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Introduction

With a history dating back to the 18th century, complex analysis is a broad and textured subject,

with applications not only to other parts of analysis, but also to many areas of mathematics and

science in general.

Two important branches of complex analysis are the theory of conformal representation and

the geometric function theory of analytic functions. The latter, which deals with the geometric

properties of analytic functions, was born around the turn of the 20th century, yet it remains an

active field of current research. Among the first important papers which discuss topics from this

domain are the works of P. Koebe [37], I.W. Alexander [3] or L. Bieberbach [8]. Koebe initiated in

1907 the univalent functions study, while Bieberbach presented in 1916 what would soon become a

famous conjecture. One of the major problems and a cornerstone for the subsequent development

of this field, the Bieberbach conjecture asserts that the coefficients in the Taylor series expansion

of every function from the class S of normalized univalent functions in the unit disc satisfy the

inequality |an| ≤ n. This problem stood for many years as a challenge, inspiring the development of

new and elaborate research methods, such as Löwner’s parametric method, the variational methods

introduced by M. Schiffer and G.M. Goluzin, the extreme points method owed to L. Brickman, etc..

Although almost 70 years had passed before the Biberbach conjecture was finally proved, bounds

for the Taylor series coefficients were obtained in the meantime much more easily for some subclasses

of univalent functions than for the full class S, and the study of different classes of analytic, univalent

or meromorphic functions began to take shape, remaining today a subject of vast interest.

Another field with many applications in geometric function theory is that of differential subor-

dinations, which traces its origins to an article from 1981 by P.T. Mocanu and S.S. Miller [53], a

paper which laid a foundation for the following development of hundreds of articles related to this

subject.

There are many books and monographs nowadays dedicated to geometric function theory or

the study of univalent functions, of which we mention those of L.V. Ahlfors [2], C. Pommerenke

[68], J.B. Conway [13], A.W. Goodman [27], P.L. Duren [23], , D.J. Hallenbeck and T.H MacGregor

[32], S.S. Miller and P.T. Mocanu [52].

The purpose of this thesis is to present some new classes of both analytic functions and mero-

morphic functions and study their properties, as well as to establish some new results on differential
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subordinations.

The thesis consists of four chapters. The first chapter starts with some basic notations and

notions and a summary of the fundamental results related to the aforementioned class S. Various

subclasses of both analytic and meromorphic functions are considered next. Another topic treated

in this chapter is the basic theory of the field of differential subordinations, while the final section

in Chapter 1 gives a brief presentation of some differential and integral operators.

The second chapter focuses on some original results on analytic functions: in Section 2.1 and

Section 2.2 are presented results concerning a differential operator and an integral operator, re-

spectively, results which are obtained by means of the differential subordinations method. Section

2.3 studies several coefficient estimates problems for different subclasses of bi-univalent functions

in the unit disc.

Chapter 3 is dedicated to the study of meromorphic functions. In Sections 3.1 and 3.2 are

introduced, through subordination, and investigated new classes of meromorphic functions for which

are given, among other results, coefficient bounds, inclusion relations, integral-preserving properties

and convolution properties. Section 3.3 contains a series of sufficient conditions for meromorphic

multivalent close-to-convex functions, obtained by using the admissible functions method.

Finally, Chapter 4 deals with subordinations results involving expressions using the combined

arithmetic and geometric means. Some special cases which provide interesting applications are also

considered. With the exception of Lemma 4.1.1, all the results from this chapter are also original.

This work was possible with the financial support of the Sectoral Operation Programme for

Human Resources Development 2007-2013, co-financed by the European Social Fund, under the

project number POSDRU/107/1.5/ S/76841 with the title ”Modern Doctoral Studies: Internation-

alization and Interdisciplinarity”.

I express my sincere thanks to Prof. Grigore Ştefan Sălăgean and Prof. Stanis lawa Kanas, for

their advice, valuable criticism and encouragement throughout the preparation of this work.

In the following I selected the most relevant results, with emphasis on my original contributions.

The full bibliography is also included.
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Chapter 1

Preliminary results

We begin with the presentation of some notions and fundamental results from the geometric

function theory of one complex variable. We present first the basic properties of the class S of

normalized univalent functions on the unit disc, then we consider various subclasses of univalent

functions, such as the well-known starlike and convex functions, but also, among others, α−convex,

close-to-convex, spirallike functions or functions which are starlike or convex with respect to sym-

metric points. Some subclasses of meromorphic functions are also presented. One of the sections

in this chapter is dedicated to the method of differential subordinations. The final section includes

the definitions and some basic properties of some differential and integral operators.

1.1 Notations and elementary results from the theory of univalent

functions

Let C be the complex plane and let U(z0, r) be the open disc of radius r > 0 centered at z0 ∈ C,

U(z0, r) = {z ∈ C : |z − z0| < r}.

The open disc U(0, r) will be denoted by Ur, and the unit disc U1 will be denoted by U . We shall

also use the notations U∗ := U\{0} and U(z0, r) for the closure of U(z0, r). The boundary of a set

G will be denoted by ∂G.

If G is an open subset of C, we will denote by H(G) the set of all analytic functions on G with

values in C. Endowed with the topology of local uniform convergence (or uniform convergence on

compact subsets), the set H(G) is a linear topological space. For n a positive integer and a ∈ C,
let

H[a, n] = {f ∈ H(U) : f(z) = a+ anz
n + · · · , z ∈ U}

and

An =
{
f ∈ H(U) : f(z) = z + an+1z

n+1 + · · · , z ∈ U
}
,
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with

A := A1.

Definition 1.1.1. Let D be a domain in C. A function f : D → C is called univalent if f ∈ H(D)

and f is one-to-one on D. We denote by Hu(D) the class of univalent functions in D and by S the

class of functions f ∈ Hu(U) which are normalized by the condition f(0) = f ′(0)− 1 = 0.

Bieberbach’s conjecture. If the function f(z) = z + a2z
2 + · · · belongs to S, then

|an| ≤ n, n = 2, 3, . . . . (1.1)

Equality occurs in (1.1) for a given n ≥ 2 if and only if f is a rotation of the Koebe function.

The above conjecture remained unsolved until 1985, when it was proved by L. de Branges [22],

by means of the method of Löwner chains.

1.2 The Carathéodory class. Subordination. The principle of sub-

ordination

We give in this section the basic properties of functions with positive real part in the unit disc

U . We also present the concept of subordination in the complex plane.

Definition 1.2.1. The Carathéodory class, denoted by P, is the class of functions p analytic in U
with p(0) = 1 and Re p(z) > 0, z ∈ U .

Definition 1.2.2 ([62], [68]). Let f and g be two analytic functions in U . We say that f is

subordinate to g, written as

f ≺ g or f(z) ≺ g(z),

if there exists an analytic function w with w(0) = 0 and |w(z)| < 1, z ∈ U such that

f(z) = g(w(z)), z ∈ U .

Property 1.2.3 ([62]). Let f, g ∈ H(U). If f ≺ g then the following are true:

(i) f(Ur) ⊆ g(Ur), for any 0 < r < 1;

(ii) max{|f(z)| : |z| < r} ≤ max{|g(z)| : |z| < r}, for any 0 < r < 1;

(iii) |f ′(0)| ≤ |g′(0)|.

In all the above inequalities, equality is attained when f(z) = g(λz), where λ ∈ C with |λ| = 1.

For the case when g is a univalent function, we have the following characterization for subordi-

nation:
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Theorem 1.2.4 ([62], [68]). Let f be an analytic function and g be analytic and univalent in U .
Then f ≺ g if and only if f(0) = g(0) and f(U) ⊆ g(U).

1.3 Starlike and convex functions

We introduce now some special classes of univalent functions defined by geometric properties

and which can be completely characterized by simple inequalities. These classes are closely related

with functions of positive real part and with subordination.

Definition 1.3.1. Let f ∈ H(U) such that f(0) = 0. We say that f is starlike with respect to the

origin (or simply, starlike) if f is univalent and the image f(U) is a starlike domain with respect

to the origin.

Theorem 1.3.2 ([62]). Let f ∈ H(U) with f(0) = 0. The function f is starlike if and only if

f ′(0) 6= 0 and

Re
zf ′(z)

f(z)
> 0 , z ∈ U .

Definition 1.3.3 ([62]). The class S∗ is defined as the set of all starlike and normalized functions

in U , i.e.

S∗ =

{
f ∈ A : Re

zf ′(z)

f(z)
> 0 , z ∈ U

}
.

Definition 1.3.4. Let f ∈ H(U). We say that f is convex in U if f is univalent in U and the image

f(U) is a convex domain in C.

Theorem 1.3.5 ([62]). A function f ∈ H(U) is convex if and only if f ′(0) 6= 0 and

Re
zf ′′(z)

f ′(z)
+ 1 > 0 , z ∈ U .

The following result, due to Alexander [3], provides a connection between starlikeness and

convexity.

Theorem 1.3.6 ([3], Alexander’s duality theorem). A function f is convex in U if and only if the

function g defined by g(z) = zf ′(z), z ∈ U , is starlike in U .

Definition 1.3.7 ([62]). The class K is the set of all normalized and convex functions in U , i.e.

K =

{
f ∈ A : Re

zf ′′(z)

f ′(z)
+ 1 > 0 , z ∈ U

}
.

We have the inclusions K ⊂ S∗ ⊂ S. Alexander’s duality theorem can be rewritten using the

classes S∗ and K as

f(z) ∈ K ⇔ zf ′(z) ∈ S∗.
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1.4 Classes of functions related to starlikeness and convexity

We turn now to some subclasses of the normalized starlike and convex functions in the unit

disc, and we give some of their basic properties.

Definition 1.4.1. Let α ∈ R and f ∈ A such that
f(z)f ′(z)

z
6= 0, z ∈ U . Let also

J(α, f ; z) = (1− α)
zf ′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)
.

We say that f is α−convex in U if

Re J(α, f ; z) > 0, z ∈ U .

We denote byMα the class of all α−convex functions in U . It is clear thatM0 = S∗ andM1 = K.

Theorem 1.4.2 ([59], [57]). If α ∈ R, thenMα ⊆ S∗. Moreover, for all α, β ∈ R with 0 ≤ α/β < 1,

Mβ ⊂Mα.

Using the geometric means, Lewandowski et al. [42] defined, in a similar manner as Mocanu,

the class of γ−starlike functions:

Definition 1.4.3 ([42]). Let γ ∈ R and f ∈ A. Let also

L(γ, f ; z) =

(
zf ′(z)

f(z)

)1−γ (
1 +

zf ′′(z)

f ′(z)

)γ
.

We say that f is γ−starlike in U if

L(γ, f ; z) > 0, z ∈ U .

We denote by Lγ the class of all γ−starlike functions in U . It is clear that L0 = S∗ and L1 = K.

Theorem 1.4.4 ([42], [43]). Let γ ∈ R. Then Lγ ⊂ S∗.

The following notions were introduced by Robertson [72].

Definition 1.4.5. Let α ∈ [0, 1) and let f be an analytic function on U . We say that f is starlike

of order α in U if f(0) = 0, f ′(0) 6= 0 and

Re
zf ′(z)

f(z)
> α, z ∈ U .

Also, we say that f is convex of order α in U if f ′(0) 6= 0 and

Re
zf ′′(z)

f ′(z)
+ 1 > α, z ∈ U .
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Let S∗(α) and K(α) denote the classes of normalized starlike functions of order α in U and

convex functions of order α in U , respectively.

Definition 1.4.6. Let γ ∈ (0, 1]. A function f ∈ A is called strongly starlike of order γ if it satisfies∣∣∣∣arg

(
zf ′(z)

f(z)

)∣∣∣∣ < π

2
γ, z ∈ U .

Also, f ∈ A is called strongly convex of order γ if∣∣∣∣arg

(
1 +

zf ′′(z)

f ′(z)

)∣∣∣∣ < π

2
γ, z ∈ U .

Let SS∗(γ) and SK(γ) denote the classes of all strongly starlike functions of order γ and strongly

convex functions of order γ, respectively.

These two classes of functions have been extensevely studied by Mocanu and Nunokawa (the

reader is referred, for example, to [60], [61], [66]).

Ma and Minda [49] unified various subclasses of starlike and convex functions, by introduc-

ing two new subclasses using the requirement that either of the quantities zf ′(z)/f(z) or 1 +

zf ′′(z)/f ′(z) is subordinate to a more general function.

Definition 1.4.7 ([49]). Let φ be an analytic function with positive real part in U , such that

φ(0) = 1, φ′(0) > 0 and with the property that φ(U) is starlike with respect to 1 and symmetric

with respect to the real axis. The function f ∈ A belongs to the class S∗(φ) if it satisfies the

subordination
zf ′(z)

f(z)
≺ φ(z).

The class S∗(φ) is called the class of Ma-Minda starlike functions. The function f ∈ A belongs to

the class K(φ) if it satisfies the subordination

1 +
zf ′′(z)

f ′(z)
≺ φ(z).

The class K(φ) is called the class of Ma-Minda convex functions.

We present next the class of starlike functions with respect to symmetric points, denoted by

S∗s , which was introduced and investigated by Sakaguchi in [77], and the class of convex functions

with respect to symmetric points, denoted by Ks, introduced by Wang et al. in [88].

Definition 1.4.8 ([77]). A function f ∈ A is said to be starlike with respect to symmetric points

in U if for every r < 1, sufficiently close to 1, and every z0 on the circle |z| = r, the angular velocity

of f(z) about f(−z0) is positive at z = z0 as z traverses the circle |z| = r in the positive direction.

Remark 1.4.9 ([77]). The class of functions univalent and starlike with respect to symmetric

points includes the classes of convex functions and odd starlike functions.
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Theorem 1.4.10 ([77]). Let f ∈ A. A necessary and sufficient condition for a function f to be

univalent and starlike with respect to symmetric points in U is

Re
zf ′(z)

f(z)− f(−z)
> 0, z ∈ U .

Definition 1.4.11 ([88]). A function f ∈ S is said to be convex with respect to symmetric points

in U if it satisfies the inequality

Re
(zf ′(z))′

f ′(z) + f ′(−z)
> 0, z ∈ U .

In the style of Ma and Minda, Ravichandran [69] generalized the classes S∗s and Ks by means

of subordination, defining the classes S∗s (φ) and Ks(φ), with φ as in Definition 1.4.7:

Definition 1.4.12 ([69]). A function f ∈ A is said to be in S∗s (φ) if the following subordination

holds
2zf ′(z)

f(z)− f(−z)
≺ φ(z).

Definition 1.4.13 ([69]). A function f ∈ A is said to be in Ks(φ) if it satisfies the subordination

2(zf ′(z))′

f ′(z) + f ′(−z)
≺ φ(z).

At the end of this section we give the definition of the prestarlike functions, which were intro-

duced by Ruscheweyh in [74].

Definition 1.4.14 ([74]). Let f ∈ A and γ < 1. We say that f is prestarlike of order γ in U if

f(z) ∗ z

(1− z)2−2γ
∈ S∗(γ).

We denote by R(γ) the class of all prestarlike functions of γ in U . The class R(1) is consists of all

functions f ∈ A for which the inequality Re(f(z)/z) > 1/2, z ∈ U , holds true.

1.5 Close-to-convexity, quasi-convexity, spirallikeness

The notion of close-to-convexity is due to Kaplan [36].

Definition 1.5.1. Let f ∈ H(U). We say that f is close-to-convex in U (or simply close-to-convex )

if there exists a convex function g in U such that

Re

(
f ′(z)

g′(z)

)
> 0, z ∈ U . (1.2)
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Remark 1.5.2. Using Theorem 1.3.6, the condition (1.2) can be replaced by the requirement that

Re

(
zf ′(z)

g(z)

)
> 0

where g is a starlike function in U . From here it follows that if f is starlike in U , then f is also

close-to-convex.

Definition 1.5.3. The class C is the set of all normalized and close-to-convex functions in U , i.e.

C =

{
f ∈ A : Re

(
f ′(z)

g′(z)

)
> 0, g convex, z ∈ U

}
.

Remark 1.5.4. We have the inclusions

K ⊂ S∗ ⊂ C ⊂ S.

Related to the class C, we next give the definition of quasi-convex functions.

Definition 1.5.5 ([64]). A function f ∈ A is said to be quasi-convex in U (or simply, quasi-convex )

if there exists a function g ∈ K such that

Re

(
(zf ′(z))′

g′(z)

)
> 0, z ∈ U . (1.3)

We denote by Q the class of all quasi-convex functions in U , i.e.

Q =

{
f ∈ A : Re

(
(zf ′(z))′

g′(z)

)
> 0, g ∈ K, z ∈ U

}
.

Definition 1.5.6. Let f ∈ H(U) such that f(0) = 0. We say that f is λ-spirallike if f is univalent in

U and f(U) is a λ−spirallike domain. We say that f is spirallike if there exists an λ ∈ (−π/2, π/2)

such that f is λ−spirallike.

We denote the class of normalized λ−spirallike functions by Ŝλ. We observe that Ŝ0 = S∗.

The class of spirallike functions was first studied by Spaček [81], who also gave the following

theorem which provides a necessary and sufficient condition for λ−spirallikeness in U .

Theorem 1.5.7 ([81]). Let f ∈ H(U) such that f(0) = 0 and f ′(0) 6= 0. Also let λ ∈ (−π/2, π/2).

Then f is λ−spirallike if and only if

Re

(
eiλ

zf ′(z)

f(z)

)
> 0, z ∈ U .

The class of λ−spirallike functions of order α, defined below and denoted by Sλ(α), was first

considered by Libera in [45].

11



Definition 1.5.8 ([45]). Let 0 ≤ α < 1 and λ ∈ (−π/2, π/2). A function f ∈ A is said to be

λ-spirallike of order α in U if

Re

(
eiλ

zf ′(z)

f(z)

)
> α cosλ , z ∈ U . (1.4)

The next class of functions was introduced and first studied by Chichra in [12].

Definition 1.5.9 ([12]). Let 0 ≤ α < 1 and λ ∈ (−π/2, π/2). A function f ∈ A is said to be in

the class Fλ(α) if it satisfies the inequality

Re

[
eiλ
(

1 +
zf ′′(z)

f ′(z)

)]
> α cosλ , z ∈ U . (1.5)

Remark 1.5.10. It follows from (1.4) and (1.5) that f(z) ∈ Fλ(α) if and only if zf ′(z) ∈ Sλ(α).

We also note that Sλ(0) = Ŝλ, S0(α) = S∗(α) and F0(α) = K(α).

1.6 Differential subordinations

The differential subordinations method (or admissible functions method) is one of the newest

and most frequently used methods in the geometric theory of analytical functions. The bases of

this theory where made by S.S. Miller and P.T. Mocanu in their papers [53] and [54].

Definition 1.6.1 ([53]). Let ψ : C3 × U → C and let h be univalent in U . If p ∈ H[a, n] satisfies

the differential subordination

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), z ∈ U, (1.6)

then we say that p is a (a, n)-solution (or, simply, solution) of the differential subordination (1.6).

A univalent function q is called a (a, n)-dominant (or, simply, dominant) of the differential

subordination (1.6) if p(z) ≺ q(z), for all p solutions of (1.6).

A dominant q̃ with the property q̃ ≺ q for all dominants q of (1.6) is said to be the best

(a, n)-dominant (or, simply, best dominant) of the differential subordination (1.6).

The method of differential subordinations is based on the following fundamental lemmas.

Lemma 1.6.2 ([54]). Let z0 = r0e
iθ0 , 0 < r0 < 1, and let f(z) = anz

n+an+1z
n+1 +an+2z

n+2 + · · ·
be continuous on Ur0 and analytic on Ur0 ∪ {z0} with f(z) 6≡ 0 and n ≥ 1. If

|f(z0)| = max
{
|f(z)| : z ∈ Ur0

}
,

then there exists m ≥ n such that
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(i)
z0f
′(z0)

f(z0)
= m

and

(ii) Re
z0f
′′(z0)

f ′(z0)
+ 1 ≥ m.

In order to extend the ideas of this lemma, by replacing the disc |w| < r0 with a more general

region ∆, the following class of functions was introduced:

Definition 1.6.3. We denote by Q the set of functions q which are univalent in U\E(q), where

E(q) =

{
ζ ∈ ∂U : lim

z→ζ
q(z) =∞

}
,

and with the property that q′(ζ) 6= 0, ζ ∈ ∂U\E(q).

Lemma 1.6.4 ([53]). Let p(z) = a + anz
n + · · · be analytic in U with p(z) 6≡ a and n ≥ 1, and

let q ∈ Q with q(0) = a. If there exist two points z0 = r0e
iθ0 ∈ U and ζ0 ∈ ∂U\E(q) such that

p(z0) = q(ζ0) and p(Ur0) ⊂ q(U), then there exists a number m ≥ n ≥ 1 such that

(i) z0p
′(z0) = mζ0q

′(ζ0)

and

(ii) Re
z0f
′′(z0)

f ′(z0)
+ 1 ≥ mRe

[
ζ0q
′′(ζ0)

q′(ζ0)
+ 1

]
.

The next lemma is a variation of the previous one, and it considers a case of subordination of

two functions.

Lemma 1.6.5 ([52]). Let q ∈ Q with q(0) = a and let p = a + anz
n + · · · be analytic in U with

p(z) 6≡ a and n ≥ 1. If p is not subordinate to q, then there exist two the points z0 = r0e
θ0 ∈ U and

ζ0 ∈ ∂U \ E(q), and a number m ≥ n ≥ 1 for which p(U|z0|) ⊂ q(U) and

(i) p(z0) = q(ζ0),

(ii) z0p
′(z0) = mζ0q

′(ζ0)

and

(iii) Re
z0f
′′(z0)

f ′(z0)
+ 1 ≥ mRe

[
ζ0q
′′(ζ0)

q′(ζ0)
+ 1

]
.

Definition 1.6.6 ([53]). Let Ω ⊂ C, q ∈ Q and n ∈ N∗ := N \ {0}. We denote by Ψn[Ω, q] the class

of functions ψ : C3 × U → C which satisfy the condition

ψ(r, s, t; z) /∈ Ω whenever

r = q(ζ), s = mζq′(ζ), Re

[
t

s
+ 1

]
≥ mRe

[
ζq′′(ζ)

q′(ζ)
+ 1

]
,

where z ∈ U , ζ ∈ ∂U\E(q) and m ≥ n.
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Ψn[Ω, q] is called the set of admissible functions, and the above condition is called the admissibility

condition.

Theorem 1.6.7 ([30]). Let h be a convex function with h(0) = a and let γ ∈ C\{0} such that

Re γ ≥ 0. If p ∈ H[a, n] and

p(z) +
1

γ
zp′(z) ≺ h(z)

then

p(z) ≺ q(z) ≺ h(z) , (1.7)

where

q(z) =
γ

nzγ/n

∫ z

0
h(t)t(γ/n)−1dt , z ∈ U .

The function q is convex and is the best dominant of (1.7).

Definition 1.6.8 ([52]). Let h be a univalent function in U such that h(0) = a, and let p ∈ H[a, n]

and β, γ ∈ C with β 6= 0. A differential subordination of the type

p(z) +
zp′(z)

βp(z) + γ
≺ h(z), (1.8)

is called a Briot-Bouquet differential subordination.

Theorem 1.6.9 ([24]). Let β, γ ∈ C with β 6= 0 and let h be a convex function which satisfies the

inequality

Re [βh(z) + γ] > 0, z ∈ U .

If p is analytic in U and p(0) = h(0), then the subordination

p(z) +
zp′(z)

βp(z) + γ
≺ h(z)

implies p(z) ≺ h(z).

1.7 Subclasses of meromorphic functions

Let

ϕ = ζ + a0 +
a1
ζ

+ · · · , ζ ∈ U− (1.9)

be a meromorphic function from Σ and let E(ϕ) = C\ϕ(U−).

We will use the notation Σ0 for the subclass of functions ϕ ∈ Σ which do not vanish in the

exterior of the unit disc, i.e.

Σ0 =
{
ϕ ∈ Σ : ϕ(ζ) 6= 0, ζ ∈ U−

}
.
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Definition 1.7.1 ([62]). A function ϕ having the form (1.9) is called starlike in U− if ϕ is univalent

in U− and the set E(ϕ) is starlike with respect to the origin.

Definition 1.7.2 ([62]). Let

f(z) =
1

z
+ a0 + a1z + · · · , z ∈ U∗

be a meromorphic function in U∗. We say that f is starlike in U∗ if the function ϕ = f

(
1

ζ

)
,

ζ ∈ U− is starlike in U−.

Theorem 1.7.3 ([62]). Let f(z) =
1

z
+a0 +a1z+ · · · , z ∈ U∗ be meromorphic in U∗ with f(z) 6= 0,

z ∈ U∗. Then f is starlike in U∗ if and only if f is univalent in U∗ and

Re

[
−zf

′(z)

f(z)

]
> 0, z ∈ U∗.

We give below the definition of the class of meromorphic starlike functions of order α in U∗

(0 ≤ α < 1), which we shall denote by Σ∗(α) :

Σ∗(α) =

{
f meromorphic in U∗ : f(z) =

1

z
+ a0 + a1z + · · · , Re

[
−zf

′(z)

f(z)

]
> α, z ∈ U∗

}
.

(1.10)

Definition 1.7.4 ([62]). A function ϕ having the form (1.9) is called convex in U− if ϕ is univalent

in U− and the set E(ϕ) is convex.

Definition 1.7.5 ([62]). Let

f(z) =
1

z
+ a0 + a1z + · · · , z ∈ U∗

be a meromorphic function in U∗. We say that f is convex in U∗ if the function ϕ = f

(
1

ζ

)
,

ζ ∈ U− is convex in U−.

Theorem 1.7.6 ([62]). Let f(z) =
1

z
+a0 +a1z+ · · · , z ∈ U∗ be meromorphic in U∗ with f(z) 6= 0,

z ∈ U∗. Then f is convex in U∗ if and only if f is univalent in U∗ and

Re

[
−
(
zf ′′(z)

f ′(z)
+ 1

)]
> 0, z ∈ U∗.

Definition 1.7.7 ([1]). Let ϕ ∈ Σ0. We say that ϕ is close-to-convex in U− if there exists a

functions ψ ∈ Σ∗ such that Re
ζϕ′(ζ)

ψ(ζ)
> 0, ζ ∈ U−.
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Definition 1.7.8 ([1]). Let

f(z) =
1

z
+ a0 + a1z + · · · , z ∈ U∗

be a meromorphic function in U∗. We say that f is close-to-convex in U∗ if there exists a function

g, meromorphic and starlike in U∗, such that ϕ(ζ) = f

(
1

ζ

)
, ζ ∈ U−, is close-to-convex in U− with

respect to ψ(ζ) = g

(
1

ζ

)
, ζ ∈ U− (which is starlike in U−).

Theorem 1.7.9 ([1]). Let f(z) =
1

z
+ a0 + a1z+ · · · , z ∈ U∗ be meromorphic in U∗ with f(z) 6= 0,

z ∈ U∗. Then f is close-to-convex in U∗ if and only if f is univalent in U∗ and there exists a

function g, meromorphic and starlike in U∗, such that

Re

[
−zf

′(z)

g(z)

]
> 0, z ∈ U∗.

1.8 Differential and integral operators

We present in this section some well-known differential and integral operators, which shall be

later used in obtaining a series of new results.

Let f, g ∈ H(U), f(z) =
∑∞

j=0 ajz
j , g(z) =

∑∞
j=0 bjz

j . We denote by f ∗ g the convolution (or

Hadamard product) of the functions f and g, given by

(f ∗ g)(z) ≡ f(z) ∗ g(z) =
∞∑
j=0

ajbjz
j .

Definition 1.8.1 ([75]). Let n ∈ N. The Ruscheweyh differential operator Rn : A → A is given by

Rnf(z) =
z

(1− z)n+1
∗ f(z) , f ∈ A, z ∈ U .

Remark 1.8.2 ([75]). For n ∈ N and f ∈ A, f(z) = z +
∑∞

j=2 ajz
j , Rnf has the power series

expansion

Rnf(z) = z +
∞∑
j=2

Cnn+j−1ajz
j , z ∈ U. (1.11)

Definition 1.8.3 ([5]). Let n ∈ N and δ ≥ 0. The Al-Oboudi differential operator Dn
δ : A → A, is

defined by

D0f(z) = f(z),

D1f(z) ≡ Dδf(z) = zf ′(z),
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Dn
δ f(z) = Dδ(D

n−1
δ f(z)), z ∈ U.

Remark 1.8.4 ([5]). If f ∈ A, f(z) = z +
∑∞

j=2 ajz
j , then

Dn
δ f(z) = z +

∞∑
j=2

[1 + (j − 1)δ]najz
j , z ∈ U . (1.12)

Definition 1.8.5 ([79]). For n ∈ N, the integral Sălăgean operator In : A → A is defined by

I0f(z) = f(z),

I1f(z) = If(z) =

∫ z

0
f(t)t−1dt,

and

Inf(z) = I(In−1f(z)), f ∈ A. (1.13)

Definition 1.8.6 ([7]). For c ∈ N, the Bernardi integral operator Lc : A → A is defined by

Lcf(z) =
c+ 1

zc

∫ z

0
f(t)tc−1dt, f ∈ A, z ∈ U . (1.14)
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Chapter 2

New classes of analytic functions

This chapter contains a series of new results on analytic functions. In Section 2.1, we introduce

the operator Dn
λδf using the Al-Oboudi and Ruscheweyh differential operators and we investigate

several differential subordinations. In Section 2.2, the Sălăgean integral operator In is used for

defining two new classes of analytic functions for which several inclusion and integral-preserving

properties are given. Section 2.3 deals with several classes of bi-univalent functions. Most of the

original results in this chapter have been published and are included in the papers [16], [21], [17]

and [18].

2.1 Differential subordinations obtained by using Al-Oboudi and

Ruscheweyh operators

Definition 2.1.1 ([16]). Let n ∈ N, δ ≥ 0 and λ ≥ 0 with δ 6= (λ − 1)/λ. Let Dn
λδ denote the

operator Dn
λδ : A → A, defined by

Dn
λδf(z) =

1

1− λ+ λδ
[(1− λ)Dn

δ f(z) + λδRnf(z)], z ∈ U , (2.1)

where the operators Dn
δ f and Rnf are given by Definition 1.8.3 and Definition 1.8.1, respectively.

Remark 2.1.2 ([16]). When λ = 0 in (2.1), Dn
λδ reduces to the Al-Oboudi differential operator,

and when λ = 1 we obtain the Ruscheweyh differential operator.

Also, it is easy to see that for n = 0 we have

D0
λδf(z) =

1

1− λ+ λδ
[(1− λ)D0

δf(z) + λδR0f(z)] = f(z), z ∈ U .

Remark 2.1.3 ([16]). We observe that Dn
λδ is a linear operator and for f ∈ A,

f(z) = z +
∞∑
j=2

ajz
j ,
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by using equations (1.12) and (1.11), we have

Dn
λδf(z) = z +

1

1− λ+ λδ

∞∑
j=2

[
(1− λ) (1 + (j − 1)δ)n + λδCnn+j−1

]
ajz

j , z ∈ U . (2.2)

Theorem 2.1.4 ([16]). Let 0 ≤ α < 1, δ > 0 and f ∈ Am. If f satisfies

Re

[(
Dn+1
λδ f(z)

)′
+
λδz(δn+ δ − 1) (Rnf(z))′′

(1− λ+ λδ)(n+ 1)

]
> α, z ∈ U (2.3)

then the following inequality holds

Re (Dn
λδf(z))′ > γ, z ∈ U ,

where

γ = γ(α) = 2α− 1 +
2(1− α)

δm
β

(
1

δm

)
and

β(x) =

∫ 1

0

tx−1

1 + t
dt .

Example 2.1.5 ([16]). For the case f ∈ A, n = 1, λ = 1/2, δ = 1 and α = 1/2, we have γ(α) = ln 2

and the inequality

Re
[
f ′(z) + 3zf ′′(z) + z2f ′′′(z)

]
>

1

2
, z ∈ U ,

implies that

Re
[
f ′(z) + zf ′′(z)

]
> ln 2, z ∈ U .

Theorem 2.1.6 ([16]). Let m ∈ N, δ > 0, r a convex function with r(0) = 1 and h a function with

the property

h(z) = r(z) +mδzr′(z), z ∈ U .

If f ∈ Am, then the following subordination

(
Dn+1
λδ f(z)

)′
+
λδz(δn+ δ − 1) (Rnf(z))′′

(1− λ+ λδ)(n+ 1)
≺ h(z) = r(z) +mδzr′(z) (2.4)

implies that

(Dn
λδf(z))′ ≺ r(z).

The result is sharp.

Theorem 2.1.7 ([16]). Let m ∈ N and let r be a convex function with r(0) = 1 and h a function

such that

h(z) = r(z) +mzr′(z) (z ∈ U).
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If f ∈ Am, then the following subordination

(Dn
λδf(z))′ ≺ h(z) = r(z) +mzr′(z) (2.5)

implies that
Dn
λδf(z)

z
≺ r(z).

The result is sharp.

2.2 Some subclasses of analytic functions involving λ-spirallikeness

of order α

We establish in what follows some results on two new subclasses of analytic functions f, de-

fined by requiring that If is in the class Sλ(α) of λ-spirallike functions of order α, or in Fλn (α),

respectively, where In is the Sălăgean integral operator given in Section 1.8.

Definition 2.2.1 ([21]). For λ ∈ (−π/2, π/2) and α ∈ [0, 1), let Sλn(α) be the class of all analytic

functions f ∈ A with the property

Inf ∈ Sλ(α),

where Sλ(α) is the class of λ-spirallike functions of order α, given by Definition 1.5.8.

Also, let Fλn (α) be the class of functions f ∈ A which satisfy the relation

Inf ∈ Fλ(α),

where Fλ(α) is the class defined in Definition 1.5.9.

Remark 2.2.2 ([21]). It is easy to see that f(z) ∈ Fλn (α) if and only if zf ′(z) ∈ Sλn(α). Also,

Sλ0 (α) = Sλ(α) and Fλ0 (α) = Fλ(α).

Theorem 2.2.3 ([21]). Let λ ∈ (−π/2, π/2) and α ∈ [0, 1). Then for any n ∈ N, the following

inclusion holds:

Sλn(α) ⊂ Sλn+1(α).

Theorem 2.2.4 ([21]). Let λ ∈ (−π/2, π/2) and α ∈ [0, 1). Then for any n ∈ N, we have

Fλn (α) ⊂ Fλn+1(α).

Theorem 2.2.5 ([21]). Let c ∈ N, λ ∈ (−π/2, π/2) and α ∈ [0, 1). If f ∈ Sλn(α) then Lcf ∈ Sλn(α).

Theorem 2.2.6 ([21]). Let c ∈ N, λ ∈ (−π/2, π/2), α ∈ [0, 1). If f ∈ Fλn (α) then Lcf ∈ Fλn (α).
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2.3 Coefficient estimates for certain subclasses of bi-univalent func-

tions

In this section, we find coefficient estimates for several subclasses of bi-univalent functions.

A function f ∈ A is said to be bi-univalent in U if both f and the analytic extension of f−1 to

U are univalent in U . We shall denote by σ the class of bi-univalent functions in U .

Some examples of functions in the class σ are
z

1− z
, − log(1 − z) or

1

2
log

(
1 + z

1− z

)
. However,

the familiar Koebe function does not belong to σ. Other common examples of functions in S which

are not members of σ are z −
z2

2
and

z

1− z2
.

Lewin [44] was the first to investigate the class of bi-univalent functions, showing that the

second coefficient of the Taylor series expansion of a bi-univalent function satisfies |a2| < 1.51.

Recently, several authors studied different subclasses of bi-univalent functions, obtaining (non-

sharp) estimates of the first two coefficients, a2 and a3 (see, for example [4], [25], [82]).

Throughout this section, φ is an analytic function with positive real part in U , with φ(0) = 1,

φ′(0) > 0 and such that φ(U) is starlike with respect to 1 and symmetric with respect to the real

axis. Therefore, φ has a series expansion of the form

φ(z) = 1 +B1z +B2z
2 + · · · , B1 > 0. (2.6)

Definition 2.3.1 ([17]). A function f ∈ σ is said to be in the class S∗s,σ(φ) if both f and f−1 are

in S∗s (φ), where S∗s (φ) is the class of functions given in Definition 1.4.12.

Definition 2.3.2 ([17]). A function f ∈ σ is said to be in the class Ks,σ(φ) if both f and f−1 are

functions from Ks(φ), where Ks(φ) is the class of functions given in Definition 1.4.13.

We next give some coefficient estimates for functions belonging to the two classes defined above.

Theorem 2.3.3 ([17]). If the function f having the form (3.1) belongs to the class S∗s,σ(φ), then

|a2| ≤
B1

√
B1√

2|B2
1 + 2B1 − 2B2|

and |a3| ≤
1

2
B1

(
1 +

1

2
B1

)
. (2.7)

Theorem 2.3.4 ([17]). If the function f given by (3.1) belongs to the class Ks,σ(φ), then

|a2| ≤
B1

√
B1√

2|3B2
1 + 8B1 − 8B2|

and |a3| ≤
1

2
B1

(
1

3
+

1

8
B1

)
. (2.8)

Two interesting particular cases, stated in the corollaries below, are obtained when the function

φ is given by

φ(z) =
1 + (1− 2γ)z

1− z
= 1 + 2(1− γ)z + 2(1− γ)z2 + · · · ,
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where 0 ≤ γ < 1.

Corollary 2.3.5 ([17]). Let 0 ≤ γ < 1 and f ∈ σ be given by (3.1). If the following inequalities

are satisfied

Re

(
2zf ′(z)

f(z)− f(−z)

)
> γ, z ∈ U

and

Re

(
2wg′(w)

g(w)− g(−w)

)
> γ, w ∈ U ,

where g is the analytic extension of f−1 to U , then

|a2| ≤
√

1− γ and |a3| ≤ (1− γ)(2− γ).

Corollary 2.3.6 ([17]). Let 0 ≤ γ < 1 and f ∈ σ be given by (3.1). If the following inequalities

hold

Re

(
2(zf ′(z))′

f ′(z) + f ′(−z)

)
> γ, z ∈ U

and

Re

(
2(wg′(w))′

g′(w) + g′(−w)

)
> γ, w ∈ U ,

where g is the analytic extension of f−1 to U , then

|a2| ≤
√

1− γ
3

and |a3| ≤
(1− γ)(7− 3γ)

12
.

Also, for

φ(z) =

(
1 + z

1− z

)γ
= 1 + 2γ + 2γ2 + · · · (0 < γ ≤ 1),

we obtain the corollaries below:

Corollary 2.3.7. Let 0 < γ ≤ 1 and f ∈ σ be given by (3.1). If the following inequalities are

satisfied ∣∣∣∣arg

(
2zf ′(z)

f(z)− f(−z)

)∣∣∣∣ < γ
π

2
, z ∈ U

and ∣∣∣∣arg

(
2wg′(w)

g(w)− g(−w)

)∣∣∣∣ < γ
π

2
, w ∈ U ,

where g is the analytic extension of f−1 to U , then

|a2| < γ and |a3| < γ(1 + γ).
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Corollary 2.3.8. Let 0 < γ ≤ 1 and f ∈ σ be given by (3.1). If the following inequalities hold∣∣∣∣arg

(
2(zf ′(z))′

f ′(z) + f ′(−z)

)∣∣∣∣ < γ
π

2
, z ∈ U

and ∣∣∣∣arg

(
2(wg′(w))′

g′(w) + g′(−w)

)∣∣∣∣ < γ
π

2
, w ∈ U ,

where g is the analytic extension of f−1 to U , then

|a2| ≤
γ√

4− γ
and |a3| ≤

γ(4 + 3γ)

12
.

Definition 2.3.9 ([18]). Let 0 ≤ α ≤ 1. A function f ∈ σ is said to be in the class S∗s,σ(α, φ) if the

following subordinations hold:

2[(1− α)zf ′(z) + αz(zf ′(z))′]

(1− α)(f(z)− f(−z)) + αz(f ′(z) + f ′(−z))
≺ φ(z)

and
2[(1− α)wg′(w) + αw(wg′(w))′]

(1− α)(g(w)− g(−w)) + αw(g′(w) + g′(−w))
≺ φ(z),

where g is the extension of f−1 to U .

Remark 2.3.10 ([18]). When α = 0, the class S∗s,σ(0, φ) represents the class of all bi-univalent Ma-

Minda starlike functions with respect to symmetric points, whereas when α = 1, S∗s,σ(1, φ) is the

class of all bi-univalent Ma-Minda convex functions with respect to symmetric points, introduced

in [17].

Theorem 2.3.11 ([18]). Let 0 ≤ α ≤ 1. If f ∈ S∗s,σ(α, φ) is given by (3.1) then

|a2| ≤
B1

√
B1√

2|(1 + 2α)B2
1 + 2(1 + α)2(B1 −B2)|

(2.9)

and

|a3| ≤
1

2
B1

(
1

1 + 2α
+

1

2(1 + α)2
B1

)
. (2.10)

When

φ(z) =
1 + (1− 2γ)z

1− z
= 1 + 2(1− γ)z + 2(1− γ)z2 + · · · , 0 ≤ γ < 1,

we have the following consequence of Theorem 2.3.11:

Corollary 2.3.12. Let 0 ≤ α ≤ 1, 0 ≤ γ < 1 and f ∈ σ be given by (3.1). If the following

23



inequalities are satisfied

Re
2[(1− α)zf ′(z) + αz(zf ′(z))′]

(1− α)(f(z)− f(−z)) + αz(f ′(z) + f ′(−z))
> γ, z ∈ U

and

Re
2[(1− α)wg′(w) + αw(wg′(w))′]

(1− α)(g(w)− g(−w)) + αw(g′(w) + g′(−w))
> α, w ∈ U ,

where g is the analytic extension of f−1 to U , then

|a2| ≤
√

1− γ
1 + 2α

and |a3| ≤ (1− γ)

(
1

1 + 2γ
+

1− γ
1 + α

)
.

Definition 2.3.13 ([18]). Let 0 ≤ α ≤ 1. A function f ∈ σ is said to be in the class Ls,σ(α, φ) if

the following subordinations hold:(
2zf ′(z)

f(z)− f(−z)

)α( 2(zf ′(z))′

(f ′(z) + f ′(−z))

)1−α
≺ φ(z)

and (
2wg′(w)

g(w)− g(−w)

)α( 2(wg′(w))′

(g′(w) + g′(−w))

)1−α
≺ φ(w)

where g is the extension of f−1 to U .

Theorem 2.3.14 ([18]). Let 0 ≤ α ≤ 1. If f ∈ Ls,σ(α, φ) is given by (3.1) then

|a2| ≤
B1

√
B1√

2|(α2 − 3α+ 3)B2
1 + 2(2− α)2(B1 −B2)|

(2.11)

and

|a3| ≤
1

2
B1

(
1

2(2− α)2
B1 +

1

3− 2α

)
. (2.12)

Definition 2.3.15 ([18]). Let 0 ≤ α ≤ 1. A function f ∈ σ is said to be in the class Qs,σ(α, φ) if

following subordinations hold:

(1− α)zf ′(z) + αz(zf ′(z))′

(1− α)h(z) + αzh′(z)
≺ φ(z) (2.13)

and
(1− α)wg′(w) + αw(wg′(w))′

(1− α)h(w) + αwh′(w)
≺ φ(w) (2.14)

where h satisfies

Re

[
(1− α)zh′(z) + αz(zh′(z))′

(1− α)h(z) + αzh′(z)

]
> 0, z ∈ U (2.15)

and g is the analytic continuation of f−1 to U .
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Remark 2.3.16 ([18]). When α = 0, the class Qs,σ(0, φ) consists of all bi-univalent close-to-convex

functions of Ma-Minda type, whereas when α = 1, Qs,σ(1, φ) represents the class of all bi-univalent

quasi-convex functions of Ma-Minda type.

Theorem 2.3.17 ([18]). Let 0 ≤ α ≤ 1. If f ∈ Qs,σ(α, φ) is given by (3.1), then

|a2| ≤

√
B2

1 +B3
1 + 4|B1 −B2|

|3(1 + 2α)B2
1 + 4(1 + α)2(B1 −B2)|

(2.16)

and

|a3| ≤ B1

(
1

1 + 2α
+

B1

4(1 + α)2

)
+

4|B1 −B2|
3(1 + 2α)B1

(2.17)
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Chapter 3

New classes of meromorphic functions

We study in this chapter some subclasses of meromorphic functions. In Section 3.1 we define a

Janowski type class of functions, Σ(A,B;α), and we present, among other results, a sufficient con-

dition foe a function to belong to this aforementioned class, coefficient estimates or a convolution

property. In Section 3.2 we give a series of inclusion results, integral-preserving and convolu-

tion properties for two new classes of meromorphic functions defined by using the linear operator

Lλp(a, c), while in Section 3.3 we establish criteria for close-to-convexity of meromorphic multivalent

functions. The original results presented in this chapter are included in the papers [20], [14] and

[15].

For p ∈ N∗, let Σp denote the class of functions having the form

f(z) =
1

zp
+

∞∑
n=1−p

anz
n, z ∈ U∗, (3.1)

which are meromorphic and p-valent in U∗. Throughout this chapter, we shall denote Σ1 by Σ.

3.1 On a class of meromorphic functions of Janowski type

Definition 3.1.1 ([20]). Let −1 ≤ B < A ≤ 1 and 0 ≤ α ≤ 1. A meromorphic function f of the

form

f(z) =
1

z
+

∞∑
n=1

anz
n, z ∈ U∗, (3.2)

is said to be in the class Σ(A,B;α) if there exists g ∈ Σ∗(1/2) such that the following subordination

is satisfied:
(1− 2α)f ′(z)− αzf ′′(z)

g(z)g(−z)
≺ 1 +Az

1 +Bz
, (3.3)

where Σ∗(1/2) (0 ≤ a < 1) is the class of meromorphic starlike functions of order 1/2 in U∗, given

in (1.10).
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In [34], Janowski introduced the class P [A,B], where −1 ≤ B < A ≤ 1, as the set of all

functions p analytic in U , with p(0) = 1, that are subordinate to
1 +Az

1 +Bz
. This is the reason for

which classes defined by means of subordintions to the aforementioned function
1 +Az

1 +Bz
are often

called “of Janowski type”.

Remark 3.1.2 ([20]). The class Σ(A,B;α) provides a generalization of the classes studied by

Wang et al. [89] (the case α = 0, A = −1 and B = 1) and Sim and Kwon [80] (the case α = 0).

Remark 3.1.3 ([20]). If −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1, then Σ(A1, B1;α) ⊂ Σ(A2, B2;α). To

prove this, let f ∈ Σ(A1, B1;α). Then

(1− 2α)f ′(z)− αzf ′′(z)
g(z)g(−z)

≺ 1 +A1z

1 +B1z
.

But since −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1, the following subordination is true:

1 +A1z

1 +B1z
≺ 1 +A2z

1 +B2z
. (3.4)

Indeed, when −1 < B2 ≤ B1, the images of U under these two functions are two circles orthogonal

on the real axis and we also have that

min
z∈∂U

Re
1 +A2z

1 +B2z
=

1−A2

1−B2
≤ min

z∈∂U
Re

1 +A1z

1 +B1z
=

1−A1

1−B1

≤ max
z∈∂U

Re
1 +A1z

1 +B1z
=

1 +A1

1 +B1
≤ 1 +A2

1 +B2
= max

z∈∂U
Re

1 +A2z

1 +B2z
,

which shows that the image of U under (1+A1z)/(1+B1z) is included in the image of U under (1+

A2z)/(1+B2z), and so the subordination (3.4) holds. A similar argument shows the subordination

is also true when −1 = B1 = B2 or −1 = B1 < B2. It therefore follows that f ∈ Σ(A2, B2;α).

In our investigation of the class Σ(A,B;α) we shall need the following lemmas:

Lemma 3.1.4 ([89]). Let g ∈ Σ∗(1/2). Then

−zg(z)g(−z) ∈ Σ∗.

Lemma 3.1.5 ([89]). Let

g(z) =
1

z
+
∞∑
n=1

bnz
n ∈ Σ∗(1/2).

Then

|B2n−1| ≤
1

n
, n ∈ N∗,

where

B2n−1 = 2b2n−1 + 2b1b2n−3 − 2b2b2n−4 + · · ·+ (−1)n−1bn−2bn + (−1)nb2n−1. (3.5)
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Lemma 3.1.6 ([73]). Let

h(z) = 1 +

∞∑
n=1

hnz
n and k(z) = 1 +

∞∑
n=1

knz
n

be two analytic functions in U . If k is convex and h ≺ k, then

|hn| ≤ |k1|, n ∈ N∗.

The following result gives a sufficient condition for a function to belong to the investigated class

Σ(A,B;α).

Theorem 3.1.7 ([20]). Let −1 ≤ B < A ≤ 1, 0 ≤ α ≤ 1 and

g(z) =
1

z
+
∞∑
n=1

bnz
n, z ∈ U∗.

If f given by (3.2) is a meromorphic functions which satisfies the condition

∞∑
n=1

[(1 + |B|)|1− α− αn||an|n+ (1 + |A|)|B2n−1|] < A−B (3.6)

where the coefficients B2n−1 are given by (3.5), then f ∈ Σ(A,B;α).

We next determine the coefficient estimates for functions in Σ(A,B;α).

Theorem 3.1.8 ([20]). Let −1 ≤ B < A ≤ 1, 0 ≤ α ≤ 1 and f ∈ Σ(A,B;α) be given by (3.2).

Then

|a1| ≤ 1,

|a2n| ≤
A−B

2n|1− (2n+ 1)α|

(
1 +

n−1∑
k=1

1

k

)
, n ∈ N∗ (3.7)

and

|a2n+1| ≤
A−B

(2n+ 1)|1− (2n+ 2)α|

(
1 +

n∑
k=1

1

k

)
, n ∈ N∗. (3.8)

Theorem 3.1.9 ([20]). If −1 ≤ B < A ≤ 1, 0 ≤ α ≤ 1 and f ∈ Σ(A,B;α) then for |z| = r,

0 < r < 1, the following inequalities hold:

(1− r)2

r2
1−Ar
1−Br

≤ |(1− 2α)f ′(z)− αzf ′(z)| ≤ (1 + r)2

r2
1 +Ar

1 +Br
. (3.9)

We provide next a convolution property of functions from the class Σ(A,B;α) considered.

Theorem 3.1.10 ([20]). Let −1 ≤ B < A ≤ 1, 0 ≤ α ≤ 1, γ ≤ 1 and f ∈ Σ(A,B;α) such that the
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corresponding function g ∈ Σ∗(1/2) satisfies the condition

−Re

(
zg′(z)

g(z)

)
<

3

2
− 1

2
γ, z ∈ U . (3.10)

If φ ∈ Σ with z2φ(z) ∈ R(γ), then φ ∗ f ∈ Σ(A,B;α).

3.2 Subclasses of meromorphic multivalent functions involving a

certain linear operator

Making use of the linear operator Lλp,k(a, c) and the principle of subordination between analytic

functions, we introduce and investigate some new subclasses of the meromorphic p−valent function

class Σp.

Definition 3.2.1. The function ϕp(a, c; z) is defined by

ϕp(a, c; z) = z−p +

∞∑
n=1

(a)n
(c)n

zn−p

(a, c ∈ R, c 6∈ Z−0 = {0,−1,−2, . . .}, z ∈ U∗),

where (x)n denotes the Pochhammer symbol given by

(x)n =
Γ(x+ n)

Γ(x)
=

1, if k = 0,

x(x+ 1) . . . (x+ n− 1), if k ∈ N∗.

Corresponding to the function ϕp(a, c; z), Liu and Srivastava [47] and Yang [92] independently

introduced the linear operator Lp(a, c) on Σp by means of the Hadamard product as follows:

Lp(a, c)f(z) = ϕp(a, c; z) ∗ f(z), f ∈ Σp, z ∈ U∗.

Related to the function ϕp(a, c; z), in [6] the authors considered the function ϕλp(a, c; z) by

ϕp(a, c; z) ∗ ϕλp(a, c; z) =
1

zp(1− z)p+λ
(3.11)

(a, c ∈ R\Z−0 , λ > −p, p ∈ N∗, z ∈ U∗),

and the corresponding family of linear operators Lλp(a, c) analogous to Lp(a, c),

Lλp(a, c)f(z) = ϕλp(a, c; z) ∗ f(z) = z−p +

∞∑
n=1

(c)n(p+ n)n
(a)nn!

an−pz
n−p, z ∈ U∗. (3.12)
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Remark 3.2.2. From (3.11) and (3.12) it can easily be seen that

z(Lλp,k(a+ 1, c)f)′(z) = aLλp,k(a, c)f(z)− (a+ p)Lλp,k(a+ 1, c)f(z) (3.13)

and

z(Lλp,k(a, c)f)′(z) = (λ+ p)Lλ+1
p,k (a, c)f(z)− (λ+ 2p)Lλp,k(a, c)f(z). (3.14)

Making use of the operator Lλp,k(a, c) and the principle of subordination between analytic func-

tions, we introduce and investigate some new subclasses of the meromorphic p−valent function

class Σp.

Throughout this section, let p, k ∈ N∗, a, c 6∈ Z−0 , εk = exp(2πi/k) and for f ∈ Σp, define

fλp,k(a, c)(z) =
1

k

k−1∑
j=0

εjpk (Lλp,k(a, c)f)(εjkz) = z−p + · · · , z ∈ U∗. (3.15)

Definition 3.2.3 ([14]). Let h ∈ P, h convex and let f ∈ Σp such that fλp,k(a, c)(z) 6= 0, z ∈ U∗.
The function f is said to belong to the class Σλ

p,k(a, c;h) if it satisfies the subordination

−
z(Lλp,k(a, c)f)′(z)

pfλp,k(a, c)(z)
≺ h(z). (3.16)

Also, for−1 < B < A ≤ 1, we set

Σλ
p,k(a, c;A,B) := Σλ

p,k

(
a, c;

1 +Az

1 +Bz

)
.

Remark 3.2.4 ([14]). For k = λ = 1, the class Σ1
p,1(a, c;A,B) was introduced and studied by Liu

and Srivastava in [47]. The class Σλ
p,1(a, c;h) was considered by Srivastava et al. in [84], while for

λ = 1, Σ1
p,k(a, c;h) was studied by Aouf et al. in [6].

Definition 3.2.5 ([14]). Let h ∈ P, h convex and let f ∈ Σp such that fλp,k(a, c)(z) 6= 0, z ∈ U∗.
The function f is said to belong to the class Kλp,k(a, c;h) if there exists a function g ∈ Σλ

p,k(a, c;h)

such that

−
z(Lλp,k(a, c)f)′(z)

pgλp,k(a, c)(z)
≺ h(z), (3.17)

where gλp,k(a, c) is defined as in (3.15) with gλp,k(a, c)(z) 6= 0, z ∈ U∗. For −1 < B < A ≤ 1, we also

set

Kλp,k(a, c;A,B) := Kλp,k
(
a, c;

1 +Az

1 +Bz

)
.

Lemma 3.2.6 ([14]). Let h ∈ P be a convex function. If f ∈ Σλ
p,k(a, c;h), then

−
z(fλp,k(a, c))

′(z)

pfλp,k(a, c)(z)
≺ h(z). (3.18)
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Theorem 3.2.7 ([14]). Let h ∈ P, convex, with Reh(z) < 1 +
a

p
, z ∈ U and let f ∈ Σλ

p,k(a, c;h)

such that fλp,k(a+ 1, c)(z) 6= 0, z ∈ U∗. Then f ∈ Σλ
p,k(a+ 1, c;h).

When h(z) =
1 +Az

1 +Bz
, z ∈ U and −1 < B < A ≤ 1, we obtain the following corollary:

Corollary 3.2.8 ([14]). Let −1 < B < A ≤ 1 with
1 +A

1 +B
< 1 +

a

p
and let f ∈ Σλ

p,k(a, c;A,B) such

that fλp,k(a+ 1, c)(z) 6= 0, z ∈ U∗. Then f ∈ Σλ
p,k(a+ 1, c;A,B).

Theorem 3.2.9 ([14]). Let h ∈ P, convex, with Reh(z) < 1 +
a

p
, z ∈ U and let f ∈ Kλp,k(a, c;h)

with respect to g ∈ Σλ
p,k(a, c;h). Then f ∈ Kλp,k(a+ 1, c;h), provided that gλp,k(a, c)(z) 6= 0, z ∈ U∗.

Corollary 3.2.10 ([14]). Let −1 < B < A ≤ 1 with
1 +A

1 +B
< 1 +

a

p
and let f ∈ Kλp,k(a, c;A,B)

with respect to g ∈ Σλ
p,k(a, c;A,B). Then f ∈ Kλp,k(a + 1, c;A,B), provided that gλp,k(a, c)(z) 6= 0,

z ∈ U∗.

Theorem 3.2.11 ([14]). Let h ∈ P, convex, with Reh(z) < 2 +
λ

p
, z ∈ U and let f ∈ Σλ+1

p,k (a, c;h)

such that fλ+1
p,k (a+ 1, c)(z) 6= 0, z ∈ U∗. Then f ∈ Σλ

p,k(a, c;h).

Corollary 3.2.12 ([14]). Let −1 < B < A ≤ 1 satisfying the inequality
1 +A

1 +B
< 2 +

λ

p
and let

f ∈ Σλ+1
p,k (a, c;A,B) such that fλ+1

p,k (a+ 1, c)(z) 6= 0, z ∈ U∗. Then f ∈ Σλ
p,k(a, c;A,B).

Theorem 3.2.13 ([14]). Let h ∈ P be a convex function with Reh(z) < 2 +
λ

p
, z ∈ U and let

f ∈ Kλ+1
p,k (a, c;h) with respect to g ∈ Σλ+1

p,k (a, c;h). We then have f ∈ Kλp,k(a, c;h), provided that

gλp,k(a, c)(z) 6= 0, z ∈ U∗.

Corollary 3.2.14. [14] Let −1 < B < A ≤ 1 satisfying the inequality
1 +A

1 +B
< 2 +

λ

p
and

let f ∈ Kλ+1
p,k (a, c;A,B) with respect to g ∈ Σλ+1

p,k (a, c;A,B). We then have f ∈ Kλp,k(a, c;A,B),

provided that gλp,k(a, c)(z) 6= 0, z ∈ U∗.

We define next the integral operator Fµ,p : Σp → Σp (µ > 0), given by

Fµ,p(f)(z) =
µ− p
zµ

∫ z

0
tµ−1f(z)dt, f ∈ Σp, z ∈ U∗. (3.19)

From (3.19) it follows that

µLλp,k(a, c)Fµ,p(f)(z) + z
(
Lλp,k(a, c)Fµ,p(f)

)′
(z) = (µ− p)Lλp,k(a, c)f(z). (3.20)

The operator Fµ,p was investigated by many authors (see for example [38], [87], [92]).
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Theorem 3.2.15. [14] Let h ∈ P be a convex function with Reh(z) <
Reµ

p
, z ∈ U and let

f ∈ Σλ
p,k(a, c;h). Then Fµ,p(f) ∈ Σλ

p,k(a, c;h).

Theorem 3.2.16 ([14]). Let h ∈ P be a convex function with Reh(z) <
Reµ

p
, z ∈ U and let

f ∈ Kλp,k(a, c;h) with respect to g ∈ Σλ
p,k(a, c;h). Then Fµ,p(f) ∈ Kλp,k(a, c;h) with respect to the

function G = Fµ,p(g), provided that Gλp,k(a, c)(z) 6= 0, z ∈ U∗.

Theorems 3.2.17 and 3.2.18 stated below involve some convolution properties of the classes

Σλ
p,k(a, c) and Kλp,k(a, c) respectively.

Theorem 3.2.17 ([14]). Let h ∈ P be a convex function verifying the condition Reh(z) < 1+
1− α
p

,

z ∈ U , α < 1. Let also

g ∈ Σp with zp+1g(z) ∈ R(α). (3.21)

If f ∈ Σλ
p,k(a, c;h), then f ∗ g ∈ Σλ

p,k(a, c;h).

Theorem 3.2.18 ([14]). Let h ∈ P be convex and such that Reh(z) < 1 +
1− α
p

, z ∈ U , α < 1

and let g ∈ Σp with zp+1g(z) ∈ R(α). If f ∈ Kλp,k(a, c;h) with respect to ψ ∈ Σλ
p,k(a, c;h), then we

also have f ∗ g ∈ Kλp,k(a, c;h) with respect to ψ ∗ g.

Corresponding to the cases α = 0 and α = 1/2, Theorem 3.2.17 and Theorem 3.2.18 reduce

respectively to the two corollaries stated below:

Corollary 3.2.19 ([14]). Let h ∈ P be a convex function and g ∈ Σp such that one of the following

conditions is satisfied:

(i) Reh(z) < 1 +
1

p
, z ∈ U and zp+1g(z) is a convex univalent function in U

or

(ii) Reh(z) < 1 +
1

2p
, z ∈ U and zp+1g(z) ∈ S∗(1/2).

If f ∈ Σλ
p,k(a, c;h), then f ∗ g ∈ Σλ

p,k(a, c;h).

Corollary 3.2.20 ([14]). Let h ∈ P and g ∈ Σp such that one of the following conditions is

satisfied:

(i) Reh(z) < 1 +
1

p
, z ∈ U and zp+1g(z) is a convex univalent function in U

or

(ii) Reh(z) < 1 +
1

2p
, z ∈ U and zp+1g(z) ∈ S∗(1/2).

If f ∈ Kλp,k(a, c;h), then f ∗ g ∈ Kλp,k(a, c;h).
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3.3 Some criteria for meromorphic multivalent close-to-convex func-

tions

For 0 ≤ α < p, a functions f ∈ Σp is said to be in the class MCp(α) of close-to-convex

meromorphic p-valent functions if the following inequality is satisfied:

Re[zp+1f ′(z)] < −α, z ∈ U∗.

We next present some sufficient conditions for meromorphic p−valent functions to belong to

MCp(α).

Theorem 3.3.1 ([15]). If f ∈ Σp satisfies

Re
[
zp+1

(
f ′(z) + zf ′′(z)

)]
< αp+

p− α
2

, z ∈ U∗, (3.22)

then f ∈MCp(α).

Theorem 3.3.2 ([15]). If f ∈ Σp satisfies the inequality

Re

(
1

zpf ′(z)
(zp+1f ′(z))′

)
>


α

2(α− p)
, 0 ≤ α ≤

p

2
,

α− p
2α

,
p

2
≤ α < p,

, z ∈ U∗, (3.23)

then f ∈MCp(α).

Theorem 3.3.3 ([15]). If f ∈ Σp satisfies the inequality∣∣∣∣ p

zp+1f ′(z)

(
p+ 1 +

zf ′′(z)

f ′(z)

)∣∣∣∣ < α, z ∈ U∗, (3.24)

then f ∈MCp

(
p

1 + pα

)
.

Theorem 3.3.4 ([15]). Let µ ∈ [0, 1/2] and f ∈ Σp satisfying∣∣∣∣p+ 1 +
zf ′′(z)

f ′(z)

∣∣∣∣ < 1− µ, z ∈ U∗. (3.25)

Then f ∈MCp(pµ).
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Chapter 4

Differential subordinations involving

the arithmetic and geometric means

The arithmetic and geometric means of some functions and expressions are frequently used in

mathematics, especially in geometric function theory. Making use of the arithmetic means, Mocanu

[59] introduced the class of α-convex functions (see Definition 1.4.1), which, in some case, proclaims

the class of starlike, and in the other, convex functions. In general, the class of α-convex functions

determines the arithmetic bridge between starlikeness and convexity. In a similar manner, but

using the geometric means, Lewandowski et al. [42] defined the class of γ-starlike functions (see

Definition 1.4.3) which constitutes the geometric bridge between starlikeness and convexity. Many

authors have subsequently studied these classes of functions or similar ones that generalize them

(the reader is referred, for example, to [26], [78], [35], [70], [83], [39]).

This chapter contains some new results with expressions involving both the arithmetic and

the geometric means, proved by using the method of differential subordinations and also some

geometric arguments. With the exception of Lemma 4.1.1, the results contained in this chapter are

original and were published in the paper [19].

We give below a lemma due to Nunokawa [66], only in a slightly different but equivalent form,

which is more convenient for our next considerations.

Lemma 4.1.1 ([66]). Let p be an analytic function in U such that p(0) = 1, p(z) 6≡ 1. If z0 ∈ U
satisfies

| arg p(z0)| = max{arg p(z) : |z| ≤ |z0|} = γ
π

2
, and p(z0) = (ix)γ ,

then ∣∣arg[z0p
′(z0)]

∣∣ = (γ + 1)
π

2
and |z0p′(z0)| =

∣∣∣∣γxγ2

(
x+

1

x

)∣∣∣∣ .
Definition 4.1.2. Let α ∈ [0, 1], δ ∈ [1, 2] and µ ∈ [1, 3/2]. By H(α, δ, µ) we will denote the class
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of all functions p analytic in U with p(0) = 1, p 6≡ 1 for which the function

Q(z) = α[p(z)]δ + (1− α)

[
p(z) +

zp′(z)

p(z)

]µ
, z ∈ U , Q(0) = 1,

is well defined in U (where all powers are chosen as principal ones).

Theorem 4.1.3 ([19]). Let α ∈ [0, 1], a ∈ [0, 1), δ ∈ [1, 2] and µ ∈ [1, 3/2]. Also, let p ∈ H(α, δ, µ).

If

Re

(
α[p(z)]δ + (1− α)

[
p(z) +

zp′(z)

p(z)

]µ)
> a, z ∈ U , (4.1)

then

Re p(z) > a, z ∈ U . (4.2)

Remark 4.1.4. We observe that when a = 0, Theorem 4.1.3 is true for µ ∈ [1, 2]. This will also

come as a consequence of our next result.

Theorem 4.1.5 ([19]). Let α ∈ [0, 1], γ ∈ (0, 1], δ ∈ [1, 2] and µ ∈ [1, 2]. Also, let p ∈ H(α, δ, µ). If∣∣∣∣arg

(
α[p(z)]δ + (1− α)

[
p(z) +

zp′(z)

p(z)

]µ)∣∣∣∣ < γ
π

2
, z ∈ U , (4.3)

then

| arg p(z)| < γ
π

2
, z ∈ U . (4.4)

Definition 4.1.6. Let α ∈ [0, 1], δ ∈ [1, 2] and µ ∈ [0, 1]. By F(α, δ, µ) we will denote the class of

all functions p analytic in U with p(0) = 1, p 6≡ 1, for which the function

Q(z) = α[p(z)]δ + (1− α)[p(z)]µ
[
p(z) +

zp′(z)

p(z)

]1−µ
, z ∈ U , Q(0) = 1,

is well defined in U (where all powers are chosen as principal ones).

Theorem 4.1.7 ([19]). Let α ∈ [0, 1], a ∈ [0, 1), δ ∈ [1, 2], µ ∈ [0, 1]. Also, let p ∈ F(α, δ, µ). If

Re

(
α[p(z)]δ + (1− α)[p(z)]µ

[
p(z) +

zp′(z)

p(z)

]1−µ)
> a, z ∈ U , (4.5)

then

Re p(z) > a, z ∈ U . (4.6)

Theorem 4.1.8 ([19]). Let α ∈ [0, 1], γ ∈ (0, 1], δ ∈ [1, 2], µ ∈ [0, 1]. Also, let p ∈ F(α, δ, µ). If∣∣∣∣∣arg

(
α[p(z)]δ + (1− α)[p(z)]µ

[
p(z) +

zp′(z)

p(z)

]1−µ)∣∣∣∣∣ < γ
π

2
, z ∈ U , (4.7)

35



then

|arg p(z)| < γ
π

2
, z ∈ U .

We note that, for special selection of the function p, the considered subordinations could gener-

ate several different classes of analytic functions that have not been considered yet and which, for

particular choice of parameters, reduce to some well known ones. We provide below some of the

applications and possibilities to obtain new results for different forms of the function p.

First, by setting p(z) = zf ′(z)/f(z) in Theorem 4.1.3 and Theorem 4.1.5, we obtain the following

result:

Corollary 4.1.9 ([19]). Let f ∈ A, α ∈ [0, 1], a ∈ [0, 1), δ ∈ [1, 2], µ ∈ [1, 3/2] and γ ∈ [0, π/2].

(i) If

Re

(
α

[
zf ′(z)

f(z)

]δ
+ (1− α)

[
1 +

zf ′′(z)

f ′(z)

]µ)
> a, z ∈ U ,

then

Re

[
zf ′(z)

f(z)

]
> a, z ∈ U ,

and hence f is starlike of order a in U .
(ii) If ∣∣∣∣∣arg

(
α

[
zf ′(z)

f(z)

]δ
+ (1− α)

[
1 +

zf ′′(z)

f ′(z)

]µ)∣∣∣∣∣ < γ
π

2
, z ∈ U ,

then ∣∣∣∣arg

[
zf ′(z)

f(z)

]∣∣∣∣ < γ
π

2
, z ∈ U ,

or, equivalently, f is strongly starlike of order γ in U .

Remark 4.1.10 ([19]). When δ = µ = 1 and a = 0 we obtain the well known result of Mocanu [59]

that the class of α−convex functions is a subclass of the class of starlike functions in U . Similarly,

for a ∈ [0, 1), the class of all α−convex functions of order a in U is included in the class of starlike

functions of order a.

The same substitution p(z) = zf ′(z)/f(z) in Theorem 4.1.7 and Theorem 4.1.8 leads to the

following result:

Corollary 4.1.11 ([19]). Let f ∈ A. Let also α ∈ [0, 1], a ∈ [0, 1), δ ∈ [1, 2], µ ∈ [0, 1] and

γ ∈ [0, π/2].

(i) If

Re

(
α

[
zf ′(z)

f(z)

]δ
+ (1− α)

[
zf ′(z)

f(z)

]µ [
1 +

zf ′′(z)

f ′(z)

]1−µ)
> a, z ∈ U ,

then

Re

[
zf ′(z)

f(z)

]
> a, z ∈ U ,
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so f is starlike of order a in U .
(ii) If ∣∣∣∣∣arg

(
α

[
zf ′(z)

f(z)

]δ
+ (1− α)

[
zf ′(z)

f(z)

]µ [
1 +

zf ′′(z)

f ′(z)

]1−µ)∣∣∣∣∣ < γ
π

2
, z ∈ U ,

then ∣∣∣∣arg

[
zf ′(z)

f(z)

]∣∣∣∣ < γ
π

2
, z ∈ U ,

or, equivalently, f is strongly starlike of order γ in U .

Remark 4.1.12 ([19]). In the special case δ = 1, γ = 1 and α = 0 we obtain the aforementioned

result of Lewandowski et al. [44] that the class of µ−starlike functions is a subclass of the class of

starlike functions in U (Theorem 1.4.4).

The following result is a consequence of Theorem 4.1.3 and Theorem 4.1.5, for the special case

p(z) = f ′(z), f ∈ A.

Corollary 4.1.13 ([19]). Let f ∈ A, α ∈ [0, 1], a ∈ [0, 1), δ ∈ [1, 2], µ ∈ [1, 3/2] and γ ∈ [0, π/2].

(i) If

Re

(
α[f ′(z)]δ + (1− α)

[
f ′(z) +

zf ′′(z)

f ′(z)

]µ)
> a, z ∈ U ,

then

Re f ′(z) > a , z ∈ U ,

and hence, by Noshiro, Warschawski and Wolff’s univalence criterion, f is univalent in U .
(ii) If ∣∣∣∣arg

(
α[f ′(z)]δ + (1− α)

[
f ′(z) +

zf ′′(z)

f ′(z)

]µ)∣∣∣∣ < γ
π

2
, z ∈ U ,

then

| arg f ′(z)| < γ
π

2
, z ∈ U .

When substituting p(z) = f ′(z) in Theorems 4.1.7 and 4.1.8, we obtain the following corollary:

Corollary 4.1.14 ([19]). Let f ∈ A. Let also α ∈ [0, 1], a ∈ [0, 1), δ ∈ [1, 2], µ ∈ [0, 1] and

γ ∈ [0, π/2].

(i) If

Re

(
α[f ′(z)]δ + (1− α)[f ′(z)]µ

[
f ′(z) +

zf ′′(z)

f ′(z)

]1−µ)
> a, z ∈ U ,

then

Re f ′(z) > a, z ∈ U .

Therefore f is univalent in U .

37



(ii) If ∣∣∣∣∣arg

(
α[f ′(z)]δ + (1− α)[f ′(z)]µ

[
f ′(z) +

zf ′′(z)

f ′(z)

]1−µ)∣∣∣∣∣ < π

2
γ, z ∈ U ,

then

| arg f ′(z)| < γ
π

2
, z ∈ U .

The next corollary results also from Theorem 4.1.3 and Theorem 4.1.5, when substituting p(z)

with f(z)/z, f ∈ A.

Corollary 4.1.15 ([19]). Let f ∈ A, α ∈ [0, 1], a ∈ [0, 1), δ ∈ [1, 2], µ ∈ [1, 3/2] and γ ∈ [0, π/2].

(i) If

Re

(
α

[
f(z)

z

]δ
+ (1− α)

[
f(z)

z
+
zf ′(z)

f(z)
− 1

]µ)
> a, z ∈ U ,

then

Re

(
f(z)

z

)
> a, z ∈ U .

(ii) If ∣∣∣∣∣arg

(
α

[
f(z)

z

]δ
+ (1− α)

[
f(z)

z
+
zf ′(z)

f(z)
− 1

]µ)∣∣∣∣∣ < γ
π

2
, z ∈ U ,

then ∣∣∣∣arg

(
f(z)

z

)∣∣∣∣ < γ
π

2
, z ∈ U .

Finally, if we put p(z) = f(z)/z in Theorems 4.1.7 and 4.1.8, we have our last result:

Corollary 4.1.16 ([19]). Let f ∈ A. Let also α ∈ [0, 1], a ∈ [0, 1), δ ∈ [1, 2], µ ∈ [0, 1] and

γ ∈ [0, π/2].

(i) If

Re

(
α

[
f(z)

z

]δ
+ (1− α)

[
f(z)

z

]µ [f(z)

z
+
zf ′(z)

f(z)
− 1

]1−µ)
> a, z ∈ U ,

then

Re

(
f(z)

z

)
> a, z ∈ U .

(ii) If ∣∣∣∣∣arg

(
α

[
f(z)

z

]δ
+ (1− α)

[
f(z)

z

]µ [f(z)

z
+
zf ′(z)

f(z)
− 1

]1−µ)∣∣∣∣∣ < γ
π

2
, z ∈ U ,

then ∣∣∣∣arg

(
f(z)

z

)∣∣∣∣ < γ
π

2
, z ∈ U .
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[15] O. Crişan, Some criteria for meromorphic multivalent close-to-convex functions, submitted.
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Stud. Univ. Babeş-Bolyai Math., 56(3)(2011), 45-51.
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[21] O. Crişan, A.E. Tudor, Some subclasses of analytic functions involving λ-spirallikeness of order

α, Acta Univ. Apulensis, 31(2012), 47-52.

[22] L. de Branges, A proof of the Bieberbach conjecture, Acta Math., 154(1985), 137-152.

[23] P.L. Duren, Univalent Functions, Springer-Verlag, New York, 1983.

[24] P.J. Eenigenburg, S.S. Miller, P.T. Mocanu, M.O. Reade, On a Briot-Bouquet differential

subordination, General Inequalities, 3, International Series of Numerical Mathematics, Vol. 64
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Cărţii de Ştiinţă, Cluj-Napoca, 1999.
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