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Introduction

Mathematical optimization (alternatively, mathematical programming or optimization) rep-

resents a vast area of research in mathematics, which consists to maximize or minimize an objective

function by some conditions called constraints. Semi-infinite programming (SIP) is a subclasses of

optimization and probably one of the oldest branches of mathematical programming. It contains

convex and nonconvex optimization problems.

In 1924, we can found the first description of semi-infinite programming as Chebyshev

approximation, but the name was coined in 1962 by Charnes, Cooper and Kortanek, in papers

(see, [14], [15], [16]), about linear semi-infinite programming.

Semi-infinite programming is an optimization problem characterized by a finite number

of variables and an infinite number of constraints, or an infinite number of variables and a finite

number of constraints, so is the name semi-infinite. In last decades, the area of semi-infinite pro-

gramming is very well developed in terms of theoretical and practical results. We mention for an

introduction to (SIP) the paper by Hettich and Kortanek [36], for linear semi-infinite optimiza-

tion and algorithms (see, [31], [65]), for numerical methods [37] and for standard and generalized

semi-infinite programming (see, [34], [84]). In 1973, Kortanek and Gustafson, developed the first

numerical methods for (SIP) in [35]. There were several authors that investigated applications to

approximation problems and numerical methods: Hettich and Zencke [37], Fiacco and Kortanek

[27], Tichatschke [86], Glashoff and Gustafson [30].

This area of semi-infinite programming has many applications in various fields of mathemat-

ics, engineering and economics, such as: air pollution control [88] solved by discretization methods

(see, [38], [39], [78]), reverse Chebyshev approximation [42], portfolio problem [54], optimal layout

of an assembly line [89], problems of manoeuvrability of robots [40], time minimal control (see,

[50], [52]), statistics [19], system and control [31], design centering (see, [33], [43], [64], [66]), iden-

tification of regression models, dynamics of networks in the presence of uncertainty [90], robust

optimization (see, [5], [87]), transportation problems, fuzzy sets, cooperative games (see, [36], [67]),

gemstone cutting [51].

The notion of duality in semi-infinite programming, has its roots in the theory of uniform

approximation of functions, in the classical theory of moments and in the theory of systems of

linear inequalities. There exists an extensive literature on duality of convex (SIP) problems. We

can mention here: an approach based on conjugate duality [82], a Mond-Weir dual problem for

a nonlinear semi-infinite programming problem using the concepts of generalized semilocally type

I-preinvex functions [46], augmented Lagrange multipliers [81] or other approaches (see, [3], [4], [7],

[8], [10], [28]).

The reader can find other researches for semi-infinite optimization problems in (see, [13],
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[21], [29], [44]).

This thesis consists of five chapters, which are briefly presented in the following lines.

Chapter 1, entitled Preliminary notions and results, contains the most important defini-

tions and results from convex analysis and vector optimization.

Chapter 2, is dedicated to a convex-concave semi-infinite optimization problem whose

objective function is convex while the constraint is convex-concave. In this chapter, to solve the

optimization problem, we attach to it a dual problem which provide information about optimal

solution of original problem. We consider four dual problems related to our semi-infinite optimiza-

tion problem and we have established duality relations between them. In the case of weak duality,

the optimal value of original problem is greater than or equal to each of the optimal values of

considered dual problems. Strong duality, namely that the optimal value of the original problem is

equal with the optimal value of the dual problems, achieved under different convexity assumptions

and regularity conditions often called constraint qualifications.

In Section 2.1, we introduce a new dual type called (D1). We establish relations between

this dual and other three dual problems which are known in the literature. Weak duality is also

established. To study strong duality, the dual problems (D2), (D3) are reformulated and we obtain

three duals (D̃2), (D̃3), (D̃4).

In Section 2.2, we present some numerical results of our theoretical part, using Matlab

program to find the optimal value of a problem.

The author’s original contributions are presented below: Propositions: 2.1.1, 2.1.2, 2.1.5,

2.1.6, 2.1.9, 2.1.10, Examples: 2.2.1, 2.2.2, 2.2.3. Remarks: 2.1.7, 2.1.8.

The results of this area of research are included in the following paper: [76].

In Chapter 3, we consider a semi-infinite optimization problem and we propose to attach

an η-approximated semi-infinite optimization problem, whose solutions will provide information

about the optimal solutions of the original problem.

The idea of η-approximation a nonlinear mathematical programming problem appeared in

papers (see, [1], [22]), in the case where index sets T and S are finite. This method was constructed

by Antczak and was called η-approximated method. The novelty of results obtained in this chapter

is that it is not require that the index sets T and S to be compact.

In Section 3.1, we constructed for a semi-infinite optimization problem, three first order

η-approximated semi-infinite optimization problems. Then we establish connections between the

feasible solutions of the original problem and the feasible solutions of (0, 1)−η approximated semi-

infinite optimization problem and the feasible solutions of the original problem and the feasible

solutions of (1, 1) − η approximated semi-infinite optimization problem. Some examples illustrat-

ing theoretical notions presented. In the next three subsections, the connections studied refers to

the optimal solutions of (1, 0)− η approximated semi-infinite optimization problem, (0, 1)− η ap-

proximated semi-infinite optimization problem, (1, 1)− η approximated semi-infinite optimization

problem and the optimal solutions of original optimization problem. New results and examples are

presented to establish the conditions when an optimal value of original problem is ” ≤ ” or ” ≥ ”

then the optimal value of Problem (P1,1). In the last part of this section, connections between

optimal solutions of first order η-approximated semi-infinite optimization problems are formulated.

In Section 3.2, we deal with the same optimization problem and we constructed five sec-

ond order η-approximated semi-infinite optimization problem. Other new connections between:
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the feasible solutions of second order η-approximated semi-infinite optimization problems and the

feasible solutions of the original problem, feasible solutions of first order η-approximated semi-

infinite optimization problems and feasible solutions of second order η-approximated semi-infinite

optimization problems are presented. Some theorems ensures, under different hypothesis, that any

optimal solution of original optimization problem is an optimal solution of its η-approximated

problem and vice-versa. Then we study the connections between the optimal solutions of second

order η-approximated semi-infinite optimization problems. And finally, the last subsection provides

connections between the optimal solutions of first and second order η-approximated semi-infinite

optimization problems.

The author’s original contributions are presented below: Theorems: 3.1.1, 3.1.3, 3.1.6, 3.1.7,

3.1.8, 3.1.9, 3.1.10, 3.1.11, 3.1.12, 3.1.14, 3.1.17, 3.1.18, 3.1.19, 3.1.20, 3.1.21, 3.1.22, 3.2.1, 3.2.2,

3.2.3, 3.2.4, 3.2.5, 3.2.6, 3.2.7, 3.2.8, 3.2.9, 3.2.10, 3.2.11, 3.2.12, 3.2.13, 3.2.14, 3.2.15, 3.2.16, 3.2.17,

3.2.18, 3.2.19, 3.2.20, 3.2.21, 3.2.22, 3.2.23, 3.2.24, 3.2.25, 3.2.26, 3.2.27, 3.2.28, 3.2.29, 3.2.30, 3.2.31,

3.2.32, 3.2.33, 3.2.34, 3.2.35, 3.2.36, 3.2.37, 3.2.38, 3.2.39, 3.2.40, 3.2.41, 3.2.42, 3.2.43, 3.2.44, 3.2.45,

3.2.46, 3.2.47, 3.2.48, 3.2.49, 3.2.50, 3.2.51, 3.2.52, 3.2.53, 3.2.54, 3.2.55, 3.2.56, 3.2.57, 3.2.58, 3.2.59,

3.2.60, 3.2.61, 3.2.62, 3.2.63, 3.2.64. Examples: 3.1.2, 3.1.4, 3.1.5, 3.1.13, 3.1.15, 3.1.16.

The results of this area of research are included in the following papers: [70], [71], [72], [73],

[74].

Chapter 4, deals with the study of a vector optimization problem.

In Section 4.1, we study connections between the efficient solution of a vector optimization

problem and the efficient solution of first order η-approximated problems.

Section 4.2, is devoted to applications for solving a vector optimization problem. We propose

two methods: weighting methods and constraint methods. After a brief summary concerning the

notions, conditions for a point to be an efficient solution and algorithms for these two methods,

we give some numerical examples. We have shown that a minimal value set of a problem is not a

singleton in general and we can have also a subset of minimal solutions or a representative part

of it. For every example, we constructed a table with results and a graphical representation, using

Matlab program and RStudio.

The author’s original contributions are presented below: Theorems: 4.1.2, 4.1.3, 4.1.4, 4.1.5,

4.1.6, 4.1.7. Remark: 4.1.8. Examples: 4.2.3, 4.2.4, 4.2.5, 4.2.6, 4.2.7, 4.2.8, 4.2.10, 4.2.11, 4.2.12,

4.2.13, 4.2.14, 4.2.15.

Some of the results of this area of research are included in the following chapter: [56] and

paper [75].

Chapter 5, is devoted to solve the optimization problems using Jensen’s inequality, Radon’s

inequality, Hölder’s inequality, Liapunov’s inequality and some bounds for statistical indicators.

This chapter is split in two sections.

In Section 5.1, motivated by recent theoretical results to inequalities and many applications

of these, we solve different optimization problems using inequalities.

In Section 5.2, one solve other optimization problems for the following bounds used in

statistics: dispersion (variance), standard deviation and coefficient of variation.

The author’s original contributions are presented below: Theorems: 5.1.3, 5.1.4, 5.1.9, 5.1.10,

5.1.11, 5.1.13, 5.1.14, 5.2.1, 5.2.2, 5.2.3. Remark: 5.2.4.

The results of this area of research are included in the following papers: [60], [77].
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Chapter 1

Preliminary notions and results

In this chapter we present some basic concepts and conventional notations from convex

analysis and vector optimization, which will be used in this work. We can find these notions in

publications such as (see, [11], [23], [41], [47], [57], [61], [79]).

1.1 Basic concepts

In this section we recall the notions which appear in convex analysis or in vector optimization

theory (invex function, conjugate function, infimal convolution, efficient point).

1.2 Results

In this part of chapter are given necessary and sufficient conditions for a point to be solution

for a semi-infinite optimization problem.
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Chapter 2

Convex-concave semi-infinite

optimization problem

The aim of this chapter is to study dual problems for a convex-concave semi-infinite opti-

mization problem. In order to do this we consider four dual problems related to a given semi-infinite

optimization problem and we establish the relations between the optimal objective values of these

dual problems. Moreover, under some sufficient conditions, we study strong duality between the

primal and the dual problems, respectively weak duality.

There is an extensive literature on duality and optimality conditions in convex optimization

(see, [31], [36], [54]). In [83] Shapiro and in [26] Fang, Li, Ng, gave results on Lagrangian dualities

in convex semi-infinite programming (SIP). Mishra, Jaiswal and Thi Hoai An formulated in [62] for

a nonsmooth (SIP) problem Wolfe and Mond-Weir duals and established weak, strong and stricte

converse duality.

The semi-infinite optimization problem was studied in various forms of restriction imposed

on function gt, (t ∈ T ). For example: f (the objective function), gt are lower semicontinuous in

papers (see, [20], [32]) or continuous in paper [9]. In our case the objective function f is convex,

while the constraint gt, (t ∈ T ) is convex-concave.

This chapter consists of two sections. In the first section we consider four dual problems,

where the dual (D1) is newly constructed, while others are known in the literature. We prove weak

duality and then some relations between the optimal objective values of dual problems are given.

To prove strong duality, we rewrite duals (D2) and (D3) and we obtain three dual problems. For

strong duality we use also Sion’s theorem (see, [85]).

In the second section we consider three numerical examples in order to justify the theoretical

part of first section.

2.1 Theoretical results

In this section, we assume that C is a nonempty convex subset of a locally convex Hausdorff

topological vector space X, T is a nonempty (possibly infinite) index set and f , gt : X → R :=

R ∪ {+∞}, (t ∈ T ) are proper convex functions.

We consider the optimization problem

6
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inf f (x)

subject to x ∈ C
gt (x) 5 0, (t ∈ T ).

(P)

We propose to attach to Problem (P ), the following four dual problems:

The first dual is

sup{inf{f(x) +
∑

t∈supp(λ)

λtgt(x) : x ∈ C} : λ ∈ R(T )
+ }. (D)

The second dual is

sup{inf{fC(x) + λgt(x) : x ∈ X} : λ ∈ R+, t ∈ T}, (D1)

where fC : X → R is defined as

fC(x) := f(x) + δC(x), for all x ∈ X.

The third dual is

sup{−(f∗C(−x∗) + (λgt)
∗(x∗)) : λ ∈ R+, x

∗ ∈ X∗, t ∈ T}. (D2)

The four dual is

sup{−(f∗(−x∗ − u∗) + δ∗C(u∗) + (λgt)
∗(x∗)) : λ ∈ R+, x

∗ ∈ X∗, u∗ ∈ X∗, t ∈ T}. (D3)

Proposition 2.1.1 (A. Raţiu [76]) The following inequality

inf(P ) = max{sup(D), sup(D1), sup(D2), sup(D3)},

holds.

In the following, we are going to give some relations between the optimal objective values

of different dual problems we introduced above.

Proposition 2.1.2 (A. Raţiu [76]) The following inequalities hold:

(i) sup(D1) = max{sup(D2), sup(D3)},
(ii) sup(D2) = sup(D3).

Next, to prove strong duality, we rewrite duals (D2) and (D3) and we obtain the following

dual problems:

sup{−(fC + λgt)
∗(0) : λ ∈ R+, t ∈ T}, (D̃2)

sup{−(f∗C�(λgt)
∗)(0) : λ ∈ R+, t ∈ T}, (D̃3)

sup{−(f∗�δ∗C�(λgt)
∗)(0) : λ ∈ R+, t ∈ T}. (D̃4)
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Proposition 2.1.5 (A. Raţiu [76]) The following inequality

inf(P ) = max{sup(D), sup(D1), sup(D̃2)},

holds.

Proposition 2.1.6 (A. Raţiu [76]) If � is exact, then the following inequality

inf(P ) = max{sup(D̃3), sup(D̃4)},

holds.

Remark 2.1.7 (A. Raţiu [76]) From above we have that the dual (D̃4) can be considered like

another way to write the dual (D̃3).

Remark 2.1.8 (A. Raţiu [76]) If � is exact then the following inequality

inf(P ) = max{sup(D), sup(D1), sup(D̃2), sup(D̃3), sup(D̃4)},

holds.

Proposition 2.1.9 (A. Raţiu [76]) If � is exact then the following relation

sup(D1) = sup(D̃2) = sup(D̃3) = sup(D̃4),

holds.

Proposition 2.1.10 (A. Raţiu [76]) If the set T is convex, compact, and the functions f , gt :

X → R := R ∪ {+∞}, (t ∈ T ) are convex, continuous, and gt(x) are concave in t for every fixed

point x ∈ X, then we have

inf(P ) = max{sup(D), sup(D1), sup(D̃2), sup(D̃3), sup(D̃4)}.

2.2 Numerical results

To illustrate relations

inf(P ) = sup(D),

and

inf(P ) = sup(D1) = sup(D2) = sup(D3),

several test problems are listed in the following and solved in Matlab program. Throughout the

computational experiments, the function gt is convex in x and concave in t and T is a convex

compact set. To find the optimal value for Problem (P ) and dual problems, we use functions

defined in Matlab Optimization Toolbox, starting at an initial estimate.



Chapter 3

η-Approximated semi-infinite

optimization problems

In this chapter, we consider a semi-infinite optimization problem (P ) with inequality and

equality constraints. An approach to obtain sufficient optimality conditions for an optimization

problem and its dual has been introduced by Antczak in [1]. He constructed an η-approximated

problem equivalent to the original problem and studied the connections between optimal solutions

of these two problems. Other authors who have used the approximation method are: Duca and

Duca [22], Boncea and Duca [6], Cioban and Duca [17], Pop and Duca [68].

To determine the nature of Problem (P ) we have the following cases: if the index sets T and

S are finite, then Problem (P ) is a classic optimization problem and if the index sets T and\or S

are infinite we have a semi-infinite optimization problem. To obtain the optimal solutions of a semi-

infinite optimization problem, we attach an approximate optimization problem which is constructed

by a first and second order η-approximation. We will analyze the relationships between Problem (P )

with set constraint X ⊂ Rn and eight related approximation problems with the same set constraint

and functional constraints depending on a point x0 ∈ intX and a function η : X × X → X.

Under different assumptions on the objective and the constraint functions it is shown that any

optimal solution of Problem (P ) is an optimal solution of its approximations and vice-versa. Then

we will study the connections between the optimal solutions of original optimization problem and

optimal solutions of first and second order η-approximated semi-infinite optimization problems.

Connections between the feasible solutions of Problem (P ) and feasible solutions of first and second

order η-approximated semi-infinite optimization problems are established. In the last section of this

chapter we will study the connections between the optimal solutions of η-approximated semi-infinite

optimization problems.

3.1 First order η-approximated semi-infinite optimization prob-

lems

In this section, we assume that X is a nonempty subset of Rn, T and S are index sets,

η : X ×X → X a function, x0 be an interior point of X and f : X → R, gt : X → R, (t ∈ T ) and

hs : X → R, (s ∈ S) are differentiable at x0.

9
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We consider the optimization problem

min f(x)

subject to

x ∈ X
gt(x) 5 0, (t ∈ T )

hs(x) = 0, (s ∈ S).

(P)

Let

F(P ) := {x ∈ X : gt(x) 5 0, (t ∈ T ) , hs(x) = 0, (s ∈ S)} ,

denote the set of all feasible solutions for Problem (P ) and

v (P ) := inf{f(x) : x ∈ F (P )},

is the optimal value for Problem (P ).

One of the manners to solve Problem (P ) is to attach another optimization problem, whose

solutions provide information about the optimal solutions of the initial Problem (P ).

We propose to attach to Problem (P ), the problems (Pj,k), ((j, k) ∈ {(1, 0), (0, 1), (1, 1)}),

min F 〈j〉 (x)

subject to

x ∈ X
G
〈k〉
t (x) 5 0, (t ∈ T )

H
〈k〉
s (x) = 0, (s ∈ S),

(Pj,k)

called (j, k)-η approximated semi-infinite optimization problem, where F 〈1〉, G
〈1〉
t , H

〈1〉
s : X → R

(t ∈ T, s ∈ S) are defined by:

F 〈1〉 (x) := f(x0) +
[
∇f(x0)

] (
η(x, x0)

)
,

G
〈1〉
t (x) := gt(x

0) +
[
∇gt(x0)

] (
η(x, x0)

)
, (t ∈ T ) ,

H〈1〉s (x) := hs(x
0) +

[
∇hs(x0)

] (
η(x, x0)

)
, (s ∈ S) ,

for all x ∈ X, and F 〈0〉 = f , G
〈0〉
t = gt, H

〈0〉
s = hs, (t ∈ T, s ∈ S).

In what follows, we denote by:

F0 :=
{
x ∈ X : G

〈0〉
t (x) 5 0, (t ∈ T ) , H〈0〉s (x) = 0, (s ∈ S)

}
,

and

F1 :=
{
x ∈ X : G

〈1〉
t (x) 5 0, (t ∈ T ), H〈1〉s (x) = 0, (s ∈ S)

}
.

Let’s remark that if F(P ) denote the set of all feasible solutions for Problem (P ), then

F0 = F(P ) = F(P1,0), F1 = F(P0,1) = F(P1,1).
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3.1.1 Connections between the sets of feasible solutions of Problem (P ) and

first order η-approximated problems

In the following two theorems establish connections between the sets of feasible solutions

of Problem (P ) and the problems (P0,1), (P1,1).

Theorem 3.1.1 (A. Raţiu, D.I. Duca [71]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) for each t ∈ T , the function gt is differentiable at x0 and invex at x0 w.r.t. η,

(b) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η,

then

F0 ⊆ F1.

Following example shows that the inclusion F0 ⊆ F1 can be strict.

Example 3.1.2 (A. Raţiu, D.I. Duca [72]) Let gk : R2 → R, (k ∈ N), the function defined by

gk(x) =


x21 − x2, k = 1

x1 + x2 − 2, k = 2

(x1 − 2)2 + (x2 − 5)2 − 17− 1
k , k ∈ N, k = 3,

We observe that

F0 = {(x1, x2) ∈ R2 : x21 − x2 5 0, x1 + x2 5 2, (x1 − 2)2 + (x2 − 5)2 − 17 5 0}.

For the point x0 = (−2, 4) and the function η : R2 × R2 → R2, defined by η(x, y) = x− y,

for all (x, y) ∈ R2 × R2, we have

G
〈1〉
1 (x) := g1(x

0) +
[
∇g1(x0)

]
(η(x, x0)) = −4x1 − x2 − 4,

G
〈1〉
2 (x) := g2(x

0) +
[
∇g2(x0)

]
(η(x, x0)) = x1 + x2 − 2,

G
〈1〉
k (x) := gk(x

0) +
[
∇gk(x0)

]
(η(x, x0)) = −8x1 − 2x2 − 8− 1

k
, k ∈ N, k = 3,

for all x ∈ X.

Then,
F1 = {(x1, x2) ∈ R2 : −4x1 − x2 5 4,

x1 + x2 5 2, − 8x1 − 2x2 5 8 + 1
k ; k ∈ N, k = 3},

hence,

F0 ⊆ F1,

and

F1 6= F0,

because,

(0, 0) ∈ F1 \ F0.

Theorem 3.1.3 (A. Raţiu, D.I. Duca [71]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S). If
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(a) for each t ∈ T , the function gt is differentiable at x0 and incave at x0 w.r.t. η,

(b) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η,

then

F1 ⊆ F0.

Following two examples shows that the inclusion F1 ⊆ F0 can be strict.

Example 3.1.4 (A. Raţiu, D.I. Duca [70]) Let gk : R2 → R, (k ∈ N) the function defined by

gk(x) =


−x1, k = 1

−x2, k = 2

x1x2 − 1
k , k ∈ N, k = 3.

We observe that

F0 = ({0} × [0,+∞[) ∪ ([0,+∞[×{0}).

For the point x0 = (1, 0) and the function η : R2×R2 → R2, defined by η(x, y) = x− y, for

all (x, y) ∈ R2 × R2, we have

G
〈1〉
1 (x) := g1(x

0) +
[
∇g1(x0)

] (
η(x, x0)

)
= −x1,

G
〈1〉
2 (x) := g2(x

0) + [∇g2(x0)]
(
η(x, x0)

)
= −x2,

G
〈1〉
k (x) := gk(x

0) +
[
∇gk(x0)

] (
η(x, x0)

)
= x2 −

1

k
, k ∈ N, k = 3,

for all x ∈ X.

Then,

F1 = [0,+∞[×{0}.

We remark that

F1 ⊆ F0.

Moreover,

F1 6= F0,

because (0, 1) ∈ F0 \ F1.

Example 3.1.5 (A. Raţiu, D.I. Duca [70]) Let gk : R2 → R, (k ∈ N), the function defined by

gk(x) =


−x2, k = 1

− (x1 − 2)2 − (x2 − 1)2 + 1, k = 2

−x1 − x2 + k+1
k+2 , k ∈ N, k = 3

For the point x0 = (1, 0) and the function η : R2×R2 → R2, defined by η(x, y) = x− y, for

all (x, y) ∈ R2 × R2, we have:

G
〈1〉
1 (x) := g1(x

0) +
[
∇g1(x0)

] (
η(x, x0)

)
= −x2,

G
〈1〉
2 (x) := g2(x

0) +
[
∇g2(x0)

] (
η(x, x0)

)
= 2x1 + 2x2 − 3,
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G
〈1〉
k (x) := gk(x

0) +
[
∇gk(x0)

] (
η(x, x0)

)
= −x1 − x2 +

k + 1

k + 2
, k ∈ N, k = 3,

for all x ∈ X.

Obviously, we have

F1 ⊆ F0,

and

F1 6= F0,

because (2, 2) ∈ F0 \ F1.

3.1.2 Approximate problem (P1,0)

The goal of this section is to establish the connections between the optimal solutions of

Problem (P ) and the optimal solutions of approximated problem (P1,0).

Following theorem shows that in some hypothesis, any optimal solution for Problem (P1,0)

is an optimal solution for Problem (P ).

Theorem 3.1.6 (A. Raţiu, D.I. Duca [71]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) the function f is differentiable at x0 and pseudoinvex at x0 w.r.t. η,

(b) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P1,0), then x0 is an optimal solution for Problem

(P ).

Following theorem tells us when an optimal solution for Problem (P ) is an optimal solution

for approximated Problem (P1,0).

Theorem 3.1.7 (A. Raţiu, D.I. Duca [71]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) the function f is differentiable at x0 and quasiincave at x0 w.r.t. η,

(b) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P ), then x0 is an optimal solution for Problem

(P1,0).

3.1.3 Approximate problem (P0,1)

The aim of this section is to establish the connections between the optimal solutions for

Problem (P ) and the optimal solutions for approximated problem (P0,1).

Following theorem shows when an optimal solution for Problem (P0,1) is an optimal solution

for Problem (P ).

Theorem 3.1.8 (A. Raţiu, D.I. Duca [71]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) for each t ∈ T , the function gt is differentiable at x0 and invex at x0 w.r.t. η,

(b) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η,

(c) x0 ∈ F(P ).
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If x0 is an optimal solution for Problem (P0,1), then x0 is an optimal solution for Problem

(P ).

In what follows next theorem shows when an optimal solution for Problem (P ) is an optimal

solution for Problem (P0,1).

Theorem 3.1.9 (A. Raţiu, D.I. Duca [71]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) for each t ∈ T , the function gt is differentiable at x0 and incave at x0 w.r.t. η,

(b) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η,

(c) x0 ∈ F(P0,1).

If x0 is an optimal solution for Problem (P ), then x0 is an optimal solution for Problem

(P0,1).

3.1.4 Approximate problem (P1,1)

The goal of this section is to establish the connections between the optimal solution of

Problem (P ) and the optimal solution of approximated problem (P1,1).

Following theorem shows when an optimal solution for Problem (P1,1) is an optimal solution

for Problem (P ).

Theorem 3.1.10 (A. Raţiu, D.I. Duca [71]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) the function f is differentiable at x0 and pseudoinvex at x0 w.r.t. η,

(b) for each t ∈ T , the function gt is differentiable at x0 and invex at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η,

(d) x0 ∈ F(P ),

(e) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P1,1), then x0 is an optimal solution for Problem

(P ).

In what follows next theorem shows when an optimal solution for Problem (P ) is an optimal

solution for Problem (P1,1).

Theorem 3.1.11 (A. Raţiu, D.I. Duca [71]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) the function f is differentiable at x0 and quasiincave at x0 w.r.t. η,

(b) for each t ∈ T , the function gt is differentiable at x0 and incave at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η,

(d) x0 ∈ F(P1,1),

(e) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P ), then x0 is an optimal solution for Problem

(P1,1).

The following theorem, gives sufficient conditions under which optimal value for Problem

(P1,1) is less or equal than optimal value for Problem (P ).
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Theorem 3.1.12 (A. Raţiu, D.I. Duca [72]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T, s ∈ S). If

(a) the function f is differentiable at x0 and invex at x0 w.r.t. η,

(b) for each t ∈ T , the function gt is differentiable at x0 and invex at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η,

then

inf(P1,1) 5 inf(P ).

The following example illustrate the relation inf(P1,1) < inf(P ).

Example 3.1.13 (A. Raţiu, D.I. Duca [72]) Consider the problem

min f(x) := (x1 + 3)2 + x22
subject to

x := (x1, x2) ∈ R2

g1(x) := x21 − x2 5 0

g2(x) = x1 + x2 − 2 5 0

gk(x) = (x1 − 2)2 + (x2 − 5)2 − 17− 1
k 5 0, k ∈ N, k = 3,

(P̃ )

and the function η : R2 × R2 → R2, defined by η(x, y) = x− y, for all (x, y) ∈ R2 × R2.

For the point x0 = (−2, 4), we have

F 〈1〉(x) := f(x0) +
[
∇f(x0)

] (
η(x, x0)

)
= 2x1 + 8x2 − 11,

for all (x1, x2) ∈ R2.

Then, η−approximated optimization problem is

min 2x1 + 8x2 − 11

subject to

x := (x1, x2) ∈ R2

−4x1 − x2 5 4

x1 + x2 5 2

−8x1 − 2x2 5 8 + 1
k , k ∈ N, k = 3,

(P̃1,1)

and hence

F0 ⊆ F1.

Moreover,

inf(P̃1,1) = −∞ < 17 = inf(P̃ ).

The following theorem, gives sufficient conditions under which optimal value for Problem

(P1,1) is great or equal than optimal value for Problem (P ).

Theorem 3.1.14 (A. Raţiu, D.I. Duca [70]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T, s ∈ S). If

(a) the function f is differentiable at x0 and incave at x0 w.r.t. η,

(b) for each t ∈ T , the function gt is differentiable at x0 and incave at x0 w.r.t. η,
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(c) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η, then

inf(P1,1) = inf(P ).

The following two examples show that the relation v(P ) = v(P1,1) can be take place.

Example 3.1.15 (A. Raţiu, D.I. Duca [70]) Consider the problem

min f (x) := − (x1 − 9)2 − (x2 − 10)2

subject to

x := (x1, x2) ∈ R2

g1 (x) := −x1 5 0

g2 (x) := −x2 5 0

g3(x) := − (x1 − 2)2 − (x2 − 1)2 + 1 5 0

g4 (x) := x1 + x2 − 5 5 0

gk (x) := −x1 − x2 + k+1
k+2 5 0, k ∈ N, k = 5.

(P̂ )

For the point x0 = (1, 0) and the function η : R2 ×R2 → R2 defined by η(x, y) = x− y, for

all (x, y) ∈ R2 × R2, we have

F 〈1〉(x) := f(x0) +
[
∇f(x0)

] (
η(x, x0)

)
= 16x1 + 20x2 − 180,

for all x ∈ R2.

Then η-approximated optimization problem is

min 16x1 + 20x2 − 180

subject to

x := (x1, x2) ∈ R2

−x1 5 0

−x2 5 0

2x1 + 2x2 − 3 5 0

x1 + x2 − 5 5 0

−x1 − x2 + k+1
k+2 5 0, k ∈ N, k = 5.

(P̂1,1)

We have

v(P̂ ) = v(P̂1,1).

Example 3.1.16 (A. Raţiu, D.I. Duca [72]) Consider the problem

min f(x) := (x1 + 6)2 + (x2 − 5)2

subject to

x := (x1, x2) ∈ R2

g1(x) := x21 − x2 5 0

g2(x) = x1 + x2 − 2 5 0

gk(x) = (x1 − 2)2 + (x2 − 5)2 − 17− 1
k 5 0, k ∈ N, k = 3,

(P̂ )

and the function η : R2 × R2 → R2 defined by η(x, y) = x− y, for all (x, y) ∈ R2 × R2.
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For the point x0 = (−2, 4), we have

F 〈1〉(x) := f(x0) +
[
∇f(x0)

] (
η(x, x0)

)
= 8x1 − 2x2 + 41,

for all x = (x1, x2) ∈ R2.

Then η−approximated optimization problem is

min 8x1 − 2x2 + 41

subject to

x := (x1, x2) ∈ R2

−4x1 − x2 5 4

x1 + x2 5 2

−8x1 − 2x2 5 8 + 1
k , k ∈ N, k = 3.

(P̂1,1)

and hence

v(P̂ ) = 17 = v(P̂1,1).

3.1.5 Connections between optimal solutions for problems (P1,0), (P0,1) and (P1,1)

The aim of this section is to establish connections between optimal solutions of first order

η-approximated semi-infinite optimization problems.

Following theorem shows that in some hypothesis, an optimal solution for Problem (P0,1)

is an optimal solution for Problem (P1,1).

Theorem 3.1.17 (A. Raţiu, D.I. Duca [71]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) the function f is differentiable at x0 and quasiincave at x0 w.r.t. η,

(b) for each t ∈ T , the function gt is differentiable at x0,

(c) for each s ∈ S, the function hs is differentiable at x0,

(d) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P0,1), then x0 is an optimal solution for Problem

(P1,1).

In what follows next theorem shows when an optimal solution for Problem (P1,1) is an

optimal solution for Problem (P0,1).

Theorem 3.1.18 (A. Raţiu, D.I. Duca [71]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) the function f is differentiable at x0 and pseudoinvex at x0 w.r.t. η,

(b) for each t ∈ T , the function gt is differentiable at x0,

(c) for each s ∈ S, the function hs is differentiable at x0,

(d) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P1,1), then x0 is an optimal solution for Problem

(P0,1).

Following theorem shows when an optimal solution for Problem (P1,1) is an optimal solution

for Problem (P1,0).
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Theorem 3.1.19 (A. Raţiu, D.I. Duca [71]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) the function f is differentiable at x0,

(b) for each t ∈ T , the function gt is differentiable at x0 and invex at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η,

(d) x0 ∈ F(P1,0).

If x0 is an optimal solution for Problem (P1,1), then x0 is an optimal solution for Problem

(P1,0).

Next result shows when an optimal solution for Problem (P1,0) is an optimal solution for

Problem (P1,1).

Theorem 3.1.20 (A. Raţiu, D.I. Duca [71]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) the function f is differentiable at x0,

(b) for each t ∈ T , the function gt is differentiable at x0 and incave at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η.

(d) x0 ∈ F(P1,1).

If x0 is an optimal solution for Problem (P1,0), then x0 is an optimal solution for Problem

(P1,1)

In what follows next theorem shows when an optimal solution for Problem (P1,0) is an

optimal solution for Problem (P0,1).

Theorem 3.1.21 (A. Raţiu, D.I. Duca [71]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) the function f is differentiable at x0 and pseudoinvex at x0 w.r.t. η,

(b) for each t ∈ T , the function gt is differentiable at x0 and incave at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η,

(d) x0 ∈ F(P0,1),

(e) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P1,0), then x0 is an optimal solution for Problem

(P0,1).

Following theorem shows that in some hypothesis, any optimal solution for Problem (P0,1)

is an optimal solution for Problem (P1,0).

Theorem 3.1.22 (A. Raţiu, D.I. Duca [71]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) the function f is differentiable at x0 and quasiincave at x0 w.r.t. η,

(b) for each t ∈ T , the function gt is differentiable at x0 and invex at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η,

(d) x0 ∈ F(P1,0),

(e) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P0,1), then x0 is an optimal solution for Problem

(P1,0)
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3.2 Second order η-approximated semi-infinite optimization prob-

lems

In this section, we assume that X is a nonempty subset of Rn, T and S are index sets,

η : X ×X → X a function, x0 be an interior point of X and f : X → R, gt : X → R, (t ∈ T ) and

hs : X → R, (s ∈ S) are twice differentiable at x0.

We consider the optimization problem

min f(x)

subject to

x ∈ X
gt(x) 5 0, (t ∈ T )

hs(x) = 0, (s ∈ S).

(P)

We denote by F 〈1〉, G
〈1〉
t , H

〈1〉
s , F 〈2〉, G

〈2〉
t , H

〈2〉
s : X → R (t ∈ T, s ∈ S) the functions defined

by:

F 〈1〉 (x) := f(x0) +
[
∇f(x0)

] (
η(x, x0)

)
,

G
〈1〉
t (x) := gt(x

0) +
[
∇gt(x0)

] (
η(x, x0)

)
, (t ∈ T ) ,

H〈1〉s (x) := hs(x
0) +

[
∇hs(x0)

] (
η(x, x0)

)
, (s ∈ S) ,

F 〈2〉 (x) := f(x0) +
[
∇f(x0)

] (
η(x, x0)

)
+

+ 1
2

〈
η(x, x0),

[
∇2f(x0)

] (
η(x, x0)

)〉
,

G
〈2〉
t (x) := gt(x

0) +
[
∇gt(x0)

] (
η(x, x0)

)
+

+ 1
2

〈
η(x, x0),

[
∇2gt(x

0)
] (
η(x, x0)

)〉
, (t ∈ T ),

H
〈2〉
s (x) := hs(x

0) +
[
∇hs(x0)

] (
η(x, x0)

)
+

+1
2

〈
η(x, x0), [∇2hs(x

0)]
(
η(x, x0)

)〉
, (s ∈ S),

for all x ∈ X, and F 〈0〉 = f , G
〈0〉
t = gt, H

〈0〉
s = hs, (t ∈ T, s ∈ S).

In what follows, we attach to Problem (P ), the problems: (Pj,k), ((j, k) ∈
{(2, 0), (0, 2), (1, 2), (2, 1), (2, 2), (1, 0), (0, 1), (1, 1)}),

min F 〈j〉 (x)

subject to

x ∈ X
G
〈k〉
t (x) 5 0, (t ∈ T )

H
〈k〉
s (x) = 0, (s ∈ S),

(Pj,k)

called (j, k)-η approximated semi-infinite optimization problem.
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We denote by:

F2 := {x ∈ X : G
〈2〉
t (x) 5 0, (t ∈ T ) , H〈2〉s (x) = 0, (s ∈ S)}.

Let’s remark that if F(P ) denote the set of all feasible solutions for Problem (P ), then

F0 = F(P ) = F(P1,0) = F(P2,0), F1 = F(P0,1) = F(P1,1) = F(P2,1) and F2 = F(P0,2) =

F(P1,2) = F(P2,2).

3.2.1 Connections between the sets of feasible solutions of Problem (P ) and

second order η-approximated problems

In this section, we establish connections between the set of feasible solutions for Problem

(P ) and the set of feasible solutions of second order η-approximated semi-infinite optimization

problems.

Next theorem tells us under what conditions the set of feasible solutions for Problem (P ) is

included in the set of feasible solutions for second order η-approximated semi-infinite optimization

problems.

Theorem 3.2.1 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T, s ∈ S) are functions. If

(a) for each t ∈ T , the function gt is second order differentiable at x0 and second order

invex at x0 w.r.t. η,

(b) for each s ∈ S, the function hs is second order differentiable at x0 and second order

avex at x0 w.r.t. η,

then

F0 ⊆ F2.

Following theorem shows under what conditions the set of feasible solutions for second order

η-approximated semi-infinite optimization problems is included in the set of feasible solutions for

Problem (P ).

Theorem 3.2.2 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) are functions. If

(a) for each t ∈ T , the function gt is second order differentiable at x0 and second order

incave at x0 w.r.t. η,

(b) for each s ∈ S, the function hs is second order differentiable at x0 and second order

avex at x0 w.r.t. η,

then

F2 ⊆ F0.

3.2.2 Connections between the sets of feasible solutions of first order η-

approximated problems and second order η- approximated problems

The goal of this section is to establish connections between the set of feasible solutions of

first order η-approximated semi-infinite optimization problems and the set of feasible solutions of

second order η-approximated semi-infinite optimization problems.



21

In what follows next theorem shows when the set of feasible solutions of first order η-

approximated semi-infinite optimization problems is included in the set of feasible solutions of

second order η-approximated semi-infinite optimization problems .

Theorem 3.2.3 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T, s ∈ S) are functions. If

(a) for each t ∈ T , the function gt is second order differentiable at x0 and〈
η(x, x0),

[
∇2gt(x

0)
] (
η(x, x0)

)〉
5 0, for all x ∈ X,

(b) for each s ∈ S, the function hs is second order differentiable at x0 and〈
η(x, x0), [∇2hs(x

0)]
(
η(x, x0)

)〉
= 0, for all x ∈ X,

then

F1 ⊆ F2.

Next theorem shows when the set of feasible solutions of second order η-approximated

semi-infinite optimization problems is included in the set of feasible solutions of first order η-

approximated semi-infinite optimization problems .

Theorem 3.2.4 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) are functions. If

(a) for each t ∈ T , the function gt is second order differentiable at x0 and〈
η(x, x0),

[
∇2gt(x

0)
] (
η(x, x0)

)〉
= 0, for all x ∈ X,

(b) for each s ∈ S, the function hs is second order differentiable at x0 and〈
η(x, x0), [∇2hs(x

0)]
(
η(x, x0)

)〉
= 0, for all x ∈ X,

then

F2 ⊆ F1.

3.2.3 Approximate problem (P0,2)

The goal of this section is to establish the connections between the optimal solutions for

Problem (P ) and the optimal solutions for approximated problem (P0,2).

In the following theorem is established when an optimal solution for Problem (P0,2) , is an

optimal solution for Problem (P ).

Theorem 3.2.5 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T, s ∈ S) such that:

(a) for each t ∈ T , the function gt is second order differentiable at x0 and second order

invex at x0 w.r.t. η,
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(b) for each s ∈ S, the function hs is second order differentiable at x0 and second order

avex at x0 w.r.t. η,

(c) x0 ∈ F(P ).

If x0 is an optimal solution for Problem (P0,2) , then x0 is an optimal solution for Problem

(P ) .

Following theorem shows that under some assumptions, any optimal solution for Problem

(P ) is an optimal solution for Problem (P0,2).

Theorem 3.2.6 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) for each t ∈ T , the function gt is second order differentiable at x0 and second order

incave at x0 w.r.t. η,

(b) for each s ∈ S, the function hs is second order differentiable at x0 and second order

avex at x0 w.r.t. η,

(c) x0 ∈ F(P0,2).

If x0 is an optimal solution for Problem (P ) , then x0 is an optimal solution for Problem

(P0,2) .

3.2.4 Approximate problem (P2,0)

The aim of this section is to establish connections between the optimal solutions for Problem

(P ) and the optimal solutions for approximated problem (P2,0).

Following theorem shows when an optimal solution for Problem (P2,0) is an optimal solution

for Problem (P ).

Theorem 3.2.7 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0 and second order pseudoinvex at x0

w.r.t. η,

(b) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P2,0), then x0 is an optimal solution for Problem

(P ).

In what follows next theorem shows when an optimal solution for Problem (P ) is an optimal

solution for Problem (P2,0).

Theorem 3.2.8 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0 and second order quasiincave at x0

w.r.t. η,

(b) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P ), then x0 is an optimal solution for Problem

(P2,0).
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3.2.5 Approximate problem (P1,2)

The aim of this section is to establish the connections between the optimal solutions for

Problem (P ) and the optimal solutions for approximated problem (P1,2).

In Theorem 3.2.9, we established when an optimal solution for Problem (P1,2) is an optimal

solution for Problem (P ).

Theorem 3.2.9 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is differentiable at x0 and pseudoinvex at x0 w.r.t. η,

(b) for each t ∈ T , the function gt is second order differentiable at x0 and second order invex

at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is second order differentiable at x0 and second order

avex at x0 w.r.t. η,

(d) x0 ∈ F(P ),

(e) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P1,2), then x0 is an optimal solution for Problem

(P ).

In what follows next theorem shows when an optimal solution for Problem (P ) is an optimal

solution for Problem (P1,2).

Theorem 3.2.10 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is differentiable at x0 and quasiincave at x0 w.r.t. η,

(b) for each t ∈ T , the function gt is second order differentiable at x0 and second order

incave at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is second order differentiable at x0 and second order

avex at x0 w.r.t. η,

(d) x0 ∈ F(P1,2),

(e) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P ), then x0 is an optimal solution for Problem

(P1,2).

3.2.6 Approximate problem (P2,1)

The goal of this section is to establish the connections between the optimal solutions for

Problem (P ) and the optimal solutions for approximated problem (P2,1).

Following theorem shows that in some hypothesis, any optimal solution for Problem (P2,1)

is an optimal solution for Problem (P ).

Theorem 3.2.11 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0 and second order pseudoinvex at x0

w.r.t. η,

(b) for each t ∈ T , the function gt is differentiable at x0 and invex at x0 w.r.t. η,
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(c) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η,

(d) x0 ∈ F(P ),

(e) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P2,1), then x0 is an optimal solution for Problem

(P ).

In what follows next theorem shows when an optimal solution for Problem (P ) is an optimal

solution for Problem (P2,1).

Theorem 3.2.12 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0 and second order quasiincave at x0

w.r.t. η,

(b) for each t ∈ T , the function gt is differentiable at x0 and incave at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η,

(d) x0 ∈ F(P2,1),

(e) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P ), then x0 is an optimal solution for Problem

(P2,1).

3.2.7 Approximate problem (P2,2)

The aim of this section is to establish connections between the optimal solutions for Problem

(P ) and the optimal solutions for approximated problem (P2,2).

Relation between the optimal solutions for Problem (P2,2) and optimal solutions for Problem

(P ) is established under following assumptions.

Theorem 3.2.13 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T, s ∈ S) such that:

(a) the function f is second order differentiable at x0 and second order pseudoinvex at x0

w.r.t. η,

(b) for each t ∈ T , the function gt is second order differentiable at x0 and second order invex

at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is second order differentiable at x0 and second order

avex at x0 w.r.t. η,

(d) η(x0, x0) = 0,

(e) x0 ∈ F(P ).

If x0 is an optimal solution for Problem (P2,2) , then x0 is an optimal solution for Problem

(P ) .

Next theorem shows when an optimal solution for Problem (P ) is an optimal solution for

Problem (P2,2).

Theorem 3.2.14 (A. Raţiu, D.I. Duca [73]) Let X be a subset of Rn, x0 be an interior point of

X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:
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(a) the function f is second order differentiable at x0 and second order quasiincave at x0

w.r.t. η,

(b) for each t ∈ T , the function gt is second order differentiable at x0 and second order

incave at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is second order differentiable at x0 and second order

avex at x0 w.r.t. η,

(d) η(x0, x0) = 0,

(e) x0 ∈ F(P2,2).

If x0 is an optimal solution for Problem (P ) , then x0 is an optimal solution for Problem

(P2,2) .

3.2.8 Connections between optimal solutions for problems (P0,2), (P2,0), (P1,2),

(P2,1) and (P2,2)

The following results refer to connections between the optimal solutions for second order

η-approximated semi-infinite optimization problems.

Following theorem shows that in some hypothesis, any optimal solution for Problem (P2,0)

is an optimal solution for Problem (P1,2).

Theorem 3.2.15 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0, second order pseudoinvex at x0 w.r.t.

η and quasiincave at x0 w.r.t. η,

(b) for each t ∈ T , the function gt is second order differentiable at x0 and second order

incave at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is second order differentiable at x0 and second order

avex at x0 w.r.t. η,

(d) x0 ∈ F(P1,2),

(e) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P2,0), then x0 is an optimal solution for Problem

(P1,2).

In what follows next theorem shows when an optimal solution for Problem (P1,2) is an

optimal solution for Problem (P2,0).

Theorem 3.2.16 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0, second order quasiincave at x0 w.r.t.

η and pseudoinvex at x0 w.r.t. η,

(b) for each t ∈ T , the function gt is second order differentiable at x0 and second order invex

at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is second order differentiable at x0 and second order

avex at x0 w.r.t. η,

(d) x0 ∈ F(P ),

(e) η(x0, x0) = 0.
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If x0 is an optimal solution for Problem (P1,2), then x0 is an optimal solution for Problem

(P2,0).

Relation between the optimal solutions for Problem (P1,2) and optimal solutions for Problem

(P2,1) is established under following assumptions.

Theorem 3.2.17 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0, pseudoinvex at x0 w.r.t. η and second

order quasiincave at x0 w.r.t. η,

(b) for each t ∈ T , the function gt is second order differentiable at x0, incave at x0 w.r.t. η

and second order invex at x0 w.r.t. η

(c) for each s ∈ S, the function hs is second order differentiable at x0, incave at x0 w.r.t. η

and second order avex at x0 w.r.t. η,

(d) x0 ∈ F(P ) ∩ F(P2,1),

(e) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P1,2), then x0 is an optimal solution for Problem

(P2,1).

Next theorem establish when an optimal solution for Problem (P2,1) is an optimal solution

for Problem (P1,2).

Theorem 3.2.18 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0, second order pseudoinvex at x0 w.r.t.

η and quasiincave at x0 w.r.t. η,

(b) for each t ∈ T , the function gt is second order differentiable at x0, second order incave

at x0 w.r.t. η and invex at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is second order differentiable at x0, second order avex at

x0 w.r.t. η and avex at x0 w.r.t. η,

(d) x0 ∈ F(P ) ∩ F(P1,2),

(e) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P2,1), then x0 is an optimal solution for Problem

(P1,2).

Following theorem shows that under some assumptions, any optimal solution for Problem

(P2,1) is an optimal solution for Problem (P2,0).

Theorem 3.2.19 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0,

(b) for each t ∈ T , the function gt is differentiable at x0 and invex at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η,

(d) x0 ∈ F(P2,0).

If x0 is an optimal solution for Problem (P2,1), then x0 is an optimal solution for Problem

(P2,0).
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Following theorem shows when an optimal solution for Problem (P2,0) is an optimal solution

for Problem (P2,1).

Theorem 3.2.20 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0,

(b) for each t ∈ T , the function gt is differentiable at x0 and incave at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η,

(d) x0 ∈ F(P2,1),

If x0 is an optimal solution for Problem (P2,0), then x0 is an optimal solution for Problem

(P2,1).

Next theorem shows when an optimal solution for Problem (P0,2) is an optimal solution for

Problem (P1,2).

Theorem 3.2.21 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T, s ∈ S) such that:

(a) the function f is differentiable at x0 and quasiincave at x0 w.r.t. η,

(b) for each t ∈ T , the function gt is second order differentiable at x0,

(c) for each s ∈ S, the function hs is second order differentiable at x0,

(d) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P0,2) , then x0 is an optimal solution for Problem

(P1,2) .

Relation between the optimal solutions for Problem (P1,2) and optimal solutions for Problem

(P0,2) is established under following assumptions.

Theorem 3.2.22 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is differentiable at x0 and pseudoinvex at x0 w.r.t. η,

(b) for each t ∈ T , the function gt is second order differentiable at x0,

(c) for each s ∈ S, the function hs is second order differentiable at x0,

(d) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P1,2), then x0 is an optimal solution for Problem

(P0,2) .

In Theorem 3.2.23, we established that an optimal solution for Problem (P0,2) is an optimal

solution for Problem (P2,0).

Theorem 3.2.23 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0 and second order quasiincave at x0

w.r.t. η,

(b) for each t ∈ T , the function gt is second order differentiable at x0 and second order invex

at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is second order differentiable at x0 and second order

avex at x0 w.r.t. η,
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(d) x0 ∈ F(P ),

(e) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P0,2), then x0 is an optimal solution for Problem

(P2,0) .

Following theorem shows that in some hypothesis, any optimal solution for Problem (P2,0)

is an optimal solution for Problem (P0,2).

Theorem 3.2.24 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0 and second order pseudoinvex at x0

w.r.t. η,

(b) for each t ∈ T , the function gt is second order differentiable at x0 and second order

incave at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is second order differentiable at x0 and second order

avex at x0 w.r.t. η,

(d) x0 ∈ F(P0,2),

(e) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P2,0), then x0 is an optimal solution for Problem

(P0,2) .

Next theorem shows when an optimal solution for Problem (P0,2) is an optimal solution for

Problem (P2,1).

Theorem 3.2.25 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0 and second order quasiincave at x0

w.r.t. η,

(b) for each t ∈ T , the function gt is second order differentiable at x0, second order avex at

x0 w.r.t. η,

(c) for each s ∈ S, the function hs is second order differentiable at x0, second order avex at

x0 w.r.t. η,

(d) x0 ∈ F(P ) ∩ F(P2,1),

(e) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P0,2), then x0 is an optimal solution for Problem

(P2,1) .

Relation between the optimal solutions for Problem (P2,1) and optimal solutions for Problem

(P0,2) is established under following assumptions.

Theorem 3.2.26 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0 and second order pseudoinvex at x0

w.r.t. η,

(b) for each t ∈ T , the function gt is second order differentiable at x0, second order avex at

x0 w.r.t. η,
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(c) for each s ∈ S, the function hs is second order differentiable at x0, second order avex at

x0 w.r.t. η,

(d) x0 ∈ F(P ) ∩ F(P0,2),

(e) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P2,1), then x0 is an optimal solution for Problem

(P0,2) .

Following theorem shows when an optimal solution for Problem (P0,2) is an optimal solution

for Problem (P2,2).

Theorem 3.2.27 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0 and second order incave at x0 w.r.t.

η,

(b) for each t ∈ T , the function gt is second order differentiable at x0,

(c) for each s ∈ S, the function hs is second order differentiable at x0,

(d) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P0,2), then x0 is an optimal solution for Problem

(P2,2) .

Following theorem shows that in some hypothesis, any optimal solution for Problem (P2,2)

is an optimal solution for Problem (P0,2).

Theorem 3.2.28 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0 and second order invex at x0 w.r.t. η,

(b) for each t ∈ T , the function gt is second order differentiable at x0,

(c) for each s ∈ S, the function hs is second order differentiable at x0,

(d) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P2,2), then x0 is an optimal solution for Problem

(P0,2) .

Next theorem shows when an optimal solution for Problem (P1,2) is an optimal solution for

Problem (P2,2).

Theorem 3.2.29 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0,

(b) for each t ∈ T , the function gt is second order differentiable at x0,

(c) for each s ∈ S, the function hs is second order differentiable at x0,

(d)
〈
η(x, x0),

[
∇2f(x0)

] (
η(x, x0)

)〉
=

〈
η(x0, x0),

[
∇2f(x0)

] (
η(x0, x0)

)〉
, for all x ∈

F(P1,2).

If x0 is an optimal solution for Problem (P1,2), then x0 is an optimal solution for Problem

(P2,2) .

In what follows next theorem shows when an optimal solution for Problem (P2,2) is an

optimal solution for Problem (P1,2).
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Theorem 3.2.30 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0,

(b) for each t ∈ T , the function gt is second order differentiable at x0,

(c) for each s ∈ S, the function hs is second order differentiable at x0,

(d)
〈
η(x, x0),

[
∇2f(x0)

] (
η(x, x0)

)〉
5

〈
η(x0, x0),

[
∇2f(x0)

] (
η(x0, x0)

)〉
, for all x ∈

F(P1,2).

If x0 is an optimal solution for Problem (P2,2), then x0 is an optimal solution for Problem

(P1,2) .

In Theorem 3.2.31, we established that an optimal solution for Problem (P2,2) is an optimal

solution for Problem (P2,0).

Theorem 3.2.31 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0,

(b) for each t ∈ T , the function gt is second order differentiable at x0 and second order invex

at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is second order differentiable at x0 and second order

avex at x0 w.r.t. η,

(d) x0 ∈ F(P2,0).

If x0 is an optimal solution for Problem (P2,2), then x0 is an optimal solution for Problem

(P2,0) .

Relation between the optimal solutions for Problem (P2,0) and optimal solutions for Problem

(P2,2) is established under following assumptions.

Theorem 3.2.32 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0,

(b) for each t ∈ T , the function gt is second order differentiable at x0 and second order

incave at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is second order differentiable at x0 and second order

avex at x0 w.r.t. η,

(d) x0 ∈ F(P2,2).

If x0 is an optimal solution for Problem (P2,0), then x0 is an optimal solution for Problem

(P2,2) .

Following theorem shows that in some hypothesis, any optimal solution for Problem (P2,1)

is an optimal solution for Problem (P2,2).

Theorem 3.2.33 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0,

(b) for each t ∈ T , the function gt is second order differentiable at x0 and〈
η(x, x0),

[
∇2gt(x

0)
] (
η(x, x0)

)〉
= 0,
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(c) for each s ∈ S, the function hs is second order differentiable at x0 and〈
η(x, x0), [∇2hs(x

0)]
(
η(x, x0)

)〉
= 0,

(d) x0 ∈ F(P2,2).

If x0 is an optimal solution for Problem (P2,1), then x0 is an optimal solution for Problem

(P2,2) .

Under some assumptions, next theorem establish when optimal solution for Problem (P2,2)

is an optimal solution for Problem (P2,1).

Theorem 3.2.34 (A. Raţiu, D.I. Duca [73]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0,

(b) for each t ∈ T , the function gt is second order differentiable at x0 and〈
η(x, x0),

[
∇2gt(x

0)
] (
η(x, x0)

)〉
5 0,

(c) for each s ∈ S, the function hs is second order differentiable at x0 and〈
η(x, x0), [∇2hs(x

0)]
(
η(x, x0)

)〉
= 0, for all x ∈ X.

(d) x0 ∈ F(P2,1).

If x0 is an optimal solution for Problem (P2,2), then x0 is an optimal solution for Problem

(P2,1) .

3.2.9 Connections between optimal solutions for problems (P1,0), (P0,1), (P1,1)

and (P0,2), (P2,0), (P1,2), (P2,1), (P2,2)

In this section are establish connections between the optimal solutions for first and second

order η-approximated semi-infinite optimization problems.

Following theorem shows that in some hypothesis, any optimal solution for Problem (P0,1)

is an optimal solution for Problem (P0,2).

Theorem 3.2.35 (A. Raţiu, D.I. Duca) [74]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) for each t ∈ T , the function gt is invex at x0, second order differentiable at x0 and

second order incave at x0 w.r.t. η,

(b) for each s ∈ S, the function hs is second order differentiable at x0 and second order

avex at x0 w.r.t. η,

(c) x0 ∈ F(P ) ∩ F(P0,2).

If x0 is an optimal solution for Problem (P0,1), then x0 is an optimal solution for Problem

(P0,2).

In what follows next theorem shows when an optimal solution for Problem (P0,2) is an

optimal solution for Problem (P0,1).
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Theorem 3.2.36 (A. Raţiu, D.I. Duca) [74]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T, s ∈ S) such that:

(a) for each t ∈ T , the function gt is incave at x0, second order differentiable at x0 and

second order invex at x0 w.r.t. η,

(b) for each s ∈ S, the function hs is second order differentiable at x0 and second order

avex at x0 w.r.t. η,

(c) x0 ∈ F(P ) ∩ F(P0,1).

If x0 is an optimal solution for Problem (P0,2) , then x0 is an optimal solution for Problem

(P0,1).

Relation between the optimal solutions for Problem (P0,1) and optimal solutions for Problem

(P2,0) is established under following assumptions.

Theorem 3.2.37 (A. Raţiu, D.I. Duca) [74]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) for each t ∈ T , the function gt is second order differentiable at x0, second order quasi-

incave at x0 and invex at x0 w.r.t. η,

(b) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η,

(c) x0 ∈ F(P ),

(d) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P0,1), then x0 is an optimal solution for Problem

(P2,0).

Following theorem shows when an optimal solution for Problem (P2,0) is an optimal solution

for Problem (P0,1).

Theorem 3.2.38 (A. Raţiu, D.I. Duca) [74]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S) such that:

(a) the function f is second order differentiable at x0, incave at x0 and second order pseu-

doinvex at x0 w.r.t. η,

(b) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η,

(c) x0 ∈ F(P0,1),

(d) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P2,0), then x0 is an optimal solution for Problem

(P0,1).

Next theorem shows when an optimal solution for Problem (P0,1) is an optimal solution for

Problem (P1,2).

Theorem 3.2.39 (A. Raţiu, D.I. Duca) [74]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f , gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) the function f is differentiable at x0 and quasiincave at x0 w.r.t. η,

(b) for each t ∈ T , the function gt is second order differentiable at x0 and invex at x0 w.r.t.

η,

(c) for each s ∈ S, the function hs is second order differentiable at x0, second order incave

at x0 and second order avex at x0 w.r.t. η,
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(d) x0 ∈ F(P ) ∩ F(P1,2),

(e) η(x0, x0) = 0.

If x0 is an optimal solution for Problem (P0,1), then x0 is an optimal solution for Problem

(P1,2).

Other theorems that establish connections between optimal solutions for problems (P1,0),

(P0,1), (P1,1) and (P0,2), (P2,0), (P1,2), (P2,1), (P2,2) are presented in paper [74].



Chapter 4

Vector optimization problems

Vector optimization (multi-objective programming or Pareto optimization) is an area of

operations research that considers multiple criteria in decision. We find applications in various fields

as: economics, logistics (optimal control) and engineering (optimal design), where optimal decisions

must be taken not only for one criterion, but for more than, often in conflict with each other. In

literature there are many approaches to solve a nonlinear constrained vector optimization problem

(see, [2], [46], [48], [55]). One of them is using saddle points criteria (see, [18], [24], [53]). In [2],

Antczak introduced η-approximated method for vector optimization problems with invex functions.

He replace the original problem by another equivalent vector optimization problem modifying the

objective and constraint functions in the original vector optimization problem at an arbitrary but

fixed feasible point x. In [80] we can find some scalarization for a vector optimization problem in

infinite dimensional.

This chapter is split in two sections. First section contains a study of a vector optimization

problem. To obtain information about the efficient solutions of this problem, we attach three η-

approximated vector optimization problems. Some connections between the efficient solutions for

original problem and approximated problem are presented. The last section deals with two methods:

weighting method and constraint method for solving vector optimization problems. For each method

is presented the algorithm and numerical examples. To illustrate a singleton or a subset of minimal

solutions, we gave also the graphical representations. These are interesting from mathematical and

practical points of view.

4.1 Approximations of semi-infinite vector optimization problems

In this section, we assume that X is a nonempty subset of Rn, T and S are index sets,

η : X ×X → X is a function, x0 is an interior point of X and f : X → Rk, gt : X → R, (t ∈ T )

and hs : X → R, (s ∈ S) are differentiable at x0.

We consider the vector optimization problem:

34
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min f(x) = (f1, f2, ..., fk)(x)

subject to

x = (x1, x2, ..., xn) ∈ X
gt(x) 5 0, (t ∈ T )

hs(x) = 0, (s ∈ S).

(PV)

We propose to attach to Problem (PV ), the problems (PVj,k), ((j, k) ∈
{(1, 0), (0, 1), (1, 1)}),

min F 〈j〉 (x)

subject to:

x = (x1, x2, ..., xn) ∈ X
G
〈k〉
t (x) 5 0, (t ∈ T )

H
〈k〉
s (x) = 0, (s ∈ S),

(PVj,k)

called (j, k)-η approximated vector optimization problem, where F 〈1〉 : X → Rk, G〈1〉t , H
〈1〉
s : X → R

(t ∈ T, s ∈ S) are defined by

F 〈1〉 (x) := f(x0) +
[
∇f(x0)

] (
η(x, x0)

)
,

G
〈1〉
t (x) := gt(x

0) +
[
∇gt(x0)

] (
η(x, x0)

)
, (t ∈ T ) ,

H〈1〉s (x) := hs(x
0) +

[
∇hs(x0)

] (
η(x, x0)

)
, (s ∈ S) ,

for all x = (x1, x2, ..., xn) ∈ X, and F 〈0〉 = f , G
〈0〉
t = gt, (t ∈ T ), H

〈0〉
s = hs, (s ∈ S).

Definition We say that x0 ∈ F(PV ) is an efficient solution for Problem (PV ) if there is no

x ∈ F(PV ) such that

f(x) ≤ f(x0).

or equivalently,

f(x0)− f(x) ∈ Rk+ \ {0}.

4.1.1 Approximate problem (PV1,0)

The aim of this section is to establish the connections between the efficient solutions for

Problem (PV ) and the efficient solutions for approximated problem (PV1,0).

Following theorem shows that in some hypothesis, an efficient solution for Problem (PV1,0)

is an efficient solution for Problem (PV ).

Theorem 4.1.2 (A. Raţiu, D.I. Duca [75]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f : X → Rk, gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) the function f is differentiable at x0 and invex at x0 w.r.t. η,

(b) η(x0, x0) = 0.

If x0 is an efficient solution for Problem (PV1,0), then x0 is an efficient solution for Problem

(PV ).
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Theorem 4.1.3, shows when an efficient solution for Problem (PV ) is an efficient solution

for Problem (PV1,0).

Theorem 4.1.3 (A. Raţiu, D.I. Duca [75]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f : X → Rk, gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) the function f is differentiable at x0 and incave at x0 w.r.t. η,

(b) η(x0, x0) = 0.

If x0 is an efficient solution for Problem (PV ), then x0 is an efficient solution for Problem

(PV1,0).

4.1.2 Approximate problem (PV0,1)

The goal of this section is to establish connections between the efficient solutions for

Problem (PV ) and the efficient solutions for approximated problem (PV0,1).

In what follows next theorem shows when an efficient solution for Problem (PV0,1) is an

efficient solution for Problem (PV ).

Theorem 4.1.4 (A. Raţiu, D.I. Duca [75]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f : X → Rk, gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) for each t ∈ T , the function gt is differentiable at x0 and invex at x0 w.r.t. η,

(b) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η,

(c) x0 ∈ F(PV ).

If x0 is an efficient solution for Problem (PV0,1), then x0 is an efficient solution for Problem

(PV ).

Relation between the efficient solution for Problem (PV ) and efficient solution for Problem

(PV0,1) is established under following assumptions.

Theorem 4.1.5 (A. Raţiu, D.I. Duca [75]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f : X → Rk, gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) for each t ∈ T , the function gt is differentiable at x0 and incave at x0 w.r.t. η,

(b) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η,

(c) x0 ∈ F(PV0,1).

If x0is an efficient solution for Problem (PV ), then x0 is an efficient solution for Problem

(PV0,1).

4.1.3 Approximate problem (PV1,1)

The aim of this section is to establish connections between the efficient solutions for Problem

(PV ) and the efficient solutions for approximated problem (PV1,1).

Following theorem shows that in some hypothesis, an efficient solution for Problem (PV1,1)

is an efficient solution for Problem (PV ).

Theorem 4.1.6 (A. Raţiu, D.I. Duca [75]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f : X → Rk, gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) the function f is differentiable at x0 and invex at x0 w.r.t. η,
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(b) for each t ∈ T , the function gt is differentiable at x0 and invex at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η,

(d) x0 ∈ F(PV ),

(e) η(x0, x0) = 0.

If x0 is an efficient solution for Problem (PV1,1), then x0 is an efficient solution for Problem

(PV ).

Next theorem shows when an efficient solution for Problem (PV ) is an efficient solution for

Problem (PV1,1).

Theorem 4.1.7 (A. Raţiu, D.I. Duca [75]) Let X be a nonempty subset of Rn, x0 be an interior

point of X, η : X ×X → X and f : Rn → Rk, gt, hs : X → R, (t ∈ T , s ∈ S). Assume that:

(a) the function f is differentiable at x0 and incave at x0 w.r.t. η,

(b) for each t ∈ T , the function gt is differentiable at x0 and incave at x0 w.r.t. η,

(c) for each s ∈ S, the function hs is differentiable at x0 and avex at x0 w.r.t. η,

(d) x0 ∈ F(PV1,1),

(e) η(x0, x0) = 0.

If x0 is an efficient solution for Problem (PV ), then x0 is an efficient solution for Problem

(PV1,1).

Remark 4.1.8 Second order η-approximated vector optimization problems can be addressed in a

similar manner to the problems presented in the previous chapter.

4.2 Methods for solving vector optimization problems

In this section we give two methods for solving the following vector optimization problem

min f(x)

subject to

x = (x1, x2, ..., xn) ∈ X,
(P̃ V )

where X is a nonempty set in Rn, f = (f1, f2, ..., fk) : X → Rk.

4.2.1 Weighting method

In this method, we choose weighting vectors p = (p1, ..., pk) ≥ 0, whose coordinates are not

all zero and solve the corresponding scalar problem

min
k∑
i=1

pifi(x)

subject to

x ∈ X,

(PSp)

which generates a set of minimal solutions and a set of minimal values for Problem (P̃ V ).

The black points marked on graphical representation are efficient values for the problem.



38

Example 4.2.4 (A. Raţiu [56]) Consider the problem

min f(x) = (x21 + x2 − 2, 5x21 − 2x1x2 + x22 + 3)

subject to x ∈ X,

where

X = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 2}.

For every m ≥ 1, we obtain an efficient solution x = (0, 0) with value f(x) = (−2, 3).

Figure for Example 4.2.4 , for m ≥ 1

4.2.2 Constraint method

In this method, we choose ` ∈ {1, ..., k}, Lj ∈ R, j ∈ {1, ..., k}, j 6= `, and solve the corre-

sponding scalar problem

min f`(x)

subject to

fj(x) ≥ Lj , j = 1, ..., k, j 6= `

x ∈ X,

(PSe`)

where e` = (0, ..., 0, 1, 0, ..., 0) ∈ Rk.

Example 4.2.12 (A. Raţiu [56]) Consider the problem

min f(x) = (−1 + x21 + x22, − 300x1 − 400x2 + x21 + 2x1x2 + 2x22)

subject to x ∈ X,

where

X = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 2}.

The efficient values obtained for r = 4, are represented in the following figure:
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Figure for Example 4.2.12, for r = 4



Chapter 5

Solving some optimization problems.

Applications in statistics

In this chapter we solve some optimization problems using the theory of inequalities.

Jensen’s inequality, Radon’s inequality, Hölder’s inequality, Liapunov’s inequality are used and

also new inequalities that have emerged in the paper [77] and belong to us. In the last section are

obtained new bounds for dispersion, standard deviation and coefficient of variation.

5.1 Solving some optimization problems using inequalities

We consider the expression

∆[p](x; y) :=

n∑
i=1

xpi
yp−1i

−

(
n∑
i=1

xi

)p
(

n∑
i=1

yi

)p−1 , (5.1)

where x = (x1, ..., xn) = 0, y = (y1, ..., yn) > 0, p > 1.

In [69], Radon formulated the following result:

Theorem 5.1.1 For all x = (x1, ..., xn) = 0, y = (y1, ..., yn) > 0 and p > 1 the following inequality

∆[p](x; y) = 0, (5.2)

holds. If there exist a real number λ = 0 such that x = λy, then inequality (5.2) (known as Radon’s

inequality) becomes equality.

40
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Theorem 5.1.3 (A. Raţiu, N. Minculete [77]) Let p = 1. The optimization problem

min F (x, y) = p

∆[p](x; y)−

n∑
i=1

xi

n∑
i=1

yi

∆[p−1](x; y)

−∆[p](x; y)

subject to

x = (x1, ..., xn) = 0

y = (y1, ..., yn) > 0,

has the optimal value 0. An optimal solution is any point (x, y) ∈ Rn+ × intRn+, which has the

property that exists λ > 0 such that x = λy.

Theorem 5.1.4 (A. Raţiu, N. Minculete [77]) Let p = 1 and M , m positive real numbers. The

optimization problem

min F (x, y) = p
4(M −m)(Mp−1 −mp−1)

(
n∑
i=1

yi

)
−∆[p](x; y)

subject to

x = (x1, ..., xn) = 0

y = (y1, ..., yn) > 0

myi 5 xi 5Myi, i ∈ {1, ..., n},

has F (x, y) = 0, for all feasible solutions.

Theorem 5.1.9 (A. Raţiu, N. Minculete [77]) Let p = 1 and M , m positive real numbers. The

optimization problem

min F (x, y) = ∆[p](x; y)− max
15i<j5n

[
xpi
yp−1i

+
xpj

yp−1j

− (xi + xj)
p

(yi + yj)p−1

]
subject to

x = (x1, ..., xn) = 0

y = (y1, ..., yn) > 0

myi 5 xi 5Myi, i ∈ {1, ..., n},

has the optimal value 0. An optimal solution is any point (x, y) ∈ Rn+ × intRn+, which has the

property that exists λ > 0 such that x = λy.

Theorem 5.1.10 (A. Raţiu, N. Minculete [77]) Let p = 1 and M , m positive real numbers. The

optimization problem

min F (x, y) =

[
Mp +mp − (M +m)p

2p−1

]( n∑
i=1

yi

)
−∆[p](x; y)

subject to

x = (x1, ..., xn) = 0

y = (y1, ..., yn) > 0

myi 5 xi 5Myi, i ∈ {1, ..., n},
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has the objective function F (x, y) = 0, for all feasible solutions.

Theorem 5.1.11 (A. Raţiu, N. Minculete [77]) Let p = 1 and M , m positive real numbers. The

optimization problem

min{

[
(M +m)

n∑
i=1

yi −
∑n

i=1 xi

]p
(

n∑
i=1

yi

)p−1 − (M +m)p

2p−1

(
n∑
i=1

yi

)
+

+

(
n∑
i=1

xpi
yp−1i

)
−∆[p](x; y)}

subject to

x = (x1, ..., xn) = 0

y = (y1, ..., yn) > 0

myi 5 xi 5Myi, i ∈ {1, ..., n},

has nonnegative objective function.

Theorem 5.1.13 (A. Raţiu, N. Minculete [77]) Let p > 1 and 1
p + 1

q = 1. The optimization

problem

min {
n∑
k=1

zkvk +

(
n∑
k=1

vqk

) 1
q

F


n∑
k=1

zkvk(
n∑
k=1

vqk

) 1
q

, T [p](zv; vq), p

−
−
(

n∑
k=1

zpk

) 1
p
(

n∑
k=1

vqk

) 1
q

}

subject to

z = (z1, ..., zn) = 0

v = (v1, ..., vn) > 0

where

T [p](x; y) := (p− 1) max
15i<j5n

(xi + xj)
p−2(xiyj − xjyi)2

yiyj(yi + yj)p−1
,

has nonnegative objective function.

Theorem 5.1.14 (A. Raţiu, N. Minculete [77]) Let r− 1 = s > t > 0. The optimization problem

min {
(

n∑
k=1

zsk

)r−t
+

(
n∑
k=1

zrk

)s−t
·
[
T [p](zs; zr)

]r−s−
−
(

n∑
k=1

ztk

)r−s( n∑
k=1

zrk

)s−t
}

subject to

z = (z1, ..., zn) > 0,
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has nonnegative objective function.

5.2 New bounds to indicators in statistics

In this section we consider the following indicators: dispersion, standard deviation and

coefficient of variation.

Theorem 5.2.1 (N. Minculete, N.B. Pipu, A. Raţiu [60]) The optimization problems

min {

x1 −
n∑
i=1

xi

n


2

+ ...+

xn −
n∑
i=1

xi

n


2

n
−

−2 ·min{x1, ..., xn} ·


n∑
i=1

xi

n
− n
√
x1 · ... · xn

}
subject to

x = (x1, ..., xn) ∈ Rn+,

and

min {2 ·max{x1, ..., xn} ·


n∑
i=1

xi

n
− n
√
x1 · ... · xn

−

−

x1 −
n∑
i=1

xi

n


2

+ ...+

xn −
n∑
i=1

xi

n


2

n
}

subject to

x = (x1, ..., xn) ∈ Rn+,

have nonnegative objective functions.

Theorem 5.2.2 (N. Minculete, N.B. Pipu, A. Raţiu [60]) For x1, ..., xn = 0, there is the following

equality: max{x1, ..., xn} −

n∑
i=1

xi

n

 ·


n∑
i=1

xi

n
−min{x1, ..., xn}

− σ2X =

= 1
n

n∑
i=1

(max{x1, ..., xn} − xi) (xi −min{x1, ..., xn}) .
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Theorem 5.2.3 (N. Minculete, N.B. Pipu, A. Raţiu [60]) If M ′ = max{xi|xi 6= max{x1, ..., xn}}
and m′ = min{xi|xi 6= min{x1, ..., xn}}, i ∈ {1, ..., n}, then the optimization problem

min {σ2
X
−

max{x1, ..., xn} −

n∑
i=1

xi

n

 ·


n∑
i=1

xi

n
−min{x1, ..., xn}

−

−max{(m′ −min{x1, ..., xn}) ·

max{x1, ..., xn} −

n∑
i=1

xi

n


(max{x1, ..., xn} −M ′) ·


n∑
i=1

xi

n
−min{x1, ..., xn}

}
subject to

x = (x1, ..., xn) ∈ Rn+,

(5.2.9)

has nonnegative objective function.

Remark 5.2.4 (N. Minculete, N.B. Pipu, A. Raţiu [60]) Nonnegativity of the objective function

of problem (5.2.9) leads to other bounds for variance, standard deviation and coefficient of variation:

2m
(
X −Xg

)
5 σ2

X
5

5
(
M −X

) (
X −m

)
−

−max
{

(m′ −m)
(
M −X

)
, (M −M ′)

(
X −m

)}
,

√
2m
(
X −Xg

)
5 σX 5

5

√√√√(M −X) (X −m)−max

{
(m′ −m)

(
M −X

)
,

(M −M ′)
(
X −m

) } ,
and

√
2m
(
X −Xg

)
X

5 CV 5

5

√(
M −X

) (
X −m

)
−max

{
(m′ −m)

(
M −X

)
, (M −M ′)

(
X −m

)}
X

,

where M = max{x1, ..., x2}, m = min{x1, ..., x2}.
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In Remark 5.2.4, we have lower and upper bounds for statistical indicators: variance, stan-

dard deviation and coefficient of variation.
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[77] A. Raţiu, N. Minculete: Several refinements and counterparts of Radon’s inequality, to appear

in Mathematica Bohemica.

[78] R. Reemtsen: Discretization methods for the solution of semi-infinite programming problems,

Journal of Optimization Theory and Applications, 71(1), 5-103, 1991.

[79] R.T. Rockafellar: Convex analysis, Princeton University Press, Princeton, 1970.

[80] S. Rolewicz: Suficient condition for Pareto optimization in Banach spaces, Studia Mathemat-

ica, 77, 111-114, 1981.



51

[81] J. J. Rückmann, A. Shapiro: Augmented Lagrangians in semi-infinite programming, Mathe-

matical Programming, Ser. B, 116:499-512, 2009.

[82] A. Shapiro: Semi-infinite programming, duality, discretization and optimality conditions, Op-

timization, 58(2), 133-161, 2009.

[83] A. Shapiro: On duality theory of convex semi-infinite programming, Optimization, 54, 535-543,

2005.

[84] O. Stein: Bi-level strategies in semi-infinite programming, Kluwer, Boston, 2003.

[85] F. Terkelsen: Some minimax theorems, Mathematica Scandinavica, 31, 405-413, 1972.

[86] R. Tichatschke: Lineare semi-infinite optimierungsaufgaben und ihre anwendungen in der

approximations theorie, Karl-Marx-Stadt: Wissenschaftliche Schriftenreihe der Technischen

Hochschule, 1981.
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