSS81] Edmond Schonberg, Jacob T. Schwartz, and Micha Sharir. An automatic technique for
selection of data representations in setl programs. ACM Trans. Program. Lang. Syst.,
3:126–143, April 1981.

[Ste90] Luc Steels. Components of expertise. AI Magazine, 11(2):28–49, 1990.

[TD10] Balint Takacs and Yiannis Demiris. Spectral clustering in multi-agent systems. Knowl.
Inf. Syst., 25:607–622, December 2010.

[Vap00] V.N. Vapnik. The nature of statistical learning theory. Statistics for engineering and
information science. Springer, 2000.

[VSP09] K. R. Venugopal, K. G. Srinivasa, and L. M. Patnaik. Soft Computing for Data Mining
Applications. Springer Publishing Company, Incorporated, 1st edition, 2009.

[Wat89] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge Univer-
sity, Cambridge, England, 1989.

[WB01] D.A. Watt and D.F. Brown. Java collections: an introduction to abstract data types,
data structures, and algorithms. John Wiley, 2001.

[WD92] Christopher J. C. H. Watkins and Peter Dayan. Technical note q-learning. Machine
Learning, 8:279–292, 1992.

[Win91] Machine Learning Repository Wine. http://archive.ics.uci.edu/ml/datasets/wine,
1991.

[WLZ00] G Wahba, Y Lin, and H Zhang. Generalized approximate cross validation for support
vector machines, or, another way to look at margin-like quantities. Advances in large
margin classifiers, (1006):297309, 2000.

[Woo99] Michael Wooldridge. Intelligent Agents, An Introduction to Multiagent Systems. Ed.
G. Weiss, 1999.

[Woo09] Michael J. Wooldridge. An Introduction to MultiAgent Systems (2. ed.). Wiley, 2009.

[WYM97] Wei Wang, Jiong Yang, and Richard R. Muntz. Sting: A statistical information grid
approach to spatial data mining. In VLDB, pages 186–195, 1997.

[Yel03] D. M. Yellin. Competitive algorithms for the dynamic selection of component imple-
mentations. IBM Syst. J., 42:85–97, January 2003.

[Zad65] Lotfi Askar Zadeh. Fuzzy sets. Inf. Control, 8:338–353, 1965.

[Zad94] Lotfi A. Zadeh. Fuzzy logic, neural networks, and soft computing. Commun. ACM,
37:77–84, March 1994.

BIBLIOGRAPHY 35

[Zad97] Lotfi A. Zadeh. The roles of fuzzy logic and soft computing in the conception, design
and deployment of intelligent systems. In Software Agents and Soft Computing, pages
183–190, 1997.

[Zad02] Lotfi A. Zadeh. Toward a perception-based theory of probabilistic reasoning with
imprecise probabilities. Journal of Statistical Planning and Inference, 105(1):233 –
264, 2002. Imprecise Probability Models and their Applications.

[Zad08] Lotfi Askar Zadeh. Is there a need for fuzzy logic. Information Sciences, 178(13):2751–
2779, July 2008.

[ZDYZ11] Xingquan Zhu, Wei Ding, Philip Yu, and Chengqi Zhang. One-class learning and
concept summarization for data streams. Knowledge and Information Systems, 28:523–
553, 2011. 10.1007/s10115-010-0331-y.

[Zha00] G. P. Zhang. Neural networks for classification: a survey. IEEE Trans. Systems, Man
and Cybernetics, 30(4):451–462, November 2000.

[ZL10] Zhi-Hua Zhou and Ming Li. Semi-supervised learning by disagreement. Knowl. Inf.
Syst., 24:415–439, September 2010.

[ZRL97] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: A new data clustering
algorithm and its applications. Data Min. Knowl. Discov., 1(2):141–182, 1997.

